JP2012161806A - Exit side shape control method in cold rolling machine - Google Patents
Exit side shape control method in cold rolling machine Download PDFInfo
- Publication number
- JP2012161806A JP2012161806A JP2011022602A JP2011022602A JP2012161806A JP 2012161806 A JP2012161806 A JP 2012161806A JP 2011022602 A JP2011022602 A JP 2011022602A JP 2011022602 A JP2011022602 A JP 2011022602A JP 2012161806 A JP2012161806 A JP 2012161806A
- Authority
- JP
- Japan
- Prior art keywords
- cold rolling
- shape
- stand
- rolling mill
- exit side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Metal Rolling (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
Abstract
Description
本発明は、多スタンドを備えた冷間圧延機により圧延されるストリップの出側形状制御方法に関するものである。 The present invention relates to a strip shape control method of a strip rolled by a cold rolling mill equipped with multiple stands.
冷間圧延工程通板後のストリップの形状は、後工程である連続焼鈍工程の通板性を左右する重大な要素である。形状不良の場合には蛇行が発生することがあり、最悪の場合には蛇行したストリップが構造物に接触して破断を引き起こす可能性がある。このため従来から特許文献1に示されるように、冷間圧延機の出側に形状計を設置してストリップ形状を測定し、それに応じて形状制御を行っている。使用される形状計はストリップ幅方向の伸び率の変化を検出できる公知の装置である。 The shape of the strip after passing through the cold rolling process is a critical factor that affects the passability of the continuous annealing process, which is a subsequent process. In the case of poor shape, meandering may occur, and in the worst case, the meandering strip may contact the structure and cause breakage. For this reason, as shown in Patent Document 1, a shape meter is installed on the outlet side of the cold rolling mill to measure the strip shape, and shape control is performed accordingly. The shape meter used is a known device that can detect a change in elongation in the strip width direction.
特許文献1に示されるように形状評価値Λは、ストリップ幅方向の伸び率分布を四次近時した関数λ1x+λ2x2+λ3x3+λ4x4の係数を用いて導出される。ここでxはストリップの板幅方向の位置を、両端を−1と+1として正規化した値である。形状評価値のうち、Λ1とΛ3は非対称形状を示し、Λ2とΛ4は対称形状を示す。これら形状評価値に基づいて冷間圧延機のワークロールベンディングや圧下レベリングなどのフィードバック制御を行い、形状制御を行ってきた。 As shown in Patent Document 1, the shape evaluation value Λ is derived by using a coefficient of a function λ 1 x + λ 2 x 2 + λ 3 x 3 + λ 4 x 4 that approximates the fourth-order elongation distribution in the strip width direction. . Here, x is a value obtained by normalizing the position of the strip in the plate width direction with -1 and +1 at both ends. Of the shape evaluation values, Λ 1 and Λ 3 indicate asymmetric shapes, and Λ 2 and Λ 4 indicate symmetric shapes. Based on these shape evaluation values, feedback control such as work roll bending and reduction leveling of a cold rolling mill has been performed to control the shape.
しかし、上記のような冷間圧延機出側に設置された形状計の測定値に基づいて圧下レベリング等をフィードバック制御する方法には、不可避的な応答遅れがある。このため、外乱によって急激に生ずる形状の乱れを即座に修正することができないという問題があった。そこで、原板の材質変動・蛇行などによって形状の乱れが生じる状況下においても形状を乱さずに圧延を継続することができる冷間圧延機における出側形状制御方法が求められていた。 However, there is an inevitable response delay in the method of feedback-controlling the reduction leveling or the like based on the measured value of the shape meter installed on the cold rolling mill exit side as described above. For this reason, there has been a problem that the shape disturbance caused by the disturbance cannot be corrected immediately. Therefore, there has been a demand for a delivery shape control method in a cold rolling mill that can continue rolling without disturbing the shape even in a situation where the shape is disturbed due to material fluctuation or meandering of the original sheet.
本発明の目的は上記した従来の問題点を解決し、原板の材質変動などの急激な外乱があった場合にも、形状を乱さずに圧延することができる冷間圧延機における出側形状制御方法を提供することである。 The object of the present invention is to solve the conventional problems described above, and to control the shape of the outlet side in a cold rolling mill capable of rolling without disturbing the shape even when there is an abrupt disturbance such as material fluctuation of the original plate. Is to provide a method.
本発明者は上記の課題を解決するために検討を重ねた結果、冷間圧延機の各スタンド間の差張力と出側形状評価値との間に強い相関があることを見出し、この差張力を用いたフィードフォワード制御を行うことにより、形状の乱れを効果的に防ぐことができることを確認した。ここで、差張力とは第iスタンド出側の張力検出手段(一般的にはテンションメータロール)の両端に配置されている圧力検出手段(例えば圧電素子)にて検出される幅方向WS端、DS端の張力の差、即ちストリップ両端の幅方向張力差をいう。 As a result of repeated studies to solve the above problems, the present inventor has found that there is a strong correlation between the differential tension between the stands of the cold rolling mill and the outlet side shape evaluation value. It was confirmed that the disturbance of the shape can be effectively prevented by performing the feedforward control using. Here, the differential tension is the width direction WS end detected by pressure detecting means (for example, a piezoelectric element) arranged at both ends of the tension detecting means (generally a tension meter roll) on the i-th stand exit side, The difference in tension at the DS end, that is, the difference in tension in the width direction at both ends of the strip.
本発明は上記の知見に基づいて完成されたものであり、多スタンドを備えた冷間圧延機の第iスタンド出側の差張力Tdiを測定し、この差張力Tdiに基づいて推定形状評価値Λ´を演算し、その値を第i+1以降の任意のスタンドにフィードフォワードしてその圧下レベリング量を変更することを特徴とするものである。なお、多スタンドとは2以上のスタンドを意味する。 The present invention has been completed on the basis of the above knowledge, and the differential tension T di on the exit side of the i-th stand of the cold rolling mill having multiple stands is measured, and the estimated shape is based on the differential tension T di. The evaluation value Λ ′ is calculated, and the value is fed forward to an arbitrary stand after the (i + 1) th to change the reduction leveling amount. The multi-stand means two or more stands.
なお、推定形状評価値Λ´の演算を、iスタンド出側差張力をTdi、圧延板幅をw、iスタンド出側板厚をhi、iスタンド変換係数をαiとして、下記(数1)の式により行うことが好ましい。
また、フィードフォワード対象スタンドのレベリング変更量ΔSlの演算を、下記の(数2)の式により行うことが好ましい。
さらに、冷間圧延機出側に設置された形状計の測定値に基づく冷間圧延機のフィードバック制御を併せて行うことが好ましい。 Furthermore, it is preferable to perform feedback control of the cold rolling mill based on the measured value of the shape meter installed on the cold rolling mill delivery side.
本発明の冷間圧延機における出側形状制御方法によれば、冷間圧延機の最終スタンドよりも手前側において検出される差張力に基づいて演算を行い、任意の後段スタンドにフィードフォワードしてその圧下レベリング量を調整する。このようにフィードフォワード制御を行うことによって、原板起因の形状乱れが生じる状況下でも、形状を乱さずに圧延することが可能となった。なお、従来から行われていた冷間圧延機出側に設置された形状計の測定値に基づく冷間圧延機のフィードバック制御を組み合わせれば、さらに安定した形状制御が可能となる。このため従来よりも片伸び形状の発生を抑制することができ、、その経済的効果も大きい。 According to the delivery side shape control method in the cold rolling mill of the present invention, the calculation is performed based on the differential tension detected on the near side of the final stand of the cold rolling mill, and the feed forward is performed to any subsequent stand. Adjust the reduction leveling amount. By performing the feedforward control in this way, it has become possible to perform rolling without disturbing the shape even under the circumstances in which the shape disturbance due to the original plate occurs. In addition, more stable shape control can be achieved by combining feedback control of a cold rolling mill based on a measurement value of a shape meter installed on the cold rolling mill exit side. For this reason, generation | occurrence | production of the piece elongation shape can be suppressed compared with the past, and the economical effect is also large.
以下に本発明の実施形態を説明する。
まず、本発明において用いられている形状評価値について説明する。ストリップの形状を測定する形状計の代表的なものはロール型で、そのロール幅方向に多数の圧電素子を配置したものである。これらの圧電素子によりストリップの幅方向の張力分布を測定することができる。ストリップの伸びている部分は張力が低く、伸びていない部分は張力が高いため、ストリップの幅方向の伸び率の分布、すなわち形状を測定することができる。
Embodiments of the present invention will be described below.
First, the shape evaluation value used in the present invention will be described. A typical shape meter for measuring the shape of the strip is a roll type, in which a large number of piezoelectric elements are arranged in the roll width direction. With these piezoelectric elements, the tension distribution in the width direction of the strip can be measured. The stretched portion of the strip has a low tension, and the non-stretched portion has a high tension. Therefore, the distribution of the elongation in the width direction of the strip, that is, the shape can be measured.
ストリップ幅方向の伸び率の分布はλ1x+λ2x2+λ3x3+λ4x4の四次関数で近似される。ここでxはストリップの板幅方向の位置を、左右両端を−1と+1として正規化した値である。この四次関数の係数を用いて次の各式のように形状評価値Λ1,Λ2,Λ3,Λ4が定義される。
Λ1=λ1+λ3、 Λ3=(1/√3)λ1+(1/3√3)λ3
Λ2=λ2+λ4、 Λ4=(1/2)λ2+(1/4)λ4
The distribution of elongation in the strip width direction is approximated by a quartic function of λ 1 x + λ 2 x 2 + λ 3 x 3 + λ 4 x 4 . Here, x is a value obtained by normalizing the position of the strip in the plate width direction with -1 and +1 at the left and right ends. Shape evaluation values Λ 1 , Λ 2 , Λ 3 , and Λ 4 are defined using the coefficients of the quartic function as in the following equations.
Λ 1 = λ 1 + λ 3 , Λ 3 = (1 / √3) λ 1 + (1 / 3√3) λ 3
Λ 2 = λ 2 + λ 4 , Λ 4 = (1/2) λ 2 + (1/4) λ 4
ここでΛ1,Λ3は非対称形状を表し、Λ2,Λ4は対象形状を表す。本実施形態ではこれらの形状評価値のうち、蛇行可能性の評価に適したΛ1を用いて形状制御を行なう。しかしその他の形状評価値を用いることも可能である。 Here, Λ 1 and Λ 3 represent asymmetric shapes, and Λ 2 and Λ 4 represent object shapes. In this embodiment, among these shape evaluation values, shape control is performed using Λ 1 suitable for evaluating the possibility of meandering. However, other shape evaluation values can be used.
図1は6スタンドの冷間圧延機について、最終スタンドの出側に配置された形状測定器により測定された形状評価値Λ1と、各スタンド間の差張力とを調査して示したグラフであり、横軸は各スタンドの圧下率を用いて算出した出側換算長さである。図1から明らかなように、形状評価値Λ1と、各スタンド間の差張力との間には強い相関があることが認められる。そこで本発明では、この関係を利用して形状制御を行なう。 FIG. 1 is a graph showing an investigation of a shape evaluation value Λ 1 measured by a shape measuring device arranged on the exit side of a final stand and a differential tension between each stand for a 6-stand cold rolling mill. Yes, the horizontal axis is the outlet side conversion length calculated using the rolling reduction of each stand. As is apparent from FIG. 1, it is recognized that there is a strong correlation between the shape evaluation value Λ 1 and the differential tension between the stands. Therefore, in the present invention, shape control is performed using this relationship.
図2は本発明の制御概要の説明図である。本発明では、多スタンドを備えた冷間圧延機の第iスタンド出側の差張力Tdiを求める。図2では、6スタンドを備えた冷間圧延機の各スタンド出側にテンションメータ1、2が設置され、張力を測定している。なお、従来と同様に最終スタンド出側には形状検出器3が設置され、形状測定を行っている。 FIG. 2 is an explanatory diagram of an outline of control according to the present invention. In the present invention, the differential tension T di on the exit side of the i-th stand of the cold rolling mill having multiple stands is obtained. In FIG. 2, tension meters 1 and 2 are installed on the outlet side of each stand of a cold rolling mill having six stands, and the tension is measured. As in the prior art, a shape detector 3 is installed on the final stand exit side to measure the shape.
第iスタンド出側のテンションメータにより測定された差張力Tdiと圧延板幅wと第iスタンド出側の板厚hiとを用い、前記した数1の式により推定形状評価値Λ1´を計算する。なおこの式中のαiは第iスタンド出側差張力から形状評価値への変換係数である。このようにして求められた推定形状評価値Λ1´は、最終スタンド出側の形状検出器3の測定値に基づいて得られた形状評価値Λ1と、図3のグラフに示すように強い相関をもつことを確認した。 Using the differential tension T di measured by the tension meter on the i-th stand exit side, the rolled sheet width w, and the plate thickness h i on the i-th stand exit side, the estimated shape evaluation value Λ 1 ′ according to the above-described equation ( 1 ). Calculate Note that α i in this equation is a conversion coefficient from the i-th stand outlet side differential tension to the shape evaluation value. The estimated shape evaluation value Λ 1 ′ thus obtained is strong as shown in the graph of FIG. 3 and the shape evaluation value Λ 1 obtained based on the measurement value of the shape detector 3 on the final stand exit side. It was confirmed that there was a correlation.
本発明ではこの推定形状評価値Λ1´を最終スタンドにフィードフォワードして、その圧下レベリング量を変更する。このためには、制御対象となる冷間圧延機において圧下レベリング変更量が形状評価値Λ1に及ぼす影響を予め調査して置く必要がある。この実施形態では、図4のグラフに示すように両者間に一次関数で示すことができる関係が成立することが確認された。そこでその勾配を∂Λ1/∂Slで表わせば、数2の式によって推定形状評価値Λ1´から、形状評価値Λ1の変動をゼロとするために必要な圧下レベリング量を演算することができる。その演算結果に基づいて最終スタンドの圧下レベリング量を制御すれば、形状の乱れを生じることなく圧延を維持することが可能となる。総合的な制御内容は図5に示すとおりである。 In the present invention, the estimated shape evaluation value Λ 1 ′ is fed forward to the final stand, and the reduction leveling amount is changed. For this purpose, it is necessary to investigate in advance the influence of the reduction leveling change amount on the shape evaluation value Λ 1 in the cold rolling mill to be controlled. In this embodiment, as shown in the graph of FIG. 4, it was confirmed that the relationship which can be shown by a linear function was materialized between both. Therefore, if the gradient is expressed by ∂Λ 1 / ∂S l , the amount of reduction leveling required to make the variation of the shape evaluation value Λ 1 zero is calculated from the estimated shape evaluation value Λ 1 ′ according to the equation (2). be able to. If the leveling amount of the final stand is controlled based on the calculation result, it is possible to maintain the rolling without causing shape disturbance. The overall control content is as shown in FIG.
このように本発明においては、冷間圧延機の最終スタンドより手前側において検出された差張力に基づいてその後段スタンドの圧下レベリング量をフィードフォワード制御するので、従来のような応答遅れが生ずることがない。このため、原板の材質変動などの急激な外乱があった場合にも、形状を乱さずに圧延することが可能となる。 As described above, in the present invention, the feed level control of the reduction level of the subsequent stage stand is performed based on the differential tension detected on the front side of the final stand of the cold rolling mill. There is no. For this reason, it is possible to perform rolling without disturbing the shape even when there is a sudden disturbance such as material fluctuation of the original plate.
なお、最終スタンド出側に配置された形状検出器3の形状検出結果に基づく従来からのフィードバック制御を併用すれば、形状をより安定させることができることはいうまでもない。 Needless to say, if the conventional feedback control based on the shape detection result of the shape detector 3 arranged on the final stand exit side is used together, the shape can be further stabilized.
出願人会社の実際の冷間圧延ラインにおいて本発明を実施したところ、形状評価値Λ1の平均値が実施前の8割にまで減少し、標準偏差も7割にまで抑えることができた。十分な実用的効果があることを確認することができた。 When the present invention was implemented in the actual cold rolling line of the applicant company, the average value of the shape evaluation value Λ 1 was reduced to 80% before the implementation, and the standard deviation could be suppressed to 70%. It was confirmed that there was a sufficient practical effect.
1 テンションメータ
2 テンションメータ
3 形状検出器
1 Tension meter 2 Tension meter 3 Shape detector
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011022602A JP5618210B2 (en) | 2011-02-04 | 2011-02-04 | Outlet shape control method in cold rolling mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011022602A JP5618210B2 (en) | 2011-02-04 | 2011-02-04 | Outlet shape control method in cold rolling mill |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012161806A true JP2012161806A (en) | 2012-08-30 |
JP5618210B2 JP5618210B2 (en) | 2014-11-05 |
Family
ID=46841760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011022602A Active JP5618210B2 (en) | 2011-02-04 | 2011-02-04 | Outlet shape control method in cold rolling mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5618210B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024042936A1 (en) * | 2022-08-26 | 2024-02-29 | Jfeスチール株式会社 | Cold-rolling method and cold-rolling equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08197125A (en) * | 1995-01-27 | 1996-08-06 | Nippon Steel Corp | Control method for meandering and rolling mill equipment row for tandem plate |
-
2011
- 2011-02-04 JP JP2011022602A patent/JP5618210B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08197125A (en) * | 1995-01-27 | 1996-08-06 | Nippon Steel Corp | Control method for meandering and rolling mill equipment row for tandem plate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024042936A1 (en) * | 2022-08-26 | 2024-02-29 | Jfeスチール株式会社 | Cold-rolling method and cold-rolling equipment |
Also Published As
Publication number | Publication date |
---|---|
JP5618210B2 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4452323B2 (en) | Learning method of rolling load prediction in hot strip rolling. | |
CN104942019B (en) | A kind of cold rolling of strip steel process Automatic control method of width | |
CN103286142A (en) | Dynamic roll gap compensation method during cold continuous rolling flying gauge control | |
US20170326605A1 (en) | Meandering control device for rolling line | |
JP6627740B2 (en) | Thickness control device for tandem cold rolling mill | |
AU2016353955B2 (en) | Method for measuring the flatness of a metal product and associated device | |
EP3031541B1 (en) | Control system of tandem rolling mill and control method of tandem rolling mill | |
CN104923568A (en) | Control method for preventing strip breaking during thin steel strip cold rolling process | |
JP3902585B2 (en) | Sheet shape control method in cold rolling | |
JP5821568B2 (en) | Steel strip rolling method | |
JP5618210B2 (en) | Outlet shape control method in cold rolling mill | |
JP6620777B2 (en) | Leveling setting method for rolling mill and leveling setting apparatus for rolling mill | |
JP2007111706A (en) | Cold-rolled steel plate manufacturing method | |
CN108655188B (en) | Plate shape measurement error compensation method | |
JP2007061876A (en) | Method for controlling thickness in cold tandem rolling | |
JP5418244B2 (en) | Control method for cold tandem rolling mill | |
JP4705466B2 (en) | Thickness control method in cold tandem rolling | |
JP2007203303A (en) | Shape control method in cold rolling | |
JP6232193B2 (en) | Shape control method and shape control method in cold rolling | |
JP2009288081A (en) | Shape-measuring apparatus for metal belt | |
Washikita et al. | Strip walking control technology in hot strip rolling | |
KR20140115410A (en) | Method and device for controlling speed of rolling mill | |
JP5565214B2 (en) | Thickness control method of rolling mill | |
WO2024034020A1 (en) | Sheet width control device for reversing rolling mill | |
TWI583455B (en) | Sheet width control device for rolling material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140904 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5618210 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |