JP4988171B2 - Rolling mill control device - Google Patents

Rolling mill control device Download PDF

Info

Publication number
JP4988171B2
JP4988171B2 JP2005182765A JP2005182765A JP4988171B2 JP 4988171 B2 JP4988171 B2 JP 4988171B2 JP 2005182765 A JP2005182765 A JP 2005182765A JP 2005182765 A JP2005182765 A JP 2005182765A JP 4988171 B2 JP4988171 B2 JP 4988171B2
Authority
JP
Japan
Prior art keywords
tension
control
value
plate thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005182765A
Other languages
Japanese (ja)
Other versions
JP2007000891A (en
Inventor
哲 服部
裕 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005182765A priority Critical patent/JP4988171B2/en
Priority to CNB200610094021XA priority patent/CN100515592C/en
Publication of JP2007000891A publication Critical patent/JP2007000891A/en
Application granted granted Critical
Publication of JP4988171B2 publication Critical patent/JP4988171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、圧延機の制御装置に関する。

The present invention relates to the control equipment of the rolling mill.

一般に、圧延制御では、圧延状態を示す複数の物理状態を所定に保つように制御される。この物理状態としては、板厚及び張力が含まれる。板厚については、圧延後の板厚が目標板厚になるよう、圧延機の出側に板厚計を配置し、その出側板厚計の出力と目標板厚との偏差を求め、その偏差が零に近づくように圧延機の速度等の制御対象を制御する。同様に、張力については、目標張力になるよう、圧延機の入側に張力計を配置し、その張力計の出力と目標板厚との偏差を求め、その偏差が零に近づくように圧延機の速度等の制御対象を制御する。   Generally, in rolling control, control is performed so as to keep a plurality of physical states indicating a rolling state at a predetermined level. This physical state includes plate thickness and tension. For the plate thickness, a thickness gauge is placed on the exit side of the rolling mill so that the thickness after rolling becomes the target thickness, and the deviation between the output of the delivery side thickness meter and the target thickness is obtained, and the deviation The control object such as the speed of the rolling mill is controlled so that the value approaches zero. Similarly, for the tension, a tension meter is arranged on the entrance side of the rolling mill so as to achieve the target tension, the deviation between the output of the tension meter and the target plate thickness is obtained, and the rolling mill is set so that the deviation approaches zero. Control the controlled object such as speed.

いわゆる最終スタンドに摩擦係数の高いダルロールを用いたものについて、板厚と共に張力を所定の目標値に保つために圧延機の速度を制御することが特開平2−92411号公報が記載されている。該従来技術では、最終スタンドの出側に板厚計を配置して、該板厚計の出力に基づいて最終スタンドから2つ前の圧延機の速度を制御している。一方、最終スタンドと1つ前の圧延機の間に張力計を配置して、該張力計の出力に基づいて最終スタンドから1つ前の圧延機の速度を制御している。   Japanese Patent Application Laid-Open No. 2-92411 discloses a technique in which a so-called final stand using a dull roll having a high friction coefficient is used to control the speed of the rolling mill in order to keep the tension at a predetermined target value together with the plate thickness. In the prior art, a thickness gauge is arranged on the exit side of the final stand, and the speed of the rolling mill two steps before the final stand is controlled based on the output of the thickness gauge. On the other hand, a tensiometer is arranged between the last stand and the previous rolling mill, and the speed of the previous rolling mill from the last stand is controlled based on the output of the tensiometer.

特開平2−92411号公報JP-A-2-92411

このように、圧延状態を示す複数の物理状態を所定に保つように制御するために、同じ制御対象を制御する場合、例えば、板厚を所定に保つために圧延機の速度を制御すると、張力が影響を受け、目標値から離れてしまうとの問題があった。特に、上記従来例では、干渉をなるべく小さくするために、板厚については最終スタンドの2つ前の圧延機の速度を制御し、張力については最終スタンドの1つ前の圧延機の速度を制御するなどのように、対象を分離して制御していた。そのために、計測器から対象圧延機までの距離が長くなり、制御遅れが回避できないという問題が生じていた。   Thus, when controlling the same control object to control a plurality of physical states indicating the rolling state to be predetermined, for example, when controlling the speed of the rolling mill to maintain a predetermined thickness, the tension Was affected, and there was a problem of leaving the target value. In particular, in the above conventional example, in order to minimize interference, the speed of the rolling mill two steps before the final stand is controlled for the plate thickness, and the speed of the rolling mill one step before the final stand is controlled for the tension. For example, the subject was controlled separately. Therefore, the distance from a measuring device to a target rolling mill becomes long, and the problem that control delay cannot be avoided has arisen.

本発明の目的は、上記問題を解消し、互いの制御の影響を低減し、さらには、制御遅れが回避可能な圧延機の制御装置及び制御方法を提供することにある。   The objective of this invention is providing the control apparatus and control method of a rolling mill which eliminate the said problem, reduce the influence of mutual control, and can avoid a control delay further.

上記の目的を達成するために、本発明では、入力板厚値に基づいて所定の圧延機のモータ回転状態を制御する第1のモータ回転制御信号を出力し、入力板厚値に基づいて所定の圧延機よりも上流側の圧延機のモータ回転状態を制御する第2のモータ回転制御信号を出力し、入力板厚値を補正する補正値、入力板厚値に基づいて演算された値を補正する補正値、或いは、入力板厚値に演算を加えるための値を補正する補正値、を入力張力値に基づいて出力し、第2のモータ回転制御信号を出力について、入力板厚値及び補正値に基づいて第2のモータ回転制御信号を出力するように構成した。   In order to achieve the above object, in the present invention, a first motor rotation control signal for controlling the motor rotation state of a predetermined rolling mill is output based on the input plate thickness value, and the predetermined value is determined based on the input plate thickness value. A second motor rotation control signal for controlling the motor rotation state of the rolling mill upstream from the rolling mill is output, a correction value for correcting the input plate thickness value, and a value calculated based on the input plate thickness value A correction value to be corrected, or a correction value to correct a value for performing an operation on the input plate thickness value is output based on the input tension value, and the second motor rotation control signal is output with respect to the input plate thickness value and The second motor rotation control signal is output based on the correction value.

あるいは、これに代えて、複数の物理状態のうち所定の物理状態を所定値に制御するよう複数の圧延機のうち所定の圧延機に第1の制御信号を出力し、所定の物理状態を異なる所定値に制御するよう所定の圧延機より上流或いは下流の圧延機に第2の制御信号を出力し、物理状態と異なる物理状態に基づいて第2の制御信号が補正されるようになすように構成した。   Alternatively, instead of this, the first control signal is output to a predetermined rolling mill among the plurality of rolling mills so that the predetermined physical state is controlled to a predetermined value among the plurality of physical states, and the predetermined physical state is different. A second control signal is output to a rolling mill upstream or downstream of the predetermined rolling mill so as to control to a predetermined value, and the second control signal is corrected based on a physical state different from the physical state. Configured.

本発明によれば、例えば張力及び板厚を所定値に保つように制御する場合、互いの制御の影響を低減し、さらには、制御遅れが回避可能となる。   According to the present invention, for example, when control is performed so that the tension and the plate thickness are maintained at predetermined values, the influence of mutual control can be reduced, and further, control delay can be avoided.

以下、本発明を実施するための最良の形態について図面を用いて説明する。本発明の概念を分かりやすく説明するために、まず参考例を説明し、つづいて基本的な考え方を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings. In order to explain the concept of the present invention in an easy-to-understand manner, a reference example will be described first, followed by a basic concept.

まず、参考例を説明する。最終スタンドに摩擦係数の高いダルロールを用いた冷間タンデム圧延機における板厚制御,張力制御は図2の様な構成となっている。各スタンド1A(#iスタンド)〜1C(#i−2スタンド)はワークロール3A,3B,3C、バックアップロール2A,2B,2Cからなっている。iスタンドからなるタンデム圧延機においては、圧延機がiスタンド有る。各スタンドは、バックアップロール2(符号2A,
2B,2Cと総称して符号2と記す)とワークロール3(符号3A,3B,3Cを総称して符号3と記す)、および、ワークロール3の速度を制御するための電動機+電動機制御装置5と圧延材にかける圧延荷重を制御するための圧下装置+圧下制御装置4より構成される。最終スタンド(#iスタンド1Aが相当する)のワークロール3Aが表面摩擦係数が高いダルロールを使用する場合、製品表面品質への影響および製品形状への影響が大であることから、#iスタンド圧下を板厚制御,張力制御のために使用することが不可となる。図2における参考例では、#i−1〜#iスタンド間張力制御部20の制御出力先を#i−1スタンド速度とし、速度制御装置部5Bに対して制御出力を出している。また、出側板厚計10を用いた出側板厚制御部21の制御出力先としては、#i−2スタンド速度1Cとし、速度制御装置5Cに対して制御出力を出している。
First, a reference example will be described. The plate thickness control and tension control in a cold tandem rolling mill using a dull roll with a high friction coefficient for the final stand has the configuration shown in FIG. Each of the stands 1A (#i stand) to 1C (# i-2 stand) includes work rolls 3A, 3B, 3C and backup rolls 2A, 2B, 2C. In a tandem rolling mill composed of i stands, there are i stands. Each stand has a backup roll 2 (reference numeral 2A,
2B and 2C, collectively referred to as reference numeral 2), work roll 3 (reference numerals 3A, 3B, and 3C are collectively referred to as reference numeral 3), and a motor + motor control device for controlling the speed of the work roll 3. 5 and a rolling-down device + rolling-down control device 4 for controlling the rolling load applied to the rolled material. When the work roll 3A of the final stand (corresponding to #i stand 1A) uses a dull roll having a high surface friction coefficient, the influence on the product surface quality and the product shape are great. Cannot be used for thickness control and tension control. In the reference example in FIG. 2, the control output destination of # i-1 to #i inter-stand tension control unit 20 is set to # i-1 stand speed, and the control output is output to the speed control unit 5B. In addition, as a control output destination of the outlet side thickness control unit 21 using the outlet side thickness gauge 10, # i-2 stand speed 1C is set, and a control output is output to the speed controller 5C.

ここで、無駄時間を説明する。出側板厚制御部21における無駄時間は図3に示すようになる。#i−1スタンド速度5Bを操作した場合、板厚変化は#iスタンド1A直下にて発生するため、検出無駄時間は#iスタンド1A直下から出側板厚計10までの板移送時間51となる。一方、#i−2スタンド速度5Cを操作した場合、板厚変化は#i−1スタンド1B直下で発生するため、検出無駄時間は#i−1スタンド1B直下から出側板厚計10までの板移送時間52となる。   Here, the dead time will be described. The dead time in the delivery side plate thickness control unit 21 is as shown in FIG. When the # i-1 stand speed 5B is operated, the plate thickness change occurs immediately below the #i stand 1A. Therefore, the detection dead time is the plate transfer time 51 from directly under the #i stand 1A to the exit side thickness gauge 10. . On the other hand, when the # i-2 stand speed 5C is operated, the plate thickness change occurs immediately below the # i-1 stand 1B, so the detection dead time is the plate from the # i-1 stand 1B directly to the exit side thickness gauge 10. The transfer time 52 is reached.

そのため、図2に示す参考例の場合、#i−2スタンド1C速度を用いて出側板厚制御部21が制御を行うため、板移送による無駄時間が大きくなり、その分制御ゲインが低下する。   Therefore, in the case of the reference example shown in FIG. 2, since the exit side plate thickness control unit 21 performs control using the # i-2 stand 1C speed, the dead time due to plate transfer increases, and the control gain decreases accordingly.

#i−1スタンド1B〜#iスタンド1A間に板厚計を設置したり、各スタンド出側に圧延材の板速度が検出可能な板速計等を設置することにより、#i−1スタンド1B出側板厚を直接測定またはマスフロー式を用いて推定することにより#i−1スタンド1Bの出側の板厚制御を行い制御応答を向上させることは可能であるが、検出器は高価であり、また検出器を保守する手間が増大する。   By installing a plate thickness meter between # i-1 stand 1B to #i stand 1A, or by installing a plate speed meter that can detect the plate speed of the rolled material on the exit side of each stand, # i-1 stand Although it is possible to improve the control response by controlling the thickness of the outlet side of the # i-1 stand 1B by directly measuring the 1B outlet side thickness or using the mass flow equation, the detector is expensive. In addition, the labor for maintaining the detector is increased.

すなわち、本実施例における概念を説明すると、上記出側板厚制御21の応答を向上させるために、#i−2スタンドに対する出側板厚制御の入力である出側板厚測定値に#i−1〜#iスタンド間張力制御の出力を板厚設定値として与え、#i−1スタンドを制御出力先とする出側板厚制御と#i−2スタンドを制御出力先とする出側板厚制御をわざと干渉させ、#i−1〜#iスタンド間張力を制御することにより、#i−1〜#iスタンド間張力制御と出側板厚制御が干渉しないようにし、#i−1スタンドヘの制御出力を可能な限り使用する。そのため、新たな検出器を設置する必要無く、かつ出側板厚制御21の応答を向上させることができる。また、出側板厚制御モデルにより出側板厚変化を予測して出側板厚制御への入力である出側板厚測定値を補正することにより出側板厚制御が制御応答を上げても安定となる。   That is, the concept in the present embodiment will be described. In order to improve the response of the exit side plate thickness control 21, the output side plate thickness measurement value which is an input of the exit side plate thickness control to the # i-2 stand is set to # i-1 to # i-1. The output of #i stand tension control is given as the plate thickness setting value, and the exit side plate thickness control using # i-1 stand as the control output destination and the exit side plate thickness control using # i-2 stand as the control output destination are intentionally interfered. By controlling the tension between # i-1 and #i stands, the tension control between # i-1 and #i stands and the exit side thickness control do not interfere, and the control output to # i-1 stand is possible. Use as much as possible. Therefore, it is not necessary to install a new detector, and the response of the outlet side thickness control 21 can be improved. In addition, by predicting a change in the delivery side plate thickness by the delivery side plate thickness control model and correcting the delivery side plate thickness measurement value which is an input to the delivery side plate thickness control, the delivery side plate thickness control becomes stable even if the control response is increased.

したがって、タンデム圧延機スタンド間に板速計や板厚計等の特別な検出器を設置することなく圧延機出側の板厚精度の向上が可能となる。   Therefore, it is possible to improve the plate thickness accuracy on the delivery side of the rolling mill without installing a special detector such as a plate speed meter or a plate thickness meter between the tandem rolling mill stands.

次に、詳細について図1を用いて説明する。なお、図2に示す参考例と同じものは同一の符号を付し、説明を省略する。iスタンドのタンデム圧延機に対して、#i−1スタンド1Bの速度を制御出力対象とする出側板厚制御部25Bと#i−2スタンド1Cの速度を制御出力対象とする出側板厚制御部25Cの2つの制御系により出側板厚制御を実施する。また、#i−1〜#iスタンド間張力制御については、制御出力端を#i−1スタンド1Bのロール速度とする張力制御部26Aおよび、出側板厚制御部25Cへの出側板厚計10の板厚測定結果に対する板厚補正量を制御出力端とする張力制御を張力制御部26Bにより実施する。   Next, details will be described with reference to FIG. 2 that are the same as those in the reference example shown in FIG. For an i-stand tandem rolling mill, an exit side thickness control unit 25B that controls the speed of # i-1 stand 1B and an exit side thickness control unit that controls the speed of # i-2 stand 1C. The exit side plate thickness control is performed by two control systems of 25C. Further, for tension control between # i-1 to #i stands, a tension control unit 26A having a control output terminal as a roll speed of the # i-1 stand 1B and an exit side thickness gauge 10 to the exit side thickness control unit 25C. The tension control unit 26B performs tension control using the plate thickness correction amount with respect to the plate thickness measurement result as a control output end.

張力制御部26Aおよび張力制御部26Bは、張力制御方法選択部28により、どちらか一方または両方が動作する。出側板厚制御部25Bおよび出側板厚制御部25Cについては、出側板厚制御出力先選択部29により、どちらか一方または両方が動作する。   Either one or both of the tension control unit 26A and the tension control unit 26B are operated by the tension control method selection unit 28. One or both of the outlet side plate thickness control unit 25B and the outlet side plate thickness control unit 25C are operated by the outlet side plate thickness control output destination selection unit 29.

また、出側板厚制御部25Bおよび出側板厚制御部25Cへの入力である出側板厚計
10の板厚測定結果Hmeasureは、出側板厚予測演算部27,演算結果により補正され、出側板厚制御で使用される。
Further, the plate thickness measurement result H measure of the delivery side plate thickness meter 10 which is an input to the delivery side plate thickness control unit 25B and the delivery side plate thickness control unit 25C is corrected by the delivery side plate thickness prediction computation unit 27 and the computation result. Used in thickness control.

図4に、張力制御方法選択部28および出側板厚制御出力先選択部29の切替方法の概略を示す。#i−1〜#iスタンド間張力を、張力上上限,張力上限,張力上リセット値,張力下リセット値,張力下限,張力下下限でクラス分けし、張力制御部26Aおよび張力制御部26Bの切替処理を行う。図4における時間t1から時間t2のように、張力実績Tmeasure が張力上限または張力下限を超えた場合は、張力制御方法選択部28は、張力制御部26Aを動作させ(制御ゲインを0以上の通常のゲインとする)、一方、張力制御部26Bの動作を停止させる(制御ゲインを0とする)。これによって張力制御部26Aは、張力計の出力である張力実績Tmeasureと目標張力値Tref i-1との偏差を演算し、この偏差が小さくなるように#i−1スタンド1Bのモータ5Bを操作するための操作量
ΔM26Aを演算し出力する。
FIG. 4 shows an outline of a switching method between the tension control method selection unit 28 and the outlet side plate thickness control output destination selection unit 29. The tension between # i-1 to #i stands is classified into the upper limit of tension, upper limit of tension, upper reset value of tension, lower reset value of tension, lower limit of tension, lower limit of tension, and tension control unit 26A and tension control unit 26B. Perform the switching process. When the actual tension T measure exceeds the upper limit tension or lower limit tension as shown in the time t 1 to the time t 2 in FIG. 4, the tension control method selection unit 28 operates the tension control unit 26A (control gain is set to 0). On the other hand, the operation of the tension control unit 26B is stopped (the control gain is set to 0). As a result, the tension control unit 26A calculates the deviation between the actual tension value T measure and the target tension value T ref i-1 which is the output of the tension meter, and the motor 5B of the # i-1 stand 1B so that this deviation becomes smaller. An operation amount ΔM 26A for operating is calculated and output.

同様に、図4における時間t1から時間t2で張力実績Tmeasure が張力上限または張力下限を超えた場合は、出側板厚制御出力先選択部29は、出側板厚制御部25Cを動作させ(制御ゲインを1.0 とする)、一方、出側板厚制御部25を停止させる(制御ゲインを0とする)。これによって、出側板厚制御部25Bからは出力される操作量ΔM25B が0となるので、モータ5Bは、張力制御部26Aから出力される操作量ΔM26A によって制御される。 Similarly, if the actual tension T measure exceeds the upper limit or lower limit of tension from time t 1 to time t 2 in FIG. 4, the outlet side thickness control output destination selection unit 29 operates the outlet side thickness control unit 25C. (The control gain is set to 1.0). On the other hand, the outlet side thickness control unit 25 is stopped (the control gain is set to 0). As a result, the operation amount ΔM 25B output from the exit side plate thickness control unit 25B becomes 0, so the motor 5B is controlled by the operation amount ΔM 26A output from the tension control unit 26A.

すでに説明したように、張力実績Tmeasure 張力上限または張力下限を超えた場合には、張力制御部26Bの出力が停止されるので、張力実績加算値HTはt0になり、数値2Bとしては、板厚計の出力である板厚実績Hmeasure と出側板厚予測演算部27の出力する予測補正値Heとの加算値となる。そのため、出側板厚制御部25Cは、予測補正値Heに板厚実績Hmeasureを加算した数値(Hmeasure+He)と目標出側板厚Href i-2との偏差を演算し、この偏差が小さくなるように、#i−2スタンド1Cのモータ5Cの操作量
ΔM25Cを出力する。この操作量ΔM25Cによってモータ5Cは制御される。
As already described, if it exceeds the tension actual T its measure tension limit or tension lower limit, the output of the tension control unit 26B is stopped, the tension actual sum value H T becomes t 0, as the numerical 2B , the sum of the predicted correction value H e for outputting the side thickness prediction calculation section 27 exits the sheet thickness results H its measure is the output of the thickness gauge. Therefore, delivery side thickness control unit 25C calculates the difference between the predicted correction value H e value obtained by adding the plate thickness results H its measure in (H measure + H e) and leaving the target plate thickness H ref i-2, this deviation The operation amount ΔM 25C of the motor 5C of the # i-2 stand 1C is output so that becomes smaller. The motor 5C is controlled by the operation amount ΔM 25C .

このように、張力制御部26Aにより#i−1スタンド速度を直接操作して張力を制御する。この場合、出側板厚制御部25Bにより#iスタンドに制御出力が出ていると張力制御部26Bと干渉するので、出側板厚制御出力先選択部29にて出側板厚制御部25Bの制御ゲイン=0とし、出側板厚制御部25Bの制御出力をホールドし出側板厚制御の干渉を防止する。   In this way, the tension control unit 26A directly controls the # i-1 stand speed to control the tension. In this case, if the control output is output to the #i stand by the exit side plate thickness control unit 25B, it interferes with the tension control unit 26B. = 0, the control output of the exit side thickness control unit 25B is held, and interference with the exit side thickness control is prevented.

張力制御部26Aにより張力実績が制御され、図4における時間t2から時間t3のように、張力実績Tmeasure が張力上限と張力上リセット値または張力下限と張力下リセット値の間に戻ったら、張力制御方法選択部28は、張力制御部26Aは停止し(制御ゲインを0とする)、一方、張力制御部26Bを動作させる(制御ゲインを1.0 にする)。ここで、出側板厚制御出力先選択29は、出側板厚制御部25Bのゲインが出側板厚制御部25Cのゲインよりも相対的に小さくなるように、各々出側板厚制御部25B及び出側板厚制御部25Cを動作させる。これにより、出側板厚制御部25Bは、出側板厚実績
measureと予測補正値Heの加算値(Hmeasure+He)と目標出側板厚値Href i-1 の偏差を演算し、この偏差が小さくなるように、1.0 より小さいゲインをもって、#i−1スタンドの圧延機1Bのモータ5Bの操作量ΔM25B を出力する。なお、前述のように、張力制御部26Aの出力する操作量は0であるので、操作量ΔM26B がそのままモータ
5Bに付加される。
Tension performance is controlled by the tension control unit 26A, as from the time t 2 in FIG. 4 of the time t 3, When tension actual T its measure is returned to between the tension limit and tension on the reset value or tension lower and under tension reset value The tension control method selection unit 28 stops the tension control unit 26A (sets the control gain to 0), and operates the tension control unit 26B (sets the control gain to 1.0). Here, the outlet side plate thickness control output destination selection 29 selects the outlet side plate thickness control unit 25B and the outlet side plate so that the gain of the outlet side plate thickness control unit 25B is relatively smaller than the gain of the outlet side plate thickness control unit 25C. The thickness control unit 25C is operated. Thus, delivery side thickness control unit 25B calculates the delivery side thickness results H its measure and the sum of the predicted correction value H e (H measure + H e ) targeted delivery side thickness value H ref i-1 of the deviation, the The operation amount ΔM 25B of the motor 5B of the # i-1 stand rolling mill 1B is output with a gain smaller than 1.0 so that the deviation becomes smaller. As described above, since the operation amount output from the tension control unit 26A is 0, the operation amount ΔM 26B is added to the motor 5B as it is.

同時に、図4における時間t2から時間t3で張力実績Tmeasure が張力上限値と張力上リセット値の間あるいは張力下限値と張力下リセット値の間となった場合、張力制御方法選択部28は張力制御部26Bを動作させる(制御ゲイン1.0 )。張力制御部26Bは張力実績Tmeasureと目標張力値Tref i-2の偏差を演算し、この偏差が小さくなるように板厚補正値HT を演算し出力する。したがって、板厚加算値HT ,予測補正値He 及び板厚実績Hmeasureの総和(HT+He+Hmeasure)が、出側板厚制御出力先選択部29によって、出側板厚制御部25Cに出力される。出側板厚制御部25Cは板厚実績が補正された値(HT+He+Hmeasure)と目標出側板厚値Href i-2の偏差を演算し、この偏差が小さくなるように、操作量ΔM25Cを演算し出力する。なお、板厚補正値Heは、板厚実績
measure を補正する値として説明したが、上記と同様な機能を有していれば、例えば、目標出側板厚値Href i-2 を補正するための補正値としても良いし、また、目標出側板厚値Href i-2との偏差を補正するための補正値としても良い。
At the same time, if the actual tension T measure is between the upper tension limit and the upper tension reset value or between the lower tension limit and the lower tension reset value from time t 2 to time t 3 in FIG. Operates the tension controller 26B (control gain 1.0). Tension control unit 26B calculates a tension actual T its measure and the target tension value T ref i-2 of the deviation, and outputs to calculate the thickness correction value H T as the deviation decreases. Therefore, the thickness sum value H T, the sum of the predicted correction value H e and thickness results H measure (H T + H e + H measure) is, by delivery side thickness control output destination selecting section 29, the exit side thickness controller 25C Is output. Delivery side thickness control unit 25C calculates a target delivery side thickness value H ref i-2 of the deviation between the value thickness results are corrected (H T + H e + H measure), as the deviation is small, the operation amount Calculate and output ΔM 25C . Incidentally, the plate thickness correction value H e, has been described as a value for correcting the thickness results H its measure, as long as it has the same function, for example, correcting the plate thickness value H ref i-2 target output The correction value may be a correction value for correcting the deviation from the target outlet plate thickness value H ref i-2 .

このように、張力制御部26Bにおいては、出側板厚制御部25Cへの出側板厚計10の出側板厚測定結果に補正を加えるが、それが張力制御部2B出力となり、張力制御2B出力としては出側板厚測定値への補正量となる。張力実績が設定より高めの場合、張力制御2B出力はマイナス側となるが、出側板厚制御部25Cとしては出側板厚実績が薄め
(偏差がマイナス側)と認識し、出側板厚計10の検出値がプラス側になり出側板厚制御部25Cの入力が0となるよう制御する。その結果として、出側板厚計10での検出結果が厚めとなるので、出側板厚制御部25Bは#i−1スタンド1Bの速度を上昇させる方向に動作し、結果として張力実績が減少し目標張力に向かう。
As described above, the tension control unit 26B corrects the exit side plate thickness measurement result of the exit side plate thickness meter 10 to the exit side plate thickness control unit 25C, but this becomes the tension control unit 2B output, which is output as the tension control 2B output. Is a correction amount to the measured value of the outlet side plate thickness. When the actual tension is higher than the set value, the tension control 2B output is on the minus side, but the exit side plate thickness control unit 25C recognizes that the exit side plate thickness record is thin (deviation is minus side). Control is performed so that the detected value becomes the plus side and the input of the outlet side thickness control unit 25C becomes zero. As a result, since the detection result by the exit side thickness gauge 10 becomes thicker, the exit side thickness control unit 25B operates in a direction to increase the speed of the # i-1 stand 1B, resulting in a decrease in the actual tension and the target. Head for tension.

張力実績Tmeasureが張力上リセット値より小さくなると(あるいは張力実績Tmeasureが張力下リセット値より大きくなると)、張力制御部26Bの出力HT は0となるため、出側板厚制御部25Cは出側板厚計10測定値に対してオフセット誤差を出さなくなり、出側板厚制御部25Bに対する入力と一致する。 Since the tension actual T its measure is the output H T 0 of tension on becomes smaller than the reset value (or the tension actual T its measure is greater than under tension reset value), tension control unit 26B, the delivery side thickness controller 25C out An offset error is not generated with respect to the measurement value of the side plate thickness meter 10, which matches the input to the output side plate thickness control unit 25B.

ここで、張力制御部26B出力分だけ出側板厚計10による出側板厚はオフセット誤差を持つことになるが、これについては、製品品質上問題無いレベルの補正量とする。例えば、板厚精度として5μmの精度が必要な場合、0.5μm 程度の補正量とすれば、製品品質上の問題は発生しない。   Here, the exit side plate thickness measured by the exit side plate thickness meter 10 has an offset error corresponding to the output of the tension control unit 26B, but this is a correction amount at a level where there is no problem in product quality. For example, when a plate thickness accuracy of 5 μm is required, a product quality problem does not occur if a correction amount of about 0.5 μm is used.

出側板厚計10での出側板厚測定値が変動し、それを除去するために出側板厚制御部
25Bが動作した場合、#i−1スタンド1Bの速度が変化し、#i−1〜#iスタンド間張力が変化する。その#i−1〜#iスタンド間張力変動については、#i−1スタンド速度により制御するしかなく、出側板厚制御25Bと#i−1〜#iスタンド間張力制御が干渉しないように、#i−1〜#iスタンド間張力が変動した場合、出側板厚制御部
25Cの目標とする板厚設定を変更することにより、#i−1スタンド出側板厚を変化させ、結果として#i−1〜#iスタンド間張力を制御することで出側板厚制御部25Bと#i−1〜#iスタンド間張力制御の干渉を防止することが可能である。
When the outlet side thickness measurement value in the outlet side thickness gauge 10 fluctuates and the outlet side plate thickness control unit 25B operates to remove it, the speed of the # i-1 stand 1B changes, and # i-1 #I The tension between stands changes. The # i-1 to #i stand tension fluctuations can only be controlled by # i-1 stand speed, and the exit side plate thickness control 25B and # i-1 to #i stand tension control do not interfere with each other. When the tension between # i-1 to #i stands fluctuates, by changing the target plate thickness setting of the exit side plate thickness control unit 25C, the # i-1 stand exit side plate thickness is changed. As a result, #i By controlling the tension between the -1 to #i stands, it is possible to prevent interference between the outlet side thickness control unit 25B and the tension control between the # i-1 to #i stands.

図5に出側板厚予測演算部27の詳細を示す。出側板厚制御部においては、板厚が変化する#i−1スタンド1Bまたは#iスタンド1Aから出側板厚計10までの板移送時間が必要で、板厚検出が遅れるため積分制御ゲインが大きくできない問題がある。そこで、出側板厚制御出力から出側板厚変化量を予測演算して出側板厚計10での測定結果から除去することにより、出側板厚制御の制御ゲインを大きくすることを可能とさせる。   FIG. 5 shows details of the outlet side thickness prediction calculation unit 27. In the exit side thickness control unit, the plate transfer time from # i-1 stand 1B or #i stand 1A where the thickness changes to the exit side thickness gauge 10 is required, and the plate thickness detection is delayed, so the integral control gain is large. There is a problem that cannot be done. Therefore, the control gain of the outlet side thickness control can be increased by predicting the amount of change in the outlet side thickness from the output side thickness control output and removing it from the measurement result of the outlet side thickness gauge 10.

出側板厚制御部25Bおよび25Cの制御出力(ΔM25B,ΔM25C、正確にはこれらを積算してかえられるモータ回転数指令値)から板厚変化予測部30Bおよび30Cにて板厚変化量を予測する。この予測に基づいて予測補正値He を演算する。この場合、速度と板厚の間にはマスフロー一定則が成り立つことより、マスフロー式を用いて出側板厚変化を予測する。この予測値を出側板厚計10の測定結果に加算することにより、制御による板厚変動分が出側板厚計10に到達以前であっても、出側板厚予測値としては出側板厚制御による板厚修正分を考慮可能であるので、出側板厚制御ゲインを大きく取ることが可能となる。ただし、出側板厚制御により制御された板厚が出側板厚計10で測定可能な状態となると、制御による板厚変動分を考慮する必要は無くなるので板厚変動分予測値を減算していく必要がある。そのため、板厚移送31Bおよび31Cを設けその出力を板厚変化予測部30Bおよび30Cより減算している。 From the control outputs (ΔM 25B , ΔM 25C , to be precise, the motor rotational speed command value obtained by integrating these) of the outlet side thickness control units 25B and 25C, the thickness change amount is calculated by the plate thickness change prediction units 30B and 30C. Predict. This calculates a predicted correction value H e based on the prediction. In this case, since the mass flow constant law is established between the speed and the plate thickness, the change in the exit side plate thickness is predicted using the mass flow equation. By adding this predicted value to the measurement result of the delivery side thickness gauge 10, even if the thickness variation due to the control is before reaching the delivery side thickness gauge 10, the estimated delivery side thickness value is determined by the delivery side thickness control. Since the plate thickness correction can be taken into account, it is possible to increase the exit side plate thickness control gain. However, when the plate thickness controlled by the exit side plate thickness control is in a state that can be measured by the exit side plate thickness gauge 10, it is not necessary to consider the plate thickness variation due to the control, so the predicted value of the plate thickness variation is subtracted. There is a need. Therefore, plate thickness transfer 31B and 31C are provided, and the output is subtracted from the plate thickness change prediction units 30B and 30C.

図6に出側板厚予測演算部27の動作説明図を示す。出側板厚計10での測定板厚がステップ状に変化した場合、出側板厚制御による制御出力から板厚変化予測部30Bにより出側板厚変化を予測し補正することにより出側板厚予測値(出側板厚制御入力)が得られる。制御による補正を受けた板厚が出側板厚計10に到達すると、その分測定板厚が減少し、出側板厚予測値も減少してしまう。それを防止するのが、板厚移送31Bの出力である。板厚移送部31Bの出力分を考慮すると、出側板厚予測値は、図6の太点線のようになり、板厚制御出力による板厚変動分補正を相殺することが可能となる。   FIG. 6 shows an operation explanatory diagram of the outlet side plate thickness prediction calculating unit 27. When the measured plate thickness at the exit side thickness gauge 10 changes stepwise, the exit side plate thickness predicted value (by predicting and correcting the exit side plate thickness change by the plate thickness change prediction unit 30B from the control output by the exit side plate thickness control ( (Exit side thickness control input) is obtained. When the plate thickness corrected by the control reaches the exit side thickness gauge 10, the measured plate thickness is reduced correspondingly, and the estimated exit side plate thickness is also reduced. This is prevented by the output of the plate thickness transfer 31B. In consideration of the output of the plate thickness transfer section 31B, the predicted output side plate thickness is as shown by the thick dotted line in FIG. 6, and the correction of the plate thickness variation due to the plate thickness control output can be offset.

出側板厚予測演算部27の出力を用いて出側板厚計10での出側板厚測定値を補正して出側板厚制御部25Bおよび25Cで用いることにより、無駄時間による積分制御出力の出力超過を防止することが可能となるため出側板厚制御部25Bおよび25Cの積分制御ゲインを大きくすることができ、制御応答を高めることができる。   Using the output of the outlet side thickness prediction calculation unit 27 to correct the measured value of the outlet side thickness in the outlet side thickness gauge 10 and using it in the outlet side thickness control units 25B and 25C, the output of the integral control output due to dead time is exceeded. Therefore, it is possible to increase the integral control gain of the outlet side plate thickness control units 25B and 25C, and to increase the control response.

このように、出側板厚制御の制御応答を大幅に高め、板厚精度の向上をはかることが可能となる。また、この方法を用いる場合、マスフロー板厚制御適用時に必要となるようなスタンド間板速計等特別な検出器は不要である。   In this way, it is possible to greatly increase the control response of the outlet side plate thickness control and improve the plate thickness accuracy. In addition, when this method is used, a special detector such as an inter-stand plate speedometer, which is required when mass flow plate thickness control is applied, is unnecessary.

全体装置及び出側板厚制御部等の詳細図。FIG. 3 is a detailed view of the overall device and the outlet side plate thickness control unit. 本実施例の考え方を比較説明するための参考例。Reference example for comparing and explaining the concept of this embodiment. 出側板厚制御における検出無駄時間の説明図。Explanatory drawing of the detection dead time in delivery side plate | board thickness control. 張力制御および板厚制御切替を示す詳細図。FIG. 4 is a detailed view showing tension control and plate thickness control switching. 出側板厚予測の詳細を示す図。The figure which shows the detail of delivery side plate | board thickness prediction. 出側板厚予測の説明図。Explanatory drawing of delivery side plate | board thickness prediction.

符号の説明Explanation of symbols

25B,25C…出側板厚制御部、26A,26B…張力制御部、27…出側板厚予測演算部、28…張力制御方法選択部、29…出側板厚制御出力先選択部。   25B, 25C... Outlet side plate thickness control unit, 26A, 26B... Tension control unit, 27... Outlet side plate thickness prediction calculation unit, 28.

Claims (1)

圧延材の張力値及び板厚値を入力する手段と、
前記入力板厚値に基づいて所定の圧延機のモータ回転状態を制御する第1のモータ回転制御信号を出力する第1の板厚制御手段と、前記入力板厚値に基づいて前記所定の圧延機よりも上流側の圧延機のモータ回転状態を制御する第2のモータ回転制御信号を出力する第2の板厚制御手段と、前記入力張力値に基づいて前記第1の板厚制御手段と前記第2の板厚制御手段のいずれか一方又は両方を動作させる出側板厚制御出力先選択手段と、
前記入力張力値に基づいて前記所定の圧延機のモータ回転状態を制御する第3のモータ回転制御信号を出力する第1の張力制御手段と、前記上流側の圧延機のモータ回転状態を制御するための前記入力板厚値を補正する補正値を前記入力張力値に基づいて出力する第2の張力制御手段と、前記入力張力値に基づいて前記第1の張力制御手段と前記第2の張力制御手段のいずれか一方を動作させる張力制御方法選択手段とを有し、
前記張力値が張力上限値又は張力下限値を超えた場合に、前記出側板厚制御出力先選択手段は前記第1の板厚制御手段を停止させるとともに前記第2の板厚制御手段を動作させて前記第2のモータ回転制御信号を出力させ、前記張力制御方法選択手段は前記第1の張力制御手段を動作させて前記第3のモータ回転制御信号を出力させ、
前記張力値が前記張力上限値と前記張力下限値の間の場合に、前記出側板厚制御出力先選択手段は前記第1の板厚制御手段を動作させて前記第1のモータ回転制御信号を出力させるとともに前記第2の板厚制御手段を前記張力値が前記張力上限値又は前記張力下限値を超えた場合よりも制御ゲインを下げて動作させて前記第2のモータ回転制御信号を出力させ、前記張力制御方法選択手段は前記第2の張力制御制御手段を動作させて前記補正値を出力させるように構成されることを特徴とする圧延機の制御装置。
Means for inputting the tension value and thickness value of the rolled material;
First sheet thickness control means for outputting a first motor rotation control signal for controlling a motor rotation state of a predetermined rolling mill based on the input sheet thickness value; and the predetermined rolling based on the input sheet thickness value. Second sheet thickness control means for outputting a second motor rotation control signal for controlling the motor rotation state of the rolling mill upstream from the mill, and the first sheet thickness control means based on the input tension value; An output side thickness control output destination selection means for operating one or both of the second thickness control means; and
First tension control means for outputting a third motor rotation control signal for controlling the motor rotation state of the predetermined rolling mill based on the input tension value, and controlling the motor rotation state of the upstream rolling mill. Second tension control means for outputting a correction value for correcting the input plate thickness value based on the input tension value, and the first tension control means and the second tension based on the input tension value. Tension control method selection means for operating any one of the control means,
When the tension value exceeds a tension upper limit value or a tension lower limit value, the delivery-side plate thickness control output destination selection unit stops the first plate thickness control unit and operates the second plate thickness control unit. The second motor rotation control signal is output, and the tension control method selection means operates the first tension control means to output the third motor rotation control signal,
When the tension value is between the tension upper limit value and the tension lower limit value, the delivery-side plate thickness control output destination selection unit operates the first plate thickness control unit to output the first motor rotation control signal. And outputting the second motor rotation control signal by causing the second plate thickness control means to operate at a lower control gain than when the tension value exceeds the tension upper limit value or the tension lower limit value. The tension control method selection means is configured to operate the second tension control control means to output the correction value .
JP2005182765A 2005-06-23 2005-06-23 Rolling mill control device Expired - Fee Related JP4988171B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005182765A JP4988171B2 (en) 2005-06-23 2005-06-23 Rolling mill control device
CNB200610094021XA CN100515592C (en) 2005-06-23 2006-06-21 Rolling mill control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182765A JP4988171B2 (en) 2005-06-23 2005-06-23 Rolling mill control device

Publications (2)

Publication Number Publication Date
JP2007000891A JP2007000891A (en) 2007-01-11
JP4988171B2 true JP4988171B2 (en) 2012-08-01

Family

ID=37582210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182765A Expired - Fee Related JP4988171B2 (en) 2005-06-23 2005-06-23 Rolling mill control device

Country Status (2)

Country Link
JP (1) JP4988171B2 (en)
CN (1) CN100515592C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019856A1 (en) * 2007-04-25 2008-10-30 Kocks Technik Gmbh & Co. Kg Method and device for measuring the tensile force acting on a moving pipe or a moving rod
EP2145703B1 (en) * 2008-03-14 2015-01-07 Nippon Steel & Sumitomo Metal Corporation Rolling load prediction learning method for hot plate rolling
KR100855716B1 (en) * 2008-04-15 2008-09-03 심창섭 Fire prevention damper
EP2460597A1 (en) 2010-12-01 2012-06-06 Siemens Aktiengesellschaft Method for controlling a tandem mill train, control and/or regulating device for a tandem mill train, machine-readable programming code, storage medium and tandem mill train
JP5949658B2 (en) * 2013-05-20 2016-07-13 東芝三菱電機産業システム株式会社 Control system for plate-feeding equipment
CN104289529B (en) * 2013-07-18 2016-12-28 上海宝钢钢材贸易有限公司 The strip-rolling reduction ratio control method of Stand Mill four-high mill
JP6438753B2 (en) * 2014-12-05 2018-12-19 株式会社日立製作所 Tandem rolling mill control device and tandem rolling mill control method
CN107626746B (en) * 2017-09-11 2021-06-04 杭州五星铝业有限公司 Control system and control method for optimizing rolling thickness of aluminum foil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943459B1 (en) * 1970-10-30 1974-11-21
JPS57127518A (en) * 1981-01-29 1982-08-07 Toshiba Corp Plate thickness controlling device for tandem rolling mill
JPH06154829A (en) * 1991-09-27 1994-06-03 Kawasaki Steel Corp Method for controlling plate thickness and tension in rolling plate

Also Published As

Publication number Publication date
JP2007000891A (en) 2007-01-11
CN1883836A (en) 2006-12-27
CN100515592C (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4988171B2 (en) Rolling mill control device
RU2448789C2 (en) Method of tracking hot metal sheet or strip physical state in control over plate mill
JP5961103B2 (en) Rolling control device, rolling control method, and rolling control program
JP6627740B2 (en) Thickness control device for tandem cold rolling mill
KR101435760B1 (en) Rolling mill control device
JP2002153909A (en) Method and device for measuring and/or controlling flatness and flatness control system
JP5734112B2 (en) Thickness control method in rolling mill
JP6094494B2 (en) Thickness control device for rolled material
JP5251427B2 (en) Metal plate thickness control device and plastic coefficient estimation function setting method
JP2008126307A (en) Thickness control system for tandem rolling mill
JP5196380B2 (en) Rolling equipment and control method thereof
JP6663872B2 (en) Rolling mill control device, rolling mill control method, and rolling mill control program
JP2011147957A (en) Method of controlling cold tandem rolling mill
JP4609197B2 (en) Plate thickness controller
JP2002018506A (en) Method and device for controlling thickness, method for calculating pass schedule in continuous rolling mill
JP4395088B2 (en) Crown control device and control method for hot rolling mill
EP0075946B1 (en) Dimension control device for a continuous rolling machine
JP2002172406A (en) Method for correcting plate thickness by rolling mill
JP5158772B2 (en) Thickness control device for rolling mill and thickness control method for rolling mill
JP2803573B2 (en) Manufacturing method of tapered steel plate
US20240198402A1 (en) Roll steering control systems and methods for tandem mills
JP2002346616A (en) Method for controlling sheet thickness
JP7503525B2 (en) Rolling mill thickness control device, method thereof, and rolling system
JP3400965B2 (en) Plate thickness controller
KR100660215B1 (en) Apparatus for controlling speed of roll in continuous rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100826

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R151 Written notification of patent or utility model registration

Ref document number: 4988171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees