JP2003245708A - Method for controlling meandering of material to be rolled - Google Patents

Method for controlling meandering of material to be rolled

Info

Publication number
JP2003245708A
JP2003245708A JP2002045119A JP2002045119A JP2003245708A JP 2003245708 A JP2003245708 A JP 2003245708A JP 2002045119 A JP2002045119 A JP 2002045119A JP 2002045119 A JP2002045119 A JP 2002045119A JP 2003245708 A JP2003245708 A JP 2003245708A
Authority
JP
Japan
Prior art keywords
meandering
rolling
rolled
rolling mill
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002045119A
Other languages
Japanese (ja)
Other versions
JP3589226B2 (en
Inventor
Yasuhiko Takee
康彦 武衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002045119A priority Critical patent/JP3589226B2/en
Publication of JP2003245708A publication Critical patent/JP2003245708A/en
Application granted granted Critical
Publication of JP3589226B2 publication Critical patent/JP3589226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling the meandering of a material to be rolled, where, at the time of rolling using tandem rolling equipment, the meandering to the tip end of the material to be rolled is suppressed. <P>SOLUTION: The method for controlling the meandering of the material 1 to be rolled is applied as follows. Meandering measuring meters 4, 5, which measure the meandering amount of the material 1 to be rolled by detecting edge positions of the material at the working side and the driving side, are installed on the inlet side and the outlet side of the m-th rolling mill in the tandem rolling equipment provided with n rolling mills. When the tip end of the material 1 to be rolled is positioned on the position of the meandering measuring meter 4 installed in the inlet side or on the upstream therefrom, screw-down positions at the working side and the driving side are corrected based on the measured value of the meandering measuring meter 4 in the inlet side of the rolling mill. When the tip end of the material 1 to be rolled is positioned on the downstream from the meandering measuring meter 4 installed in the inlet side, the screw-down positions in the working side and the driving side of the rolling mill are corrected based on the measured value of the meandering measuring meter 5 in the outlet side. Here, n is an integer of ≥3 and m is an integer of ≥1 and ≤n. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、複数の圧延機を備
えるタンデム圧延設備を用いて圧延する場合の被圧延材
の蛇行制御方法に関する。 【0002】 【従来の技術】複数の圧延機を備えるタンデム圧延設備
での圧延作業においては、被圧延材が圧延機の胴長方向
中心から作業側又は駆動側に移動する「蛇行」と呼ばれ
る現象が発生し、この蛇行の程度が大きくなると、圧延
設備のサイドガイドに被圧延材が衝突して尾端部のエッ
ジが折れ込み、その状態で圧延されるために「絞り込
み」と称される圧延トラブルが生じることがある。 【0003】なお、圧延ロール(作業ロールと補助ロー
ル)のロール端にロール駆動用のモータが取り付けられ
ている側を「駆動側」、その反対側を「作業側」と称す
ることが一般に行われており、ここでもその一般呼称を
用いることにする。 【0004】特開平6−182417号公報には、圧延
機の作業側と駆動側の圧延荷重差及び、作業側と駆動側
の圧下位置制御出力信号から蛇行現象を予測する物理モ
デルによって被圧延材の蛇行量を推定し、前記の蛇行量
推定値に基づいて作業側と駆動側の圧下位置を修正して
蛇行の発生を抑制する「圧延材の蛇行制御装置」が開示
されている。 【0005】上記公報で提案された技術の場合、蛇行量
の推定精度が蛇行現象を予測する物理モデルの精度に依
存してしまう。したがって、圧延機の剛性や圧延ロール
の摩耗、熱膨張プロフィルなどの不確定要素が複雑に絡
む蛇行現象を精度良く予測するための物理モデルの開発
が必要であるため、必ずしも現実的とはいえない。 【0006】特開昭63−20110号公報には、被圧
延材の作業側と駆動側の幅端部位置(以下、エッジ位置
という)を直接検出して蛇行量を求め、この蛇行量に基
づいて圧延機の作業側と駆動側の圧下位置を修正して蛇
行の発生を抑制する「蛇行制御装置」が提案されてい
る。 【0007】上記公報で開示された技術の場合、前記特
開平6−182417号公報で提案された技術のような
高精度化することの難しい物理モデルを用いる必要はな
く、しかも、圧延機入側に蛇行量を直接検出する検出器
(すなわち、蛇行測定計)を設置しているため、蛇行量
の検出精度は高い。しかし、被圧延材の尾端部が前記圧
延機入側の蛇行測定計を通過した後は蛇行制御を行うこ
とができないため、絞り込みの発生を防止する上で重要
な被圧延材最尾端部での蛇行抑制効果が低下してしま
う。 【0008】特開平2−20608号公報には、連続圧
延機列の各圧延機の入側及び出側に蛇行測定計を設置
し、各圧延機における出側と入側の蛇行量の差を蛇行量
偏差として算出し、その蛇行量偏差が所定値を超えた圧
延機のうちで圧延最上流側にある圧延機について蛇行量
偏差が0(ゼロ)となるように、前記圧延機の作業側
(操作側)と駆動側の圧下量差を調整して蛇行の発生を
抑制する「圧延材の蛇行制御方法」が開示されている。 【0009】上記公報で提案された技術の場合、各圧延
機の入側及び出側に蛇行測定計を設置しているため、被
圧延材の最尾端部が圧延機入側の蛇行測定計を通過する
までは蛇行制御を行うことができる。しかし、被圧延材
の最尾端部が圧延機入側の蛇行測定計を通過した後は入
側の蛇行量測定ができず、蛇行量偏差が算出不能とな
り、したがって、被圧延材最尾端部の蛇行制御をするこ
とができない。 【0010】 【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、その目的は、複数の圧延機を備え
るタンデム圧延設備を用いて圧延するに際して、被圧延
材の最尾端部まで蛇行を抑制することができる被圧延材
の蛇行制御方法を提供することである。 【0011】 【課題を解決するための手段】本発明の要旨は、下記
(1)に示す被圧延材の蛇行制御方法にある。 【0012】(1)n台の圧延機を備えるタンデム圧延
設備を用いて圧延する場合の被圧延材の蛇行制御方法で
あって、前記タンデム圧延設備のm台目の圧延機の入側
及び出側にそれぞれ被圧延材の作業側と駆動側のエッジ
位置を検出して被圧延材の蛇行量を測定する蛇行測定計
を設置し、被圧延材の最尾端部が前記圧延機の入側に設
けた蛇行測定計の位置又はその蛇行測定計よりも圧延上
流側にある場合には、前記圧延機の入側に設けた蛇行測
定計の測定値に基づいて圧延機の作業側と駆動側の圧下
位置を修正し、被圧延材の最尾端部が前記圧延機の入側
に設けた蛇行測定計よりも圧延下流側にある場合には、
出側に設けた蛇行測定計の測定値に基づいて圧延機の作
業側と駆動側の圧下位置を修正することを特徴とする被
圧延材の蛇行制御方法。 【0013】ここで、nは3以上の整数、mは1以上で
n以下の整数である。 【0014】なお、以下の説明において、圧延機の入側
に設けた蛇行測定計を「入側蛇行計」といい、圧延機の
出側に設けた蛇行測定計を「出側蛇行計」という。 【0015】 【発明の実施の形態】以下、図を用いて本発明について
詳しく説明する。 【0016】図1は、本発明に係る被圧延材の蛇行制御
方法を説明する図で、被圧延材1を圧延するタンデム圧
延設備のm台目の圧延機3の入側及び出側にそれぞれ、
被圧延材1の作業側と駆動側のエッジ位置を検出する入
側蛇行計4と出側蛇行計5が設置されている。なお、同
図において圧延方向は、被圧延材1の下側の矢印で示す
方向である。 【0017】ここで、入側蛇行計4及び出側蛇行計5
は、例えば、図2に示すように、CCDカメラのような
光学式センサにより被圧延材1を2次元の画像として測
定し、上記の測定画像から被圧延材1のエッジ位置を検
出することで蛇行量を求めるものとすればよい。なお、
図2中の「被圧延材中心」とは被圧延材の幅方向中央を
指し、「圧延機中心」とは図1におけるm台目の圧延機
3の胴長方向中心を圧延方向に延長したものを指す。 【0018】前記「圧延機中心」とカメラの視野中心と
が一致するようにカメラを被圧延材1の上方に設置して
おけば、図2に示すカメラの視野において、被圧延材1
の作業側と駆動側のエッジ位置であるlwとldに関
し、これらの差の絶対値の「1/2」が蛇行量となる。
なお、同図においては被圧延材1が作業側に移動した場
合(つまり、lw<ldの場合)を示した。 【0019】以下、図1において被圧延材1の最尾端部
が前記m台目の圧延機3の1つ上流側にある圧延機2
(以下、単に上流側圧延機2という)を通過した後、圧
延機3及びその1つ下流側にある圧延機(以下、下流側
圧延機という。図示せず)でタンデム圧延中の場合を例
に説明する。 【0020】上記の場合、m台目の圧延機3の入側で
は、上流側圧延機2による拘束が働かないため、被圧延
材1は自由に回転運動ができる。以下、この場合の被圧
延材1の運動を、図6を用いて考察する。なお、この図
6は、水平面内にx軸、y軸をとって、y軸を圧延機3
直下(図では「ミル直下」と記載)の変形域、つまり圧
延機3のロール軸直下の変形域に一致させ、原点を圧延
機の胴長方向中心にとったものである。 【0021】上述した上流側圧延機2による拘束が働か
ない場合には、圧延機3の作業側と駆動側の圧下位置差
(すなわち、レベリング)の設定不良や、被圧延材1の
圧延機3での入側における作業側と駆動側の板厚差(す
なわち、ウェッジ)などの非対称圧延要因によって、作
業側と駆動側で被圧延材1の速度差が発生し、このため
に被圧延材1は回転運動をする。なお、被圧延材1の運
動は水平面内の剛体運動と考えられるから、上記圧延機
3直下での被圧延材1の送り方向が圧延ロールの周方向
と一致するとした場合、時刻τ=0における被圧延材1
の板幅b方向中心線上の点(x、y)の時刻τ=t
での位置(x、y)は、y=f(x )、ω
回転角速度、v を被圧延材1の時間変化を無視した
x軸方向の移送速度として、下記の式及びで表され
る。 【0022】 【数1】 【0023】 【数2】 【0024】前記の式及びから、圧延機3直下での
蛇行量y(t)と圧延機3から距離Lだけ上流側に設
置された入側蛇行計4の位置における蛇行量y(t)
は、それぞれ式及びで与えられる。 【0025】 【数3】 【0026】 【数4】 【0027】式及びをラプラス変換すると、下記の
式及びが得られる。 【0028】 【数5】 【0029】 【数6】【0030】Y(s)からY(s)までの応答は、
式及びの右辺第1項を比較すると、F(s)成分
に関して無駄時間L/v (入側蛇行計4から圧延機
3迄の移送時間)だけ遅れる応答であり、右辺第2項を
比較すると、Ω(s)成分に関して時定数L/v
一次遅れ応答であることがわかる。 【0031】したがって、入側蛇行計4で圧延機3にお
ける蛇行量を事前に検出することが可能であり、入側蛇
行計4の測定結果に基づいて圧延機3の蛇行制御を行う
ことが被圧延材1の蛇行抑制に有効である。 【0032】一方、前記m台目の圧延機3の出側では、
圧延機3と下流側圧延機との間で被圧延材1は拘束され
ており、回転運動が制約される。したがって、出側蛇行
計5を用いても圧延機3直下での蛇行量を、圧延機3か
ら出側蛇行計5までの移送時間分だけ遅れて測定するこ
とができる。ここで、m=nの場合には、圧延機3の出
側では、圧延機3とその下流側に設置した巻取機(図示
せず)との間で被圧延材1は拘束されることになり、回
転運動が制約される。 【0033】なお、タンデム圧延設備における蛇行現象
は、非常に短い時間で進行するので蛇行量の検出遅れは
できる限り排除する必要があり、更に、蛇行現象による
絞り込みは被圧延材1の最尾端部で発生する可能性が高
いので、被圧延材1の最尾端部まで蛇行制御を行うこと
が重要となるが、これらを達成するためには、図1にお
ける切り替え制御器8を図3に示すようにして接点位置
8aと8bに切り替えればよい。 【0034】すなわち、任意の制御開始タイミング、例
えば、上流側の拘束がなくなる被圧延材1の最尾端部が
上流側圧延機2を通過した直後、制御を開始するために
切り替え制御器8の接点を8a側に接続し、被圧延材1
の最尾端部が入側蛇行計4の位置又はそれよりも上流側
にある間、つまり、被圧延材1の蛇行量を入側蛇行計4
で測定できる間、前記の接点8a側への接続状態を維持
する。このとき、入側蛇行量制御装置6で、入側蛇行計
4による蛇行量測定値yinに基づく下記の式で与え
られる操作量Srinを計算し、切り替え制御器8から
圧延機3の圧下装置3bに出力し、作業側と駆動側の圧
下位置を修正すれば、圧延機3を蛇行変化に対し遅れを
生じることなく制御することが可能である。 【0035】例えば、入側蛇行計4により被圧延材1が
作業側に蛇行していることを検出した場合には、圧延機
3の圧下装置3bは蛇行量に相当する量だけ作業側の圧
下位置を相対的に閉じる(つまり、ロールギャップを小
さくする)ように修正すればよい。 【0036】Srin=Kin×yin・・・、 ここで、上記のSrinは作業側と駆動側の圧下位置の
差、すなわち、レベリングの目標値である。又、Kin
は蛇行量に対するレベリングの影響係数と制御ゲインと
を含む係数であり、被圧延材1の材質や寸法等によって
設定される値である。 【0037】なお、上流側圧延機2が存在しない(つま
りm=1の場合)には、同様に任意のタイミングで、制
御を開始するために切り替え制御器8の接点を8a側に
接続し、被圧延材1の最尾端部が入側蛇行計4の位置又
はそれよりも上流側にある間、つまり、被圧延材1の蛇
行量を入側蛇行計4で測定できる間、前記の接点8a側
への接続状態を維持する。このとき、入側蛇行量制御装
置6で、入側蛇行計4による蛇行量測定値yinに基づ
く上記の式で与えられる操作量Srinを計算し、切
り替え制御器8から圧延機3の圧下装置3bに出力し、
作業側と駆動側の圧下位置を修正すれば、圧延機3を蛇
行変化に対し遅れを生じることなく制御することが可能
である。 【0038】次に、被圧延材1の最尾端部が入側蛇行計
4よりも下流側に移動した場合、すなわち、被圧延材1
の蛇行量を入側蛇行計4で測定できなくなった場合、切
り替え制御器8の接点を8a側から8b側に接続し、こ
の接点接続状態を被圧延材1の最尾端部が圧延機3を通
過するまで維持する。このとき、出側蛇行量制御装置7
で、出側蛇行計5による蛇行量測定値youに基づく下
記式で与えられる操作量Srouを計算し、切り替え
制御器8から圧延機3の圧下装置3bに出力し、作業側
と駆動側の圧下位置を修正すれば、圧延機3を蛇行変化
に対し遅れを生じることなく制御することが可能であ
る。 【0039】Srou=Kou×you・・・、 ここで、上記式におけるSrouも作業側と駆動側の
圧下位置の差(レベリング)の目標値である。又、K
ouは前記Kin同様、蛇行量に対するレベリングの影
響係数と制御ゲインとを含む係数であり、被圧延材1の
材質や寸法等によって設定される値である。 【0040】最後に、被圧延材1の最尾端部が圧延機3
を通過した後は、切り替え制御器8の接点を中立位置に
戻して制御を終了すればよい。なお、前記の中立位置と
は接点8a、8bのいずれにも接触していない状態をい
う。 【0041】上記のようにすることで、被圧延材1の最
尾端部まで蛇行制御を行うことが可能であり、被圧延材
の最尾端部まで蛇行を抑制することができる。 【0042】次に、実施例により本発明を更に詳しく説
明する。 【0043】 【実施例】7台の圧延機を備えるタンデム圧延設備を用
いて、JIS G 3131に記載のSPHCを素材鋼とする厚さ
が28mmで幅が1265mmの被圧延材を、厚さが
1.2mmで幅が1250mmに仕上げた。なお、上記
圧延においては、タンデム圧延設備の6台目の圧延機の
入側での寸法として厚さが2.0mmで幅が1255m
mの被圧延材を、出側寸法として厚さが1.5mmで幅
が1252mmに圧延した。ここで、前記6台目の圧延
機の入側での寸法とは、その1台上流側の圧延機で圧延
された寸法である。 【0044】ここで、前記6台目の圧延機の作業側と駆
動側の圧下位置の差であるレベリングの修正は、下記
(イ)と(ロ)の2種類の方法で行った。(イ)に記載
した方法は、本発明に係る被圧延材の蛇行制御方法であ
り、(ロ)に記載した方法は、比較例としての従来技術
に基づく被圧延材の蛇行制御方法である。 【0045】なお、本実施例においては、(イ)と
(ロ)のいずれの方法の場合にも、被圧延材1は作業側
に移動する蛇行現象が生じた。 【0046】(イ)「図1に示すように、上記6台目の
圧延機3の入側及び出側にそれぞれ入側蛇行計4及び出
側蛇行計5を設け、被圧延材1の最尾端部が上流側圧延
機2を通過した直後、切り替え制御器8の接点を8a側
に接続し、この状態を被圧延材1の最尾端部が入側蛇行
計4の位置に来るまで保持した。この際、入側蛇行計4
による蛇行量測定値yinに基づく前記式で与えられ
る操作量Srinは、Kinを50μm/mmとして切
り替え制御器8から圧延機3の圧下装置3bに出力し、
作業側と駆動側の圧下位置を修正した。次いで、被圧延
材1の最尾端部が入側蛇行計4よりも下流側に移動した
直後、切り替え制御器8の接点を8a側から8b側に接
続し、この状態を被圧延材1の最尾端部が6台目目の圧
延機3を通過するまで維持した。この際、出側蛇行計5
による蛇行量測定値youに基づく前記式で与えられ
る操作量Srouは、K ouを20μm/mmとして切
り替え制御器8から圧延機3の圧下装置3bに出力し、
作業側と駆動側の圧下位置を修正した。」 (ロ)「図1に示す6台目の圧延機3の入側及び出側に
設けた入側蛇行計4及び出側蛇行計5による測定値のう
ち、入側蛇行計4の測定値だけを用いて圧延機3のレベ
リングの修正を行った。すなわち、被圧延材1の最尾端
部が上流側圧延機2を通過した直後、切り替え制御器8
の接点を8a側に接続し、この状態を被圧延材1の最尾
端部が入側蛇行計4の位置に来るまで保持した。この
際、入側蛇行計4による蛇行量測定値yinに基づく前
記式で与えられる操作量Srinは、Kinを50μ
m/mmとして切り替え制御器8から圧延機3の圧下装
置3bに出力し、作業側と駆動側の圧下位置を修正し
た。 【0047】次いで、被圧延材1の最尾端部が入側蛇行
計4よりも下流側に移動した直後から被圧延材1の最尾
端部が前記6台目の圧延機3を通過するまでの間も、上
記の被圧延材1の最尾端部が入側蛇行計4の位置にある
場合の操作量Srinの値を継続して切り替え制御器8
から圧延機3の圧下装置3bに出力し、作業側と駆動側
の圧下位置を修正した。つまり、この比較例の方法の場
合には、前記(イ)の場合とは異なり、出側蛇行計5に
よる蛇行量測定値youに基づく前記式で与えられる
操作量Srouを用いなかった。」 図4及び図5に、それぞれ前記(イ)と(ロ)の方法で
蛇行制御した場合の結果をまとめて示す。 【0048】図4の(a)は、蛇行量と時間との関係、
つまり、蛇行量の時間変化を示す図である。 【0049】この図4(a)には、入側蛇行計4での測
定値と出側蛇行計5での測定値をそれぞれ「入側蛇行計
測定値」、「出側蛇行計測定値」として細い実線で表示
した。又、前記の「入側蛇行計測定値」と「出側蛇行計
測定値」から求められる圧延機3直下の蛇行量であるy
(t)を「圧延機直下蛇行量」として太い実線で示し
た。なお、図4(a)には、全く蛇行制御を行わなかっ
た場合の予想蛇行量を細い破線を用いて、それぞれ前記
した「入側蛇行計測定値」、「出側蛇行計測定値」及び
「圧延機直下蛇行量」の線の隣に示した。図4(a)の
時間軸における△印は、被圧延材1の最尾端部が上流側
圧延機2、入側蛇行計4及び6台目の圧延機3を通過す
るタイミングであり、同図にはそれぞれ、「上流側圧延
機抜け」、「入側蛇行計抜け」及び「当該圧延機抜け」
として表示した。 【0050】ここで、上記の全く蛇行制御を行わなかっ
た場合の予想蛇行量は次のようにして求めることができ
る。 【0051】先ず、圧延機3直下での蛇行量y(t)
と入側蛇行計4の位置における蛇行量y(t)は、そ
れぞれ前記の式及びで与えられる。 【0052】一方、被圧延材1の剛体運動の回転角速度
ω は、被圧延材1の板幅b、x軸方向の移送速度v
及び圧延機3のウェッジ比率変化△ψと下記式の
関係にあることが知られている。 【0053】ω =(ζv /b)△ψ・・・、 ここで、ζは定数である。 【0054】上記のウェッジ比率変化△ψは、圧延機3
の入側と出側のウェッジ比率(つまり、ウェッジと板厚
との比)の変化で定義されるものであり、Hdfとh
dfを圧延機3の入側ウェッジと出側ウェッジ、Hとh
を圧延機3の入側と出側での板厚とすると、下記(10)式
で表される。 【0055】 △ψ=(hdf/h)−(Hdf/H)・・・(10)。 【0056】なお、圧延機出側のウェッジhdfは、圧
延機3のレベリングSaを操作することによって変化す
るため、下記(11)式が成り立つ。 【0057】 hdf(t)=Ksh×Sa(t)・・・(11)、 但し、hdf(t)とSa(t)は、時刻τ=tにおけ
る圧延機3の出側でのウェッジとレベリングであり、K
shはレベリングに対する出側ウェッジへの影響係数で
ある。Kshはテストによって求めることができるもの
であり、理論的に求めることも可能である。 【0058】式、、(10)及び(11)から、圧延機3直
下の蛇行量は下記の(12)式で表すことができる。 【0059】 【数7】 【0060】ここで、蛇行制御を行った場合、すなわ
ち、圧延機のレベリングSa(t)を変化させた場合の
蛇行量y(t)が既知であるので、この量からレベリ
ングSa(t)の影響である下記(13)式を差し引くこと
で、蛇行制御を行わなかった場合の蛇行量を予想するこ
とができる。 【0061】 【数8】 【0062】同様に、式、、(10)及び(11)から、入
側蛇行計4の位置における蛇行量は下記(14)式で表すこ
とができる。 【0063】 【数9】 【0064】蛇行制御を行った場合、すなわち、圧延機
のレベリングSa(t)を変化させた場合の蛇行量y
(t)が既知であるので、この量からレベリングSa
(t)の影響である下記(15)式を差し引けば、蛇行制御
を行行わなかった場合の蛇行量を予想することができ
る。 【0065】 【数10】 【0066】図4の(b)は、6台目の圧延機の作業側
と駆動側の圧下位置の差であるレベリングの修正量、つ
まり、式及びにおけるSrin、Srouの値と時
間との関係をまとめて示す図である。既に述べたよう
に、(イ)の方法で蛇行制御した場合、被圧延材1は作
業側に移動して蛇行したので、上記「レベリング修正
量」は圧延機の作業側の圧下位置を相対的に閉じた(つ
まり、ロールギャップを小さくした)ことを示す。これ
を図では「作業側閉」と表示した。 【0067】上記図4(b)の時間軸における△印は、
既に述べた図4(a)の場合と同様に、被圧延材1の最
尾端部が上流側圧延機2、入側蛇行計4及び6台目の圧
延機3を通過するタイミングを意味し、図ではそれぞ
れ、「上流側圧延機抜け」、「入側蛇行計抜け」及び
「当該圧延機抜け」として表示した。 【0068】図5の(a)は、前記図4(a)と同様
に、蛇行量の時間変化を示す図である。この図5(a)
の場合にも、入側蛇行計4での測定値と出側蛇行計5で
の測定値をそれぞれ「入側蛇行計測定値」、「出側蛇行
計測定値」として細い実線で表示した。又、前記の「入
側蛇行計測定値」から求められる圧延機3直下の蛇行量
であるy(t)を「圧延機直下蛇行量」として太い実
線で示した。なお、この図5(a)にも、全く蛇行制御
を行わなかった場合の予想蛇行量を細い破線を用いて、
それぞれ「入側蛇行計測定値」、「出側蛇行計測定値」
及び「圧延機直下蛇行量」の線の隣に示した。上記の全
く蛇行制御を行わなかった場合の予想蛇行量は既に述べ
た方法によって求めたものである。この図5(a)の時
間軸における△印も、被圧延材1の最尾端部が上流側圧
延機2、入側蛇行計4及び6台目の圧延機3を通過する
タイミングであり、同図にはそれぞれ、「上流側圧延機
抜け」、「入側蛇行計抜け」及び「当該圧延機抜け」と
して表示した。 【0069】図5の(b)は、6台目の圧延機の作業側
と駆動側の圧下位置の差であるレベリングの修正量、つ
まり、式におけるSrinの値と時間との関係を示す
図である。既に述べたように、(ロ)の方法で蛇行制御
した場合にも、被圧延材1は作業側に移動して蛇行した
ので、上記「レベリング修正量」は圧延機の作業側の圧
下位置を相対的に閉じた(つまり、ロールギャップを小
さくした)ことを示す。これを図では「作業側閉」と表
示した。 【0070】上記図5(b)の時間軸における△印も、
被圧延材1の最尾端部が上流側圧延機2、入側蛇行計4
及び6台目の圧延機3を通過するタイミングを意味し、
図ではそれぞれ、「上流側圧延機抜け」、「入側蛇行計
抜け」及び「当該圧延機抜け」として表示した。 【0071】なお、既に述べたように、前記(ロ)の方
法での蛇行制御は、被圧延材1の最尾端部が入側蛇行計
4よりも下流側に移動した直後から被圧延材1の最尾端
部が前記6台目の圧延機3を通過するまでの間は、被圧
延材1の最尾端部が入側蛇行計4の位置にある場合の上
記式におけるSrの値を継続して切り替え制御器8か
ら圧延機3の圧下装置3bに出力し、作業側と駆動側の
圧下位置を修正した。このため、図5(b)の時間軸で
「入側蛇行計抜け」から「当該圧延機抜け」までについ
ての「レベリング修正量」は一定の値になっている。図
4(a)から、被圧延材1の最尾端部が入側蛇行計4を
通過した後も出側蛇行計5での測定値に基づく蛇行制御
を行ってレベリング修正する本発明に係る前記(イ)に
記載した方法の場合、被圧延材最尾端部の「圧延機直下
蛇行量」は、全く蛇行制御を行わなかった場合の予想蛇
行量である90mmから35mmに低下し、55mmの
蛇行抑制効果が得られている。 【0072】これに対し、図5(a)の比較例に係る前
記(ロ)に記載した方法の場合、被圧延材最尾端部の
「圧延機直下蛇行量」は、全く蛇行制御を行わなかった
場合の予想蛇行量である90mmから60mmへ低下す
るだけ、蛇行抑制効果は30mmしかなく、本発明に係
る方法に比べて蛇行抑制効果に劣っている。 【0073】 【発明の効果】本発明によれば、複数の圧延機を備える
タンデム圧延設備を用いて圧延する際に、被圧延材の最
尾端部まで蛇行制御することが可能なため、効果的に被
圧延材最尾端部までの蛇行を抑制することができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a plurality of rolling mills.
To be rolled when rolling using a tandem rolling mill
Meandering control method. [0002] 2. Description of the Related Art Tandem rolling equipment having a plurality of rolling mills
In the rolling operation, the material to be rolled is
It is called "meandering" that moves from the center to the working or driving side
When the degree of meandering increases, rolling
The rolled material collides with the side guide of the equipment, and the edge of the tail end
Folds and rolls in that state.
In some cases, a rolling trouble called "mi" may occur. [0003] Rolling rolls (work rolls and auxiliary rolls)
The roll drive motor is attached to the roll end of
Is called the “drive side” and the opposite side is called the “work side”.
Is generally performed, and here also the general name is used.
I will use it. [0004] JP-A-6-182417 discloses a rolling method.
Difference in rolling load between the working side and the drive side of the machine, and the work side and the drive side
Physical model that predicts the meandering phenomenon from the rolling position control output signal of
The meandering amount of the material to be rolled is estimated by Dell, and the meandering amount
Correct the rolling position on the working side and the driving side based on the estimated value.
Disclosed "rolled material meandering control device" that suppresses meandering
Have been. In the case of the technique proposed in the above publication, the meandering amount
Estimation accuracy depends on the accuracy of the physical model that predicts the meandering phenomenon.
Will exist. Therefore, the rigidity of the rolling mill and the rolling roll
Uncertainties such as wear and thermal expansion profiles
Of a physical model for accurately predicting the meandering phenomenon
Is not always realistic. Japanese Patent Application Laid-Open No. 63-20110 discloses a
The width end position of the working side and the drive side of the rolled material (hereinafter referred to as the edge position
) Is directly detected to determine the amount of meandering, and based on this amount of meandering,
Then, adjust the rolling position on the working side and the drive side of the rolling mill to
A “meandering control device” that suppresses line generation has been proposed.
You. In the case of the technology disclosed in the above publication,
Such as the technique proposed in Japanese Unexamined Patent Publication No. 6-182417.
It is not necessary to use a physical model that is difficult to achieve
And a detector that directly detects the meandering amount on the rolling mill entry side
(That is, a meandering meter), the amount of meandering
Is highly accurate. However, the tail end of the material to be rolled
After passing through the meandering meter on the entry side of the mill, perform meandering control.
Important to prevent narrowing down
The meandering control effect at the tail end of
U. [0008] JP-A-2-20608 discloses a continuous pressure
Meandering meters are installed at the entrance and exit of each rolling mill in the rolling mill row
The difference between the meandering amount on the exit side and the meandering side on each rolling mill is
Calculated as the deviation, and the pressure at which the meandering deviation exceeds a predetermined value
Meandering amount of rolling mill on the most upstream side of rolling mill
The working side of the rolling mill so that the deviation is 0 (zero).
Adjust the difference in rolling amount between the (operation side) and the drive side to reduce the occurrence of meandering.
A "rolled material meandering control method" is disclosed. In the case of the technique proposed in the above publication, each rolling
Since meandering meters are installed on the entrance and exit sides of the machine,
The tail end of the rolled material passes through the meandering meter on the entry side of the rolling mill
Until the meandering control can be performed. However, the material to be rolled
After the tail end of the
Measurement of the meandering on the side cannot be performed, and the meandering deviation cannot be calculated.
Therefore, it is necessary to control the meandering of the tail end of the rolled material.
I can't do that. [0010] SUMMARY OF THE INVENTION The present invention provides
The purpose was to provide multiple rolling mills
When rolling using tandem rolling equipment,
Rolled material that can suppress meandering to the tail end of the material
Is to provide a meandering control method. [0011] The gist of the present invention is as follows.
This is the method of controlling the meandering of the material to be rolled as shown in (1). (1) Tandem rolling with n rolling mills
In the meandering control method of the material to be rolled when rolling using equipment
And the entrance of the m-th rolling mill of the tandem rolling equipment
And the working and drive side edges of the material to be rolled
A meandering measuring meter that detects the position and measures the meandering amount of the material to be rolled
And the tail end of the material to be rolled is set on the entry side of the rolling mill.
The position of the girder measuring meter or on the rolling
If it is on the upstream side, the meandering measurement provided on the entrance side of the rolling mill
Reduction of working side and driving side of rolling mill based on measured value of constant meter
Correct the position so that the tail end of the material to be rolled is
If it is on the downstream side of rolling than the meandering measurement meter provided in
Based on the measured value of the meandering meter installed on the exit side,
The rolling position is corrected by correcting the rolling position on the
Meandering control method for rolled material. Here, n is an integer of 3 or more, and m is 1 or more.
It is an integer equal to or less than n. In the following description, the entry side of the rolling mill will be described.
The meandering measurement meter provided in the
The meandering meter provided on the exit side is referred to as “exit meandering meter”. [0015] BRIEF DESCRIPTION OF THE DRAWINGS FIG.
explain in detail. FIG. 1 shows a meandering control of a material to be rolled according to the present invention.
FIG. 4 is a diagram for explaining a method, in which a tandem pressure for rolling a material 1 to be rolled
On the entrance side and the exit side of the m-th rolling mill 3 of the rolling equipment, respectively,
An input for detecting the edge positions of the work side and the drive side of the material 1 to be rolled.
A side meander 4 and an outgoing meander 5 are provided. The same
In the figure, the rolling direction is indicated by an arrow below the material 1 to be rolled.
Direction. Here, the inward meander 4 and the outward meander 5
Is, for example, as shown in FIG.
The material to be rolled 1 is measured as a two-dimensional image by an optical sensor.
And the edge position of the material to be rolled 1 is detected from the above measured image.
It is sufficient to determine the meandering amount by issuing. In addition,
The “rolled material center” in FIG. 2 is the widthwise center of the rolled material.
The "rolling mill center" is the m-th rolling mill in FIG.
No. 3 extends the center in the body length direction in the rolling direction. The "rolling mill center" and the center of view of the camera
Install the camera above the rolled material 1 so that
In other words, in the field of view of the camera shown in FIG.
Of the working-side and drive-side edge positions lw and ld
Then, "1/2" of the absolute value of these differences is the meandering amount.
In the same figure, when the material 1 to be rolled has moved to the working side.
(That is, lw <ld). In the following, in FIG.
Rolling mill 2 which is located one upstream of the m-th rolling mill 3
(Hereinafter simply referred to as the upstream rolling mill 2)
Rolling mill 3 and a rolling mill on its downstream side (hereinafter referred to as downstream side)
It is called a rolling mill. (Not shown) example during tandem rolling
Will be described. In the above case, at the entry side of the m-th rolling mill 3
Is not rolled because the restriction by the upstream rolling mill 2 does not work.
The material 1 can freely rotate. Below, the pressure in this case
The movement of the rolled material 1 will be considered with reference to FIG. This figure
Reference numeral 6 denotes an x-axis and a y-axis in a horizontal plane, and the y-axis is
Deformation area just below (in the figure, "Below the mill"), that is, pressure
Rolling the origin to match the deformation area just below the roll axis of the rolling machine 3
It is taken at the center of the aircraft in the body length direction. Whether the restraint by the upstream rolling mill 2 described above works.
If there is not, the difference in the rolling position between the working side and the driving side of the rolling mill 3
(That is, leveling) is not properly set, and
The thickness difference between the working side and the drive side at the entry side in the rolling mill 3
That is, due to asymmetric rolling factors such as wedges),
The speed difference of the material to be rolled 1 occurs between the work side and the drive side,
The material to be rolled 1 rotates. The operation of the material 1 to be rolled is
The motion is considered to be a rigid body motion in the horizontal plane.
3 The feed direction of the material to be rolled 1 immediately below is the circumferential direction of the rolling roll
, The rolled material 1 at time τ = 0
Point (x0, Y0) Time τ = t
At position (x, y) is y0= F0(X 0), Ω1 To
Rotational angular velocity, v1 Of the rolled material 1 is ignored
The transfer speed in the x-axis direction is expressed by the following formula and
You. [0022] (Equation 1) [0023] (Equation 2) From the above equation and from the above equation, the
Meandering amount yC(T) and a distance L from the rolling mill 3
Meandering amount y at the position of the entry side meandering meter 4 placedS(T)
Is given by the formula and [0025] [Equation 3] [0026] (Equation 4) When the equation and Laplace transform are performed, the following equation is obtained.
Equations and are obtained. [0028] (Equation 5) [0029] (Equation 6)YS(S) to YCThe response up to (s)
Comparing the first term on the right side of the equation and0(S) component
Dead time L / v1 (From the meandering total of 4 to the rolling mill
(Transfer time up to 3).
By comparison, the time constant L / v for the Ω (s) component1 of
It can be seen that the response is a first-order delay response. Therefore, the meandering side 4 on the rolling mill 3
Can be detected in advance,
The meandering control of the rolling mill 3 is performed based on the measurement result of the row total 4.
This is effective for suppressing the meandering of the material 1 to be rolled. On the other hand, on the exit side of the m-th rolling mill 3,
The rolling material 1 is restrained between the rolling mill 3 and the downstream rolling mill.
And the rotational movement is restricted. Therefore, the outgoing meander
Even if a total of 5 were used, the meandering amount immediately below the rolling mill 3
Measurement with a delay of the transfer time from
Can be. Here, when m = n, the output of the rolling mill 3
On the side, a rolling mill 3 and a winder installed downstream thereof (shown in FIG.
The rolled material 1 is constrained between
Rolling motion is restricted. The meandering phenomenon in the tandem rolling mill
Progresses in a very short time, so the detection delay of the meandering amount is
It is necessary to eliminate as much as possible, and furthermore,
Reduction is likely to occur at the tail end of the material 1 to be rolled.
Therefore, it is necessary to perform meandering control to the tail end of the material 1 to be rolled.
Is important, but in order to achieve these, FIG.
The switching controller 8 is operated as shown in FIG.
What is necessary is just to switch to 8a and 8b. That is, arbitrary control start timing, example
For example, the tail end of the material to be rolled 1 where there is no restriction on the upstream side is
Immediately after passing through the upstream rolling mill 2, to start the control
The contact of the switching controller 8 is connected to the 8a side,
Is located at the entry meandering meter 4 or upstream of it
In other words, the meandering amount of the material 1 to be rolled is
Maintains the connection state to the contact 8a side while measuring with
I do. At this time, the inlet side meandering amount controller 6 controls the inlet side meandering meter.
The meandering amount measured value y by 4inGiven by the following formula based on
Manipulated variable SrinFrom the switching controller 8
It outputs to the rolling-down device 3b of the rolling mill 3, and the working side and the driving side
If the lower position is corrected, the rolling mill 3 is delayed for the meandering change.
It is possible to control without occurring. For example, the material 1 to be rolled is
If it detects that it is meandering to the work side,
3, the pressure device on the working side is reduced by an amount corresponding to the meandering amount.
Close the lower position relatively (that is, reduce the roll gap
It can be modified as follows. Srin= Kin× yin... Here, the above SrinIs the work side and drive side
The difference, that is, the target leveling value. Also, Kin
Is the influence coefficient of leveling on the amount of meandering and the control gain.
Is a coefficient that includes
This is the value to be set. It should be noted that the upstream rolling mill 2 does not exist (the
In the case of m = 1), the control is similarly performed at an arbitrary timing.
Contact of switching controller 8 to 8a side to start control
Connected, the tail end of the material 1 to be rolled
Is located on the upstream side, that is, the snake of the material 1 to be rolled is
While the line amount can be measured by the input side meandering meter 4, the contact 8a side
Stay connected to. At this time,
In the position 6, the meandering amount measured value y by the entrance meandering meter 4inBased on
The manipulated variable Sr given by the above equationinCalculate and turn off
Output from the switching controller 8 to the rolling-down device 3b of the rolling mill 3,
If the rolling positions on the working side and the driving side are corrected, the rolling mill 3
Can control line changes without delay
It is. Next, the tail end of the material to be rolled 1 is an entrance meandering meter.
4, the material to be rolled 1
If it is no longer possible to measure the meandering amount of
Connect the contact of the switching controller 8 from the 8a side to the 8b side, and
When the contact end of the rolled material 1 passes through the rolling mill 3
Keep until you spend. At this time, the output side meandering amount control device 7
The meandering amount measured value y by the outlet meandering meter 5ouBased on
The manipulated variable Sr given by the notationouCalculate and switch
Output from the controller 8 to the rolling-down device 3b of the rolling mill 3,
The rolling position of the rolling mill 3
Can be controlled without delay.
You. Srou= Kou× you... Here, Sr in the above equationouAlso working side and driving side
This is the target value of the difference (leveling) between the rolling positions. Also, K
ouIs the KinSimilarly, the shadow of leveling on the amount of meandering
This is a coefficient that includes the reverberation coefficient and the control gain.
This is a value set according to the material and dimensions. Finally, the tail end of the material 1 to be rolled is
After passing through, the contact point of the switching controller 8 is set to the neutral position.
It is only necessary to return to end the control. The neutral position
Indicates a state where neither of the contacts 8a and 8b is in contact.
U. By performing the above, the material 1 to be rolled
It is possible to control meandering to the tail end,
Meandering can be suppressed to the tail end. Next, the present invention will be described in more detail by way of examples.
I will tell. [0043] [Embodiment] A tandem rolling mill equipped with seven rolling mills is used.
The thickness of SPHC described in JIS G 3131 as material steel
Rolled material having a width of 1265 mm and a thickness of 28 mm
The width was finished to 1250 mm at 1.2 mm. The above
In rolling, the sixth rolling mill of the tandem rolling mill
The dimensions on the entry side are 2.0mm thick and 1255m wide
The rolled material with a thickness of 1.5 mm and a width of 1.5 mm
Was rolled to 1252 mm. Here, the sixth rolling mill
The dimension at the entry side of the mill means that one of the rolling mills on the upstream side
Dimensions. Here, the working side of the sixth rolling mill and the drive
The correction of leveling, which is the difference between the rolling positions on the moving side, is described below.
(A) and (b). Described in (a)
The method described above is a method for controlling meandering of a material to be rolled according to the present invention.
The method described in (b) is a conventional technique as a comparative example.
Is a meandering control method for a material to be rolled based on the above. In this embodiment, (a) and (b)
In either method of (b), the material to be rolled 1 is on the working side.
A meandering phenomenon that moves to the right. (A) "As shown in FIG. 1, the sixth
The meandering 4 on the inlet side and the outlet on the
A side meander 5 is provided, and the tail end of the material 1 is rolled upstream.
Immediately after passing through the machine 2, the contact point of the switching controller 8 is set to the 8a side.
This state is such that the tail end of the material to be rolled 1 is meandering on the entry side.
It was held until it reached a total of 4 positions. At this time, the entrance meandering total 4
Meandering value yinGiven by the above formula based on
Operation amount SrinIs KinCut as 50 μm / mm
Output from the switching controller 8 to the rolling-down device 3b of the rolling mill 3,
Corrected the rolling position on the working side and the driving side. Then rolled
The tail end of the material 1 has moved downstream from the entry meandering meter 4.
Immediately after, the contact point of the switching controller 8 is connected from the 8a side to the 8b side.
In this state, the rearmost end of the material 1 to be rolled is
It was maintained until it passed mill 3. At this time, the outgoing meander 5
Meandering value youGiven by the above formula based on
Operation amount SrouIs K ouCut as 20 μm / mm
Output from the switching controller 8 to the rolling-down device 3b of the rolling mill 3,
Corrected the rolling position on the working side and the driving side. " (B) "On the inlet and outlet sides of the sixth rolling mill 3 shown in FIG.
The measured values obtained by the entry side meander meter 4 and the exit side meander meter 5 are provided.
That is, the level of the rolling mill 3 is determined using only the measured value of the meandering meter 4 on the entry side.
Fixed the ring. That is, the tail end of the material 1 to be rolled
Immediately after the section has passed the upstream rolling mill 2, the switching controller 8
Are connected to the 8a side, and this state is
It was held until the end came to the position of the meander 4 on the entry side. this
The meandering amount measured value y by the meandering meter 4 on the entry sideinBased on
The manipulated variable Sr given by the notationinIs Kin50μ
m / mm and the rolling controller 3 from the switching controller 8
Output to the device 3b to correct the draft position on the working side and the drive side.
Was. Next, the tail end of the material to be rolled 1 is meandering on the entry side.
Immediately after moving to the downstream side from a total of 4, the tail of the material 1 to be rolled
Until the end passes through the sixth rolling mill 3,
The tail end of the material to be rolled 1 is at the position of the entry meandering meter 4.
Manipulated variable SrinSwitching controller 8 to keep the value of
To the rolling-down device 3b of the rolling mill 3, and the working side and the driving side
The rolling position of was corrected. In other words, the method of this comparative example
In this case, unlike the case (a), the output meandering meter 5
Meandering value youGiven by the above equation
Operation amount SrouWas not used. " FIGS. 4 and 5 show the methods (a) and (b), respectively.
The results when the meandering control is performed are shown below. FIG. 4A shows the relationship between the meandering amount and time.
That is, it is a diagram illustrating a time change of the meandering amount. FIG. 4A shows the measurement by the meandering meter 4 on the entry side.
The fixed value and the measured value of the output side meander meter 5 are referred to as the "input side meander meter," respectively.
Displayed as a thin solid line as `` measured value '' and `` measured value on exit side meander meter ''
did. In addition, the above-mentioned "measured value on the ingress side meander meter" and "the outgoing side meander meter"
The meandering amount immediately below the rolling mill 3 obtained from the "measured value"
C(T) is indicated by a thick solid line as “the amount of meandering immediately below the rolling mill”.
Was. FIG. 4A shows no meandering control.
Using a thin broken line,
`` Inlet meander meter measured value '', `` Outlet meander meter measured value '' and
It is shown next to the line of "the amount of meandering just below the rolling mill". 4 (a)
The symbol “△” on the time axis indicates that the tail end of the material 1 to be rolled is on the upstream side.
Passing through the rolling mill 2, the meandering side 4 and the sixth rolling mill 3
In the figure, the “upstream rolling
"Missing machine", "Missing meander in the entrance side" and "Missing rolling mill"
Displayed as Here, the meandering control is not performed at all.
Can be calculated as follows:
You. First, the meandering amount y just below the rolling mill 3C(T)
And meandering amount y at the position of the total meandering side 4S(T)
They are given by the above equations and respectively. On the other hand, the rotational angular velocity of the rigid motion of the material 1 to be rolled
ω1 Is the sheet width b of the material 1 to be rolled, and the transfer speed v in the x-axis direction.
1 And the wedge ratio change 圧 延 of the rolling mill 3 and the following equation
Is known to be in a relationship. Ω1 = (Ζv1 / B) △ ψ ・ ・ ・, Here, ζ is a constant. The above wedge ratio change △ ψ is determined by
Wedge ratio between the entrance and exit sides of the
Is defined by the change ofdfAnd h
dfTo the entry wedge and the exit wedge of the rolling mill 3, H and h
Is the sheet thickness at the entry side and the exit side of the rolling mill 3, the following equation (10) is obtained.
Is represented by [0055] △ ψ = (hdf/ H)-(Hdf/ H) (10). The wedge h on the exit side of the rolling milldfIs the pressure
It changes by operating the leveling Sa of the mill 3
Therefore, the following equation (11) holds. [0057] hdf(T) = Ksh× Sa (t) (11) Where hdf(T) and Sa (t) at time τ = t
Wedge and leveling at the exit side of the rolling mill 3
shIs the coefficient of influence of the output wedge on leveling.
is there. KshIs what can be determined by testing
It is also possible to obtain theoretically. From the formulas (10) and (11), the mill 3
The lower meandering amount can be expressed by the following equation (12). [0059] (Equation 7) Here, when the meandering control is performed,
In the case where the leveling Sa (t) of the rolling mill is changed,
Meandering amount yCSince (t) is known, the level
Subtracting the following equation (13), which is the effect of
To estimate the amount of meandering without meandering control.
Can be. [0061] (Equation 8) Similarly, from the formulas (10) and (11),
The meandering amount at the position of the side meandering meter 4 can be expressed by the following equation (14).
Can be. [0063] (Equation 9) When the meandering control is performed, that is, when the rolling mill
Meandering amount y when the leveling Sa (t) is changedS
Since (t) is known, the leveling Sa is calculated from this amount.
By subtracting the following equation (15), which is the effect of (t), meandering control
Can estimate the amount of meandering if not done
You. [0065] (Equation 10) FIG. 4B shows the working side of the sixth rolling mill.
Leveling correction amount, which is the difference between the
Mari, Sr in the formula andin, SrouValue and time
FIG. 4 is a diagram collectively showing the relationship with the distance. As already mentioned
In addition, when the meandering control is performed by the method (a), the material 1 to be rolled
Moved to the business side and meandered.
The amount is relatively closed on the working side of the rolling mill.
That is, the roll gap was reduced). this
Is indicated as “work side closed” in the figure. The symbol】 on the time axis in FIG.
As in the case of FIG.
The tail end is the upstream rolling mill 2, the meandering side 4 and the pressure of the sixth unit.
It means the timing of passing through the mill 3
, "Upstream rolling mill slippage", "Inlet meandering gauge slippage" and
It is indicated as "the rolling mill is missing". FIG. 5A is similar to FIG. 4A.
FIG. 9 is a diagram showing a change over time of the meandering amount. This FIG.
In the case of, the measured value of the entrance meander 4 and the output meander 5
The measured value of the
The total measured value is indicated by a thin solid line. In addition,
Amount of meandering just below the rolling mill 3 obtained from the "side meander meter measured value"
YC(T) is the “meaning amount directly under the rolling mill”
Shown by a line. FIG. 5A also shows the meandering control.
Using a thin broken line, the estimated meandering amount when
"Inlet meander meter measured value", "Outlet meander meter measured value"
And next to the line of “the amount of meandering just below the rolling mill”. All of the above
The estimated meandering amount without meandering control has already been described.
It was determined by the following method. At the time of FIG. 5 (a)
The mark on the center axis indicates that the tail end of the material to be rolled 1 is the upstream pressure.
It passes through the rolling mill 2, the meandering side 4 and the sixth rolling mill 3.
The timing is shown in the figure.
Missing, meandering meander on entry side, and missing the rolling mill.
And displayed. FIG. 5B shows the working side of the sixth rolling mill.
Leveling correction amount, which is the difference between the
That is, Sr in the equationinShows the relationship between the value of
FIG. As already mentioned, meandering control by method (b)
In this case, the rolled material 1 moved to the working side and meandered.
Therefore, the “leveling correction amount” is the pressure on the working side of the rolling mill.
The lower position is relatively closed (that is, the roll gap is small).
). This is indicated as “Work side closed” in the figure.
Indicated. The symbol “△” on the time axis in FIG.
The tail end of the material to be rolled 1 is the upstream rolling mill 2,
And the timing of passing through the sixth rolling mill 3,
In the figure, “Upstream rolling mill omission”
”And“ the relevant rolling mill is missing ”. As already described, the above (b)
In the meandering control by the method, the tail end of the material to be rolled 1 is an inlet meandering meter.
Immediately after moving to the downstream side from No. 4, the tail end of the material 1 to be rolled
Until the section passes through the sixth rolling mill 3,
When the tail end of the rolled material 1 is at the position of the entry side meandering meter 4
The switching controller 8 keeps the value of Sr in the above equation
From the work side and the drive side,
The rolling position was corrected. For this reason, in the time axis of FIG.
From "Ingress meandering omission" to "Operating rolling mill omission"
All “leveling correction amounts” are constant values. Figure
4 (a), the tail end of the material 1 to be rolled
Even after passing, meandering control based on the measured value on the exit meandering meter 5
(A) according to the present invention in which leveling is corrected by performing
In the case of the described method, the `` just under the rolling mill ''
The meandering amount is the expected meandering when no meandering control is performed.
The line amount is reduced from 90 mm to 35 mm,
The meandering suppression effect is obtained. On the other hand, before the comparative example shown in FIG.
In the case of the method described in (b) above,
"Wandering amount directly under the rolling mill" did not perform any meandering control
From the expected meandering amount of 90 mm to 60 mm
The meandering suppression effect is only 30 mm,
Is inferior to the meandering suppression effect as compared with the conventional method. [0073] According to the present invention, a plurality of rolling mills are provided.
When rolling using tandem rolling equipment,
Because it is possible to control the meandering to the tail end,
Meandering up to the tail end of the rolled material can be suppressed.

【図面の簡単な説明】 【図1】本発明に係る被圧延材の蛇行制御方法を説明す
る図である。 【図2】入側蛇行計及び出側蛇行計により蛇行量を求め
る方法の一例を示す図で、CCDカメラで被圧延材を2
次元の画像として測定し、上記の測定画像から被圧延材
のエッジ位置を検出することで蛇行量を求める場合を示
す図である。 【図3】被圧延材の最尾端部まで蛇行制御を行うための
切り替え制御器の接点位置切り替え方法を説明する図で
ある。 【図4】実施例における本発明に係る被圧延材の蛇行制
御方法による結果を整理した図で、(a)は蛇行量と時
間との関係、(b)はレベリング修正量と時間との関係
を示す図である。 【図5】実施例における比較例に係る被圧延材の蛇行制
御方法による結果を整理した図で、(a)は蛇行量と時
間との関係、(b)はレベリング修正量と時間との関係
を示す図である。 【図6】被圧延材の回転運動を説明するための座標系と
変形域との関係を示す図で、圧延機による蛇行現象の解
説図である。 【符号の説明】 1:被圧延材、 2:上流側圧延機、 3:m台目の圧延機、 3b:m台目の圧延機の圧下装置、 4:入側蛇行計、 5:出側蛇行計、 6:入側蛇行量制御装置、 7:出側蛇行量制御装置、 8:切り替え制御器、 8a、8b:切り替え制御器の接点。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a meandering control method for a material to be rolled according to the present invention. FIG. 2 is a diagram showing an example of a method of obtaining a meandering amount by an inlet meandering meter and an outlet meandering meter.
It is a figure which shows the case where it measures as a two-dimensional image and calculates | requires a meandering amount by detecting the edge position of a to-be-rolled material from the said measurement image. FIG. 3 is a diagram for explaining a contact position switching method of a switching controller for performing meandering control to the tail end of a material to be rolled. 4A and 4B are diagrams illustrating the results of a meandering control method for a material to be rolled according to the present invention in an embodiment, wherein FIG. 4A is a relationship between a meandering amount and time, and FIG. 4B is a relationship between a leveling correction amount and time. FIG. FIGS. 5A and 5B are diagrams in which results obtained by a meandering control method for a material to be rolled according to a comparative example in the embodiment are arranged, wherein FIG. 5A shows the relationship between the meandering amount and time, and FIG. 5B shows the relationship between the leveling correction amount and time. FIG. FIG. 6 is a diagram illustrating a relationship between a coordinate system and a deformation area for explaining a rotational motion of a material to be rolled, and is an explanatory diagram of a meandering phenomenon caused by a rolling mill. [Description of Signs] 1: Material to be rolled, 2: Upstream rolling mill, 3: mth rolling mill, 3b: Rolling-down device of mth rolling mill, 4: meandering meter on entry side, 5: exit side Meander, 6: Inlet meandering amount control device, 7: Outlet meandering amount control device, 8: Switching controller, 8a, 8b: Contact of switching controller.

Claims (1)

【特許請求の範囲】 【請求項1】n台の圧延機を備えるタンデム圧延設備を
用いて圧延する場合の被圧延材の蛇行制御方法であっ
て、前記タンデム圧延設備のm台目の圧延機の入側及び
出側にそれぞれ被圧延材の作業側と駆動側の幅端部位置
を検出して被圧延材の蛇行量を測定する蛇行測定計を設
置し、被圧延材の最尾端部が前記圧延機の入側に設けた
蛇行測定計の位置又はその蛇行測定計よりも圧延上流側
にある場合には、前記圧延機の入側に設けた蛇行測定計
の測定値に基づいて圧延機の作業側と駆動側の圧下位置
を修正し、被圧延材の最尾端部が前記圧延機の入側に設
けた蛇行測定計よりも圧延下流側にある場合には、出側
に設けた蛇行測定計の測定値に基づいて圧延機の作業側
と駆動側の圧下位置を修正することを特徴とする被圧延
材の蛇行制御方法。ここで、nは3以上の整数、mは1
以上でn以下の整数である。
Claims 1. A meandering control method for a material to be rolled when rolling is performed using a tandem rolling facility including n rolling mills, wherein the m-th rolling mill of the tandem rolling facility is provided. On the entry side and the exit side, a meandering measuring meter that detects the width end position of the work side and the drive side of the material to be rolled and measures the amount of meandering of the material to be rolled is installed, and the tail end of the material to be rolled is Is located at the position of the meandering meter provided on the entrance side of the rolling mill or on the upstream side of rolling than the meandering meter, the rolling is performed based on the measurement value of the meandering meter provided on the entrance side of the rolling mill. Correct the rolling position of the working side and the drive side of the rolling mill, and if the tail end of the material to be rolled is on the downstream side of rolling than the meandering measurement meter provided on the incoming side of the rolling mill, provide it on the outgoing side. Characterized in that the rolling position on the working side and the driving side of the rolling mill is corrected based on the measured value of the meandering measuring meter. Meander control method of material. Here, n is an integer of 3 or more, and m is 1.
It is an integer not less than n and not more than n.
JP2002045119A 2002-02-21 2002-02-21 Meandering control method for rolled material Expired - Fee Related JP3589226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045119A JP3589226B2 (en) 2002-02-21 2002-02-21 Meandering control method for rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045119A JP3589226B2 (en) 2002-02-21 2002-02-21 Meandering control method for rolled material

Publications (2)

Publication Number Publication Date
JP2003245708A true JP2003245708A (en) 2003-09-02
JP3589226B2 JP3589226B2 (en) 2004-11-17

Family

ID=28659208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045119A Expired - Fee Related JP3589226B2 (en) 2002-02-21 2002-02-21 Meandering control method for rolled material

Country Status (1)

Country Link
JP (1) JP3589226B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528874A (en) * 2007-06-11 2010-08-26 アルセロールミタル・フランス Rolling method of metal strip having adjustment of lateral position, and rolling mill suitable for this method
JP2019107675A (en) * 2017-12-19 2019-07-04 Jfeスチール株式会社 Control device and control method for rolling mill
JP2021016889A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Meandering control method of hot-rolled steel strip, meandering control device, and hot-rolling equipment
JP2021016888A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Meandering control method of hot-rolled steel strip, meandering control device, and hot-rolling equipment
JP2021030282A (en) * 2019-08-27 2021-03-01 東芝三菱電機産業システム株式会社 Meandering control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320115A (en) * 1986-07-14 1988-01-27 Ishikawajima Harima Heavy Ind Co Ltd Meandering control method and device therefor
JPS6363515A (en) * 1986-09-05 1988-03-19 Sumitomo Metal Ind Ltd Meandering control method
JPH03243207A (en) * 1990-02-19 1991-10-30 Toshiba Corp Device for controlling meandering of rolled stock
JPH08318305A (en) * 1995-03-22 1996-12-03 Nippon Steel Corp Method for controlling meandering in tandem mill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320115A (en) * 1986-07-14 1988-01-27 Ishikawajima Harima Heavy Ind Co Ltd Meandering control method and device therefor
JPS6363515A (en) * 1986-09-05 1988-03-19 Sumitomo Metal Ind Ltd Meandering control method
JPH03243207A (en) * 1990-02-19 1991-10-30 Toshiba Corp Device for controlling meandering of rolled stock
JPH08318305A (en) * 1995-03-22 1996-12-03 Nippon Steel Corp Method for controlling meandering in tandem mill

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528874A (en) * 2007-06-11 2010-08-26 アルセロールミタル・フランス Rolling method of metal strip having adjustment of lateral position, and rolling mill suitable for this method
US8919162B2 (en) 2007-06-11 2014-12-30 Arcelormittal France Method of rolling a metal strip with adjustment of the lateral position of a strip and suitable rolling mill
JP2019107675A (en) * 2017-12-19 2019-07-04 Jfeスチール株式会社 Control device and control method for rolling mill
JP2021016889A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Meandering control method of hot-rolled steel strip, meandering control device, and hot-rolling equipment
JP2021016888A (en) * 2019-07-22 2021-02-15 Jfeスチール株式会社 Meandering control method of hot-rolled steel strip, meandering control device, and hot-rolling equipment
JP7067534B2 (en) 2019-07-22 2022-05-16 Jfeスチール株式会社 Serpentine control method for hot-rolled steel strips, meandering control device and hot-rolling equipment
JP7078020B2 (en) 2019-07-22 2022-05-31 Jfeスチール株式会社 Serpentine control method for hot-rolled steel strips, meandering control device and hot-rolling equipment
JP2021030282A (en) * 2019-08-27 2021-03-01 東芝三菱電機産業システム株式会社 Meandering control device
JP7192715B2 (en) 2019-08-27 2022-12-20 東芝三菱電機産業システム株式会社 Meander control device

Also Published As

Publication number Publication date
JP3589226B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
KR101176322B1 (en) Device and method for controlling rolling mill and rolling mill feed-forward plate-thickness control method
JP2000061520A (en) Device for controlling flatness of hot rolling mill
JP4988171B2 (en) Rolling mill control device
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP2003245708A (en) Method for controlling meandering of material to be rolled
JP4660322B2 (en) Thickness control method in cold tandem rolling
JP2008161934A (en) Rolling method and rolling apparatus for rolling metallic sheet
JP2018015766A (en) Steel-plate tail end meandering control method in hot finish rolling
JP4214099B2 (en) Rolling method and rolling apparatus for metal sheet
JP7192715B2 (en) Meander control device
JP4306273B2 (en) Strip meander control device and meander control method for tandem rolling mill
JP3479820B2 (en) Method and apparatus for controlling meandering of a strip in a continuous rolling mill
JP4564438B2 (en) Steel sheet elongation measuring apparatus and elongation measuring method
KR101879092B1 (en) Apparatus and method for measuring camber in hot rolling process
JP2007190579A (en) Method and equipment for rolling metallic sheet
TWI782641B (en) Control system of tandem cold rolling mill
JP2003275811A (en) Apparatus and method for controlling meandering of strip in tandem mill
WO2024034020A1 (en) Sheet width control device for reversing rolling mill
JP2706342B2 (en) Meandering control method for rolled material
JP2006116569A (en) Method and apparatus for rolling metal plate
JP7347688B2 (en) Meandering control device for continuous rolling mill
JP7230628B2 (en) Rolling equipment and control method
JP2970488B2 (en) Plate meandering correction device for tandem rolling mill
JP2825428B2 (en) Strip crown control method in rolling mill
JPH08318305A (en) Method for controlling meandering in tandem mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3589226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees