WO2024042936A1 - Cold-rolling method and cold-rolling equipment - Google Patents

Cold-rolling method and cold-rolling equipment Download PDF

Info

Publication number
WO2024042936A1
WO2024042936A1 PCT/JP2023/026602 JP2023026602W WO2024042936A1 WO 2024042936 A1 WO2024042936 A1 WO 2024042936A1 JP 2023026602 W JP2023026602 W JP 2023026602W WO 2024042936 A1 WO2024042936 A1 WO 2024042936A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
steel plate
rolling mill
leveling
plane deformation
Prior art date
Application number
PCT/JP2023/026602
Other languages
French (fr)
Japanese (ja)
Inventor
信一郎 青江
昇輝 藤田
拓弥 藤沢
義典 沼澤
悦充 原田
行宏 松原
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024042936A1 publication Critical patent/WO2024042936A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F

Definitions

  • the present invention relates to a cold rolling method and cold rolling equipment.
  • FB control shape feedback (FB) control
  • a shape meter is installed on the exit side of the rolling mill and the shape data of the shape meter is used to automatically control the leveling and bender of the rolling mill.
  • FB shape feedback
  • the coil may be joined to the next coil with bends remaining at the leading and trailing ends due to poor shape during hot rolling.
  • bending or shape defects change sharply along the longitudinal direction of the coil, the rolling load (and the accompanying calculated advance rate and torque), roll gap of the cold rolling mill, leveling, work roll bender, etc.
  • Patent Document 1 discloses a leveling method in which one-sided elongation or bending of a steel plate on the entry side of the rolling mill is predicted from the differential tension measured by a differential tension meter upstream of the rolling mill, and the predicted one-sided elongation or bending is corrected.
  • An FF control method for controlling the FF is disclosed.
  • Patent Document 2 discloses a method of suppressing rollability defects by performing FF control of the bender of the rolling mill based on the torsion of the steel plate shape data obtained from the cross-sectional profile meter upstream of the rolling mill and the C height. has been done.
  • Patent Document 3 discloses a method for suppressing rollability defects by stopping rolling if the steel sheet shape data measured by a cross-sectional profile meter upstream of the rolling mill is distorted and the C height is outside a predetermined range. has been done.
  • the torsion and C height of the steel plate cross section are calculated by measuring the cross-sectional shape of the steel plate. is being calculated.
  • the torsion and C height are only a part of the steel plate shape information, and it is difficult to accurately calculate one-sided elongation or bending from the cross-sectional shape, so it is difficult to control it well.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to ensure the stability of cold rolling even when cold rolling a difficult-to-roll material with a thin plate thickness before rolling. It is an object of the present invention to provide a cold rolling method and cold rolling equipment that can perform cold rolling with high productivity and yield.
  • the cold rolling method according to the present invention includes a calculation step of calculating the leveling amount of the rolling mill using the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill, and and a cold rolling step of cold rolling a steel plate using the rolling mill controlled by the controlling step. This is a characteristic feature.
  • the amount of out-of-plane deformation of the steel plate is determined on the upstream side of the rolling mill and immediately upstream of the steering device that changes the conveyance direction of the steel plate. Alternatively, it is an amount of out-of-plane deformation measured immediately downstream.
  • the cold rolling method in the invention (1) or (2) above, when the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill exceeds a threshold value, the cold rolling method This method is characterized in that cold rolling is not performed on the steel plate in the rolling step.
  • the leveling amount is determined by applying a leveling amount calculation program to the out-of-plane deformation amount.
  • the leveling amount calculation program takes each out-of-plane deformation amount of a plurality of steel plates as an input variable, and performs a physical simulation for each out-of-plane deformation amount. This method is characterized by machine learning using each leveling amount obtained as a result of the above as an objective variable.
  • the leveling amount is determined to be outside the plane of the steel plate on the upstream side of the rolling mill. It is characterized in that it is calculated using the amount of deformation and the amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill.
  • the cold rolling equipment includes a rolling mill that cold-rolls a steel plate, a shape measuring device that is disposed upstream of the rolling mill and measures an amount of out-of-plane deformation of the steel plate, and a shape measuring device that measures the amount of out-of-plane deformation of the steel plate, and a calculation device that calculates the leveling amount of the rolling mill using the amount of out-of-plane deformation of the steel plate measured by the measuring device; and controlling the leveling of the rolling mill based on the leveling amount calculated by the calculation device.
  • the present invention is characterized by comprising a control device.
  • the cold rolling equipment according to the present invention in the invention described in (6) above, is provided with a steering device that is disposed upstream of the rolling mill and changes the conveying direction of the steel plate, and the cold rolling equipment is provided with a steering device that changes the direction of conveyance of the steel plate.
  • the amount is an amount of out-of-plane deformation measured upstream of the rolling mill and immediately upstream or downstream of the steering device.
  • the cold rolling equipment in the cold rolling equipment according to the present invention, when the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill exceeds a threshold value, the cold rolling equipment
  • the method is characterized in that the steel plate is not cold rolled.
  • the calculation device is configured to calculate the amount obtained as a result of applying a leveling amount calculation program to the out-of-plane deformation amount.
  • the leveling amount calculation program uses each out-of-plane deformation amount of a plurality of steel plates as an input variable, and calculates each out-of-plane deformation amount obtained as a result of physical simulation for each out-of-plane deformation amount. This method is characterized by machine learning using the leveling amount as the objective variable.
  • the calculation device calculates the amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill, and The leveling amount is calculated using the amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill.
  • the cold rolling method and cold rolling equipment according to the present invention ensure stability of cold rolling even when cold rolling difficult-to-roll materials with high load and thin plate thickness before rolling, while improving productivity. Also, there is an effect that cold rolling can be carried out with good yield.
  • FIG. 1 is an overall view showing a schematic configuration of a cold rolling line according to an embodiment.
  • FIG. 2 is a diagram showing an example of a method for measuring the amount of out-of-plane deformation.
  • FIG. 3 is a diagram showing the measurement results of one-sided elongation or bending, which is the amount of out-of-plane deformation of the steel plate, measured by a shape measuring device installed on the exit side of the entrance looper.
  • FIG. 4 is an explanatory diagram of leveling control.
  • FIG. 5 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending.
  • FIG. 6 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending.
  • FIG. 7 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending when leveling FB control is performed.
  • FIG. 8 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending when leveling FB control is performed.
  • FIG. 7 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending when leveling FB control is performed.
  • FIG. 8 is a diagram showing the transition of one-sided elongation
  • FIG. 9 is a diagram showing the transition of true one-sided elongation or bending as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation.
  • FIG. 10 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation.
  • FIG. 11 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control.
  • FIG. 12 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control. .
  • the cold rolling equipment includes a rolling mill that cold-rolls a steel plate, a shape measuring device that is disposed upstream of the rolling mill, and that measures the amount of out-of-plane deformation of the steel plate, and a shape measuring device that measures the amount of out-of-plane deformation of the steel plate.
  • the present invention includes a calculation device that calculates the amount of leveling of the rolling mill using the amount of out-of-plane deformation of the steel plate, and a control device that controls the leveling of the rolling mill based on the amount of leveling calculated by the calculation device.
  • the cold rolling method applied to the cold rolling equipment includes a calculation step of calculating the amount of leveling of the rolling mill using the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill, and a calculation step.
  • the method includes a control step of controlling the leveling of the rolling mill based on the leveling amount calculated in the step, and a cold rolling step of cold rolling the steel plate using the rolling mill controlled by the control step. Note that the present invention is not limited to this embodiment.
  • FIG. 1 is an overall view showing a schematic configuration of a cold rolling facility 1 according to an embodiment.
  • a payoff reel 2 for paying out the steel plate S from the coil is installed at the most upstream portion.
  • the cold rolling equipment 1 according to the embodiment includes a welding machine 3 that joins the tail end of the steel plate S that has been discharged and the tip of the steel plate that has been discharged from the next coil, and a welding machine 3 that suppresses stress concentration.
  • a notcher 4 is installed to cut the steel plate S into a semi-elliptical shape at the end of the weld line.
  • the cold rolling equipment 1 is provided with an entry side looper 5 for absorbing the line speed difference between the joining process and the rolling process. Furthermore, a steering device 6 equipped with CPC meandering control is installed on the exit side of the entrance looper 5, and a shape measuring device 7 is installed immediately downstream thereof. Note that the shape measuring device 7 may be placed immediately upstream of the steering device 6. Further, the cold rolling equipment 1 according to the embodiment includes a deflector steering roll 8 equipped with CPC meandering control, a bridle roll group 9 for creating a tension step between the rolling process and its upstream process, and a bridle roll. A deflator steering roll 10 equipped with CPC meandering control is installed immediately downstream of the group 9.
  • the cold rolling equipment 1 is equipped with a five-stage continuous cold rolling mill 11 for rolling the steel sheet S. Further, the cold rolling equipment 1 is equipped with a bridle roll 12 for creating a tension step between the rolling process and its downstream process, a cutting machine 13, and a tension reel 14 for winding up the steel plate S. There is.
  • the differential tension refers to a tension difference between both ends of the steel plate S in the width direction, which is detected by a pressure detection means such as a tension meter disposed on the exit side of the rolling mill.
  • Shape defects occur in the steel sheet S mainly due to non-uniformity in the width direction of elongation in the longitudinal direction during the rolling process.
  • This shape defect is a combination of one-sided elongation or bending, ear waves (belly elongation), etc., and one-sided elongation or bending is the shape defect that has the greatest effect on breakage during rolling.
  • out-of-plane deformation due to one-sided elongation or bending disappears, making it difficult to measure one-sided elongation or bending.
  • ear waves (belly extension) can be measured because out-of-plane deformation remains even if the plate is cut.
  • x is the position in the line direction
  • v is the displacement in the width direction at the width center
  • w is the displacement in the vertical direction at the width center
  • is the twist angle. Since it is difficult to calculate the above formula (1), the longitudinal average of one-sided elongation or bending is considered.
  • the average curvature ⁇ can be defined as shown in Equation (2) below.
  • the first term on the right side of the above equation (3) is the amount observed as meandering or oblique movement. Further, the second term on the right side of the above equation (3) is the amount observed as out-of-plane deformation. From the above equation (3), it can be seen that even if only meandering is observed, one-sided elongation or bending cannot be detected. If there is no meandering, the first term on the right side of the above formula (3) becomes zero, and the average one-sided elongation or bending can be determined from only the observed amount of out-of-plane deformation. Here, if the twist angle ⁇ is small, the above equation (3) becomes the following equation (4).
  • y is the position in the width direction.
  • the length l along the curved surface of the steel plate S can be expressed by the following formula (7).
  • elongation difference rate ⁇ l can be defined as in the following formula (8).
  • l 0 is the average length in the width direction, and can be expressed by the following formula (9).
  • the curvature ⁇ 1 of the average one-side elongation (average bending) converted from the elongation difference rate ⁇ 1 can be defined as in the following equation (14).
  • the amount of out-of-plane deformation is one of the indicators indicating the bending and one-sided elongation of the steel plate S.
  • the following two methods can be considered with reference to FIG.
  • FIG. 2 is a diagram showing an example of a method for measuring the amount of out-of-plane deformation.
  • the first method is to apply normal force to the steel plate S by winding the steel plate S around a roll 20 or pressing the steel plate S to smooth out the wrinkles, as shown in FIG. 2(a). This method measures the bending (one-sided elongation) of the steel plate S.
  • the second method is to straighten the steel plate S in the longitudinal direction (do not meander) as shown in FIG. 2(b), and calculate the bending (unilateral elongation) from the height of the wrinkles in the steel plate S.
  • the amount of out-of-plane deformation is Measure (convert).
  • shape parameter ⁇ 1 representing one-sided elongation or bending is defined as shown in the following equation (17).
  • the unit of the shape parameter ⁇ 1 is I-unit.
  • y' can be expressed by the following formula (18).
  • the shape parameter ⁇ 1 has a proportional relationship with the curvature ⁇ 1 .
  • FIG. 3 is a diagram showing the measurement results of one-sided elongation or bending, which is the amount of out-of-plane deformation of the steel plate S, measured by the shape measuring device 7 installed on the exit side of the entrance looper 5.
  • the horizontal axis in FIG. 3 is time
  • the vertical axis is the shape parameter ⁇ 1 defined by the above equation (17) and the above equation (19).
  • the shape parameter ⁇ 1 changes rapidly at the junction.
  • the preceding material there is no unilateral elongation or bending due to the hot rolling process, and in the succeeding material, there is unilateral elongation or bending due to the hot rolling process, and the magnitude of the unilateral elongation or bending gradually decreases as the distance from the tip increases. There is.
  • the shape measuring device 7 is a real-time 3D laser scanner that measures the position of the steel plate surface as a point group by rotating a plurality of laser beams and measuring the distance and rotation angle between the center of rotation and the steel plate surface. Note that the rotation period of the laser beam is, for example, 0.1 seconds.
  • a 3D scanner as the shape measuring device 7, a single sensor can be installed outside the line, so there are fewer installation restrictions and maintenance is simple.
  • the measurement error is removed by the smoothing thin plate spline method and the steel plate curved surface W is calculated from the point group.
  • calculations using the smoothed thin plate spline method take time, so in order to speed up calculations, it is preferable to use, for example, the technique disclosed in Japanese Patent Application Laid-Open No. 2017-49071. Then, the curvature ⁇ 1 is calculated from the above equation (14) and the steel plate curved surface W, and the shape parameter ⁇ 1 is further calculated from the above equation (19).
  • the steel plate S had one-sided elongation or bending as shown in FIG. Since the shape measuring device 7 is installed on the upstream side of the cold rolling mill 11, information on the shape of the steel sheet S on the rolling mill entry side can be obtained before cold rolling. The risk of the steel plate S breaking can be predicted based on the magnitude of one-sided elongation or bending obtained from this information. Therefore, if the one-sided elongation or bending on the entrance side of the rolling mill is too large, the operation can be performed so as not to roll in order to prevent the steel sheet S from breaking.
  • the shape measuring device 7 measures one-sided elongation or bending on the entry side of the rolling mill as the amount of out-of-plane deformation of the steel sheet S. If the measured amount of out-of-plane deformation (one-sided elongation or bending) exceeds a preset threshold, cold rolling of the steel plate S by the cold rolling mill 11 is not performed. However, if it is not rolled, that part will not become a product, resulting in a lower yield.
  • leveling FB control is performed in order to correct one-sided elongation or bending of the steel plate S in the cold rolling mill 11.
  • the exit sides of the first rolling mill 110a, the second rolling mill 110b, the third rolling mill 110c, the fourth rolling mill 110d, and the fifth rolling mill 110e are , a first shape meter roll 111a, a second shape meter roll 111b, a third shape meter roll 111c, a fourth shape meter roll 111d, and a fifth shape meter roll 111e are installed, respectively.
  • first rolling mill 110a, the second rolling mill 110b, the third rolling mill 110c, the fourth rolling mill 110d, and the fifth rolling mill 110e are not particularly distinguished, they will simply be referred to as the rolling mill 110. Also written as, when the first shape meter roll 111a, the second shape meter roll 111b, the third shape meter roll 111c, the fourth shape meter roll 111d, and the fifth shape meter roll 111e are not particularly distinguished, simply the shape meter roll Also written as 111.
  • the shape meter roll 111 measures the contact force distribution between the shape meter roll 111 and the steel plate S, and estimates the one-sided elongation or bending, which is the amount of out-of-plane deformation of the steel plate S, from the contact force distribution.
  • the measurement method of the shape meter roll 111 is highly accurate, it is difficult to measure large shape defects because it needs to be brought into contact with the steel plate S. Therefore, simply estimating one-sided elongation or bending from the contact force distribution measured by the shape meter roll 111 may cause breakage due to bending stress during rolling by the rolling mill 110.
  • the cold rolling mill 11 also includes a first rolling mill 110a, a second rolling mill 110b, a third rolling mill 110c, a fourth rolling mill 110d, and a fifth rolling mill 110e.
  • a leveling control device 151a, a second leveling control device 151b, a third leveling control device 151c, a fourth leveling control device 151d, and a fifth leveling control device 151e are provided.
  • the first leveling control device 151a, the second leveling control device 151b, the third leveling control device 151c, the fourth leveling control device 151d, and the fifth leveling control device 151e are not particularly distinguished, , also simply referred to as a leveling control device 151.
  • the leveling control device 151 calculates a leveling target value by multiplying the time-integrated value of one-sided elongation or bending on the exit side of the rolling mill by a gain.
  • the leveling target value is determined by the rolling position difference between the left and right bearings of the backup roll of the rolling mill 110, and as a result, the rolling reduction on one side in the thickness direction and on the other side in the thickness direction, with the center of the steel plate S in the thickness direction as a border. It is equal to the amount difference (the difference in the amount of reduction between the left and right sides of the steel plate S). Then, leveling feedback control is performed on the corresponding rolling mill 110 so that the calculated leveling target value is achieved.
  • the contact force distribution on the shape meter roll 111 on the exit side of the rolling mill becomes symmetrical, and as a result, one-sided elongation or bending can be reduced.
  • the drawback of the leveling FB control is that it cannot respond to sudden disturbances, and is insufficiently responsive to one-sided elongation or bending as shown in FIG.
  • the cold rolling mill 11 is provided with a five-high rolling mill 110, but the rolling mill 110 to be controlled to the leveling target value is at least used for conveying the steel plate S. It suffices if the rolling mill 110 provided most upstream in the direction is included. Therefore, in the cold rolling equipment 1 according to the embodiment, one or more rolling mills 110 including the most upstream rolling mill 110 (first rolling mill 110a) are subject to leveling FB control. .
  • FIG. 5 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending.
  • FIG. 6 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending. Note that the one-sided elongation or bending on the entry side of the first rolling mill is based on the one-sided elongation or bending shown in FIG. 3.
  • the true one-sided elongation or bending on the exit side of the first rolling mill is smaller than the true one-sided elongation or bending on the inlet side of the first rolling mill. This is considered to be because the rolling phenomenon itself has the effect of reducing one-sided elongation or bending.
  • the true one-sided elongation or bending on the first rolling mill exit side changes rapidly. The size has also increased.
  • the true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. 5 is compared with the one-sided elongation or bending calculated from the differential tension on the exit side of the first rolling mill shown in FIG. Then, it can be seen that during the time (0 to 10 seconds) when the true one-side elongation or bending changes rapidly, the one-side elongation or bending calculated from the differential tension is different from the true one-side elongation or bending. On the other hand, when the change is relatively slow (10 to 50 seconds), the two values are relatively consistent.
  • the one-sided elongation or bending calculated from the differential tension on the exit side of the first rolling mill and the one-sided elongation or bending calculated from the differential tension at the first shape meter roll 111a shown in FIG. 6 are relatively different. Match.
  • the one-sided elongation or bending calculated from the differential tension at the first shape meter roll 111a arranged on the exit side of the first rolling mill 110a does not necessarily match the true one-sided elongation or bending. Therefore, true one-sided elongation or bending cannot be observed in an actual machine. Therefore, the results of a simulation in which a steel plate S having one-sided elongation or bending was cold-rolled when leveling FB control was performed are shown in FIGS. 7 and 8.
  • FIG. 7 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending when leveling FB control is performed.
  • FIG. 8 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending when leveling FB control is performed.
  • the magnitude of the differential tension in each of the first shape meter roll 111a to the fifth shape meter roll 111e, which are arranged on the exit side of the first rolling mill 110a to the fifth rolling mill 110e, is reduced.
  • the leveling of the first rolling mill 110a to the fifth rolling mill 110e is controlled. Therefore, the magnitude of one-sided elongation or bending calculated from the differential tension shown in FIG. 8 can be made significantly smaller than the magnitude of one-sided elongation or bending calculated from the differential tension shown in FIG.
  • the magnitude of the true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. It is small during the time when elongation or bending changes slowly (10 to 50 seconds). However, the time (0 to 10 seconds) when the true one-sided elongation or bending changes rapidly is almost the same, and the leveling FB control cannot cope with it.
  • FIG. 9 is a diagram showing the transition of true one-side elongation or bending as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation.
  • FIG. 10 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation.
  • the leveling FB control in this embodiment controls leveling so as to reduce the magnitude of true one-sided elongation or bending on the exit side of the first rolling mill. Therefore, the true one-sided elongation or bending size on the exit side of the first rolling mill shown in FIG. 9 is greater than the true one-side elongation or bending size on the first rolling mill exit side shown in FIGS. It can be made significantly smaller. On the other hand, the magnitude of one-sided elongation or bending calculated from the differential tension shown in FIG. 10 is larger than the one-sided elongation or bending calculated from the differential tension shown in FIG.
  • leveling FF control is performed on the actual first rolling mill 110a using the calculated leveling amount. Thereby, true one-sided elongation or bending on the exit side of the first rolling mill can be reduced.
  • simulation requires calculation time. Therefore, the machine calculates the partial elongation or bending on the entry side of the first rolling mill and the appropriate leveling amount in multiple cases, and outputs the appropriate leveling amount from the partial elongation or bending on the entry side of the first rolling mill. By learning, you can find the appropriate leveling amount online.
  • the value obtained as a result of the calculation device 150 shown in FIG. 4 applying a leveling amount calculation program to the amount of out-of-plane deformation (unilateral elongation or bending) on the entry side of the first rolling mill obtained from the shape measuring device 7. is used to calculate the leveling amount used for leveling FF control of the first rolling mill 110a.
  • the applied leveling amount calculation program uses machine learning with each out-of-plane deformation amount of multiple steel plates as an input variable, and each leveling amount obtained as a result of physical simulation for each out-of-plane deformation amount as an objective variable. It is something that
  • the leveling FF control in combination with the leveling FB control rather than using it alone. Therefore, the results of a simulation in which a steel plate S having one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control are shown in FIGS. 11 and 12. Note that in the first rolling mill 110a, the leveling FF control output and the leveling FB control output are added together to obtain a control output.
  • FIG. 11 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control.
  • FIG. 12 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control. .
  • the true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. 11 is smaller than the true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. This is larger than the true one-sided elongation or bending at the exit side of the first rolling mill.
  • the leveling control applied to the cold rolling equipment 1 data processing is performed on the shape measuring device 7, which is a shape meter disposed on the entrance side of the first rolling mill 110a, and Calculate one-sided extension or bending. Then, using a machine learning program, a leveling FF control output, which is appropriate leveling, is calculated from the calculated one-sided elongation or bending on the entrance side of the first rolling mill.
  • the first leveling control device 151a uses the one-sided elongation or bending on the exit side of the first rolling mill, which is the amount of out-of-plane deformation of the steel sheet S measured by the first shape meter roll 111a, to determine the leveling amount of the first rolling mill 110a. Calculate.
  • the first leveling control device 151a then performs leveling FB control to control the leveling of the first rolling mill 110a based on the calculated leveling amount. Further, the first leveling control device 151a tracks the steel plate S based on the line speed, and adjusts the leveling FF control output at the timing when the one-sided elongation or bending measured by the shape measuring device 7 reaches the first rolling mill 110a. Leveling FB control is weighted and added together, and the added value is used as a target value to control leveling. By performing such leveling control, it was possible to reduce the probability of breakage from 2% due to poor leveling control to 1%.
  • the present invention enables cold rolling with high productivity and yield while ensuring stability of cold rolling even when cold rolling difficult-to-roll materials with a thin plate thickness before rolling.
  • a cold rolling method and cold rolling equipment capable of rolling can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

This cold-rolling method includes a calculation step for calculating the levelling amount of a rolling machine using the out-of-plane deformation amount of a steel sheet measured on the upstream side of the rolling machine, a control step for controlling the levelling of the rolling machine on the basis of the levelling amount calculated in the calculation step, and a cold rolling step for cold-rolling the steel sheet using the rolling machine controlled in the control step.

Description

冷間圧延方法及び冷間圧延設備Cold rolling method and cold rolling equipment
 本発明は、冷間圧延方法及び冷間圧延設備に関する。 The present invention relates to a cold rolling method and cold rolling equipment.
 一般に、冷延薄鋼鈑等の圧延材を冷間圧延する際には、圧延材の長手方向及び幅方向の厚み精度を良好に保ちながら圧延材の形状(又は平坦度)を良好にすることにより、圧延材の通板性を安定化させた状態で冷間圧延が行われることが望ましい。一方、軽量化による燃費抑制等を目的として、高負荷、且つ、圧延前板厚の薄い薄物硬質材等の難圧延材のニーズが高まっている。このような難圧延材の冷間圧延時には、圧延負荷を抑えるために、難圧延材は前工程の熱間圧延にて薄引きされた後に冷間圧延工程に送られる。 Generally, when cold-rolling rolled materials such as cold-rolled thin steel sheets, it is necessary to improve the shape (or flatness) of the rolled material while maintaining good thickness accuracy in the longitudinal and width directions of the rolled material. Therefore, it is desirable that cold rolling be performed in a state where the threadability of the rolled material is stabilized. On the other hand, for the purpose of reducing fuel consumption through weight reduction, there is an increasing need for materials that are difficult to roll, such as thin hard materials that can handle high loads and have a thin plate thickness before rolling. During cold rolling of such a difficult-to-roll material, in order to suppress the rolling load, the difficult-to-roll material is thinned in the previous hot rolling process and then sent to the cold rolling process.
 近年、冷間圧延機の制御因子の多くは、冷間圧延機に搭載されたアクチュエータによって自動制御される。形状の自動制御の方法としては、圧延機出側に形状計を設置し、形状計の形状データを用いて、圧延機のレベリング、ベンダーを自動制御する形状フィードバック(FB)制御がよく用いられる。ところが、上記のような難圧延材の冷間圧延時には、熱間圧延時の形状不良に起因したコイル先尾端の曲がりが残存した状態で次コイルと接合される場合がある。コイル長手方向に沿って曲がりや形状不良が急峻に変動した際には、圧延荷重(及び付随して計算される先進率やトルク)をはじめ、冷間圧延機のロールギャップ、レベリング、ワークロールベンダーや中間ロールシフト、及び、サーマルクラウンによるロール膨張に代表されるロール撓み補正に対する変動が、自動制御によって吸収できなくなる。そのため、冷間圧延後の圧延材の形状が悪かったり、冷間圧延中に板破断したりすることが多発するようになった。FB制御の弱点は、急激な変動に対応しきれないことであり、それを補うためにフィードフォーワード(FF)制御も用いられる。 In recent years, many of the control factors of cold rolling mills are automatically controlled by actuators installed in the cold rolling mill. As a method for automatic shape control, shape feedback (FB) control is often used, in which a shape meter is installed on the exit side of the rolling mill and the shape data of the shape meter is used to automatically control the leveling and bender of the rolling mill. However, when cold-rolling the above-mentioned difficult-to-roll materials, the coil may be joined to the next coil with bends remaining at the leading and trailing ends due to poor shape during hot rolling. When bending or shape defects change sharply along the longitudinal direction of the coil, the rolling load (and the accompanying calculated advance rate and torque), roll gap of the cold rolling mill, leveling, work roll bender, etc. Variations in roll deflection correction, typified by roll shift, intermediate roll shift, and roll expansion caused by thermal crowns, cannot be absorbed by automatic control. As a result, the shape of the rolled material after cold rolling is poor, and plates often break during cold rolling. The weakness of FB control is that it cannot cope with rapid fluctuations, and feedforward (FF) control is also used to compensate for this.
 特許文献1には、圧延機上流の差張力計によって測定された差張力から、圧延機入側の鋼板の片伸び又は曲がりを予測し、その予測された片伸び又は曲がりを修正するようにレベリングを制御するFF制御手法が開示されている。また、特許文献2には、圧延機上流の断面プロフィール計の鋼板形状データの捩れ、及び、C反高さに基づいて、圧延機のベンダーをFF制御して圧延性欠陥を抑制する手法が開示されている。また、特許文献3には、圧延機上流の断面プロフィール計の鋼板形状データの捩れ、及び、C反高さが所定範囲外であれば、圧延を中止して圧延性欠陥を抑制する手法が開示されている。 Patent Document 1 discloses a leveling method in which one-sided elongation or bending of a steel plate on the entry side of the rolling mill is predicted from the differential tension measured by a differential tension meter upstream of the rolling mill, and the predicted one-sided elongation or bending is corrected. An FF control method for controlling the FF is disclosed. Furthermore, Patent Document 2 discloses a method of suppressing rollability defects by performing FF control of the bender of the rolling mill based on the torsion of the steel plate shape data obtained from the cross-sectional profile meter upstream of the rolling mill and the C height. has been done. Furthermore, Patent Document 3 discloses a method for suppressing rollability defects by stopping rolling if the steel sheet shape data measured by a cross-sectional profile meter upstream of the rolling mill is distorted and the C height is outside a predetermined range. has been done.
特開2012-161806号公報Japanese Patent Application Publication No. 2012-161806 特開2022-14800号公報Japanese Patent Application Publication No. 2022-14800 特開2021-133411号公報JP 2021-133411 Publication
 特許文献1に開示された手法では、スタンド間の差張力を測定しているが、その差張力から予測されるのはスタンド間の平均的な片伸び又は曲がりである。そのため、片伸び又は曲がりの変化が緩やかな場合にはよいが、接合点のようにその変化が急激な場合には、差張力から予測される片伸び又は曲がりと、圧延機出側の片伸び又は曲がりには差異が生じるため上手く制御できない。これは、片伸び又は曲がりが大きすぎると、鋼板がロールに張り付くことができず、差張力計によって差張力を測定することができないためである。特許文献2及び特許文献3に開示された手法では、片伸び又は曲がりが大きな鋼板の片伸び又は曲がりを算出するために、鋼板断面形状を測定することによって、鋼板断面の捩れ及びC反高さを算出している。ただし、捩れ及びC反高さは、鋼板形状情報のほんの一部であり、断面形状から正確な片伸び又は曲がりを算出することは難しいため、上手く制御をすることができない。 In the method disclosed in Patent Document 1, the differential tension between the stands is measured, but what is predicted from the differential tension is the average one-sided elongation or bending between the stands. Therefore, it is good if the change in one-sided elongation or bending is gradual, but if the change is sudden such as at a joint point, the one-sided elongation or bending predicted from the differential tension and the one-sided elongation at the exit side of the rolling mill are Or, since there is a difference in bending, it cannot be well controlled. This is because if the one-sided elongation or bending is too large, the steel plate cannot stick to the roll, and the differential tension cannot be measured by a differential tension meter. In the methods disclosed in Patent Document 2 and Patent Document 3, in order to calculate the unilateral elongation or bending of a steel plate with large unilateral elongation or bending, the torsion and C height of the steel plate cross section are calculated by measuring the cross-sectional shape of the steel plate. is being calculated. However, the torsion and C height are only a part of the steel plate shape information, and it is difficult to accurately calculate one-sided elongation or bending from the cross-sectional shape, so it is difficult to control it well.
 本発明は、上記課題に鑑みてなされたものであって、その目的は、高負荷、且つ、圧延前板厚の薄い難圧延材を冷間圧延する際にも冷間圧延の安定性を確保しつつ、生産性及び歩留よく冷間圧延をすることができる冷間圧延方法及び冷間圧延設備を提供することである。 The present invention has been made in view of the above-mentioned problems, and its purpose is to ensure the stability of cold rolling even when cold rolling a difficult-to-roll material with a thin plate thickness before rolling. It is an object of the present invention to provide a cold rolling method and cold rolling equipment that can perform cold rolling with high productivity and yield.
 上述した課題を解決し、目的を達成するために、
(1)本発明に係る冷間圧延方法は、圧延機の上流側で測定された鋼板の面外変形量を用いて前記圧延機のレベリング量を算出する算出ステップと、前記算出ステップにおいて算出されたレベリング量に基づいて、前記圧延機のレベリングを制御する制御ステップと、前記制御ステップにより制御された前記圧延機を用いて、鋼板に冷間圧延を施す冷間圧延ステップと、を含むことを特徴とするものである。
In order to solve the above-mentioned problems and achieve the objectives,
(1) The cold rolling method according to the present invention includes a calculation step of calculating the leveling amount of the rolling mill using the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill, and and a cold rolling step of cold rolling a steel plate using the rolling mill controlled by the controlling step. This is a characteristic feature.
(2)本発明に係る冷間圧延方法は、上記(1)の発明において、鋼板の面外変形量は、前記圧延機の上流側、且つ、鋼板の搬送方向を変更するステアリング装置の直上流又は直下流において測定された面外変形量であることを特徴とするものである。 (2) In the cold rolling method according to the present invention, in the invention described in (1) above, the amount of out-of-plane deformation of the steel plate is determined on the upstream side of the rolling mill and immediately upstream of the steering device that changes the conveyance direction of the steel plate. Alternatively, it is an amount of out-of-plane deformation measured immediately downstream.
(3)本発明に係る冷間圧延方法は、上記(1)または(2)の発明において、前記圧延機の上流側で測定された鋼板の面外変形量が閾値を超える場合、前記冷間圧延ステップにおける鋼板に対する冷間圧延を実行しないことを特徴とするものである。 (3) In the cold rolling method according to the present invention, in the invention (1) or (2) above, when the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill exceeds a threshold value, the cold rolling method This method is characterized in that cold rolling is not performed on the steel plate in the rolling step.
(4)本発明に係る冷間圧延方法は、上記(1)乃至(3)のいずれか1つの発明において、前記算出ステップにおいて、前記レベリング量は、前記面外変形量にレベリング量算出プログラムを適用した結果得られた値を用いて算出されるものであって、前記レベリング量算出プログラムは、複数の鋼板の各面外変形量を入力変数とし、前記各面外変形量に対して物理シミュレーションの結果得られた各レベリング量を目的変数として、機械学習させたものであることを特徴とするものである。 (4) In the cold rolling method according to the present invention, in any one of the above (1) to (3), in the calculation step, the leveling amount is determined by applying a leveling amount calculation program to the out-of-plane deformation amount. The leveling amount calculation program takes each out-of-plane deformation amount of a plurality of steel plates as an input variable, and performs a physical simulation for each out-of-plane deformation amount. This method is characterized by machine learning using each leveling amount obtained as a result of the above as an objective variable.
(5)本発明に係る冷間圧延方法は、上記(1)乃至(4)のいずれか1つの発明において、前記算出ステップにおいて、前記レベリング量は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて算出されることを特徴とするものである。 (5) In the cold rolling method according to the present invention, in any one of the above (1) to (4), in the calculation step, the leveling amount is determined to be outside the plane of the steel plate on the upstream side of the rolling mill. It is characterized in that it is calculated using the amount of deformation and the amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill.
(6)本発明に係る冷間圧延設備は、鋼板に冷間圧延を施す圧延機と、前記圧延機の上流側に配置され、鋼板の面外変形量を測定する形状測定装置と、前記形状測定装置によって測定された鋼板の面外変形量を用いて、前記圧延機のレベリング量を算出する算出装置と、前記算出装置によって算出されたレベリング量に基づいて、前記圧延機のレベリングを制御する制御装置と、を備えることを特徴とするものである。 (6) The cold rolling equipment according to the present invention includes a rolling mill that cold-rolls a steel plate, a shape measuring device that is disposed upstream of the rolling mill and measures an amount of out-of-plane deformation of the steel plate, and a shape measuring device that measures the amount of out-of-plane deformation of the steel plate, and a calculation device that calculates the leveling amount of the rolling mill using the amount of out-of-plane deformation of the steel plate measured by the measuring device; and controlling the leveling of the rolling mill based on the leveling amount calculated by the calculation device. The present invention is characterized by comprising a control device.
(7)本発明に係る冷間圧延設備は、上記(6)の発明において、前記圧延機の上流側に配置され、鋼板の搬送方向を変更するステアリング装置を備えており、鋼板の面外変形量は、前記圧延機の上流側、且つ、前記ステアリング装置の直上流又は直下流において測定された面外変形量であることを特徴とするものである。 (7) The cold rolling equipment according to the present invention, in the invention described in (6) above, is provided with a steering device that is disposed upstream of the rolling mill and changes the conveying direction of the steel plate, and the cold rolling equipment is provided with a steering device that changes the direction of conveyance of the steel plate. The amount is an amount of out-of-plane deformation measured upstream of the rolling mill and immediately upstream or downstream of the steering device.
