JP2019107675A - Control device and control method for rolling mill - Google Patents

Control device and control method for rolling mill Download PDF

Info

Publication number
JP2019107675A
JP2019107675A JP2017242754A JP2017242754A JP2019107675A JP 2019107675 A JP2019107675 A JP 2019107675A JP 2017242754 A JP2017242754 A JP 2017242754A JP 2017242754 A JP2017242754 A JP 2017242754A JP 2019107675 A JP2019107675 A JP 2019107675A
Authority
JP
Japan
Prior art keywords
rolling
width
rolled
control
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017242754A
Other languages
Japanese (ja)
Other versions
JP6760252B2 (en
Inventor
慎也 山口
Shinya Yamaguchi
慎也 山口
三宅 勝
Masaru Miyake
勝 三宅
Original Assignee
Jfeスチール株式会社
Jfe Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, Jfe Steel Corp filed Critical Jfeスチール株式会社
Priority to JP2017242754A priority Critical patent/JP6760252B2/en
Publication of JP2019107675A publication Critical patent/JP2019107675A/en
Application granted granted Critical
Publication of JP6760252B2 publication Critical patent/JP6760252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To reliably suppress meandering of a tail end part when rolling a steel plate.SOLUTION: A control device 10 which is applied to a rolling mill for finishing a hot rolling line, and controls an amount of meandering of a rolled material. This control device comprises: a plate thickness profile measurement unit 11 which measures a width direction plate thickness on an inlet side and an outlet side of a rolling stand 60 of the rolled material; and leveling means which changes an amount of leveling of the rolling mill according to the measured width direction plate thickness on the inlet side and the outlet side of the rolling stand of the rolled material.SELECTED DRAWING: Figure 2

Description

本発明は、圧延機の制御装置および制御方法に関するものである。   The present invention relates to a control device and control method of a rolling mill.
従来から、圧延中の被圧延材が圧延ロールの幅方向中央に安定的に存在せず、圧延の進行とともに圧延ロールの幅方向端部側へ移動してしまう現象(蛇行と呼ばれている)がよく知られている。特に、被圧延材の尾端部が尻抜けする際には、被圧延材がサイドガイドに衝突してエッジ部が折れ込んで圧延される、いわゆる「絞り込み」と呼ばれる圧延トラブルが発生するという問題がある。   Conventionally, the material to be rolled during rolling is not stably present at the center in the width direction of the rolling roll, and moves to the width direction end of the rolling roll as rolling progresses (called meandering) Is well known. In particular, when the tail end of the material to be rolled falls off, the rolling material collides with the side guide and the edge is broken and rolled, a problem that a rolling trouble called so-called "squeezing" occurs. There is.
これまでに実用化された熱間仕上げ圧延の蛇行制御技術としては、例えば特許文献1や特許文献2に開示された、圧延機の駆動側と作業側の荷重差を用いて駆動側と作業側のロール圧下装置を制御するという技術(一般に「差荷重方式蛇行制御」と呼ばれている)が知られている。   As meandering control technology of hot finishing rolling that has been put into practice so far, for example, the load difference between the drive side and the work side of the rolling mill disclosed in Patent Document 1 and Patent Document 2 is used for the drive side and the work side. There is known a technique (generally called "differential load type meander control") of controlling the roll reduction device of the above.
例えば、特許文献2には、下式(2)に示される圧延機の平行剛性値Kを用いて、圧延機のレベリング量ΔSを制御することが記載されている。平行剛性値Kは、圧延ロールの駆動側と作業側の荷重差がある場合において上下ロールの平行度の保ちやすさを示す指標であり、下式(3)により定義される。   For example, Patent Document 2 describes controlling the leveling amount ΔS of the rolling mill using the parallel stiffness value K of the rolling mill represented by the following formula (2). The parallel stiffness value K is an index indicating the ease of maintaining the parallelism of the upper and lower rolls when there is a load difference between the drive side and the work side of the rolling rolls, and is defined by the following equation (3).
上式(2)において、βは制御ゲイン(チューニング率)、ΔPは圧延ロールにおける駆動側の圧延荷重と作業側の圧延荷重との差(圧延荷重差)である。上式(3)において、Sdfは圧延ロールの駆動側と作業側のロール開度差(圧下スクリュー位置)である。すなわち、ΔP/Kは、圧延ロールにおけるロール開度の幅方向偏差を表す。   In the above equation (2), β is a control gain (tuning factor), and ΔP is a difference (rolling load difference) between the rolling load on the drive side and the rolling load on the working side of the rolling rolls. In the above equation (3), Sdf is the difference in roll opening (rolling screw position) between the driving side and the working side of the rolling roll. That is, ΔP / K represents the deviation in the width direction of the roll opening in the rolling roll.
そして、圧延中に被圧延材が蛇行した場合、圧延機の駆動側と作業側との間に圧延荷重差ΔPが生じる。この場合、駆動側と作業側とのうち圧延荷重が高い側、すなわち被圧延材が蛇行した側では、ロール開度が大きくなり圧下量が減少する。その結果、圧延ロールの駆動側と作業側で被圧延材の圧下量に差が生じ、被圧延材の左右速度に差が生じるため被圧延材が回転してしまう。そして、傾斜した被圧延材が圧延ラインを進行すると、被圧延材の進行につれて蛇行量が増大し、これが原因でさらに大きな蛇行を発生させてしまう。そのため、蛇行量は加速度的に増大することになる。   And when a to-be-rolled material meanders during rolling, rolling load difference (DELTA) P arises between the drive side and working side of a rolling mill. In this case, on the side where the rolling load is high among the drive side and the work side, that is, the side where the material to be rolled meanders, the degree of roll opening becomes large and the amount of reduction decreases. As a result, a difference occurs in the reduction amount of the material to be rolled between the driving side and the work side of the rolling rolls, and a difference occurs in the lateral velocity of the material to be rolled, so that the material to be rolled is rotated. And when the to-be-rolled material which inclines advances a rolling line, the amount of meanders will increase as advancing of a to-be-rolled material, and this will generate a further larger meander. Therefore, the amount of meandering increases at an acceleration.
これに対して、特許文献2に記載の差荷重方式蛇行制御では、上式(2)を用いてロール開度の幅方向の偏差を補正することにより、圧延ロールにおける上下のロール間隔を平行に保ち、被圧延材の蛇行を制御することが可能となる。   On the other hand, in the differential load method meandering control described in Patent Document 2, the upper and lower roll intervals in the rolling roll are made parallel by correcting the deviation in the width direction of the roll opening degree using the above equation (2). It is possible to maintain and control the meandering of the material to be rolled.
また、被圧延材の定常部を圧延している間は、たとえ圧延ロールの作業側と駆動側で圧下量が異なり蛇行発生の要因が生じていても、上流の圧延スタンドのロールに被圧延材が拘束されており、蛇行が抑制されている。しかしながら、尾端部が上流の圧延スタンドを抜けると被圧延材の拘束が無くなるため、それまで潜在化していた両端のアンバランスが一挙に顕在化し、大きな蛇行を生じる恐れがある。   In addition, while rolling the steady part of the material to be rolled, the material to be rolled on the rolls of the upstream rolling stand even if the rolling reductions differ between the working side and the drive side of the rolling roll, even if factors causing the meandering occur. Is restrained and meandering is suppressed. However, when the tail end passes through the upstream rolling stand, the restraint of the material to be rolled is removed, so that the unbalance at both ends, which has been latent, may become apparent at once, resulting in a large meander.
このような背景から、特許文献3には、定常部を圧延している際に蛇行発生の要因を検出して、尾端部での蛇行発生を抑制するための技術が提案されている。   From such a background, Patent Document 3 proposes a technique for detecting the cause of the occurrence of meandering during rolling of the steady portion and suppressing the occurrence of meandering at the tail end.
特許文献3に記載の方法では、圧延スタンド間のルーパーに作用する荷重を測定することで被圧延材の張力の幅方向分布を検出し、レベリングによって張力を補正する。蛇行は、圧延ロールの作業側と駆動側の圧下率の違いが要因となって生じ、圧下率が大きい側は圧延スタンド間での張力が小さくなる。そのため、圧延スタンド間のルーパーにて張力差を検出して、左右の張力差がなくなるようにレベリング量を制御することで、蛇行発生を防止することが可能となる。   In the method described in Patent Document 3, the width direction distribution of the tension of the material to be rolled is detected by measuring the load acting on the looper between the rolling stands, and the tension is corrected by leveling. The meandering is caused by the difference between the rolling reductions on the working side and the driving side of the rolling rolls, and the tension between the rolling stands decreases on the side where the rolling reduction is large. Therefore, it becomes possible to prevent the occurrence of meandering by detecting the tension difference with the looper between the rolling stands and controlling the leveling amount so that the difference in tension between right and left disappears.
特開昭49−133256号公報JP-A-49-133256 特開昭52−124453号公報JP-A-52-124453 特開2004−243376号公報JP, 2004-243376, A
しかしながら、特許文献1や特許文献2に記載の差荷重方式蛇行制御では、蛇行の結果として生じた荷重差に基づいてロール開度差の制御を行うので、蛇行を未然に防止することはできない。圧延ロールの駆動側と作業側の圧延荷重差ΔPを検出した時には既に被圧延材の蛇行が発生しているため、差荷重方式蛇行制御は既に発生した蛇行を修正しているに過ぎない。さらに、上式(2)中の制御ゲイン(チューニング率)であるβを大きく設定することによりロール開度差の制御応答を速くすることができるが、この場合には過修正となってしまう場合が多く、制御が不安定になる。このように、差荷重方式蛇行制御では既に発生した蛇行に追従することにも限界が存在する。   However, in the differential load method meandering control described in Patent Document 1 and Patent Document 2, since the control of the roll opening difference is performed based on the load difference generated as a result of the meandering, the meandering can not be prevented in advance. When the rolling load difference ΔP between the driving side and the working side of the rolling rolls is detected, the material to be rolled is already meandered, so the differential load method meandering control only corrects the meandering that has already occurred. Furthermore, the control response of the roll opening difference can be made faster by setting the control gain (tuning factor) β in the above equation (2) to a large value, but in this case it is overcorrected. Control is unstable. As described above, there is a limit to following the meandering that has already occurred in the differential load method meandering control.
また、特許文献3に記載の方法では、蛇行の発生を未然に防ぐために、定常部を圧延している間に測定した張力の左右差、つまり圧下量の左右差が無くなるように左右圧下バランスを修正する。しかし、圧延スタンド間の張力の左右差は上流側と下流側の両側の圧延の結果として生じるものであるため、上流側と下流側のどちらの圧延機の左右圧下バランスを修正すべきかは、1つの圧延スタンド間の張力左右差のみでは決定できない。   Further, in the method described in Patent Document 3, in order to prevent occurrence of meandering, the left-right pressure reduction balance is made so that the left-right difference in tension measured while rolling the steady part, that is, the left-right difference in the amount of pressure reduction. Fix it. However, since the left-right difference in tension between the rolling stands is a result of rolling on both the upstream and downstream sides, which one of the upstream and downstream rolling mills should be corrected for left-right pressure reduction is 1 The tension difference between two rolling stands alone can not be determined.
本発明は、上記の事情に鑑みてなされたものであって、圧延時に尾端部の蛇行発生を確実に抑制することができる圧延機の制御装置および制御方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a control device and control method of a rolling mill which can reliably suppress occurrence of meandering of a tail end portion during rolling.
本発明に係る圧延機の制御装置は、圧延材の蛇行量を制御する制御装置であって、圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルを測定する板厚プロフィル測定手段と、測定された前記圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルに応じて圧延機のレベリング量を変更するレベリング制御手段とを備えることを特徴とする。   The control device for a rolling mill according to the present invention is a control device for controlling the meandering amount of a rolled material, and is a plate thickness profile measuring means for measuring the width direction plate thickness profile on the rolling stand entering side and outgoing side of the rolling material. And leveling control means for changing the leveling amount of the rolling mill in accordance with the width direction plate thickness profiles of the rolled material measured on the inlet side and the outlet side of the rolling stand.
本発明に係る圧延機の制御方法は、圧延材の蛇行量を制御する制御方法であって、圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルを測定する板厚プロフィル測定ステップと、測定された前記圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルに応じて圧延機のレベリング量を変更するレベリング制御ステップとを含むことを特徴とする。   The control method of a rolling mill according to the present invention is a control method for controlling the meandering amount of a rolled material, and is a plate thickness profile measuring step of measuring a width direction plate thickness profile on the rolling stand entering side and outlet side of the rolling material. And a leveling control step of changing the leveling amount of the rolling mill according to the width direction plate thickness profiles at the rolling stand inlet side and the outlet side of the rolled material measured.
本発明に係る圧延機の制御方法は、上記発明において、前記レベリング制御ステップは、前記圧延機のレベリング量ΔSを、下式(1)に基づいて求めるステップを含むことを特徴とする。
ただし、式(1)において、Hinは圧延機入側の幅方向中央板厚、Houtは圧延機出側の幅方向中央板厚、iは圧延材板幅方向の評価点、Nは圧延材板幅方向の評価点の総数、Win,iは圧延材板幅方向の評価点iでの圧延機入側板ウェッジ、Wout,iは圧延材板幅方向の評価点iでの圧延機出側板ウェッジ、αはチューニング率である。
The control method of a rolling mill according to the present invention is characterized in that, in the above-mentioned invention, the leveling control step includes a step of obtaining a leveling amount ΔS of the rolling mill based on the following formula (1).
However, in the equation (1), H in is the width direction central plate thickness on the rolling mill entrance side, H out is the width direction central plate thickness on the rolling mill exit side, i is an evaluation point of the rolled material sheet width direction, and N is the rolling The total number of evaluation points in the width direction of the sheet, W in, i is the wedge on the side of the rolling mill at the evaluation point i in the width direction of the rolled material, W out, i is the rolling mill at the evaluation point i in the width direction of the rolled material The exit plate wedge, α i is the tuning rate.
本発明によれば、圧延材の圧延スタンド入側と出側の板厚プロフィルに応じてレベリング量を制御することで、尾端部の蛇行発生を抑制することが可能となる。   According to the present invention, by controlling the leveling amount in accordance with the plate thickness profiles on the entry side and the exit side of the rolling stock, it becomes possible to suppress the occurrence of the meandering of the tail end.
図1は、実施形態で適用される熱間圧延ラインの一例を示す模式図である。FIG. 1 is a schematic view showing an example of a hot rolling line applied in the embodiment. 図2は、実施形態における圧延機の制御装置を模式的に示す図である。FIG. 2: is a figure which shows typically the control apparatus of the rolling mill in embodiment. 図3は、圧延材の板ウェッジを説明するための図である。FIG. 3 is a view for explaining a plate wedge of a rolled material. 図4は、実施例1における絞り込みトラブルの発生本数率を示す図である。FIG. 4 is a diagram showing the number of occurrences of the narrowing-down trouble in the first embodiment. 図5は、実施例2における絞り込みトラブルの発生本数率を示す図である。FIG. 5 is a diagram showing the number of occurrences of the narrowing-down trouble in the second embodiment.
以下に、図面を参照して、本発明の実施形態における圧延機の制御装置および制御方法について具体的に説明する。なお、本実施形態は、熱間圧延ラインに適用される場合を例にしている。   Hereinafter, with reference to the drawings, a control device and a control method of a rolling mill in an embodiment of the present invention will be specifically described. In addition, this embodiment makes an example the case where it applies to a hot rolling line.
[1.熱間圧延ライン]
図1は、実施形態で適用される熱間圧延ラインの一例を示す模式図である。熱間圧延ライン1において、加熱炉2で加熱された被圧延材(スラブ)3は、幅圧下装置4で幅圧下された後、通常2〜5基程度の粗圧延機5によって所定の厚みまで圧延される。その後、仕上げ圧延機6によってさらに薄く圧延された被圧延材3は、ランアウトテーブル7を通板しているときに水冷装置8によって水冷されコイラ9によってコイル状に巻き取られる。その後、コイルはコイルヤードで常温になるまで冷却される。
[1. Hot rolling line]
FIG. 1 is a schematic view showing an example of a hot rolling line applied in the embodiment. In the hot rolling line 1, the material to be rolled (slab) 3 heated in the heating furnace 2 is subjected to width reduction by the width reduction device 4 and then to a predetermined thickness by the rough rolling mill 5 usually about 2 to 5 Rolled. Thereafter, the material to be rolled 3 which has been further thinly rolled by the finish rolling mill 6 is water cooled by the water cooling device 8 and rolled up in a coil shape by the coiler 9 while the runout table 7 is being inserted. The coil is then cooled to ambient temperature in the coil yard.
[2.圧延機の制御装置]
図2は、実施形態における圧延機の制御装置を模式的に示す図である。圧延機の制御装置10は、仕上げ圧延機6による圧延時に被圧延材3の蛇行量を制御し、尾端部の蛇行発生を未然に抑制するための制御装置である。その制御装置10は、仕上げ圧延機6のレベリング量ΔSを制御する際、定常部圧延中での圧延スタンド入側と出側の幅方向板厚プロフィルの変化に応じて、レベリング量ΔSを操作するように構成されている。レベリング量ΔSは、仕上げ圧延機6の圧延ロールの作業側および駆動側のロール圧下位置差であり、「作業側および駆動側のうちの一方の圧下位置から他方の圧下位置を引いた差」として定義される。駆動側とは、圧延ロールのロール端にロール駆動用モータが取り付けられている側のことであり、作業側とは、その反対側のことである。なお、この説明で記載する「左右」と「幅方向」と「板幅方向」とは同義である。
[2. Control device of rolling mill]
FIG. 2: is a figure which shows typically the control apparatus of the rolling mill in embodiment. The control device 10 of the rolling mill is a control device for controlling the meandering amount of the material to be rolled 3 at the time of rolling by the finish rolling mill 6 and suppressing the occurrence of meandering of the tail end in advance. When controlling the leveling amount ΔS of the finishing mill 6, the control device 10 manipulates the leveling amount ΔS according to the change in the width direction plate thickness profile on the entering side and the exiting side of the rolling stand during steady-state rolling. Is configured as. The leveling amount ΔS is the difference between the rolling reductions on the working side and the driving side of the rolling rolls of the finish rolling mill 6, which is the difference between the rolling position on one of the working side and the driving side minus the other rolling position. It is defined. The drive side is the side on which the roll drive motor is attached to the roll end of the rolling roll, and the working side is the opposite side. Note that "left and right", "width direction" and "plate width direction" described in this description are synonymous.
詳細には、仕上げ圧延機6は、複数の圧延スタンド60により構成され、各スタンドに設けられた圧下装置61によってレベリング量ΔSを調整できる。図2に示す圧延スタンド60は、作業ロール60aと補強ロール60bとからなる4段圧延機により構成されている。圧下装置61は制御装置10によって制御される。   In detail, the finish rolling mill 6 is constituted by a plurality of rolling stands 60, and the leveling amount ΔS can be adjusted by the pressure reduction devices 61 provided on the respective stands. The rolling stand 60 shown in FIG. 2 is configured of a four-high rolling mill including work rolls 60a and reinforcing rolls 60b. The pressure reduction device 61 is controlled by the controller 10.
制御装置10は、仕上げ圧延機6で被圧延材3を圧延中に、板厚プロフィル測定装置11によって、圧延スタンド60の入側と出側で被圧延材3の幅方向板厚プロフィルを測定する。板厚プロフィル測定装置11は、被圧延材3にX線を透過して被圧延材3の板厚を測定するように構成される。   The control device 10 measures the thickness direction thickness profile of the material to be rolled 3 at the entry side and the exit side of the rolling stand 60 by the plate thickness profile measuring device 11 while rolling the material to be rolled 3 by the finish rolling mill 6 . The plate thickness profile measuring device 11 is configured to transmit X-rays to the material to be rolled 3 and measure the thickness of the material to be rolled 3.
図2に示すように、板厚プロフィル測定装置11は、圧延スタンド60の入側に配置された入側の板厚プロフィル測定装置11aと、圧延スタンド60の出側に配置された出側の板厚プロフィル測定装置11bとを含む。入側の板厚プロフィル測定装置11aは圧延スタンド60の入側で被圧延材3の幅方向板厚プロフィルを測定する。出側の板厚プロフィル測定装置11bは圧延スタンド60の出側で被圧延材3の幅方向板厚プロフィルを測定する。   As shown in FIG. 2, the plate thickness profile measuring device 11 includes an inlet plate thickness profile measuring device 11 a disposed on the inlet side of the rolling stand 60 and an outlet plate disposed on the outlet side of the rolling stand 60. And a thickness profile measuring device 11b. The plate thickness profile measuring device 11 a on the entry side measures the width direction plate thickness profile of the material to be rolled 3 at the entry side of the rolling stand 60. The plate thickness profile measuring device 11 b on the outlet side measures the width direction plate thickness profile of the material to be rolled 3 at the outlet side of the rolling stand 60.
そして、入側および出側の板厚プロフィル測定装置11a,11bで測定された幅方向板厚プロフィル(測定値)は演算装置12に入力される。制御装置10は、それらの測定値に基づいて演算装置12によって入側の幅方向板厚プロフィルと出側の幅方向板厚プロフィルとの変化量を計算し、その変化量に応じて仕上げ圧延機6のレベリング量ΔSを制御する。なお、入側の板厚プロフィル測定装置11aと出側の板厚プロフィル測定装置11bとを特に区別しない場合には、一括して板厚プロフィル測定装置11と記載する。   Then, the width direction plate thickness profiles (measurement values) measured by the plate thickness profile measuring devices 11 a and 11 b on the input side and the output side are input to the computing device 12. The control device 10 calculates the amount of change between the width direction thickness profile on the input side and the width direction thickness profile on the output side based on those measured values, and the finish rolling mill according to the amount of change. The leveling amount ΔS of 6 is controlled. When the plate thickness profile measuring device 11a on the ingress side and the plate thickness profile measuring device 11b on the outlet side are not particularly distinguished, they are collectively referred to as a plate thickness profile measuring device 11.
演算装置12は、CPUや記憶装置を備えた演算用コンピュータなどにより構成され、板厚プロフィル測定装置11から入力される情報や、記憶装置に記憶されている情報などに基づいて各種演算処理を行い、その演算結果に応じて圧下装置61を制御する。具体的には、演算装置12は、板厚プロフィル測定装置11により測定された被圧延材3の圧延スタンド60の入側と出側での幅方向板厚プロフィルに応じて仕上げ圧延機6のレベリング量ΔSを変更するレベリング制御手段を備える。なお、制御装置10全体としては、演算装置12と圧下装置61とをまとめてレベリング制御手段ということができる。   The arithmetic unit 12 is constituted by an arithmetic computer having a CPU and a storage device, and performs various arithmetic processing based on the information input from the thickness profile measuring device 11 and the information stored in the storage device. The pressure reduction device 61 is controlled according to the calculation result. Specifically, computing device 12 performs leveling of finish rolling mill 6 according to the width direction plate thickness profile on the entry side and the exit side of rolling stand 60 of material to be rolled 3 measured by plate thickness profile measuring device 11 A leveling control means is provided to change the amount ΔS. In the control device 10 as a whole, the arithmetic device 12 and the pressure reduction device 61 can be collectively referred to as leveling control means.
そして、本実施形態では、定常部を圧延中での圧延スタンド60の入側と出側での幅方向板厚プロフィルの変化に応じて、レベリング量ΔSを操作する。圧延材の蛇行は、圧下量の左右差、すなわち圧延による伸びの左右差に起因して生じるため、幅方向板厚偏差(板幅方向各位置の板厚と板幅中央板厚との差)の圧延前後の変化が無いようにレベリング量ΔSを操作することで、蛇行の発生を未然に防止することができる。   And in this embodiment, leveling amount (DELTA) S is operated according to the change of the width direction board thickness profile in the entrance side of the rolling stand 60 in rolling and the output side in rolling. Since the meandering of the rolled material is caused by the left / right difference of the reduction amount, that is, the left / right difference of the elongation by rolling, the width direction plate thickness deviation (difference between the plate thickness at each position in the plate width direction and the plate width central plate thickness) By operating the leveling amount ΔS so that there is no change before and after rolling, the occurrence of meandering can be prevented in advance.
[3.圧延機の制御方法]
ここで、実施形態における圧延機の制御方法について説明する。この制御方法は上述した制御装置10により実施される。
[3. Control method of rolling mill]
Here, the control method of the rolling mill in the embodiment will be described. This control method is implemented by the control device 10 described above.
まず、図3を参照して、圧延材の板ウェッジについて説明する。板幅方向の評価点iは、例えば圧延材の板両端から25mm(i=1)、75mm(i=2)、200mm(i=3)のように、板端部からの距離に応じて決定する。そして、板ウェッジWは、板幅方向中央の板厚Hと各評価点iでの板厚の左右差を表す。圧延機入側での板ウェッジWin,iと圧延機出側での板ウェッジWout,iとで表せる。図3に示す例は、圧延機の出側について、板幅中央板厚Houtに対する各評価点iでの作業側板厚差dHFiと駆動側板厚差dHDiとの差(板厚の左右差)を表すものである。i=1の評価点ではWout,1=dHF1−dHD1、i=2の評価点ではWout,2=dHF2−dHD2、i=3の評価点ではWout,3=dHF3−dHD3のように表せる。評価点iの数は多いほどよいが、板幅中央近辺では幅方向板厚差が小さく、板厚測定誤差の影響を受けやすいため、おおむね板端からの距離は最大300mm、最大5点程度とすることが望ましい。 First, with reference to FIG. 3, a plate wedge of a rolled material will be described. The evaluation point i in the plate width direction is determined according to the distance from the plate edge, for example, 25 mm (i = 1), 75 mm (i = 2), 200 mm (i = 3) from both ends of the rolled material plate Do. And board wedge W expresses the right-and-left difference of board thickness H of the board width direction center, and board thickness in each evaluation point i. Plate wedge W in at the entry side of the rolling mill, i the plate wedge W out at the delivery side of the rolling mill, expressed by the i. In the example shown in FIG. 3, the difference between the working-side plate thickness difference dH Fi and the driving-side plate thickness difference dH Di at each evaluation point i with respect to the plate width central plate thickness H out on the outlet side of the rolling mill It represents. W out, 1 = dH F1 -dH D1 at the i = 1 evaluation point, W out, 2 = dH F2 -dH D2 at the i = 2 evaluation point, W out, 3 = dH F3 at the i = 3 evaluation point It can be expressed as -dH D3 . The larger the number of evaluation points i, the better. However, the difference in plate thickness in the width direction is small near the center of the plate width, and it is easily affected by plate thickness measurement errors. It is desirable to do.
次に、レベリング量ΔSの算出方法について説明する。レベリング量ΔSは、板幅方向の評価点iの重み付け係数αを用い、下式(1)により決定される。 Next, a method of calculating the leveling amount ΔS will be described. The leveling amount ΔS is determined by the following equation (1) using the weighting coefficient α i of the evaluation point i in the sheet width direction.
上式(1)において、ΔSはレベリング量[mm]、Hinは圧延機入側の幅方向中央板厚[mm]、Houtは圧延機出側の幅方向中央板厚[mm]、iは圧延材板幅方向の評価点、Nは圧延材板幅方向の評価点の総数、Win,iは圧延材板幅方向の評価点iでの圧延機入側板ウェッジ[mm]、Wout,iは圧延材板幅方向の評価点iでの圧延機出側板ウェッジ[mm]、αは幅方向評価点の重み付け係数である。 In the above equation (1), ΔS is the leveling amount [mm], H in is the width direction central plate thickness at the rolling mill entrance side [mm], H out is the width direction central plate thickness at the rolling mill exit side [mm], i Is the evaluation point in the rolling material width direction, N is the total number of evaluation points in the rolling material width direction, W in, i is the rolling mill entrance side plate wedge [mm] at the evaluation point i in the rolling material width direction, W out , I is a rolling mill outlet side plate wedge [mm] at an evaluation point i in the rolled material sheet width direction, and α i is a weighting coefficient of the width direction evaluation point.
レベリング量ΔSは作業側と駆動側のロール圧下位置差である。重み付け係数αは板幅方向のどの位置でのウェッジ変化を重視して蛇行制御を用いるかを決定するパラメータである。この重み付け係数αは板厚、板幅、圧延荷重に応じて設定すればよいが、おおむね板端部から50〜200mmの範囲を大きく設定することが望ましい。 The leveling amount ΔS is the difference in roll pressure between the working side and the driving side. The weighting factor α i is a parameter which determines which position in the plate width direction the wedge change is to be emphasized to use the meandering control. The weighting coefficient α i may be set according to the plate thickness, plate width, and rolling load, but it is desirable to set the range of 50 to 200 mm largely from the plate end.
そして、図2に示す演算装置12は、上式(1)を用いてレベリング量ΔSを算出し、そのレベリング量ΔSに応じた指令信号を圧下装置61に出力する。   Then, the computing device 12 shown in FIG. 2 calculates the leveling amount ΔS using the above equation (1), and outputs a command signal corresponding to the leveling amount ΔS to the pressure reducing device 61.
[4.実施例1]
実施例1では、作業ロールと補強ロールからなる4段圧延機をF1〜F7の全7スタンドを有する仕上げ圧延機6が設けられた熱間圧延ライン1に、上述した実施形態を適用して検証を行った。実施例1における仕上げ圧延機6の設備仕様を表1に示す。
[4. Example 1]
In the first embodiment, the above-described embodiment is applied to a hot rolling line 1 provided with a finishing rolling mill 6 having a total of seven stands of F1 to F7 in a four-high rolling mill including work rolls and reinforcing rolls. Did. The equipment specifications of the finish rolling mill 6 in Example 1 are shown in Table 1.
また、実施例1では、被圧延材3として、板厚1.2〜3.0mm、板幅1000〜1200mmの低炭素鋼の熱延板を対象とした。そして、その熱延板(被圧延材3)を熱間圧延し、尾端部の絞り込みトラブルの発生率を調査した。調査したコイルは832コイルである。さらに、実施例1では、板幅方向評価点を板端から25mm、75mm、150mmの3点とし、αを3.0、αを3.2、αを3.0に設定した。一方、従来技術(従来例)として、ほぼ同一寸法の熱延鋼板に対して、上式(2)にてチューニング率βを1.0に設定して圧延を行った。 Moreover, in Example 1, as a material to be rolled 3, a hot-rolled sheet of low carbon steel having a plate thickness of 1.2 to 3.0 mm and a plate width of 1000 to 1200 mm was used. And the hot-rolled sheet (rolling material 3) was hot-rolled, and the incidence rate of the narrowing-down trouble of the tail end part was investigated. The coil investigated is 832 coils. Furthermore, in Example 1, the plate width direction evaluation points were set to three points of 25 mm, 75 mm, and 150 mm from the plate end, α 1 was set to 3.0, α 2 to 3.2, and α 3 to 3.0. On the other hand, as a prior art (conventional example), rolling was performed on a hot-rolled steel plate of substantially the same size with the tuning ratio β set to 1.0 in the above equation (2).
図4は、実施例1における絞り込みトラブルの発生本数率を示す図である。図4に示すように、従来例の発生本数率1.1%に対して、実施例1(本発明)の発生本数率は0.1%であった。この検証結果から、上述した実施形態を熱間圧延ライン1に適用することによって、絞り込みトラブルの発生本数率を従来例よりも約90%低減できることが分かった。   FIG. 4 is a diagram showing the number of occurrences of the narrowing-down trouble in the first embodiment. As shown in FIG. 4, the generation number ratio of Example 1 (invention) was 0.1% with respect to 1.1% of the generation number ratio of the conventional example. From this verification result, it has been found that by applying the above-described embodiment to the hot rolling line 1, it is possible to reduce the occurrence number rate of narrowing-down troubles by about 90% compared to the conventional example.
[5.実施例2]
実施例2では、作業ロールと補強ロールからなる4段圧延機をF1〜F4、作業ロールと中間ロールと補強ロールからなる6段圧延機をF5〜F7とする全7スタンドを有する仕上げ圧延機6が設けられた熱間圧延ライン1に、上述した実施形態を適用して検証を行った。実施例2における仕上げ圧延機6の設備仕様を表2に示す。
[5. Example 2]
In the second embodiment, a finishing mill 6 having a total of seven stands where the four-high rolling mill consisting of work rolls and reinforcing rolls is F1 to F4 and the six-high rolling mill consisting of work rolls, intermediate rolls and reinforcing rolls is F5 to F7 The above-described embodiment was applied to the hot rolling line 1 provided with the above to verify. The equipment specifications of the finish rolling mill 6 in Example 2 are shown in Table 2.
また、実施例2では、被圧延材3として、板厚1.8〜2.4mm、板幅1200〜1300mmの低炭素鋼の熱延板を対象とした。そして、その熱延板を熱間圧延し、尾端部の絞り込みトラブルの発生率を調査した。調査したコイルは611コイルである。なお、従来例は、上述した実施例1での従来例と同様である。   Moreover, in Example 2, the hot rolled sheet of low carbon steel of 1.8 to 2.4 mm in plate thickness and 1200 to 1300 mm in plate width was targeted as the material to be rolled 3. And the hot-rolled sheet was hot-rolled and the incidence rate of the narrowing problem of the tail end was investigated. The coils investigated are 611 coils. The conventional example is the same as the conventional example in the first embodiment described above.
図5は、実施例2における絞り込みトラブルの発生本数率を示す図である。図5に示すように、従来例の発生本数率0.85%に対して、実施例2(本発明)での発生本数率は0.05%であった。この検証結果から、絞り込みトラブルの発生本数率を従来例よりも劇的に低減できることが確認できた。   FIG. 5 is a diagram showing the number of occurrences of the narrowing-down trouble in the second embodiment. As shown in FIG. 5, the generation number ratio in Example 2 (the present invention) was 0.05% with respect to the generation number ratio of 0.85% in the conventional example. From this verification result, it has been confirmed that the rate of occurrence of the narrowing-down trouble can be dramatically reduced as compared with the conventional example.
以上説明した通り、実施形態によれば、圧延材の圧延スタンド入側と出側の板厚プロフィルに応じてレベリング量を制御することで、尾端部の蛇行発生を抑制することが可能となる。   As described above, according to the embodiment, it is possible to suppress the occurrence of meandering at the tail end by controlling the leveling amount in accordance with the plate thickness profiles of the rolling stand on the entry side and the exit side of the rolling material. .
また、実施形態によるレベリング量ΔSは、尾端部を圧延する直前に操作をすることにより尾端部の蛇行抑制に大きな効果を得られる。この操作タイミングに限らず、定常部での圧延にて上流スタンドのレベリング操作を行った場合などを合わせて複数回実施しても構わない。   Further, the leveling amount ΔS according to the embodiment can obtain a great effect in suppressing the meandering of the tail end by operating immediately before rolling the tail end. The invention is not limited to this operation timing, and the operation may be performed a plurality of times in combination with the case where the leveling operation of the upstream stand is performed in rolling at the steady portion.
なお、本発明は、上述した実施形態に限定されず、本発明の目的を逸脱しない範囲で適宜変更が可能である。   In addition, this invention is not limited to embodiment mentioned above, It can change suitably in the range which does not deviate from the objective of this invention.
例えば、板厚プロフィル測定装置11は、X線の他に、板厚の大きな上流側スタンドではγ線を用いても構わない。また、その測定範囲は板幅方向の評価点iをカバーできればよいので、必ずしも被圧延材3の板幅方向全領域を板厚測定する必要はない。さらに、板厚プロフィル測定装置11はX線透過による板厚測定装置に限定されない。例えば、レーザ距離計などにより構成された板厚プロフィル測定装置11であってもよい。   For example, the plate thickness profile measuring apparatus 11 may use γ rays in the upstream stand having a large plate thickness in addition to the X-rays. Moreover, since the measurement range only needs to cover the evaluation point i in the plate width direction, it is not necessary to measure the plate thickness in the entire region in the plate width direction of the material to be rolled 3. Furthermore, the plate thickness profile measuring device 11 is not limited to a plate thickness measuring device by X-ray transmission. For example, it may be a plate thickness profile measuring device 11 configured by a laser range finder or the like.
1 熱間圧延ライン
3 被圧延材
6 仕上げ圧延機
10 制御装置
11 板厚プロフィル測定装置
12 演算装置
60 圧延スタンド
60a 作業ロール
60b 補強ロール
61 圧下装置
Reference Signs List 1 hot rolling line 3 material to be rolled 6 finishing rolling machine 10 control device 11 plate thickness profile measuring device 12 arithmetic device 60 rolling stand 60 a work roll 60 b reinforcing roll 61 reduction device

Claims (3)

  1. 圧延材の蛇行量を制御する制御装置であって、
    圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルを測定する板厚プロフィル測定手段と、
    測定された前記圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルに応じて圧延機のレベリング量を変更するレベリング制御手段とを備える
    ことを特徴とする圧延機の制御装置。
    A control device for controlling the amount of meandering of a rolled material, wherein
    Plate thickness profile measuring means for measuring the width direction plate thickness profile of the rolled material on the inlet side and the outlet side of the rolling stand;
    A control device for a rolling mill, comprising: leveling control means for changing a leveling amount of the rolling mill according to width direction plate thickness profiles on the rolling stand inlet side and outlet side of the measured rolling material.
  2. 圧延材の蛇行量を制御する制御方法であって、
    圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルを測定する板厚プロフィル測定ステップと、
    測定された前記圧延材の圧延スタンド入側と出側での幅方向板厚プロフィルに応じて圧延機のレベリング量を変更するレベリング制御ステップとを含む
    ことを特徴とする圧延機の制御方法。
    A control method for controlling the meandering amount of a rolled material, comprising
    A plate thickness profile measuring step of measuring the width direction plate thickness profile of the rolled material on the inlet side and the outlet side of the rolling stand;
    A control method of a rolling mill, comprising: a leveling control step of changing a leveling amount of the rolling mill according to a width direction plate thickness profile on the rolling stand entering side and the outlet side of the measured rolling material.
  3. 前記レベリング制御ステップは、前記圧延機のレベリング量ΔSを、下式(1)に基づいて求めるステップを含む
    ことを特徴とする請求項2に記載の圧延機の制御方法。
    ただし、式(1)において、Hinは圧延機入側の幅方向中央板厚、Houtは圧延機出側の幅方向中央板厚、iは圧延材板幅方向の評価点、Nは圧延材板幅方向の評価点の総数、Win,iは圧延材板幅方向の評価点iでの圧延機入側板ウェッジ、Wout,iは圧延材板幅方向の評価点iでの圧延機出側板ウェッジ、αはチューニング率である。
    The control method of the rolling mill according to claim 2, wherein the leveling control step includes a step of obtaining a leveling amount? S of the rolling mill based on the following expression (1).
    However, in the equation (1), H in is the width direction central plate thickness on the rolling mill entrance side, H out is the width direction central plate thickness on the rolling mill exit side, i is an evaluation point of the rolled material sheet width direction, and N is the rolling The total number of evaluation points in the width direction of the sheet, W in, i is the wedge on the side of the rolling mill at the evaluation point i in the width direction of the rolled material, W out, i is the rolling mill at the evaluation point i in the width direction of the rolled material The exit plate wedge, α i is the tuning rate.
JP2017242754A 2017-12-19 2017-12-19 Roller control device and control method Active JP6760252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242754A JP6760252B2 (en) 2017-12-19 2017-12-19 Roller control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242754A JP6760252B2 (en) 2017-12-19 2017-12-19 Roller control device and control method

Publications (2)

Publication Number Publication Date
JP2019107675A true JP2019107675A (en) 2019-07-04
JP6760252B2 JP6760252B2 (en) 2020-09-23

Family

ID=67178552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242754A Active JP6760252B2 (en) 2017-12-19 2017-12-19 Roller control device and control method

Country Status (1)

Country Link
JP (1) JP6760252B2 (en)

Also Published As

Publication number Publication date
JP6760252B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP2015157317A (en) Rolling mill control device and control method
JP4847111B2 (en) Multistage rolling mill and control method of multistage rolling mill
JP2019107675A (en) Control device and control method for rolling mill
JP2018158365A (en) Hot rolling method and hot rolling device
JP4795148B2 (en) Method of controlling tension in continuous rolling mill and continuous rolling mill
JP3844280B2 (en) Reduction leveling setting method in sheet rolling
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP4214099B2 (en) Rolling method and rolling apparatus for metal sheet
WO2019102790A1 (en) Computation device, information processing program, and recording medium
JP4609197B2 (en) Plate thickness controller
JP6809488B2 (en) Hot-rolled rough rolling method, hot-rolled rough rolling equipment, hot-rolled steel sheet manufacturing method, and hot-rolled steel sheet manufacturing equipment
JP6562010B2 (en) Control device and control method for rolling mill
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP2005125407A (en) Method of shape control in temper rolling mill
JP6601451B2 (en) Rolling mill control method, rolling mill control apparatus, and hot rolled steel sheet manufacturing method
JP5967033B2 (en) Meander control device and meander control method
JP6269538B2 (en) Rolling mill control method, rolling mill control apparatus, and steel plate manufacturing method
JP6688727B2 (en) Meandering prediction system, meandering prediction method, and rolling mill operator support method
JP6620777B2 (en) Leveling setting method for rolling mill and leveling setting apparatus for rolling mill
KR101322120B1 (en) Method and apparatus for controlling wedge and camber of steel plate
JP2000094023A (en) Method and device for controlling leveling in hot finishing mill
JP6743835B2 (en) Method for rolling shaped steel and method for adjusting leveling amount in rolling shaped steel
JP2020011297A (en) Meandering control method for rolled material, meandering control device for rolled material, and rolled material manufacturing method
JP2007203303A (en) Shape control method in cold rolling
JPH05208204A (en) Method for controlling shape in strip rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150