JP5565214B2 - Thickness control method of rolling mill - Google Patents

Thickness control method of rolling mill Download PDF

Info

Publication number
JP5565214B2
JP5565214B2 JP2010192782A JP2010192782A JP5565214B2 JP 5565214 B2 JP5565214 B2 JP 5565214B2 JP 2010192782 A JP2010192782 A JP 2010192782A JP 2010192782 A JP2010192782 A JP 2010192782A JP 5565214 B2 JP5565214 B2 JP 5565214B2
Authority
JP
Japan
Prior art keywords
thickness
rolling
error
mill
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010192782A
Other languages
Japanese (ja)
Other versions
JP2012045616A (en
Inventor
健資 藤本
直人 平田
亮 長尾
康司 南部
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2010192782A priority Critical patent/JP5565214B2/en
Publication of JP2012045616A publication Critical patent/JP2012045616A/en
Application granted granted Critical
Publication of JP5565214B2 publication Critical patent/JP5565214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄鋼の圧延プロセス等に適用して好適な圧延機の板厚制御方法に関するものである。   The present invention relates to a sheet thickness control method for a rolling mill suitable for application to a steel rolling process or the like.

鋼板圧延において圧延後の板厚を目標とする板厚とするには、圧延前のロールギャップを精度よく見積もる必要がある。このロールギャップを求めるときには、一般に下記(1)式で表れるゲージメータ式を用いている。
H=S+F/M+K ……… (1)
ここで、H:ゲージメータ厚(推定板厚)、S:圧延前のロールギャップ、F:圧延荷重、M:ミル常数、K:ロールギャップオフセット量である。ミル常数Mは圧延機(ミル)の剛性の大きさを表しており、圧延荷重Fをミル常数Mで除したF/Mは、圧延荷重Fによるミル伸び量である。また、ロールギャップオフセット量は、熱や摩耗等による誤差である。圧延後の板厚を目標とする板厚に近づけるためには、ミル常数Mとロールギャップオフセット量Kを精度よく把握する必要がある。
In order to obtain the target thickness after rolling in steel plate rolling, it is necessary to accurately estimate the roll gap before rolling. When determining this roll gap, the gauge meter type generally expressed by the following formula (1) is used.
H = S + F / M + K ……… (1)
Here, H: gauge meter thickness (estimated plate thickness), S: roll gap before rolling, F: rolling load, M: mill constant, and K: roll gap offset amount. The mill constant M represents the rigidity of the rolling mill (mill), and F / M obtained by dividing the rolling load F by the mill constant M is the mill elongation due to the rolling load F. The roll gap offset amount is an error due to heat, wear, or the like. In order to bring the thickness after rolling closer to the target thickness, it is necessary to accurately grasp the mill constant M and the roll gap offset amount K.

ミル常数Mは、圧延機のワークロールをキスロールさせてロールギャップと圧延荷重の関係を示すストレッチカーブを測定することにより把握することができるが、実際の圧延においては圧延条件(圧延荷重、板幅、板クラウン、ワークロール径、ワークロールクラウンなど)によりミル常数Mは変化するため、そのときの圧延条件を元にミル常数Mを計算している。   The mill constant M can be grasped by kiss-rolling the work roll of the rolling mill and measuring a stretch curve indicating the relationship between the roll gap and the rolling load. In actual rolling, rolling conditions (rolling load, sheet width) Since the mill constant M varies depending on the sheet crown, work roll diameter, work roll crown, etc., the mill constant M is calculated based on the rolling conditions at that time.

ミル常数Mは様々な要因によって変動し、板厚精度の外乱となるため、従来から同一圧延材のパス間、並びに圧延終了時に圧延材間の板厚実測を行い、それらの板厚実測値とゲージメータ厚Hとの差をオフセット量としてゲージメータ式を修正することで板厚精度を向上しようとしてきた。しかしながら、この方法では、オフセット量取得時と圧延時とで圧延条件が異なるために、ミル常数Mの計算精度の向上は十分でない。   Since the mill constant M fluctuates due to various factors and becomes a disturbance of the sheet thickness accuracy, the sheet thickness is actually measured between passes of the same rolled material and between the rolled materials at the end of rolling. An attempt has been made to improve the thickness accuracy by correcting the gauge meter type with the difference from the gauge meter thickness H as an offset amount. However, in this method, since the rolling conditions are different between when the offset amount is acquired and when rolling, the calculation accuracy of the mill constant M is not sufficiently improved.

これに対し、下記特許文献1には、圧延中に圧延荷重Fiと圧延中のロールギャップSiを圧延材の長さ方向に複数測定すると共に、圧延後に板厚計で同一複数点位置の板厚hiを測定し、測定された圧延荷重Fi、ロールギャップSi、板厚hiからミル常数Mとロールギャップオフセット量Kを算出する方法が記載されている。また、下記特許文献2には、前記特許文献1と同様に、圧延材の長手方向の複数点で圧延荷重Fi、ロールギャップSi、板厚hiを測定し、それらに基づいてミル常数Mとロールギャップオフセット量Kを算出し、更に測定時の圧延条件と次圧延材の圧延条件との差を考慮してミル常数Mとロールギャップオフセット量Kを修正し、修正したミル常数Mとロールギャップオフセット量Kを次圧延時の板厚制御に適用することにより板厚精度を向上することが記載されている。   On the other hand, in the following Patent Document 1, while measuring a plurality of rolling load Fi and rolling roll gap Si during rolling in the length direction of the rolled material, the thickness at the same plurality of points is measured by a thickness gauge after rolling. A method of measuring hi and calculating a mill constant M and a roll gap offset amount K from the measured rolling load Fi, roll gap Si, and plate thickness hi is described. In Patent Document 2 below, as in Patent Document 1, the rolling load Fi, the roll gap Si, and the plate thickness hi are measured at a plurality of points in the longitudinal direction of the rolled material, and the mill constant M and the roll are measured based on them. The gap offset amount K is calculated, and the mill constant M and the roll gap offset amount K are corrected in consideration of the difference between the rolling conditions at the time of measurement and the rolling conditions of the next rolled material, and the corrected mill constant M and the roll gap offset are corrected. It is described that the plate thickness accuracy is improved by applying the amount K to the plate thickness control during the next rolling.

特許第2538942号公報Japanese Patent No. 2538942 特開平8−155515号公報JP-A-8-155515

しかしながら、ゲージロール厚Hと板厚実測値の差には、圧延荷重に依存する誤差が残存しており、前記特許文献に記載される方法でも、この誤差を修正して高精度な板厚制御を行うことができないという問題がある。
本発明は、上記のような問題点に着目してなされたものであり、圧延荷重に依存する誤差を推定して高精度な板厚制御を可能とする圧延機の板厚制御方法を提供することを目的とするものである。
However, an error depending on the rolling load remains in the difference between the gauge roll thickness H and the plate thickness actual measurement value, and even with the method described in the above-mentioned patent document, this error is corrected and high-precision plate thickness control is performed. There is a problem that can not be done.
The present invention has been made paying attention to the above problems, and provides a sheet thickness control method of a rolling mill that enables highly accurate sheet thickness control by estimating an error depending on a rolling load. It is for the purpose.

上記課題を解決するために、本発明の圧延機の板厚制御方法は、ゲージメータ式を用いて板厚制御を行う圧延機の板厚制御方法であって、圧延材のラストパス出側で実測された実測板厚とゲージメータ式から算出されたラストパス後の推定板厚とのラストパス板厚誤差及びラストパス以前の途中パス出側で実測された実測板厚とゲージメータ式から算出された前記途中パス後の推定板厚との途中パス板厚誤差を算出し、ラストパス板厚誤差及び途中パス板厚誤差の板厚誤差差分値とラストパス及び前記途中パスの圧延荷重の圧延荷重差分値とからミル伸び量の計算誤差を推定し、当該計算誤差を用いてゲージメータ式を修正して次回以降の圧延時に適用することを特徴とするものである。   In order to solve the above problems, the sheet thickness control method of the rolling mill of the present invention is a sheet thickness control method of a rolling mill that performs sheet thickness control using a gauge meter type, and is actually measured on the last path exit side of the rolled material. Last path thickness error between the measured plate thickness and the estimated thickness after the last pass calculated from the gauge meter formula, and the halfway calculated from the measured thickness and gauge meter formula measured on the exit side of the path before the last pass. Calculate the intermediate pass plate thickness error from the post-pass estimated plate thickness, and calculate the mill from the last pass plate thickness error and the plate thickness error difference value of the intermediate pass plate thickness error and the rolling load difference value of the last pass and the rolling load of the intermediate pass. The calculation error of the elongation amount is estimated, and the gauge meter equation is corrected using the calculation error, and is applied at the next and subsequent rolling.

また、複数の圧延材について前記板厚誤差差分値と圧延荷重差分値とを求め、それら複数の板厚誤差差分値と圧延荷重差分値とからミル伸び量の計算誤差の修正係数を算出し、そのミル伸び量の計算誤差の修正係数と次回以降の圧延荷重とからゲージメータ式を修正して次回以降の圧延時に適用することを特徴とするものである。   Further, the difference between the thickness error difference value and the rolling load difference value for a plurality of rolled materials, and calculating a correction coefficient for the calculation error of the mill elongation amount from the plurality of thickness error difference values and the rolling load difference value, The gauge meter type is corrected from the correction coefficient of the calculation error of the mill elongation amount and the rolling load after the next time, and is applied at the next and subsequent rolling.

而して、本発明の圧延機の板厚制御方法によれば、ゲージメータ式を用いて板厚制御を行うにあたり、圧延材のラストパス出側で実測された実測板厚とゲージメータ式から算出されたラストパス後の推定板厚とのラストパス板厚誤差及びラストパス以前の途中パス出側で実測された実測板厚とゲージメータ式から算出された途中パス後の推定板厚との途中パス板厚誤差を算出し、ラストパス板厚誤差及び途中パス板厚誤差の板厚誤差差分値とラストパス及び途中パスの圧延荷重の圧延荷重差分値とからミル伸び量の計算誤差を推定し、当該計算誤差を用いてゲージメータ式を修正して次回以降の圧延時に適用することとしたため、圧延荷重に依存するミル伸び量の計算誤差を推定して高精度な板厚制御を行うことができる。   Thus, according to the sheet thickness control method of the rolling mill of the present invention, when performing the sheet thickness control using the gauge meter formula, it is calculated from the actually measured sheet thickness and gauge meter formula measured on the last path exit side of the rolled material. The plate thickness error between the estimated plate thickness after the last pass and the measured plate thickness measured on the exit side of the intermediate pass before the last pass and the estimated plate thickness after the intermediate pass calculated from the gauge meter equation The error is calculated, and the calculation error of the mill elongation amount is estimated from the plate thickness error difference value of the last pass plate thickness error and the intermediate pass plate thickness error and the rolling load difference value of the rolling load of the last pass and the intermediate pass, and the calculation error is calculated. Since the gauge meter formula is modified and applied at the next and subsequent rolling, it is possible to estimate the calculation error of the mill elongation amount depending on the rolling load and to control the plate thickness with high accuracy.

また、複数の圧延材について板厚誤差差分値と圧延荷重差分値とを求め、それら複数の板厚誤差差分値と圧延荷重差分値とからミル伸び量の計算誤差の修正係数を算出し、そのミル伸び量の計算誤差の修正係数と次回以降の圧延荷重とからゲージメータ式を修正して次回以降の圧延時に適用することとしたため、次回以降の圧延時の圧延荷重に依存するミル伸び量の計算誤差を正確に推定してより一層高精度な板厚制御を行うことができる。   Further, a thickness error difference value and a rolling load difference value are obtained for a plurality of rolled materials, and a correction coefficient for a calculation error of the mill elongation amount is calculated from the plurality of thickness error difference values and the rolling load difference value. The gauge meter formula was corrected from the correction coefficient for calculation error of mill elongation and the rolling load after the next time, and it was decided to apply it at the next and subsequent rolling. More accurate plate thickness control can be performed by accurately estimating the calculation error.

本発明の圧延機の板厚制御方法を適用した圧延設備の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the rolling equipment to which the plate | board thickness control method of the rolling mill of this invention is applied. 圧延荷重に応じたミル伸び量の計算誤差の説明図である。It is explanatory drawing of the calculation error of the mill elongation amount according to a rolling load. ミル伸び量の計算誤差から修正係数を算出する説明図である。It is explanatory drawing which calculates a correction coefficient from the calculation error of mill elongation. ミル伸び量の計算誤差を用いてゲージメータ式を修正したゲージメータ厚誤差の実施例と従来例の説明図である。It is explanatory drawing of the Example of the gauge meter thickness error which corrected the gauge meter type | mold using the calculation error of mill elongation, and a prior art example.

次に、本発明の圧延機の板厚制御方法の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の圧延機の板厚制御方法を適用した圧延設備の概略構成図である。この圧延設備は、圧延材10を繰り返し圧延することができる可逆式圧延機1からなる。この可逆式圧延機1は、上下のワークロール2と上下のバックアップロール3を備える。上下のワークロール2間の開度量は開度変更機構4によって調整可能であり、ワークロール2間の開度量を開度変更機構4によって調整することで、圧下量、つまり所定の圧下率に設定することができる。開度変更機構4は、コントローラ5からの開度指令によって、各パスでの開度を設定変更する。圧延時の圧延加重はロードセル6によって検出され、その検出値がコントローラ5に出力される。
Next, an embodiment of a sheet thickness control method for a rolling mill according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a rolling equipment to which a thickness control method for a rolling mill according to this embodiment is applied. The rolling equipment includes a reversible rolling mill 1 that can repeatedly roll a rolled material 10. The reversible rolling mill 1 includes upper and lower work rolls 2 and upper and lower backup rolls 3. The amount of opening between the upper and lower work rolls 2 can be adjusted by the opening changing mechanism 4, and the amount of opening between the work rolls 2 is adjusted by the opening changing mechanism 4, so that the amount of reduction, that is, a predetermined reduction rate is set. can do. The opening changing mechanism 4 changes the setting of the opening in each pass according to an opening command from the controller 5. The rolling load at the time of rolling is detected by the load cell 6, and the detected value is output to the controller 5.

本実施形態の圧延設備の例では、図の左側から圧延材10が搬送されてきて、可逆式圧延機1によって、図の左側から右側へ、右側から左側へと、決められたパス数だけ圧延処理が行われる。目標板厚とする圧延が終了すると、圧延後の圧延材10が、図の右側に設けられた図示しない後工程に搬送される。
可逆式圧延機1の1パス目の出側(図1の右側)には、圧延材10の板厚を実測する板厚計7が設けられており、この板厚計7で実測された圧延材10の板厚はコントローラ5で読込まれ、後述するようにしてミル伸び量の計算誤差を推定し、その計算誤差から修正係数を算出し、次回以降の圧延時の圧延荷重と修正係数からゲージメータ式を修正し、修正されたゲージメータ式を用いて次回以降の圧延時の板厚制御を行う。なお、ミル伸び量の計算誤差から修正係数を算出するためには、複数の圧延材に対してラストパスの出側及び途中パスの出側で板厚の実測を行う必要がある。板厚計7は、可逆式圧延機1の1パス目の出側(図1の右側)だけでなく、1パス目の入側(図1の左側)に設置することもできる。これにより、図1の右側から左側への圧延パスの出側での板厚の実測を行うことができる。
In the example of the rolling equipment of the present embodiment, the rolled material 10 is conveyed from the left side of the figure, and is rolled by the reversible rolling mill 1 from the left side to the right side of the figure and from the right side to the left side for a determined number of passes. Processing is performed. When the rolling with the target plate thickness is completed, the rolled material 10 after rolling is conveyed to a post process (not shown) provided on the right side of the drawing.
On the exit side of the first pass of the reversible rolling mill 1 (on the right side in FIG. 1), a thickness gauge 7 for measuring the thickness of the rolled material 10 is provided, and the rolling measured by the thickness gauge 7 is performed. The thickness of the material 10 is read by the controller 5, the calculation error of the mill elongation is estimated as will be described later, a correction coefficient is calculated from the calculation error, and the gauge is calculated from the rolling load and correction coefficient at the next and subsequent rolling. The meter type is corrected, and the thickness control is performed at the next and subsequent rolling using the corrected gauge meter type. In order to calculate the correction coefficient from the calculation error of the mill elongation amount, it is necessary to measure the plate thickness on the exit side of the last pass and the exit side of the intermediate pass for a plurality of rolled materials. The thickness gauge 7 can be installed not only on the exit side of the first pass of the reversible rolling mill 1 (right side of FIG. 1) but also on the entrance side of the first pass (left side of FIG. 1). Thereby, it is possible to actually measure the plate thickness on the exit side of the rolling pass from the right side to the left side in FIG.

途中パス出側の実測板厚並びに途中パス後の推定板厚(ゲージメータ厚)と、ラストパス出側の実測板厚並びにラストパス後の推定板厚(ゲージメータ厚)と、圧延荷重との関係は図2のように表れる。ラストパスの圧延荷重は小さく、熱、摩耗等による誤差(ロールギャップオフセット量に相当)は、パスが違っていても同等又はほぼ同等であると考えられるので、ラストパスの実測板厚と推定板厚とのラストパス板厚誤差を、途中パスの実測板厚と推定板厚との途中パス板厚誤差から減じれば、途中パスにおける圧延荷重によるミル伸び量の計算誤差(図ではミル伸び誤差)が得られる。   The relationship between the measured plate thickness on the exit side of the intermediate pass, the estimated plate thickness after the intermediate pass (gauge meter thickness), the measured plate thickness on the exit side of the final pass, the estimated thickness after the last pass (gauge meter thickness), and the rolling load It appears as shown in FIG. The rolling load of the last path is small, and errors due to heat, wear, etc. (corresponding to the roll gap offset amount) are considered to be the same or almost the same even if the path is different. If the last pass plate thickness error is subtracted from the intermediate pass thickness error between the measured and estimated plate thicknesses of the intermediate pass, the calculation error of the mill elongation due to the rolling load in the intermediate pass (mill elongation error in the figure) is obtained. It is done.

この圧延荷重によるミル伸び量の計算誤差を複数の圧延材から複数求め、それらをラストパスの圧延荷重と途中パスの圧延荷重の圧延荷重差に応じてプロットすると、図3に示すように、圧延荷重差に依存するミル伸び量の計算誤差(図ではミル伸び誤差)の相関が得られる。この相関は、リニアな特性があるので、例えば最小自乗法などによって傾きαを求めれば、単位圧延荷重あたりのミル伸び量の計算誤差が得られる。この単位荷重あたりのミル伸び量の計算誤差αをミル伸び量の計算誤差の修正係数αとする。このミル伸び量の計算誤差の修正係数αは、操業中の圧延ライン毎にほぼ一定であると考えられる。   When a plurality of calculation errors of the mill elongation due to this rolling load are obtained from a plurality of rolled materials and plotted according to the rolling load difference between the rolling load of the last pass and the rolling load of the intermediate pass, as shown in FIG. A correlation of calculation error (mill elongation error in the figure) of the mill elongation amount depending on the difference is obtained. Since this correlation has a linear characteristic, for example, if the slope α is obtained by the least square method or the like, a calculation error of the mill elongation per unit rolling load can be obtained. The calculation error α of the mill elongation amount per unit load is set as a correction coefficient α of the calculation error of the mill elongation amount. The correction coefficient α for the calculation error of the mill elongation amount is considered to be substantially constant for each rolling line in operation.

ミル伸び量は、前述のように、ゲージメータ式中のF/Mによってゲージメータ厚Hの中に織り込まれているはずである。しかしながら、実際の操業では、前述したキスロールによるストレッチカーブには表れない計算誤差が発生する。このミル伸び量の計算誤差は、前記修正係数αに次回以降の圧延時の圧延荷重Fを乗じることで、次回以降の圧延時の推定板厚、即ちゲージメータ厚Hを修正することが可能となるので、前記ゲージメータ式に修正係数αと圧延荷重Fの積値を加算して修正された推定板厚、即ちゲージメータ厚Hが得られる。つまり、修正されたゲージメータ厚Hは、下記2式で表れる。この修正されたゲージメータ厚Hが各パスの出側板厚の目標値になるように各パスのロールギャップSを設定すれば、実測板厚を推定板厚に近づけることが可能となる。なお、下記(2)式の圧延荷重Fの項をまとめるとF((1/M)+α)となることから、前記修正係数αはミル常数Mを修正するものであるとも言える。
H=S+F/M+K+αF ……… (2)
As described above, the amount of mill elongation should be woven into the gauge meter thickness H by F / M in the gauge meter type. However, in an actual operation, a calculation error that does not appear in the stretch curve due to the kiss roll described above occurs. The calculation error of the mill elongation amount can be corrected by multiplying the correction coefficient α by the rolling load F at the next and subsequent rolling, thereby correcting the estimated plate thickness at the next and subsequent rolling, that is, the gauge meter thickness H. Therefore, the estimated plate thickness, that is, the gauge meter thickness H, corrected by adding the product value of the correction coefficient α and the rolling load F to the gauge meter equation, is obtained. That is, the corrected gauge meter thickness H is expressed by the following two formulas. If the roll gap S of each pass is set so that the corrected gauge meter thickness H becomes the target value of the exit side plate thickness of each pass, the measured plate thickness can be brought close to the estimated plate thickness. It can be said that the correction coefficient α corrects the mill constant M because the term of the rolling load F in the following equation (2) is F ((1 / M) + α).
H = S + F / M + K + αF (2)

図4は、前記ミル伸び量の計算誤差の修正を行った実施例のゲージメータ厚の誤差と、修正を行わない従来例のゲージメータ厚の誤差を示したものである。プロットは、例えば圧延荷重4000T以下、4000T超5000T以下、5000T超6000T以下、6000T超という圧延荷重区分を示す。同図から明らかなように、ミル伸び量の計算誤差の修正を行った実施例は、修正を行わない従来例よりも全体的にゲージメータ厚の誤差が小さい。また、特に、高圧延荷重区分でのゲージメータ厚の誤差を抑制できている。これは、前述したミル伸び量の計算誤差が圧延荷重に依存していることから、圧延荷重の大きい領域で有効にゲージメータ厚を修正できていることを意味する。   FIG. 4 shows an error of the gauge meter thickness in the embodiment in which the calculation error of the mill elongation amount is corrected and an error in the gauge meter thickness in the conventional example without correction. The plot shows, for example, rolling load categories of rolling load of 4000T or less, 4000T or more, 5000T or less, 5000T or more, 6000T or less, or 6000T or more. As is apparent from the figure, the example in which the calculation error of the mill elongation amount is corrected has a smaller gauge meter thickness error than the conventional example in which correction is not performed. In particular, an error in gauge meter thickness in a high rolling load section can be suppressed. This means that the gauge meter thickness can be effectively corrected in a region where the rolling load is large because the calculation error of the mill elongation described above depends on the rolling load.

このように本実施形態の圧延機の板厚制御方法では、ゲージメータ式を用いて板厚制御を行うにあたり、圧延材のラストパス出側で実測された実測板厚とゲージメータ式から算出されたラストパス後の推定板厚とのラストパス板厚誤差及びラストパス以前の途中パス出側で実測された実測板厚とゲージメータ式から算出された途中パス後の推定板厚との途中パス板厚誤差を算出し、ラストパス板厚誤差及び途中パス板厚誤差の板厚誤差差分値とラストパス及び途中パスの圧延荷重の圧延荷重差分値とからミル伸び量の計算誤差を推定し、当該計算誤差を用いてゲージメータ式を修正して次回以降の圧延時に適用することにより、圧延荷重に依存するミル伸び量の計算誤差を推定して高精度な板厚制御を行うことができる。   As described above, in the sheet thickness control method of the rolling mill according to the present embodiment, when performing the sheet thickness control using the gauge meter formula, the thickness was calculated from the actually measured sheet thickness and the gauge meter formula measured on the last path exit side of the rolled material. The plate thickness error between the estimated plate thickness after the last pass and the plate thickness error between the measured plate thickness measured on the exit side of the intermediate pass before the last pass and the estimated plate thickness after the intermediate pass calculated from the gauge meter equation. The calculation error of the mill elongation amount is estimated from the plate thickness error difference value of the last pass plate thickness error and the intermediate pass plate thickness error and the rolling load difference value of the rolling load of the last pass and the intermediate pass, and the calculation error is used. By correcting the gauge meter formula and applying it at the next and subsequent rolling, it is possible to estimate the calculation error of the mill elongation amount depending on the rolling load and to perform highly accurate sheet thickness control.

また、複数の圧延材について板厚誤差差分値と圧延荷重差分値とを求め、それら複数の板厚誤差差分値と圧延荷重差分値とからミル伸び量の計算誤差の修正係数を算出し、そのミル伸び量の計算誤差の修正係数と次回以降の圧延荷重とからゲージメータ式を修正して次回以降の圧延時に適用することにより、次回以降の圧延時の圧延荷重に依存するミル伸び量の計算誤差を正確に推定してより一層高精度な板厚制御を行うことができる。   Further, a thickness error difference value and a rolling load difference value are obtained for a plurality of rolled materials, and a correction coefficient for a calculation error of the mill elongation amount is calculated from the plurality of thickness error difference values and the rolling load difference value. Calculation of mill elongation depending on rolling load at the next and subsequent rollings by correcting the gauge meter formula from the correction coefficient for calculation error of mill elongation and the rolling load at and after the next and applying it at the next and subsequent rolling It is possible to accurately estimate the error and perform more accurate plate thickness control.

1は可逆式圧延機、2はワークロール、3はバックアップロール、4は開度変更機構、5はコントローラ、6はロードセル、7は板厚計、10は圧延材   1 is a reversible rolling mill, 2 is a work roll, 3 is a backup roll, 4 is an opening changing mechanism, 5 is a controller, 6 is a load cell, 7 is a thickness gauge, and 10 is a rolled material.

Claims (1)

下記2式で表されるゲージメータ式を用いて板厚制御を行う圧延機の板厚制御方法であって、複数の圧延材について、圧延材のラストパス出側で実測された実測板厚とゲージメータ式から算出されたラストパス後の推定板厚とのラストパス板厚誤差及びラストパス以前の途中パス出側で実測された実測板厚とゲージメータ式から算出された前記途中パス後の推定板厚との途中パス板厚誤差を算出し、ラストパス板厚誤差及び途中パス板厚誤差の板厚誤差差分値とラストパス及び前記途中パスの圧延荷重の圧延荷重差分値とを求め、それら複数の板厚誤差差分値と圧延荷重差分値とから圧延荷重に依存するミル伸び量の計算誤差の修正係数αを算出し、そのミル伸び量の計算誤差の修正係数αと次回以降の圧延荷重とからゲージメータ式を修正して次回以降の圧延時に適用することを特徴とする圧延機の板厚制御方法。
H=S+F/M+K+αF ……… (2)
ここで、H:ゲージメータ厚(推定板厚)、S:圧延前のロールギャップ、F:圧延荷重、M:ミル常数、K:ロールギャップオフセット量、α:ミル伸び量の計算誤差の修正係数
A sheet thickness control method for a rolling mill that performs sheet thickness control using a gauge meter expression represented by the following two formulas, and for a plurality of rolled materials, measured sheet thicknesses and gauges measured on the last path exit side of the rolled material Last path thickness error with the estimated thickness after the last pass calculated from the meter formula, the measured thickness measured on the exit side before the last pass and the estimated thickness after the mid-pass calculated from the gauge meter formula An intermediate pass plate thickness error is calculated, and a plate thickness error difference value of the last pass plate thickness error and the intermediate pass plate thickness error and a rolling load differential value of the last pass and the rolling load of the intermediate pass are obtained, and the plurality of plate thickness errors are calculated. From the difference value and the rolling load difference value, the correction coefficient α of the calculation error of the mill elongation amount depending on the rolling load is calculated, and the gauge meter type is calculated from the correction coefficient α of the calculation error of the mill elongation amount and the rolling load after the next time. Fix A method for controlling the thickness of a rolling mill, which is applied during subsequent rolling.
H = S + F / M + K + αF (2)
Here, H: gauge meter thickness (estimated plate thickness), S: roll gap before rolling, F: rolling load, M: mill constant, K: roll gap offset, α: correction coefficient for calculation error of mill elongation
JP2010192782A 2010-08-30 2010-08-30 Thickness control method of rolling mill Active JP5565214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192782A JP5565214B2 (en) 2010-08-30 2010-08-30 Thickness control method of rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192782A JP5565214B2 (en) 2010-08-30 2010-08-30 Thickness control method of rolling mill

Publications (2)

Publication Number Publication Date
JP2012045616A JP2012045616A (en) 2012-03-08
JP5565214B2 true JP5565214B2 (en) 2014-08-06

Family

ID=45901112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192782A Active JP5565214B2 (en) 2010-08-30 2010-08-30 Thickness control method of rolling mill

Country Status (1)

Country Link
JP (1) JP5565214B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385847B2 (en) * 2015-02-10 2018-09-05 株式会社神戸製鋼所 Thickness control method of rolling mill

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129805B2 (en) * 1981-01-07 1986-07-09 Kawasaki Steel Co
JPS63220914A (en) * 1987-03-06 1988-09-14 Sumitomo Metal Ind Ltd Parameter correction storage method for reversible rolling mill
JPH0647419A (en) * 1992-07-30 1994-02-22 Kawasaki Steel Corp Method for controlling plate thickness in plate rolling
JPH10249422A (en) * 1997-03-10 1998-09-22 Nisshin Steel Co Ltd Method for automatic control of plate thickness in rolling

Also Published As

Publication number Publication date
JP2012045616A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
KR101134922B1 (en) Shape controller and shape method for steel plate of hot rolling process
JP4306273B2 (en) Strip meander control device and meander control method for tandem rolling mill
JP5565214B2 (en) Thickness control method of rolling mill
JP2006224177A (en) Method for predicting shape of metallic strip, method for judging shape on the basis of predicted shape and method for straightening shape
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP4288888B2 (en) Strip meander control device and meander control method for tandem rolling mill
JP2011147957A (en) Method of controlling cold tandem rolling mill
JP6057774B2 (en) Identification method of mill elongation formula in rolling mill
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP5594585B2 (en) Method for correcting rolling load measurement value of rolling mill and sheet thickness control method using the correction value
JP2005186085A (en) Thickness change controller for travelling plate in continuous cold rolling machine
JP3205130B2 (en) Strip width control method in hot rolling
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
JP3062017B2 (en) Thickness control method in hot rolling
JP4028786B2 (en) Sheet shape control method in cold rolling
JP6777051B2 (en) Plate crown control method, plate crown control device, and steel plate manufacturing method
JP2009113100A (en) Plate thickness controller of rolling mill, and plate thickness control method of rolling mill
JP2000094023A (en) Method and device for controlling leveling in hot finishing mill
JP3896067B2 (en) Reduction control method in cold rolling
JPH0857512A (en) Manufacture of tapered steel sheet
JP3445199B2 (en) Thickness control method in rolling mill
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
KR100423424B1 (en) Method For Widthwide Rolling Steel Plate
JPH0929315A (en) Tandem mill control method and controller therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5565214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250