(8)本発明に係る冷間圧延設備は、上記(6)または(7)の発明において、前記圧延機の上流側で測定された鋼板の面外変形量が閾値を超える場合、前記圧延機は鋼板に対する冷間圧延を実行しないことを特徴とするものである。 (8) In the invention of (6) or (7) above, in the cold rolling equipment according to the present invention, when the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill exceeds a threshold value, the cold rolling equipment The method is characterized in that the steel plate is not cold rolled.
(9)本発明に係る冷間圧延設備は、上記(6)乃至(8)のいずれか1つの発明において、前記算出装置は、前記面外変形量にレベリング量算出プログラムを適用した結果得られた値を用いて前記レベリング量を算出し、前記レベリング量算出プログラムは、複数の鋼板の各面外変形量を入力変数とし、前記各面外変形量に対して物理シミュレーションの結果得られた各レベリング量を目的変数として、機械学習させたものであることを特徴とするものである。 (9) In the cold rolling equipment according to the present invention, in any one of the above-mentioned (6) to (8), the calculation device is configured to calculate the amount obtained as a result of applying a leveling amount calculation program to the out-of-plane deformation amount. The leveling amount calculation program uses each out-of-plane deformation amount of a plurality of steel plates as an input variable, and calculates each out-of-plane deformation amount obtained as a result of physical simulation for each out-of-plane deformation amount. This method is characterized by machine learning using the leveling amount as the objective variable.
(10)本発明に係る冷間圧延設備は、上記(6)乃至(9)のいずれか1つの発明において、前記算出装置は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて、前記レベリング量を算出することを特徴とするものである。 (10) In the cold rolling equipment according to any one of the above (6) to (9), the calculation device calculates the amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill, and The leveling amount is calculated using the amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill.
 本発明に係る冷間圧延方法及び冷間圧延設備は、高負荷、且つ、圧延前板厚の薄い難圧延材を冷間圧延する際にも冷間圧延の安定性を確保しつつ、生産性及び歩留よく冷間圧延をすることができるという効果を奏する。 The cold rolling method and cold rolling equipment according to the present invention ensure stability of cold rolling even when cold rolling difficult-to-roll materials with high load and thin plate thickness before rolling, while improving productivity. Also, there is an effect that cold rolling can be carried out with good yield.
図1は、実施形態に係る冷間圧延ラインの概略構成を示した全体図である。FIG. 1 is an overall view showing a schematic configuration of a cold rolling line according to an embodiment. 図2は、面外変形量の測定方法の例を示した図である。FIG. 2 is a diagram showing an example of a method for measuring the amount of out-of-plane deformation. 図3は、入側ルーパーの出側に設置された形状測定装置によって測定した鋼板の面外変形量である片伸び又は曲がりの測定結果を示した図である。FIG. 3 is a diagram showing the measurement results of one-sided elongation or bending, which is the amount of out-of-plane deformation of the steel plate, measured by a shape measuring device installed on the exit side of the entrance looper. 図4は、レベリング制御についての説明図である。FIG. 4 is an explanatory diagram of leveling control. 図5は、片伸び又は曲がりがある鋼板を冷間圧延したシミュレーションの結果として真の片伸び又は曲がりの推移を示した図である。FIG. 5 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending. 図6は、片伸び又は曲がりがある鋼板を冷間圧延したシミュレーションの結果として差張力から換算した片伸び又は曲がりの推移を示した図である。FIG. 6 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending. 図7は、レベリングFB制御を行った場合での片伸び又は曲がりがある鋼板を冷間圧延したシミュレーションの結果として真の片伸び又は曲がりの推移を示した図である。FIG. 7 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending when leveling FB control is performed. 図8は、レベリングFB制御を行った場合での片伸び又は曲がりがある鋼板を冷間圧延したシミュレーションの結果として差張力から換算した片伸び又は曲がりの推移を示した図である。FIG. 8 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate with one-sided elongation or bending when leveling FB control is performed. 図9は、シミュレーションにより第1圧延機出側の真の片伸び又は曲がりを小さくするようにレベリングFB制御をした結果として真の片伸び又は曲がりの推移を示した図である。FIG. 9 is a diagram showing the transition of true one-sided elongation or bending as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation. 図10は、シミュレーションにより第1圧延機出側の真の片伸び又は曲がりを小さくするようにレベリングFB制御をした結果として差張力から換算した片伸び又は曲がりの推移を示した図である。FIG. 10 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation. 図11は、レベリングFF制御とレベリングFB制御とを行って、片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として真の片伸び又は曲がりの推移を示した図である。FIG. 11 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control. 図12は、レベリングFF制御とレベリングFB制御とを行って、片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として差張力から換算した片伸び又は曲がりの推移を示した図である。FIG. 12 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control. .
 以下に、本発明に係る冷間圧延方法及び冷間圧延設備の実施形態について説明する。実施形態に係る冷間圧延設備は、鋼板に冷間圧延を施す圧延機と、圧延機の上流側に配置され、鋼板の面外変形量を測定する形状測定装置と、形状測定装置によって測定された鋼板の面外変形量を用いて、圧延機のレベリング量を算出する算出装置と、算出装置によって算出されたレベリング量に基づいて、圧延機のレベリングを制御する制御装置と、を備える。実施形態に係る冷間圧延設備に適用される冷間圧延方法は、圧延機の上流側で測定された鋼板の面外変形量を用いて圧延機のレベリング量を算出する算出ステップと、算出ステップにおいて算出されたレベリング量に基づいて、圧延機のレベリングを制御する制御ステップと、制御ステップにより制御された圧延機を用いて、鋼板に冷間圧延を施す冷間圧延ステップと、を含む。なお、本実施形態により本発明が限定されるものではない。 Embodiments of the cold rolling method and cold rolling equipment according to the present invention will be described below. The cold rolling equipment according to the embodiment includes a rolling mill that cold-rolls a steel plate, a shape measuring device that is disposed upstream of the rolling mill, and that measures the amount of out-of-plane deformation of the steel plate, and a shape measuring device that measures the amount of out-of-plane deformation of the steel plate. The present invention includes a calculation device that calculates the amount of leveling of the rolling mill using the amount of out-of-plane deformation of the steel plate, and a control device that controls the leveling of the rolling mill based on the amount of leveling calculated by the calculation device. The cold rolling method applied to the cold rolling equipment according to the embodiment includes a calculation step of calculating the amount of leveling of the rolling mill using the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill, and a calculation step. The method includes a control step of controlling the leveling of the rolling mill based on the leveling amount calculated in the step, and a cold rolling step of cold rolling the steel plate using the rolling mill controlled by the control step. Note that the present invention is not limited to this embodiment.
 図1は、実施形態に係る冷間圧延設備1の概略構成を示した全体図である。実施形態に係る冷間圧延設備1には、最上流部にコイルから鋼板Sを払い出すペイオフリール2が設置されている。また、実施形態に係る冷間圧延設備1には、払い出された鋼板Sの尾端と、次のコイルから払い出された鋼板の先端とを接合する溶接機3と、応力集中を抑制するために溶接線端で半楕円状に鋼板Sを切断するノッチャー4が設置されている。また、実施形態に係る冷間圧延設備1には、接合工程と圧延工程との間のライン速度差を吸収するための入側ルーパー5が設置されている。また、入側ルーパー5の出側には、CPC蛇行制御を備えたステアリング装置6が設置されており、その直下流に形状測定装置7が設置されている。なお、形状測定装置7は、ステアリング装置6の直上流に配置してもよい。また、実施形態に係る冷間圧延設備1には、CPC蛇行制御を備えたデフレクターステアリングロール8、圧延工程とその上流工程との間に張力段差を付けるためのブライドルロール群9、及び、ブライドルロール群9の直下流にCPC蛇行制御を備えたデフレターステアリングロール10が設置されている。また、冷間圧延設備1には、鋼板Sを圧延する5段連続の冷間圧延機11が設置されている。また、冷間圧延設備1には、圧延工程とその下流工程との間に張力段差をつけるためのブライドルロール12、切断機13、及び、鋼板Sを巻き取るためのテンションリール14が設置されている。 FIG. 1 is an overall view showing a schematic configuration of a cold rolling facility 1 according to an embodiment. In the cold rolling equipment 1 according to the embodiment, a payoff reel 2 for paying out the steel plate S from the coil is installed at the most upstream portion. Further, the cold rolling equipment 1 according to the embodiment includes a welding machine 3 that joins the tail end of the steel plate S that has been discharged and the tip of the steel plate that has been discharged from the next coil, and a welding machine 3 that suppresses stress concentration. For this purpose, a notcher 4 is installed to cut the steel plate S into a semi-elliptical shape at the end of the weld line. Further, the cold rolling equipment 1 according to the embodiment is provided with an entry side looper 5 for absorbing the line speed difference between the joining process and the rolling process. Furthermore, a steering device 6 equipped with CPC meandering control is installed on the exit side of the entrance looper 5, and a shape measuring device 7 is installed immediately downstream thereof. Note that the shape measuring device 7 may be placed immediately upstream of the steering device 6. Further, the cold rolling equipment 1 according to the embodiment includes a deflector steering roll 8 equipped with CPC meandering control, a bridle roll group 9 for creating a tension step between the rolling process and its upstream process, and a bridle roll. A deflator steering roll 10 equipped with CPC meandering control is installed immediately downstream of the group 9. Further, the cold rolling equipment 1 is equipped with a five-stage continuous cold rolling mill 11 for rolling the steel sheet S. Further, the cold rolling equipment 1 is equipped with a bridle roll 12 for creating a tension step between the rolling process and its downstream process, a cutting machine 13, and a tension reel 14 for winding up the steel plate S. There is.
 ペイオフリール2から払い出された鋼板Sの先端及び尾端には、熱延工程由来の片伸び又は曲がりを伴う形状不良部位がある。また、溶接機3による接合時に鋼板Sが真っ直ぐになっていないと「く」の字状に溶接され、さらに片伸び又は曲がりが大きくなる。このような形状不良部位を冷間圧延機11によって冷間圧延すると、圧延過程中に鋼板Sの幅端に割れが発生し、その割れを起点として破断が発生する。また、片伸び又は曲がりに起因した冷間圧延機11の圧延機間(スタンド間)での差張力が鋼板Sに加わると、割れを起因として破断が発生、あるいは割れていなくても破断が発生する。なお、差張力とは、圧延機出側に配置された張力計などの圧力検出手段によって検出される、鋼板Sの幅方向両端の張力差をいう。 At the tip and tail ends of the steel sheet S discharged from the payoff reel 2, there are defective portions with uneven elongation or bending due to the hot rolling process. Further, if the steel plates S are not straight when joined by the welding machine 3, they will be welded in a dogleg shape, and further elongation or bending will increase. When such a defective shape portion is cold rolled by the cold rolling mill 11, a crack occurs at the width end of the steel plate S during the rolling process, and a break occurs from the crack as a starting point. Furthermore, when a differential tension between the rolling mills (between stands) of the cold rolling mill 11 due to one-sided elongation or bending is applied to the steel plate S, a fracture occurs due to a crack, or a fracture occurs even if there is no crack. do. Note that the differential tension refers to a tension difference between both ends of the steel plate S in the width direction, which is detected by a pressure detection means such as a tension meter disposed on the exit side of the rolling mill.
 ここで、鋼板Sの形状の幾何学について説明する。主に圧延過程での長手方向の伸びの幅方向不均一に起因して鋼板Sに形状不良が発生する。この形状不良は、片伸び又は曲がりや耳波(腹伸)等の重ね合わせであり、圧延中の破断に最も大きく影響を与える形状不良が片伸び又は曲がりである。特に薄板では、切り板にすると片伸び又は曲がり由来の面外変形が消失していまい、片伸び又は曲がりを測定することは困難となる。一方、耳波(腹伸)は切り板にしても面外変形が残存するため測定可能である。 Here, the geometry of the shape of the steel plate S will be explained. Shape defects occur in the steel sheet S mainly due to non-uniformity in the width direction of elongation in the longitudinal direction during the rolling process. This shape defect is a combination of one-sided elongation or bending, ear waves (belly elongation), etc., and one-sided elongation or bending is the shape defect that has the greatest effect on breakage during rolling. In particular, when a thin plate is cut, out-of-plane deformation due to one-sided elongation or bending disappears, making it difficult to measure one-sided elongation or bending. On the other hand, ear waves (belly extension) can be measured because out-of-plane deformation remains even if the plate is cut.
 鋼板Sを曲線とした場合、片伸び又は曲がりの曲率κの幾何学的な定義は、下記数式(1)で表すことができる。 When the steel plate S is a curved line, the geometric definition of the curvature κ of one-sided elongation or bending can be expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、上記数式(1)中、xはライン方向位置、vは幅中心での幅方向の変位、wは幅中心での鉛直方向の変位、ωは捩れ角である。上記数式(1)を計算することは難しいため、片伸び又は曲がりの長手平均で考える。平均曲率Κは、下記数式(2)のように定義することができる。 Here, in the above formula (1), x is the position in the line direction, v is the displacement in the width direction at the width center, w is the displacement in the vertical direction at the width center, and ω is the twist angle. Since it is difficult to calculate the above formula (1), the longitudinal average of one-sided elongation or bending is considered. The average curvature Κ can be defined as shown in Equation (2) below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、上記数式(2)中、Lは平均化のための長さである。上記数式(1)を上記数式(2)に代入すると、平均曲率Κは、下記数式(3)で表すことができる。 Here, in the above formula (2), L is the length for averaging. By substituting the above equation (1) into the above equation (2), the average curvature K can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記数式(3)の右辺第一項は、蛇行あるいは斜行として観測される量である。また、上記数式(3)の右辺第二項は、面外変形として観測される量である。上記数式(3)から、蛇行のみを観測しても片伸び又は曲がりはわからないことがわかる。蛇行しなければ、上記数式(3)の右辺第一項は零となり、面外変形の観測量だけから平均片伸び又は曲がりを求めることができる。ここで、捩れ角ωが小さいとすると、上記数式(3)は下記数式(4)となる。 The first term on the right side of the above equation (3) is the amount observed as meandering or oblique movement. Further, the second term on the right side of the above equation (3) is the amount observed as out-of-plane deformation. From the above equation (3), it can be seen that even if only meandering is observed, one-sided elongation or bending cannot be detected. If there is no meandering, the first term on the right side of the above formula (3) becomes zero, and the average one-sided elongation or bending can be determined from only the observed amount of out-of-plane deformation. Here, if the twist angle ω is small, the above equation (3) becomes the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、上記数式(4)は、下記数式(5)と変形できる。 Furthermore, the above formula (4) can be transformed into the following formula (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、上記数式(5)の右辺第二項の面外変形の観測量について考えてみる。捩れ角ωが小さいとすると、鋼板Sの撓みWは、下記数式(6)で表されるとする。 Here, let us consider the observable amount of out-of-plane deformation in the second term on the right side of Equation (5) above. Assuming that the twist angle ω is small, the deflection W of the steel plate S is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、上記数式(6)中、yは幅方向の位置である。また、鋼板Sの撓んだ曲面に沿った長さlは、下記数式(7)で表すことができる。 Here, in the above formula (6), y is the position in the width direction. Further, the length l along the curved surface of the steel plate S can be expressed by the following formula (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、伸び差率Δεは、下記数式(8)のように定義することができる。 Further, the elongation difference rate Δε l can be defined as in the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、上記数式(8)中、lは幅方向での平均長さであり、下記数式(9)で表すことができる。 Here, in the above formula (8), l 0 is the average length in the width direction, and can be expressed by the following formula (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、上記数式(9)中、bは板幅である。そして、上記数式(6)と上記数式(7)とを上記数式(9)に代入すると、下記数式(10)が成り立つ。 Here, in the above formula (9), b is the plate width. Then, by substituting the above equation (6) and the above equation (7) into the above equation (9), the following equation (10) holds true.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、撓みwと捩れ角ωとが小さいとすると、上記数式(10)は下記数式(11)となる。 Here, assuming that the deflection w and the twist angle ω are small, the above equation (10) becomes the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 そして、上記数式(11)をさらに変形すると、下記数式(12)となる。 Then, when the above formula (11) is further transformed, the following formula (12) is obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 上記数式(6)と上記数式(7)と上記数式(12)とを、上記数式(8)に代入すると、伸び差率Δεは、下記数式(13)で表すことができる。 When the above equation (6), the above equation (7), and the above equation (12) are substituted into the above equation (8), the elongation difference rate Δε l can be expressed by the following equation (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 伸び差率Δεから換算される平均片伸び(平均曲り)の曲率Κは、下記数式(14)のように定義することができる。 The curvature Κ 1 of the average one-side elongation (average bending) converted from the elongation difference rate Δε 1 can be defined as in the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そして、上記数式(13)を上記数式(14)に代入すると、下記数式(15)が得られる。 Then, by substituting the above formula (13) into the above formula (14), the following formula (15) is obtained.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 上記数式(15)は上記数式(5)の右辺第二項であり、上記数式(5)は下記数式(16)のように表すことができる。 The above formula (15) is the second term on the right side of the above formula (5), and the above formula (5) can be expressed as the following formula (16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 形状測定装置7によって測定された面外変形量あるいはその勾配の測定値により、上記数式(14)を用いれば曲率Κを算出することは可能である。そして、鋼板Sの蛇行等がなく上記数式(14)の右辺第一項が零となれば、固有の片伸び又は曲がりの曲率Κは測定可能な曲率Κと同じとなる。上記数式(16)の蛇行と関係する上記数式(16)の右辺第一項は測定しにくいため、鋼板Sが蛇行しない場所で形状測定装置7により鋼板Sの面外変形量を測定するのが望ましい。 It is possible to calculate the curvature Κ 1 from the out-of-plane deformation amount or the measured value of its slope measured by the shape measuring device 7 using the above equation (14). If the steel plate S does not meander or the like and the first term on the right side of the above equation (14) becomes zero, the curvature K1 of the inherent one-sided elongation or bending will be the same as the measurable curvature K1 . Since the first term on the right side of the above equation (16), which is related to the meandering in the above equation (16), is difficult to measure, it is recommended to measure the amount of out-of-plane deformation of the steel plate S using the shape measuring device 7 at a place where the steel plate S does not meander. desirable.
 ここで、面外変形量とは、鋼板Sの曲がり及び片伸びを示す指標の一つである。面外変形量の測定方法は、図2を参照して、下記のような2つの方法が考えられる。図2は、面外変形量の測定方法の例を示した図である。 Here, the amount of out-of-plane deformation is one of the indicators indicating the bending and one-sided elongation of the steel plate S. As a method for measuring the amount of out-of-plane deformation, the following two methods can be considered with reference to FIG. FIG. 2 is a diagram showing an example of a method for measuring the amount of out-of-plane deformation.
 第1の方法としては、図2(a)に示すように鋼板Sをロール20に巻き付ける、あるいは鋼板Sをプレスする等によって、鋼板Sに垂直抗力を付与して皺を伸ばし、その皺を伸ばした鋼板Sの曲がり(片伸び)を測定する方法である。 The first method is to apply normal force to the steel plate S by winding the steel plate S around a roll 20 or pressing the steel plate S to smooth out the wrinkles, as shown in FIG. 2(a). This method measures the bending (one-sided elongation) of the steel plate S.
 第2の方法としては、図2(b)に示すように鋼板Sを長手方向に真っ直ぐにし(蛇行させない)、鋼板Sの皺の高さから曲がり(片伸び)を換算する方法である。 The second method is to straighten the steel plate S in the longitudinal direction (do not meander) as shown in FIG. 2(b), and calculate the bending (unilateral elongation) from the height of the wrinkles in the steel plate S.
 第1の方法では、鋼板Sの皺を伸ばす長手方向の長さが短いと測定が難しくなるため、第2の方法を採用することが望ましく、本実施形態では第2の方法によって面外変形量を測定(換算)する。 In the first method, it is difficult to measure if the longitudinal length of the steel plate S to which wrinkles are straightened is short, so it is desirable to adopt the second method.In this embodiment, the amount of out-of-plane deformation is Measure (convert).
 圧延の分野では、伸び差率分布の左右差(形状パラメータ)で非対称成分の形状を表現することがよくある。片伸び又は曲がりを表す形状パラメータλを、下記数式(17)のように定義する。 In the field of rolling, the shape of an asymmetric component is often expressed by the left-right difference (shape parameter) in the elongation difference distribution. A shape parameter λ 1 representing one-sided elongation or bending is defined as shown in the following equation (17).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 形状パラメータλの単位はI-unitである。ここで、y´は下記数式(18)で表すことができる。 The unit of the shape parameter λ 1 is I-unit. Here, y' can be expressed by the following formula (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 そして、上記数式(18)と上記数式(14)とを上記数式(17)に代入すると、下記数式(19)が得られる。 Then, by substituting the above formula (18) and the above formula (14) into the above formula (17), the following formula (19) is obtained.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 上記数式(19)からわかるように、形状パラメータλは曲率Κと比例関係となる。 As can be seen from the above equation (19), the shape parameter λ 1 has a proportional relationship with the curvature Κ 1 .
 図3は、入側ルーパー5の出側に設置された形状測定装置7によって測定した鋼板Sの面外変形量である片伸び又は曲がりの測定結果を示した図である。なお、図3の横軸は時刻であり、縦軸は上記数式(17)及び上記数式(19)で定義された形状パラメータλである。この場合、接合点では、形状パラメータλが急激に変化している。先行材では、熱延工程由来の片伸び又は曲がりがなく、後行材では、熱延工程由来の片伸び又は曲がりがあり、先端から離れるほど徐々に片伸び又は曲がりの大きさが小さくなっている。 FIG. 3 is a diagram showing the measurement results of one-sided elongation or bending, which is the amount of out-of-plane deformation of the steel plate S, measured by the shape measuring device 7 installed on the exit side of the entrance looper 5. Note that the horizontal axis in FIG. 3 is time, and the vertical axis is the shape parameter λ 1 defined by the above equation (17) and the above equation (19). In this case, the shape parameter λ 1 changes rapidly at the junction. In the preceding material, there is no unilateral elongation or bending due to the hot rolling process, and in the succeeding material, there is unilateral elongation or bending due to the hot rolling process, and the magnitude of the unilateral elongation or bending gradually decreases as the distance from the tip increases. There is.
 片伸び又は曲がりを形状測定装置7で検出するためには、鋼板Sが蛇行しないほうがよく、本実施形態において形状測定装置7はステアリング装置6の直下流に設置している。形状測定装置7は、複数のレーザー光を回転させ、その回転中心と鋼板表面までの距離と回転角とを測定することによって、鋼板表面の位置を点群として測定するリアルタイム3Dレーザースキャナである。なお、レーザー光の回転周期は、例えば、0.1秒である。形状測定装置7を3Dスキャナとすることによって、単一のセンサーでライン外に設置できるため設置制約が少なくメンテナンスが簡便である。また、一瞬で鋼板表面を測定することができるためライン速度に依存せず振動に強い、及び、非接触で測定することができるため大きな形状を測定できる等の利点がある。点群の位置には測定誤差があり、且つ、不規則点群であるため、平滑化薄板スプライン法によって測定誤差を除去して点群から鋼板曲面Wを計算する。なお、平滑化薄板スプライン法の計算には時間がかかるため、計算高速化のために、例えば、特開2017-49071号公報に開示された技術を用いるのが好ましい。そして、上記数式(14)と鋼板曲面Wとから曲率Κを算出し、さらに上記数式(19)から形状パラメータλを計算する。 In order to detect one-sided elongation or bending with the shape measuring device 7, it is better that the steel plate S does not meander, and in this embodiment, the shape measuring device 7 is installed directly downstream of the steering device 6. The shape measuring device 7 is a real-time 3D laser scanner that measures the position of the steel plate surface as a point group by rotating a plurality of laser beams and measuring the distance and rotation angle between the center of rotation and the steel plate surface. Note that the rotation period of the laser beam is, for example, 0.1 seconds. By using a 3D scanner as the shape measuring device 7, a single sensor can be installed outside the line, so there are fewer installation restrictions and maintenance is simple. In addition, it has the advantage of being able to measure the surface of a steel plate in an instant, making it resistant to vibration without depending on the line speed, and being able to measure large shapes because it can be measured without contact. Since there is a measurement error in the position of the point group and the point group is irregular, the measurement error is removed by the smoothing thin plate spline method and the steel plate curved surface W is calculated from the point group. Note that calculations using the smoothed thin plate spline method take time, so in order to speed up calculations, it is preferable to use, for example, the technique disclosed in Japanese Patent Application Laid-Open No. 2017-49071. Then, the curvature Κ 1 is calculated from the above equation (14) and the steel plate curved surface W, and the shape parameter λ 1 is further calculated from the above equation (19).
 ここで、図3に示したような片伸び又は曲がりが、圧延機入側の鋼板Sにある場合には、冷間圧延機11による冷間圧延によって鋼板Sが破断した。形状測定装置7は、冷間圧延機11の上流側に設置されているため、冷間圧延前に鋼板Sの圧延機入側の形状の情報がわかる。その情報から得られる片伸び又は曲がりの大きさによって、鋼板Sが破断するリスクを予測することができる。そのため、圧延機入側の片伸び又は曲がりが大きすぎる場合には、鋼板Sの破断防止のために圧延しないように操業することができる。実施形態に係る冷間圧延設備1では、形状測定装置7によって圧延機入側の片伸び又は曲がりを鋼板Sの面外変形量として測定する。そして、その測定した面外変形量(片伸び又は曲がり)が予め設定された閾値を超える場合には、冷間圧延機11による鋼板Sに対する冷間圧延を実行しない。ただし、圧延しなければ、その部分は製品とならないため、歩留が低下する。 Here, if the steel plate S had one-sided elongation or bending as shown in FIG. Since the shape measuring device 7 is installed on the upstream side of the cold rolling mill 11, information on the shape of the steel sheet S on the rolling mill entry side can be obtained before cold rolling. The risk of the steel plate S breaking can be predicted based on the magnitude of one-sided elongation or bending obtained from this information. Therefore, if the one-sided elongation or bending on the entrance side of the rolling mill is too large, the operation can be performed so as not to roll in order to prevent the steel sheet S from breaking. In the cold rolling equipment 1 according to the embodiment, the shape measuring device 7 measures one-sided elongation or bending on the entry side of the rolling mill as the amount of out-of-plane deformation of the steel sheet S. If the measured amount of out-of-plane deformation (one-sided elongation or bending) exceeds a preset threshold, cold rolling of the steel plate S by the cold rolling mill 11 is not performed. However, if it is not rolled, that part will not become a product, resulting in a lower yield.
 そこで、より積極的に鋼板Sの圧延機入側の形状の情報を活用するために、図4を用いて、レベリング制御について説明する。一般に、鋼板Sの片伸び又は曲がりを冷間圧延機11で矯正するためにレベリングFB制御が行われる。図4に示すように、冷間圧延機11において、第1圧延機110a、第2圧延機110b、第3圧延機110c、第4圧延機110d、及び、第5圧延機110eの出側には、それぞれ第1形状計ロール111a、第2形状計ロール111b、第3形状計ロール111c、第4形状計ロール111d、及び、第5形状計ロール111eが設置されている。なお、以下の説明において、第1圧延機110a、第2圧延機110b、第3圧延機110c、第4圧延機110d、及び、第5圧延機110eを特に区別しない場合には、単に圧延機110とも記す。また、第1形状計ロール111a、第2形状計ロール111b、第3形状計ロール111c、第4形状計ロール111d、及び、第5形状計ロール111eを特に区別しない場合には、単に形状計ロール111とも記す。 Therefore, in order to more actively utilize information on the shape of the steel sheet S on the rolling mill entry side, leveling control will be explained using FIG. 4. Generally, leveling FB control is performed in order to correct one-sided elongation or bending of the steel plate S in the cold rolling mill 11. As shown in FIG. 4, in the cold rolling mill 11, the exit sides of the first rolling mill 110a, the second rolling mill 110b, the third rolling mill 110c, the fourth rolling mill 110d, and the fifth rolling mill 110e are , a first shape meter roll 111a, a second shape meter roll 111b, a third shape meter roll 111c, a fourth shape meter roll 111d, and a fifth shape meter roll 111e are installed, respectively. In the following description, if the first rolling mill 110a, the second rolling mill 110b, the third rolling mill 110c, the fourth rolling mill 110d, and the fifth rolling mill 110e are not particularly distinguished, they will simply be referred to as the rolling mill 110. Also written as In addition, when the first shape meter roll 111a, the second shape meter roll 111b, the third shape meter roll 111c, the fourth shape meter roll 111d, and the fifth shape meter roll 111e are not particularly distinguished, simply the shape meter roll Also written as 111.
 形状計ロール111は、形状計ロール111と鋼板Sとの接触力分布を測定し、その接触力分布から鋼板Sの面外変形量である片伸び又は曲がりを推定する。形状計ロール111の測定方式は精度が高いが、鋼板Sに接触させる必要があるため、大きな形状不良を測定することは困難である。そのため、形状計ロール111が測定した接触力分布から片伸び又は曲がりを推定するだけでは、圧延機110による圧延での曲げ応力で破断を引き起こすことがある。 The shape meter roll 111 measures the contact force distribution between the shape meter roll 111 and the steel plate S, and estimates the one-sided elongation or bending, which is the amount of out-of-plane deformation of the steel plate S, from the contact force distribution. Although the measurement method of the shape meter roll 111 is highly accurate, it is difficult to measure large shape defects because it needs to be brought into contact with the steel plate S. Therefore, simply estimating one-sided elongation or bending from the contact force distribution measured by the shape meter roll 111 may cause breakage due to bending stress during rolling by the rolling mill 110.
 また、冷間圧延機11には、第1圧延機110a、第2圧延機110b、第3圧延機110c、第4圧延機110d、及び、第5圧延機110eの各々に対応させて、第1レベリング制御装置151a、第2レベリング制御装置151b、第3レベリング制御装置151c、第4レベリング制御装置151d、及び、第5レベリング制御装置151eが設けられている。なお、以下の説明において、第1レベリング制御装置151a、第2レベリング制御装置151b、第3レベリング制御装置151c、第4レベリング制御装置151d、及び、第5レベリング制御装置151eを特に区別しない場合には、単にレベリング制御装置151とも記す。 The cold rolling mill 11 also includes a first rolling mill 110a, a second rolling mill 110b, a third rolling mill 110c, a fourth rolling mill 110d, and a fifth rolling mill 110e. A leveling control device 151a, a second leveling control device 151b, a third leveling control device 151c, a fourth leveling control device 151d, and a fifth leveling control device 151e are provided. In the following description, when the first leveling control device 151a, the second leveling control device 151b, the third leveling control device 151c, the fourth leveling control device 151d, and the fifth leveling control device 151e are not particularly distinguished, , also simply referred to as a leveling control device 151.
 レベリング制御装置151は、圧延機出側の片伸び又は曲がりを時間積分した値にゲインを掛けてレベリング目標値を算出する。なお、レベリング目標値は、圧延機110のバックアップロールの左右軸受け間の圧下位置差、結果的に、鋼板Sの板厚方向中心部を境に、板厚方向一方側と板厚方向他方の圧下量差(鋼板Sの左右の圧下量差)に等しい。そして、算出したレベリング目標値となるように、対応する圧延機110にレベリングFB制御を行う。このようなレベリングFB制御を圧延機110に行うことによって、圧延機出側の形状計ロール111での接触力分布が対称となり、結果的に片伸び又は曲がりを小さくできる。ただし、レベリングFB制御の欠点としては、急激な外乱に対応することができず、図3に示したような片伸び又は曲がりに対しては対応不足となる。 The leveling control device 151 calculates a leveling target value by multiplying the time-integrated value of one-sided elongation or bending on the exit side of the rolling mill by a gain. Note that the leveling target value is determined by the rolling position difference between the left and right bearings of the backup roll of the rolling mill 110, and as a result, the rolling reduction on one side in the thickness direction and on the other side in the thickness direction, with the center of the steel plate S in the thickness direction as a border. It is equal to the amount difference (the difference in the amount of reduction between the left and right sides of the steel plate S). Then, leveling feedback control is performed on the corresponding rolling mill 110 so that the calculated leveling target value is achieved. By performing such leveling FB control on the rolling mill 110, the contact force distribution on the shape meter roll 111 on the exit side of the rolling mill becomes symmetrical, and as a result, one-sided elongation or bending can be reduced. However, the drawback of the leveling FB control is that it cannot respond to sudden disturbances, and is insufficiently responsive to one-sided elongation or bending as shown in FIG.
 なお、実施形態に係る冷間圧延設備1では、冷間圧延機11に5段の圧延機110を設けられているが、レベリング目標値に制御する対象の圧延機110は、少なくとも鋼板Sの搬送方向において最上流に設けられている圧延機110が含まれていればよい。そのため、実施形態に係る冷間圧延設備1においては、最上流に設けられている圧延機110(第1圧延機110a)を含む1又は2以上の圧延機110が、レベリングFB制御の対象である。 In the cold rolling equipment 1 according to the embodiment, the cold rolling mill 11 is provided with a five-high rolling mill 110, but the rolling mill 110 to be controlled to the leveling target value is at least used for conveying the steel plate S. It suffices if the rolling mill 110 provided most upstream in the direction is included. Therefore, in the cold rolling equipment 1 according to the embodiment, one or more rolling mills 110 including the most upstream rolling mill 110 (first rolling mill 110a) are subject to leveling FB control. .
 図5は、片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として真の片伸び又は曲がりの推移を示した図である。図6は、片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として差張力から換算した片伸び又は曲がりの推移を示した図である。なお、第1圧延機入側の片伸び又は曲がりは、図3に示した片伸び又は曲がりを参考としている。 FIG. 5 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending. FIG. 6 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending. Note that the one-sided elongation or bending on the entry side of the first rolling mill is based on the one-sided elongation or bending shown in FIG. 3.
 図5に示すように、第1圧延機出側の真の片伸び又は曲がりは、第1圧延機入側の真の片伸び又は曲がりよりも小さくなっている。これは、圧延現象自体が片伸び又は曲がりを小さくする作用を持っているためと考えられる。ただし、図5に示すように、第1圧延機入側の真の片伸び又は曲がりが急激に変化する時間(0~10秒)では、第1圧延機出側の真の片伸び又は曲がりの大きさも大きくなっている。 As shown in FIG. 5, the true one-sided elongation or bending on the exit side of the first rolling mill is smaller than the true one-sided elongation or bending on the inlet side of the first rolling mill. This is considered to be because the rolling phenomenon itself has the effect of reducing one-sided elongation or bending. However, as shown in Figure 5, during the time (0 to 10 seconds) when the true one-sided elongation or bending on the first rolling mill entry side changes rapidly, the true one-sided elongation or bending on the first rolling mill exit side changes rapidly. The size has also increased.
 図5に示した第1圧延機出側の真の片伸び又は曲がりと、図6に示した第1圧延機出側の差張力から換算された片伸び又は曲がりとを比較する。すると、急激に真の片伸び又は曲がりが変化する時間(0~10秒)では、差張力から換算された片伸び又は曲がりと、真の片伸び又は曲がりとが異なることがわかる。一方、変化が比較的緩やかな時間(10~50秒)では、両者は比較的一致する。また、図6に示した、第1圧延機出側の差張力から換算された片伸び又は曲がりと、第1形状計ロール111aでの差張力から換算された片伸び又は曲がりとは、比較的一致する。 The true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. 5 is compared with the one-sided elongation or bending calculated from the differential tension on the exit side of the first rolling mill shown in FIG. Then, it can be seen that during the time (0 to 10 seconds) when the true one-side elongation or bending changes rapidly, the one-side elongation or bending calculated from the differential tension is different from the true one-side elongation or bending. On the other hand, when the change is relatively slow (10 to 50 seconds), the two values are relatively consistent. In addition, the one-sided elongation or bending calculated from the differential tension on the exit side of the first rolling mill and the one-sided elongation or bending calculated from the differential tension at the first shape meter roll 111a shown in FIG. 6 are relatively different. Match.
 以上から、第1圧延機110aの出側に配置された第1形状計ロール111aでの差張力から換算される片伸び又は曲がりは、必ずしも真の片伸び又は曲がりと一致しないことがわかる。そのため、実機では、真の片伸び又は曲がりを観測することはできない。そこで、レベリングFB制御を行った場合での片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果を図7及び図8に示す。 From the above, it can be seen that the one-sided elongation or bending calculated from the differential tension at the first shape meter roll 111a arranged on the exit side of the first rolling mill 110a does not necessarily match the true one-sided elongation or bending. Therefore, true one-sided elongation or bending cannot be observed in an actual machine. Therefore, the results of a simulation in which a steel plate S having one-sided elongation or bending was cold-rolled when leveling FB control was performed are shown in FIGS. 7 and 8.
 図7は、レベリングFB制御を行った場合での片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として真の片伸び又は曲がりの推移を示した図である。図8は、レベリングFB制御を行った場合での片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として差張力から換算した片伸び又は曲がりの推移を示した図である。 FIG. 7 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending when leveling FB control is performed. FIG. 8 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation of cold rolling a steel plate S with one-sided elongation or bending when leveling FB control is performed.
 レベリングFB制御では、第1圧延機110a~第5圧延機110eのそれぞれの出側に配置された、第1形状計ロール111a~第5形状計ロール111eのそれぞれにおける差張力の大きさを小さくするように、第1圧延機110a~第5圧延機110eのレベリングを制御する。そのため、図8に示した差張力から換算した片伸び又は曲がりの大きさは、図6に示した差張力から換算した片伸び又は曲がりの大きさよりも大幅に小さくすることができる。一方、図7に示した第1圧延機出側の真の片伸び又は曲がりの大きさは、図5に示した第1圧延機出側の真の片伸び又は曲がりと比較すると、真の片伸び又は曲がりが緩やかに変化する時間(10~50秒)では小さくなっている。ところが、真の片伸び又は曲がりが急激に変化する時間(0~10秒)では、ほぼ同じであり、レベリングFB制御が対応できていない。 In the leveling FB control, the magnitude of the differential tension in each of the first shape meter roll 111a to the fifth shape meter roll 111e, which are arranged on the exit side of the first rolling mill 110a to the fifth rolling mill 110e, is reduced. Thus, the leveling of the first rolling mill 110a to the fifth rolling mill 110e is controlled. Therefore, the magnitude of one-sided elongation or bending calculated from the differential tension shown in FIG. 8 can be made significantly smaller than the magnitude of one-sided elongation or bending calculated from the differential tension shown in FIG. On the other hand, the magnitude of the true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. It is small during the time when elongation or bending changes slowly (10 to 50 seconds). However, the time (0 to 10 seconds) when the true one-sided elongation or bending changes rapidly is almost the same, and the leveling FB control cannot cope with it.
 本来であれば、第1圧延機出側の真の片伸び又は曲がりの大きさを小さくしたいが、実機では、それらを観測することはできない。そこで、シミュレーションにより第1圧延機出側の真の片伸び又は曲がりを小さくするようにレベリングFB制御をした結果を図9及び図10に示す。 Originally, it would be desirable to reduce the magnitude of the true one-sided elongation or bending on the exit side of the first rolling mill, but it is not possible to observe these in an actual machine. Therefore, the results of leveling FB control performed by simulation to reduce the true one-sided elongation or bending on the exit side of the first rolling mill are shown in FIGS. 9 and 10.
 図9は、シミュレーションにより第1圧延機出側の真の片伸び又は曲がりを小さくするようにレベリングFB制御をした結果として真の片伸び又は曲がりの推移を示した図である。図10は、シミュレーションにより第1圧延機出側の真の片伸び又は曲がりを小さくするようにレベリングFB制御をした結果として差張力から換算した片伸び又は曲がりの推移を示した図である。 FIG. 9 is a diagram showing the transition of true one-side elongation or bending as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation. FIG. 10 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of leveling FB control to reduce the true one-side elongation or bending on the exit side of the first rolling mill through simulation.
 本実施形態におけるレベリングFB制御は、第1圧延機出側の真の片伸び又は曲がりの大きさを小さくするようにレベリングを制御する。そのため、図9に示した第1圧延機出側の真の片伸び又は曲がりの大きさは、図5及び図7に示した第1圧延機出側の真の片伸び又は曲がりの大きさよりも大幅に小さくすることができる。一方、図10に示した差張力から換算された片伸び又は曲がりの大きさは、図8に示した差張力から換算された片伸び又は曲がりよりは大きくなる。第1圧延機出側の真の片伸び又は曲がりは観測できないが、第1圧延機入側の片伸び又は曲がりは測定できる。そのため、シミュレーションを用いれば、第1圧延機入側の片伸び又は曲がりから第1圧延機出側の真の片伸び又は曲がりの大きさを小さくするようなレベリング量を計算することができる。実機においても、原理的には第1圧延機入側の片伸び又は曲がりがわかった時点で、シミュレーションを行えば、事前に適切なレベリング量を計算することができる。そして、片伸び又は曲がりが第1圧延機110aに到達したタイミングで、実機の第1圧延機110aに、その計算したレベリング量でレベリングFF制御を行う。これにより、第1圧延機出側の真の片伸び又は曲がりを小さくすることができる。 The leveling FB control in this embodiment controls leveling so as to reduce the magnitude of true one-sided elongation or bending on the exit side of the first rolling mill. Therefore, the true one-sided elongation or bending size on the exit side of the first rolling mill shown in FIG. 9 is greater than the true one-side elongation or bending size on the first rolling mill exit side shown in FIGS. It can be made significantly smaller. On the other hand, the magnitude of one-sided elongation or bending calculated from the differential tension shown in FIG. 10 is larger than the one-sided elongation or bending calculated from the differential tension shown in FIG. True one-sided elongation or bending on the exit side of the first rolling mill cannot be observed, but one-sided elongation or bending on the inlet side of the first rolling mill can be measured. Therefore, by using simulation, it is possible to calculate the amount of leveling that reduces the magnitude of the true one-sided elongation or bending on the first rolling mill exit side from the one-sided elongation or bending on the first rolling mill entry side. Even in an actual machine, in principle, if a simulation is performed when one side elongation or bending on the entry side of the first rolling mill is known, an appropriate leveling amount can be calculated in advance. Then, at the timing when the one-sided elongation or bending reaches the first rolling mill 110a, leveling FF control is performed on the actual first rolling mill 110a using the calculated leveling amount. Thereby, true one-sided elongation or bending on the exit side of the first rolling mill can be reduced.
 なお、シミュレーションには、計算時間がかかる。そのため、第1圧延機入側の片伸び又は曲がりと、適切なレベリング量とを、複数ケースで計算し、第1圧延機入側の片伸び又は曲がりから適切なレベリング量を出力するように機械学習することによって、オンラインで適切なレベリング量を求めることができる。 Note that simulation requires calculation time. Therefore, the machine calculates the partial elongation or bending on the entry side of the first rolling mill and the appropriate leveling amount in multiple cases, and outputs the appropriate leveling amount from the partial elongation or bending on the entry side of the first rolling mill. By learning, you can find the appropriate leveling amount online.
 例えば、図4に示した算出装置150が、形状測定装置7から取得した第1圧延機入側の面外変形量(片伸び又は曲がり)に、レベリング量算出プログラムを適用した結果得られた値を用いて、第1圧延機110aのレベリングFF制御に用いるレベリング量を算出する。また、適用するレベリング量算出プログラムは、複数の鋼板の各面外変形量を入力変数とし、各面外変形量に対して物理シミュレーションの結果得られた各レベリング量を目的変数として、機械学習させたものである。 For example, the value obtained as a result of the calculation device 150 shown in FIG. 4 applying a leveling amount calculation program to the amount of out-of-plane deformation (unilateral elongation or bending) on the entry side of the first rolling mill obtained from the shape measuring device 7. is used to calculate the leveling amount used for leveling FF control of the first rolling mill 110a. In addition, the applied leveling amount calculation program uses machine learning with each out-of-plane deformation amount of multiple steel plates as an input variable, and each leveling amount obtained as a result of physical simulation for each out-of-plane deformation amount as an objective variable. It is something that
 実際には、シミュレーションと実機との差異があるため、レベリングFF制御を単独で使用するのではなく、レベリングFB制御と組み合わせて使用するのが好ましい。そこで、レベリングFF制御とレベリングFB制御とを行って、片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果を図11及び図12に示す。なお、第1圧延機110aでは、レベリングFF制御出力とレベリングFB制御出力とを足し合わせて制御出力としている。 In reality, since there are differences between the simulation and the actual machine, it is preferable to use the leveling FF control in combination with the leveling FB control rather than using it alone. Therefore, the results of a simulation in which a steel plate S having one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control are shown in FIGS. 11 and 12. Note that in the first rolling mill 110a, the leveling FF control output and the leveling FB control output are added together to obtain a control output.
 図11は、レベリングFF制御とレベリングFB制御とを行って、片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として真の片伸び又は曲がりの推移を示した図である。図12は、レベリングFF制御とレベリングFB制御とを行って、片伸び又は曲がりがある鋼板Sを冷間圧延したシミュレーションの結果として差張力から換算した片伸び又は曲がりの推移を示した図である。 FIG. 11 is a diagram showing the transition of true one-sided elongation or bending as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control. FIG. 12 is a diagram showing the transition of one-sided elongation or bending calculated from the differential tension as a result of a simulation in which a steel plate S with one-sided elongation or bending was cold-rolled by performing leveling FF control and leveling FB control. .
 図11に示した第1圧延機出側の真の片伸び又は曲がりは、図7に示した第1圧延機出側の真の片伸び又は曲がりよりも小さくなっているが、図9に示した第1圧延機出側の真の片伸び又は曲がりよりも大きくなっている。レベリングFF制御とレベリングFB制御との重み付けを調整することによって、第1圧延機出側の真の片伸び又は曲がりをレベリングFF制御の結果に近づけるか、レベリングFB制御の結果に近づけるかを調整することができる。 The true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. 11 is smaller than the true one-sided elongation or bending on the exit side of the first rolling mill shown in FIG. This is larger than the true one-sided elongation or bending at the exit side of the first rolling mill. By adjusting the weighting of the leveling FF control and the leveling FB control, it is adjusted whether the true one-sided elongation or bending on the exit side of the first rolling mill approaches the result of the leveling FF control or the result of the leveling FB control. be able to.
 実施形態に係る冷間圧延設備1に適用するレベリング制御においては、第1圧延機110aの入側に配置された形状計である形状測定装置7のデータ処理を行い、第1圧延機入側の片伸び又は曲がりを算出する。そして、算出した第1圧延機入側の片伸び又は曲がりから機械学習プログラムを用いて、適切なレベリングであるレベリングFF制御出力を算出する。第1レベリング制御装置151aは、第1形状計ロール111aによって測定された鋼板Sの面外変形量である第1圧延機出側の片伸び又は曲がりを用いて、第1圧延機110aのレベリング量を算出する。そして、第1レベリング制御装置151aは、算出したレベリング量に基づいて第1圧延機110aのレベリングを制御するレベリングFB制御を行う。さらに、第1レベリング制御装置151aは、ライン速度から鋼板Sのトラッキングを行って、形状測定装置7で測定された片伸び又は曲がりが第1圧延機110aに到達したタイミングで、レベリングFF制御出力とレベリングFB制御とを重み付けして足し合わせ、その足し合わせた値を目標値としてレベリングを制御する。そして、このようなレベリング制御を行うことによって、レベリング制御不良が原因で2[%]の確率で破断していたものが、1[%]の破断確率に抑制することができた。 In the leveling control applied to the cold rolling equipment 1 according to the embodiment, data processing is performed on the shape measuring device 7, which is a shape meter disposed on the entrance side of the first rolling mill 110a, and Calculate one-sided extension or bending. Then, using a machine learning program, a leveling FF control output, which is appropriate leveling, is calculated from the calculated one-sided elongation or bending on the entrance side of the first rolling mill. The first leveling control device 151a uses the one-sided elongation or bending on the exit side of the first rolling mill, which is the amount of out-of-plane deformation of the steel sheet S measured by the first shape meter roll 111a, to determine the leveling amount of the first rolling mill 110a. Calculate. The first leveling control device 151a then performs leveling FB control to control the leveling of the first rolling mill 110a based on the calculated leveling amount. Further, the first leveling control device 151a tracks the steel plate S based on the line speed, and adjusts the leveling FF control output at the timing when the one-sided elongation or bending measured by the shape measuring device 7 reaches the first rolling mill 110a. Leveling FB control is weighted and added together, and the added value is used as a target value to control leveling. By performing such leveling control, it was possible to reduce the probability of breakage from 2% due to poor leveling control to 1%.
 以上のように、本発明は、高負荷、且つ、圧延前板厚の薄い難圧延材を冷間圧延する際にも冷間圧延の安定性を確保しつつ、生産性及び歩留よく冷間圧延をすることができる冷間圧延方法及び冷間圧延設備を提供することができる。 As described above, the present invention enables cold rolling with high productivity and yield while ensuring stability of cold rolling even when cold rolling difficult-to-roll materials with a thin plate thickness before rolling. A cold rolling method and cold rolling equipment capable of rolling can be provided.
1 冷間圧延設備
2 ペイオフリール
3 溶接機
4 ノッチャー
5 入側ルーパー
6 ステアリング装置
7 形状測定装置
8 デフレクターステアリングロール
9 ブライドルロール群
10 デフレターステアリングロール
11 冷間圧延機
12 ブライドルロール
13 切断機
14 テンションリール
110 圧延機
110a 第1圧延機
110b 第2圧延機
110c 第3圧延機
110d 第4圧延機
110e 第5圧延機
111 形状計ロール
111a 第1形状計ロール
111b 第2形状計ロール
111c 第3形状計ロール
111d 第4形状計ロール
111e 第5形状計ロール
150 算出装置
151 レベリング制御装置
151a 第1レベリング制御装置
151b 第2レベリング制御装置
151c 第3レベリング制御装置
151d 第4レベリング制御装置
151e 第5レベリング制御装置
1 Cold rolling equipment 2 Payoff reel 3 Welding machine 4 Notcher 5 Entrance looper 6 Steering device 7 Shape measuring device 8 Deflector steering roll 9 Bridle roll group 10 Defrator steering roll 11 Cold rolling machine 12 Bridle roll 13 Cutting machine 14 Tension Reel 110 Rolling mill 110a First rolling mill 110b Second rolling mill 110c Third rolling mill 110d Fourth rolling mill 110e Fifth rolling mill 111 Shape meter roll 111a First shape meter roll 111b Second shape meter roll 111c Third shape meter Roll 111d Fourth shape meter roll 111e Fifth shape meter roll 150 Calculation device 151 Leveling control device 151a First leveling control device 151b Second leveling control device 151c Third leveling control device 151d Fourth leveling control device 151e Fifth leveling control device

Claims (18)

  1.  圧延機の上流側で測定された鋼板の面外変形量を用いて前記圧延機のレベリング量を算出する算出ステップと、
     前記算出ステップにおいて算出されたレベリング量に基づいて、前記圧延機のレベリングを制御する制御ステップと、
     前記制御ステップにより制御された前記圧延機を用いて、鋼板に冷間圧延を施す冷間圧延ステップと、
     を含むことを特徴とする冷間圧延方法。
    a calculation step of calculating the amount of leveling of the rolling mill using the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill;
    a control step of controlling leveling of the rolling mill based on the leveling amount calculated in the calculation step;
    a cold rolling step of subjecting a steel plate to cold rolling using the rolling mill controlled by the controlling step;
    A cold rolling method characterized by comprising:
  2.  鋼板の面外変形量は、前記圧延機の上流側、且つ、鋼板の搬送方向を変更するステアリング装置の直上流又は直下流において測定された面外変形量であることを特徴とする請求項1に記載の冷間圧延方法。 Claim 1, wherein the amount of out-of-plane deformation of the steel plate is an amount of out-of-plane deformation measured upstream of the rolling mill and immediately upstream or downstream of a steering device that changes the conveyance direction of the steel plate. The cold rolling method described in .
  3.  前記圧延機の上流側で測定された鋼板の面外変形量が閾値を超える場合、前記冷間圧延ステップにおける鋼板に対する冷間圧延を実行しないことを特徴とする請求項1又は2に記載の冷間圧延方法。 The cold rolling method according to claim 1 or 2, characterized in that when the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill exceeds a threshold value, cold rolling is not performed on the steel plate in the cold rolling step. Inter-rolling method.
  4.  前記算出ステップにおいて、
     前記レベリング量は、前記面外変形量にレベリング量算出プログラムを適用した結果得られた値を用いて算出されるものであって、
     前記レベリング量算出プログラムは、
     複数の鋼板の各面外変形量を入力変数とし、前記各面外変形量に対して物理シミュレーションの結果得られた各レベリング量を目的変数として、機械学習させたものであることを特徴とする請求項1又は2に記載の冷間圧延方法。
    In the calculation step,
    The leveling amount is calculated using a value obtained as a result of applying a leveling amount calculation program to the out-of-plane deformation amount,
    The leveling amount calculation program is
    Machine learning is performed using each out-of-plane deformation amount of a plurality of steel plates as an input variable and each leveling amount obtained as a result of a physical simulation for each out-of-plane deformation amount as an objective variable. The cold rolling method according to claim 1 or 2.
  5.  前記算出ステップにおいて、
     前記レベリング量は、前記鋼板の面外変形量にレベリング量算出プログラムを適用した結果得られた値を用いて算出されるものであって、
     前記レベリング量算出プログラムは、
     複数の鋼板の各面外変形量を入力変数とし、前記各面外変形量に対して物理シミュレーションの結果得られた各レベリング量を目的変数として、機械学習させたものであることを特徴とする請求項3に記載の冷間圧延方法。
    In the calculation step,
    The leveling amount is calculated using a value obtained as a result of applying a leveling amount calculation program to the out-of-plane deformation amount of the steel plate,
    The leveling amount calculation program is
    Machine learning is performed using each out-of-plane deformation amount of a plurality of steel plates as an input variable and each leveling amount obtained as a result of a physical simulation for each out-of-plane deformation amount as an objective variable. The cold rolling method according to claim 3.
  6.  前記算出ステップにおいて、
     前記レベリング量は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて算出されることを特徴とする請求項1又は2に記載の冷間圧延方法。
    In the calculation step,
    The leveling amount is calculated using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. 2. The cold rolling method according to 1 or 2.
  7.  前記算出ステップにおいて、
     前記レベリング量は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて算出されることを特徴とする請求項3に記載の冷間圧延方法。
    In the calculation step,
    The leveling amount is calculated using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. 3. The cold rolling method described in 3.
  8.  前記算出ステップにおいて、
     前記レベリング量は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて算出されることを特徴とする請求項4に記載の冷間圧延方法。
    In the calculation step,
    The leveling amount is calculated using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. 4. The cold rolling method described in 4.
  9.  前記算出ステップにおいて、
     前記レベリング量は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて算出されることを特徴とする請求項5に記載の冷間圧延方法。
    In the calculation step,
    The leveling amount is calculated using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. 5. The cold rolling method according to 5.
  10.  鋼板に冷間圧延を施す圧延機と、
     前記圧延機の上流側に配置され、鋼板の面外変形量を測定する形状測定装置と、
     前記形状測定装置によって測定された鋼板の面外変形量を用いて、前記圧延機のレベリング量を算出する算出装置と、
     前記算出装置によって算出されたレベリング量に基づいて、前記圧延機のレベリングを制御する制御装置と、
     を備えることを特徴とする冷間圧延設備。
    A rolling mill that cold-rolls a steel plate;
    a shape measuring device that is disposed upstream of the rolling mill and measures the amount of out-of-plane deformation of the steel plate;
    a calculation device that calculates the amount of leveling of the rolling mill using the amount of out-of-plane deformation of the steel plate measured by the shape measuring device;
    a control device that controls leveling of the rolling mill based on the leveling amount calculated by the calculation device;
    A cold rolling facility characterized by comprising:
  11.  前記圧延機の上流側に配置され、鋼板の搬送方向を変更するステアリング装置を備えており、
     鋼板の面外変形量は、前記圧延機の上流側、且つ、前記ステアリング装置の直上流又は直下流において測定された面外変形量であることを特徴とする請求項10に記載の冷間圧延設備。
    A steering device is provided upstream of the rolling mill and changes the conveyance direction of the steel plate,
    Cold rolling according to claim 10, characterized in that the amount of out-of-plane deformation of the steel plate is the amount of out-of-plane deformation measured upstream of the rolling mill and immediately upstream or downstream of the steering device. Facility.
  12.  前記圧延機の上流側で測定された鋼板の面外変形量が閾値を超える場合、前記圧延機は鋼板に対する冷間圧延を実行しないことを特徴とする請求項10又は11に記載の冷間圧延設備。 Cold rolling according to claim 10 or 11, wherein when the amount of out-of-plane deformation of the steel plate measured on the upstream side of the rolling mill exceeds a threshold value, the rolling mill does not perform cold rolling on the steel plate. Facility.
  13.  前記算出装置は、前記面外変形量にレベリング量算出プログラムを適用した結果得られた値を用いて前記レベリング量を算出し、
     前記レベリング量算出プログラムは、
     複数の鋼板の各面外変形量を入力変数とし、前記各面外変形量に対して物理シミュレーションの結果得られた各レベリング量を目的変数として、機械学習させたものであることを特徴とする請求項10又は11に記載の冷間圧延設備。
    The calculation device calculates the leveling amount using a value obtained as a result of applying a leveling amount calculation program to the out-of-plane deformation amount,
    The leveling amount calculation program is
    Machine learning is performed using each out-of-plane deformation amount of a plurality of steel plates as an input variable and each leveling amount obtained as a result of a physical simulation for each out-of-plane deformation amount as an objective variable. The cold rolling equipment according to claim 10 or 11.
  14.  前記算出装置は、前記面外変形量にレベリング量算出プログラムを適用した結果得られた値を用いて前記レベリング量を算出し、
     前記レベリング量算出プログラムは、
     複数の鋼板の各面外変形量を入力変数とし、前記各面外変形量に対して物理シミュレーションの結果得られた各レベリング量を目的変数として、機械学習させたものであることを特徴とする請求項12に記載の冷間圧延設備。
    The calculation device calculates the leveling amount using a value obtained as a result of applying a leveling amount calculation program to the out-of-plane deformation amount,
    The leveling amount calculation program is
    Machine learning is performed using each out-of-plane deformation amount of a plurality of steel plates as an input variable and each leveling amount obtained as a result of a physical simulation for each out-of-plane deformation amount as an objective variable. The cold rolling equipment according to claim 12.
  15.  前記算出装置は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて、前記レベリング量を算出することを特徴とする請求項10又は11に記載の冷間圧延設備。 The calculation device calculates the leveling amount using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. The cold rolling equipment according to claim 10 or 11.
  16.  前記算出装置は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて、前記レベリング量を算出することを特徴とする請求項12に記載の冷間圧延設備。 The calculation device calculates the leveling amount using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. The cold rolling equipment according to claim 12.
  17.  前記算出装置は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて、前記レベリング量を算出することを特徴とする請求項13に記載の冷間圧延設備。 The calculation device calculates the leveling amount using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. The cold rolling equipment according to claim 13.
  18.  前記算出装置は、前記圧延機の上流側における鋼板の面外変形量と、前記圧延機の下流側において測定される鋼板の面外変形量とを用いて、前記レベリング量を算出することを特徴とする請求項14に記載の冷間圧延設備。 The calculation device calculates the leveling amount using an amount of out-of-plane deformation of the steel plate on the upstream side of the rolling mill and an amount of out-of-plane deformation of the steel plate measured on the downstream side of the rolling mill. The cold rolling equipment according to claim 14.
PCT/JP2023/026602 2022-08-26 2023-07-20 Cold-rolling method and cold-rolling equipment WO2024042936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-134722 2022-08-26
JP2022134722A JP2024031268A (en) 2022-08-26 2022-08-26 Cold rolling method and cold rolling facility

Publications (1)

Publication Number Publication Date
WO2024042936A1 true WO2024042936A1 (en) 2024-02-29

Family

ID=90013163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026602 WO2024042936A1 (en) 2022-08-26 2023-07-20 Cold-rolling method and cold-rolling equipment

Country Status (2)

Country Link
JP (1) JP2024031268A (en)
WO (1) WO2024042936A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268620A (en) * 1985-09-24 1987-03-28 Nippon Kokan Kk <Nkk> Rolling control method for cold rolling mill
JPH07132310A (en) * 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd Rolling method
JP2012161806A (en) * 2011-02-04 2012-08-30 Nippon Steel Corp Exit side shape control method in cold rolling machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268620A (en) * 1985-09-24 1987-03-28 Nippon Kokan Kk <Nkk> Rolling control method for cold rolling mill
JPH07132310A (en) * 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd Rolling method
JP2012161806A (en) * 2011-02-04 2012-08-30 Nippon Steel Corp Exit side shape control method in cold rolling machine

Also Published As

Publication number Publication date
JP2024031268A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US5720196A (en) Hot-rolling method of steel piece joint during continuous hot-rolling
JP5239728B2 (en) Rolling method and rolling apparatus for metal sheet
JP5811051B2 (en) Method for cold rolling metal plate and method for producing metal plate
JP7226402B2 (en) Metal strip rolling control method, rolling control device, and manufacturing method
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP6620777B2 (en) Leveling setting method for rolling mill and leveling setting apparatus for rolling mill
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JP4927008B2 (en) Method for predicting deformation resistance of metal strip and method for setting up cold tandem rolling mill
JP2010540250A5 (en)
JP4268582B2 (en) Plate thickness control method and plate thickness / shape non-interference control method
JP3485083B2 (en) Cold rolling equipment and cold rolling method
JP2000140921A (en) Method for controlling shape in cold tandem mill and shape controller
JP7205459B2 (en) Method for detecting shape defects in steel sheet pile rolling and method for manufacturing steel sheet piles
JP6743835B2 (en) Method for rolling shaped steel and method for adjusting leveling amount in rolling shaped steel
JP7347688B2 (en) Meandering control device for continuous rolling mill
JPH0521648B2 (en)
JP6874794B2 (en) Temper rolling method for hot-rolled steel sheet
JP7067541B2 (en) Rolling mill control method and control device
JP3212224B2 (en) Continuous hot rolling method
JP3664067B2 (en) Manufacturing method of hot rolled steel sheet
JP3300202B2 (en) Rolling force control method in temper rolling of steel strip
JP6685785B2 (en) Shape control method in cold rolling
JPS62244506A (en) Setting up method for edge drop control of sheet rolling
JP2000015315A (en) Method for controlling position of work roll and device therefor
JPS6390309A (en) Plane shape control method for sheet stock rolling mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857052

Country of ref document: EP

Kind code of ref document: A1