JP2006224177A - Method for predicting shape of metallic strip, method for judging shape on the basis of predicted shape and method for straightening shape - Google Patents

Method for predicting shape of metallic strip, method for judging shape on the basis of predicted shape and method for straightening shape Download PDF

Info

Publication number
JP2006224177A
JP2006224177A JP2005044020A JP2005044020A JP2006224177A JP 2006224177 A JP2006224177 A JP 2006224177A JP 2005044020 A JP2005044020 A JP 2005044020A JP 2005044020 A JP2005044020 A JP 2005044020A JP 2006224177 A JP2006224177 A JP 2006224177A
Authority
JP
Japan
Prior art keywords
shape
model
predicted
width direction
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044020A
Other languages
Japanese (ja)
Other versions
JP4701742B2 (en
Inventor
Takamasa Kawai
孝将 川井
Yukio Kimura
幸雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005044020A priority Critical patent/JP4701742B2/en
Publication of JP2006224177A publication Critical patent/JP2006224177A/en
Application granted granted Critical
Publication of JP4701742B2 publication Critical patent/JP4701742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a predicting method of the shape of a metallic strip by which the shape after cooling to the normal temperature is accurately predicted about the metallic strip after hot rolling and also to provide exact judging method of the shape on the basis of the predicted shape and the straightening method of the shape. <P>SOLUTION: On the basis of the temperature and the shape of the metallic strip 5 which are on-line measured with a thermometer1 and a flatness gage 2 installed on the outlet side of the final stand 6 of a finishing mill or this side of a coiler 10, the shape when the strip is cooled to the normal temperature is predicted by an analytical model taking phase transition into consideration. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼帯等の金属帯の圧延に際して、熱間圧延後の金属帯における常温までの冷却後の形状(平坦度)を正確に推定することができる金属帯の形状予測方法に関するものである。   The present invention relates to a metal band shape prediction method capable of accurately estimating a shape (flatness) after cooling to room temperature in a metal band after hot rolling when rolling a metal band such as a steel band. is there.

近年、鋼帯等の金属帯はより平坦に近いものが需要家から要求されており、図2に示す(a)耳伸び、(b)腹伸び等の金属帯製品の形状不良も許容限度が厳しくなり、形状についての品質保証は非常に大きな課題となっている。なお、図2中、5が金属帯を指す。   In recent years, metal strips such as steel strips have been demanded by customers to be more flat, and there is an allowable limit for the shape defects of metal strip products such as (a) ear stretch and (b) belly stretch shown in FIG. As quality becomes stricter, quality assurance for shapes has become a very important issue. In FIG. 2, 5 indicates a metal strip.

熱間圧延直後の形状が所定の目標精度に制御できるように、6重圧延機やクロスミルのようなクラウン・形状制御性の良い圧延機が開発され、その中間ロールシフト位置やクロス角、ロールベンディング量を適切に初期設定し、さらに動的に制御することにより高精度の形状・クラウン制御を実現した。   In order to control the shape immediately after hot rolling to a specified target accuracy, a rolling mill with good crown and shape controllability such as a 6-fold rolling mill and a cross mill has been developed. Its intermediate roll shift position, cross angle, roll bending Highly accurate shape and crown control was realized by appropriately initializing the amount and further dynamically controlling it.

しかし、例えば熱延鋼帯の形状を仕上圧延機直後に目標通りに制御しても、ランナウトテーブル以降の冷却で形状が変化するのが通常であって、このため、以下のような問題がある。
(1)形状測定時点の形状に応じて形状矯正工程を追加する場合、冷却後に形状が変化して基準値内となる場合には、不要な工程追加となりコストアップとなる。
(2)形状測定時点で基準値内であっても、冷却後に波形状が増大して基準値を越える場合には、次工程での通板阻害や形状不良コイルの出荷といった問題が発生する。
However, for example, even if the shape of the hot-rolled steel strip is controlled as desired immediately after the finish rolling mill, the shape is usually changed by cooling after the run-out table, and thus there are the following problems. .
(1) When a shape correction process is added in accordance with the shape at the time of shape measurement, if the shape changes after cooling and falls within the reference value, an unnecessary process is added and the cost is increased.
(2) Even if it is within the reference value at the time of shape measurement, if the wave shape increases after cooling and exceeds the reference value, problems such as blockage in the next process and shipment of defective coils occur.

かかる問題に対して、例えば、特許文献1では、金属帯の形状制御方法として、ランナウトテーブルで冷却完了後の金属帯を巻き取るコイラの上流側にテンションレベラを設置して形状矯正を行う方法において、テンションレベラの最終ロール直前のロールを金属帯の張力の幅方向分布が測定可能な形状検出ロールとし、形状検出ロールからの金属帯の形状情報を基に形状検出ロールの押し込み量設定を変更して金属帯の形状を制御する方法が提案されている。   For example, in Patent Document 1, as a method for controlling the shape of the metal band, a method for correcting the shape by installing a tension leveler upstream of a coiler that winds up the metal band after completion of cooling with a run-out table is disclosed in Patent Document 1. The roll just before the final roll of the tension leveler is a shape detection roll that can measure the distribution of the tension in the metal strip in the width direction, and the push amount setting of the shape detection roll is changed based on the shape information of the metal strip from the shape detection roll. A method for controlling the shape of the metal strip has been proposed.

また、特許文献2では、金属帯の形状制御方法として、仕上圧延機最終段の入側あるいは出側において金属帯の表面温度を測定し、測定した温度分布に基づき常温時に発生する熱応力残留応力を推定し、その残留応力が形状不良を発生させないように仕上圧延機によって応力を付与することにより金属帯の形状を制御している。   In Patent Document 2, as a method of controlling the shape of the metal strip, the surface temperature of the metal strip is measured on the entry side or exit side of the final stage of the finishing mill, and the thermal stress residual stress generated at normal temperature based on the measured temperature distribution. The shape of the metal strip is controlled by applying stress by a finishing mill so that the residual stress does not cause a shape defect.

なお、[発明を実施するための最良の形態]において、下記の非特許文献1を引用するので、ここに記載しておく。
特開平5−269527号公報 特開2002−45907号公報 「相変態と材料挙動の数値シミュレーション」(コロナ社)
In [Best Mode for Carrying Out the Invention], the following Non-Patent Document 1 is cited and described here.
JP-A-5-269527 JP 2002-45907 A "Numerical simulation of phase transformation and material behavior" (Corona)

しかしながら、上述した特許文献1記載の金属帯の形状制御方法では、形状制御の基準となる情報が急峻度あるいは伸び歪差であり、板幅方向にわたる温度分布は考慮していない。圧延工程で常温近くまで冷却すれば板幅方向にわたる温度分布はほぼ均一になるが、通常、殆どの材料は材質の作り込みのために高温で巻き取るために、板幅方向にわたる温度分布は板端部が中央部に比べて低くなる温度偏差が発生する。従って、一旦このような方法で伸び歪み差が解消されたとしても、この時点での温度偏差が常温になると熱応力として残留してしまうため、形状の改善には結びつかない。   However, in the metal band shape control method described in Patent Document 1 described above, the information used as a reference for shape control is steepness or elongation strain difference, and temperature distribution in the plate width direction is not considered. If it is cooled to near normal temperature in the rolling process, the temperature distribution in the plate width direction becomes almost uniform.However, since most materials are usually wound at a high temperature to make the material, the temperature distribution in the plate width direction is A temperature deviation is generated in which the end portion is lower than the central portion. Therefore, even if the difference in elongation strain is once eliminated by such a method, since the temperature deviation at this time reaches room temperature, it remains as thermal stress, which does not lead to improvement of the shape.

また、上述した特許文献2記載の金属帯の形状制御方法では、仕上圧延機最終段の入側あるいは出側での温度分布に起因する熱応力による形状不良を計算しているが、ランナウトテーブル上での冷却過程における温度分布や相変態の挙動によって生じるクリープ歪・塑性歪といった永久歪の発生を考慮していない。さらに、形状を正確に評価するためにはコイラでの巻取り張力や、巻取り後のコイル冷却時でのコイルの温度偏差に起因する変形を考慮する必要がある。   Further, in the metal strip shape control method described in Patent Document 2 described above, a shape defect due to thermal stress due to temperature distribution on the entry side or exit side of the final stage of the finishing mill is calculated. It does not consider the generation of permanent strain such as creep strain and plastic strain caused by temperature distribution and phase transformation behavior in the cooling process. Furthermore, in order to accurately evaluate the shape, it is necessary to take into account the winding tension in the coiler and deformation due to the temperature deviation of the coil when the coil is cooled after winding.

本発明は、上述した従来技術の有する問題点を解決するもので、熱間圧延後の金属帯について、常温まで冷却後の形状を正確に予測することができる金属帯の形状予測方法を提供することを目的とする。さらに、この形状予測方法による予測形状に基づいた的確な形状判定方法および形状矯正方法を提供することを目的とする。   The present invention solves the above-described problems of the prior art and provides a metal band shape prediction method capable of accurately predicting a shape after cooling to room temperature with respect to a metal band after hot rolling. For the purpose. Furthermore, it aims at providing the exact shape determination method and shape correction method based on the prediction shape by this shape prediction method.

本発明は上述した課題を解決するためになされたもので、熱間での金属帯の温度および形状分布の測定結果を初期値として、常温までの冷却過程における温度、応力・歪および相変態を連成解析して順次解析していくことにより、最終的な形状を全長にわたり高精度に予測するものである。さらに、本形状予測方法による金属帯の全長にわたる予測形状に基づき、形状の良否判定および形状矯正の条件設定を行うものである。   The present invention has been made to solve the above-described problems. The initial measurement values of the temperature and shape distribution of the metal strip in the hot state are used to determine the temperature, stress / strain, and phase transformation in the cooling process to room temperature. By performing coupled analysis and analyzing sequentially, the final shape is predicted with high accuracy over the entire length. Furthermore, based on the predicted shape over the entire length of the metal strip according to this shape prediction method, the quality determination and shape correction condition setting are performed.

本発明の要旨とするところは以下の通りである。   The gist of the present invention is as follows.

[1]熱間圧延後の金属帯の板幅方向温度分布と板幅方向形状分布を熱間にて測定し、該測定値に基づき、相変態を考慮した解析モデルにより、前記金属帯をコイルに巻取り常温まで冷却した後の形状を予測することを特徴とする金属帯の形状予測方法。   [1] The temperature distribution in the plate width direction and the shape distribution in the plate width direction of the metal strip after hot rolling are measured hot, and the metal strip is coiled by an analysis model that takes into account the phase transformation based on the measured values. A method for predicting the shape of a metal strip, which is characterized by predicting the shape after winding to cool to room temperature.

[2]仕上圧延機出側で金属帯の板幅方向温度分布と板幅方向形状分布を測定するとともに、前記解析モデルが、ランナウトテーブルでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイラ巻取りでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイル冷却での伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップとからなることを特徴とする前記[1]に記載の金属帯の形状予測方法。   [2] At the delivery side of the finishing mill, the temperature distribution in the plate width direction and the shape distribution in the plate width direction of the metal strip are measured, and the analysis model includes a heat transfer model, a phase transformation model, and a stress / strain model on the runout table. From the step of analyzing, the step of analyzing the heat transfer model, phase transformation model and stress / strain model in coiler winding, and the step of analyzing the heat transfer model, phase transformation model and stress / strain model in coil cooling The metal band shape prediction method according to the above [1], characterized in that

[3]コイラ手前で金属帯の板幅方向温度分布と板幅方向形状分布を測定するとともに、前記解析モデルが、コイラ巻取りでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイル冷却での伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップとからなることを特徴とする前記[1]に記載の金属帯の形状予測方法。   [3] The temperature distribution in the plate width direction and the shape distribution in the plate width direction of the metal strip are measured before the coiler, and the analysis model analyzes the heat transfer model, the phase transformation model, and the stress / strain model in the coiler winding. The method for predicting the shape of a metal strip according to the above [1], comprising a step and a step of analyzing a heat transfer model in coil cooling, a phase transformation model, and a stress / strain model.

[4]金属帯の板幅方向温度分布と板幅方向形状分布を全長にわたり測定するとともに、前記金属帯をコイルに巻取り常温まで冷却した後の形状を全長にわたり予測することを特徴とする前記[1]ないし[3]のいずれかに記載の金属帯の形状予測方法。   [4] The plate width direction temperature distribution and the plate width direction shape distribution of the metal strip are measured over the entire length, and the shape after the metal strip is wound around a coil and cooled to room temperature is predicted over the entire length. [1] The method for predicting the shape of a metal strip according to any one of [3].

[5]前記[1]ないし[4]のいずれかに記載の金属帯の形状予測方法によって求めた常温での金属帯の予測形状が、目標形状範囲内の場合には冷却後の金属帯に対する形状矯正を省略し、目標形状範囲から外れている場合には次工程において前記形状矯正を実施するように、形状矯正の要否判定を行うことを特徴とする金属帯の形状判定方法。   [5] If the predicted shape of the metal band at room temperature obtained by the metal band shape prediction method according to any one of [1] to [4] is within the target shape range, A shape determination method for a metal strip, characterized in that shape correction is omitted and when it is outside the target shape range, whether or not shape correction is necessary is determined so that the shape correction is performed in the next step.

[6]前記[1]ないし[4]のいずれかに記載の金属帯の形状予測方法によって求めた常温での金属帯の予測形状に基づき、次工程において切り捨てる金属帯先後端の目標形状範囲から外れた形状不良部長さを判定することを特徴とする金属帯の形状判定方法。   [6] Based on the predicted shape of the metal band at room temperature obtained by the metal band shape prediction method according to any one of [1] to [4], from the target shape range of the metal band tip and rear end to be discarded in the next step A method for determining the shape of a metal band, comprising determining a length of a defective shape that has been removed.

[7]前記[1]ないし[4]のいずれかに記載の金属帯の形状予測方法によって求めた常温での金属帯の予測形状に基づき、次工程の形状矯正条件を予測形状に合わせて設定することを特徴とする金属帯の形状矯正方法。   [7] Based on the predicted shape of the metal band at room temperature obtained by the metal band shape prediction method according to any one of [1] to [4], the shape correction condition for the next process is set according to the predicted shape. A method for correcting the shape of a metal strip, characterized by:

本発明により、熱間圧延後の金属帯が、ランナウトテーブルでの冷却過程を経てコイラで巻き取られた後、コイルの状態で常温まで冷却された際の、最終的な形状を全長にわたり予測することが可能となる。さらに、常温での予測形状に基づき、最適な形状判定および形状矯正の条件設定が可能となる。   According to the present invention, after the metal strip after hot rolling is wound by a coiler through a cooling process on a run-out table, the final shape is predicted over the entire length when cooled to room temperature in a coil state. It becomes possible. Furthermore, based on the predicted shape at normal temperature, it is possible to determine the optimum shape determination and shape correction conditions.

すなわち、本発明を用いて冷却後の形状を正確に予測することにより、仕上圧延後あるいはコイラ手前において形状不良が発生していなくとも冷却後には形状不良が発生するコイルの予測が可能となり、そのコイルのみをスキンパスあるいはレベラによる形状矯正ラインに通すことにより、形状不良コイルが次工程で通板を阻害することや形状不良コイルを客先へ出荷することを防止することが可能となる。   In other words, by accurately predicting the shape after cooling using the present invention, it is possible to predict the coil where the shape defect occurs after cooling even if the shape defect does not occur after finish rolling or before the coiler. By passing only the coil through the shape correction line by the skin pass or the leveler, it becomes possible to prevent the defectively shaped coil from obstructing the threading plate in the next process and shipping the defectively shaped coil to the customer.

さらに、仕上圧延後あるいはコイラ手前において形状不良が発生していたとしても、冷却後には形状不良は解消されるコイルについて形状矯正ラインへの通板が不要であることが判別でき、工程省略によるメリットとともに形状矯正ラインの処理能力の確保が可能となる。   Furthermore, even if shape defects occur after finish rolling or before the coiler, it is possible to determine that it is not necessary to pass through the shape correction line for coils whose shape defects are eliminated after cooling. At the same time, the processing capability of the shape correction line can be secured.

また、次工程で形状矯正を行う場合に矯正条件をコイルの各位置の予測形状に基づいて設定することにより、効果的な形状矯正が可能となり、より平坦なコイルが得られる。   Moreover, when shape correction is performed in the next process, by setting the correction condition based on the predicted shape of each position of the coil, effective shape correction is possible, and a flatter coil is obtained.

また、コイルの先後端部に特に大きな形状不良部があるが全長にわたって形状矯正を施すには至らない場合には、次工程に形状不良部の長さの情報を送りその部分のみを切り捨てることにより、例えば酸洗ラインでの溶接不良による破断を最小の切り捨て量で防止でき、溶接部での破断防止とともに歩留り向上が可能となる。   Also, if there is a particularly bad shape at the front and rear ends of the coil, but it does not lead to shape correction over the entire length, send information on the length of the shape failure to the next process and cut off only that portion. For example, it is possible to prevent breakage due to poor welding in the pickling line with a minimum cut-off amount, and it is possible to prevent breakage at the welded portion and improve yield.

本発明者らは、形状悪化のメカニズムおよび形状を平坦にするための方策について種々の検討を行った。以下、図面に基づいて本発明の原理について説明する。   The present inventors have made various studies on the mechanism of shape deterioration and the measures for flattening the shape. The principle of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態において用いる形状予測システムを示すものであり、金属帯5の板面の板幅方向温度分布を計測するための走査型温度計等で実現される板面温度計測手段1と、この計測手段1の例えば下流側においてレーザ距離計等により前記金属帯5の板幅方向の形状分布を算定する形状計測手段2と、それら両計測手段1、2の計測結果が導入されることによって所定の演算を行うマイクロコンピュータ等の演算処理制御装置3と、この演算処理制御装置3の演算結果等の各情報を画面に表示するCRT等の表示装置4とによって構成されている。計測対象の前記金属帯5は、熱間圧延ラインにおいて圧延されたものであり、前記両計測手段1、2は、仕上圧延機後あるいはコイラ手前において、温間での金属帯の板幅方向温度分布と板幅方向形状分布を例えば非接触下で計測するようになっている。   FIG. 1 shows a shape prediction system used in an embodiment of the present invention, and a plate surface temperature realized by a scanning thermometer or the like for measuring a plate width direction temperature distribution of a plate surface of a metal strip 5. The measurement means 1, the shape measurement means 2 for calculating the shape distribution in the plate width direction of the metal strip 5 by a laser distance meter or the like on the downstream side of the measurement means 1, and the measurement results of both the measurement means 1 and 2 are An arithmetic processing control device 3 such as a microcomputer that performs a predetermined calculation by being introduced, and a display device 4 such as a CRT that displays each information such as the calculation result of the arithmetic processing control device 3 on the screen. Yes. The metal strip 5 to be measured is rolled in a hot rolling line, and both the measuring means 1 and 2 are the temperature in the width direction of the metal strip in the warm state after the finish rolling mill or before the coiler. For example, the distribution and the shape distribution in the plate width direction are measured in a non-contact manner.

演算処理制御装置3には、板面温度計測手段1が計測した板面温度プロフィールと形状計測手段2が計測した形状分布を初期値として、計測後に引き続く冷却条件、通板条件、巻取り条件等に基づいて、温度分布を求める伝熱解析、応力・歪状態を求める粘弾塑性解析、相変態解析を連成して解くことにより、常温まで冷却後の金属帯の形状を推定する形状演算手段を備える。   The arithmetic processing control device 3 uses the plate surface temperature profile measured by the plate surface temperature measuring unit 1 and the shape distribution measured by the shape measuring unit 2 as initial values, and the cooling conditions, plate passing conditions, winding conditions, etc. that follow the measurement. Shape calculation means to estimate the shape of the metal strip after cooling to room temperature by coupling and solving heat transfer analysis to obtain temperature distribution, viscoelastic plastic analysis to obtain stress / strain state, and phase transformation analysis Is provided.

このような構成を備える形状予測システムに基づいて成される形状予測方法の概要を以下に説明する。   An outline of the shape prediction method based on the shape prediction system having such a configuration will be described below.

図3は、本発明の実施に供する金属帯の製造ラインの一例を示すものであり、熱延鋼帯を製造する熱間圧延ラインにおける仕上圧延以降の各工程を示す概略図である。図3に示すように、仕上圧延機最終スタンド6を出た金属帯5は、冷却帯7を通過してコイラ10においてドラム9に巻き付けられてコイル8となったのちにコイルヤード11で常温まで冷却される。   FIG. 3 shows an example of a metal strip production line used for carrying out the present invention, and is a schematic diagram showing each step after finish rolling in a hot rolling line for producing a hot-rolled steel strip. As shown in FIG. 3, after the metal strip 5 exiting the finishing mill final stand 6 passes through the cooling zone 7 and is wound around the drum 9 in the coiler 10 to become the coil 8, it reaches the room temperature in the coil yard 11. To be cooled.

この実施形態では、仕上圧延機最終スタンド6の出側あるいはコイラ10の手前に設置された温度計1および形状計2によりオンラインで測定した金属帯5の板幅方向温度分布および板幅方向形状分布に基づいて、相変態を考慮した解析モデルにより、常温まで冷却した時の形状の予測を行うものである。   In this embodiment, the plate width direction temperature distribution and the plate width direction shape distribution of the metal strip 5 measured online by the thermometer 1 and the shape meter 2 installed on the exit side of the finishing mill final stand 6 or in front of the coiler 10. Based on the above, a shape is predicted when cooled to room temperature by an analysis model considering phase transformation.

この実施形態に係る形状予測方法における解析手順を図4のフローチャートに示す。   The analysis procedure in the shape prediction method according to this embodiment is shown in the flowchart of FIG.

まず始めに、材料条件(金属帯の寸法、降伏関数、機械物性値、熱物性値、相変態挙動を示すパラメータ 等)、通板条件(板速度、通板張力 等)、冷却条件(熱伝達係数、冷却媒体温度、冷却帯の長さ 等)、巻取り条件(巻取り張力、ドラム径 等)を設定する。しかるのちに、仕上圧延機最終スタンド6の出側に設置された温度計1および形状計2により測定された板幅方向温度分布および板幅方向形状分布に基づいて、冷却帯7を備えるランナウトテーブルでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイラ10におけるコイラ巻取りでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイルヤード11等におけるコイル冷却での伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップを実行して、常温での最終形状を出力する。   First, material conditions (metal strip dimensions, yield function, mechanical properties, thermophysical values, parameters indicating phase transformation behavior, etc.), plate feed conditions (plate speed, plate tension, etc.), cooling conditions (heat transfer) Coefficient, cooling medium temperature, cooling zone length, etc.) and winding conditions (winding tension, drum diameter, etc.). Thereafter, based on the plate width direction temperature distribution and the plate width direction shape distribution measured by the thermometer 1 and the shape meter 2 installed on the exit side of the finishing mill final stand 6, the run-out table provided with the cooling zone 7. Analyzing the heat transfer model, phase transformation model and stress / strain model in the coil, analyzing the heat transfer model, phase transformation model and stress / strain model in the coiler winding in the coiler 10, the coil yard 11 and the like The step of analyzing the heat transfer model, the phase transformation model, and the stress / strain model in the coil cooling is executed, and the final shape at normal temperature is output.

フローチャート上の各モデルの概要について以下に示す。   The outline of each model on the flowchart is shown below.

板断面の温度分布は、下記の熱伝導方程式(1)と境界条件式(2)を解くことにより計算される。伝熱モデルとしては、例えば式(1)と式(2)を離散化した陽解法差分モデルを用いることによりオンラインでの使用に耐えうるような短時間での計算が可能となる。   The temperature distribution of the plate cross section is calculated by solving the following heat conduction equation (1) and boundary condition equation (2). As the heat transfer model, for example, by using an explicit method differential model obtained by discretizing Equation (1) and Equation (2), calculation in a short time that can withstand online use is possible.

Figure 2006224177
Figure 2006224177

相変態モデルとしては、高精度の解析を行うために温度履歴を考慮した相変態解析法の導入が望ましい。例えば、非特許文献1の5章に記載のTTT線図を用いた手法により実現可能である。伝熱モデルおよび相変態モデルで用いる材料定数は温度および変態率に依存するため、2つのモデルを連成して解く必要がある。   As a phase transformation model, it is desirable to introduce a phase transformation analysis method considering temperature history in order to perform highly accurate analysis. For example, it can be realized by a technique using the TTT diagram described in Chapter 5 of Non-Patent Document 1. Since the material constants used in the heat transfer model and the phase transformation model depend on the temperature and the transformation rate, it is necessary to solve the two models in combination.

応力・歪解析モデルには、ランナウトテーブル上での板の状態、コイラでの巻取り中のコイル状態および巻取り後(抜き取り後)のコイル状態についてそれぞれ別のモデルが必要となる。正確な形状予測解析を行うために、熱収縮、相変態に伴う体積膨張、クリープ変形および塑性変形を考慮したモデルとする必要がある。以下、それらのモデルの概要を説明する。   The stress / strain analysis model requires different models for the state of the plate on the run-out table, the coil state during winding by the coiler, and the coil state after winding (after extraction). In order to perform accurate shape prediction analysis, it is necessary to use a model that takes into account heat shrinkage, volume expansion associated with phase transformation, creep deformation, and plastic deformation. The outline of these models will be described below.

ランナウトテーブル上のモデルは、例えば図5に記載のスリットモデルにより短時間での解析が可能となる。図5(a)はランナウトテーブル上において板端部が中央部より温度低下が大きい場合の図であり、熱収縮差により短冊状にした際に端部の伸びが小さくなる。図5(a)の伸びを揃えたものが図5(b)であり、この時の伸び差と板に作用する応力の模式図を示したのが図6である。非常に大きな伸びが発生する部分は塑性変形が生じることになる。また、伸びが大きく板が余っている部分については、薄板の場合には座屈が生じて応力は発生しないとする。図6(a)の応力分布の総和が通板張力と釣り合うような伸びを求めることにより、変形の解析ができる。   The model on the run-out table can be analyzed in a short time by, for example, the slit model shown in FIG. FIG. 5A is a diagram in the case where the temperature of the plate end portion is larger than that of the center portion on the run-out table. When the strip end is formed into a strip shape due to a difference in thermal contraction, the end portion becomes less elongated. FIG. 5 (b) shows a uniform elongation of FIG. 5 (a), and FIG. 6 shows a schematic diagram of the difference in elongation and the stress acting on the plate at this time. A plastic deformation occurs in a portion where a very large elongation occurs. Further, it is assumed that, in the case of a thin plate, the portion where the elongation is large and the plate is left is buckled and no stress is generated. Deformation can be analyzed by obtaining an elongation such that the sum of the stress distributions in FIG.

コイル巻取りでの解析とコイル冷却での解析には、図7に示すような円筒を積層したモデルを考える。   For the analysis in coil winding and the analysis in coil cooling, a model in which cylinders as shown in FIG. 7 are stacked is considered.

コイラでの巻取りは、図7のモデルにおいて、最外周に巻取り張力に等しい周方向応力が作用する円筒を嵌め込むことにより表現する。この時のコイラ張力の幅方向分布は図8に示すフローチャートに従い、円筒の嵌め合い後の形状が収束するまで巻取り後形状を修正していくことにより求める。   Winding by a coiler is expressed by fitting a cylinder in which circumferential stress equal to winding tension acts on the outermost periphery in the model of FIG. The distribution in the width direction of the coiler tension at this time is obtained by correcting the shape after winding until the shape after fitting the cylinders converges according to the flowchart shown in FIG.

円筒モデルを用いた場合のコイル冷却解析のフローチャートは図9の通りである。フローチャート上の接触条件式とは、図10に示す内外圧が作用する2つの円筒を考え、その接触面の変位が等しくなるような接触力を与える式のことであり、変形、熱収縮および板クラウンの項から成り立っている。コイルを一体物として解析する場合と異なり、円筒モデルではコイルの各板間の接触力を求めて板間の接触・非接触を考慮しているため、正確な応力・歪解析が可能となっている。   The flowchart of the coil cooling analysis when the cylindrical model is used is as shown in FIG. The contact condition equation in the flowchart is an equation that gives a contact force such that the displacements of the contact surfaces are equal, considering the two cylinders shown in FIG. It consists of a crown term. Unlike the case where the coil is analyzed as an integral object, the cylindrical model obtains the contact force between each plate of the coil and considers the contact / non-contact between the plates, enabling accurate stress / strain analysis. Yes.

以上の伝熱モデル、相変態モデル、応力・歪モデルを用いて常温まで解析していくことにより、熱収縮(相変態に伴う体積膨張を含む)、クリープ変形および塑性変形の和として永久変形が求まる。最終的な形状は永久変形の幅方向分布より求まる幅方向伸び歪差によって評価する。   By analyzing to the normal temperature using the heat transfer model, phase transformation model, and stress / strain model, permanent deformation can be obtained as the sum of thermal shrinkage (including volume expansion accompanying phase transformation), creep deformation and plastic deformation. I want. The final shape is evaluated by the width direction elongation strain difference obtained from the width direction distribution of permanent deformation.

なお、コイラ10の手前に設置された温度計1および形状計2により測定した板幅方向温度分布および板幅方向形状分布を初期値として最終形状を予測する場合には、上記のランナウトテーブルでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップを省略して、コイラ巻取りでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイル冷却での伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップを実行して、常温での最終形状を出力する。ただし、測定位置における変態率が既知であることが前提となる。   When the final shape is predicted using the plate width direction temperature distribution and the plate width direction shape distribution measured by the thermometer 1 and the shape meter 2 installed in front of the coiler 10 as initial values, The step of analyzing the heat transfer model, phase transformation model and stress / strain model is omitted, the step of analyzing the heat transfer model, phase transformation model and stress / strain model in coiler winding, and the heat transfer in coil cooling The step of analyzing the model, the phase transformation model and the stress / strain model is executed, and the final shape at room temperature is output. However, it is assumed that the transformation rate at the measurement position is known.

そして、上記のような形状予測方法を金属帯全長(コイル全長)に対して適用することにより、冷却後の最終形状がコイル全長にわたり正確に予測可能となる。さらに、そのコイル全長にわたる予測形状に基づいて、的確な形状判定方法および形状矯正方法を実施することができる。   And the final shape after cooling can be accurately predicted over the entire length of the coil by applying the shape prediction method as described above to the entire length of the metal strip (the entire length of the coil). Furthermore, an accurate shape determination method and shape correction method can be implemented based on the predicted shape over the entire length of the coil.

その形状判定方法として、例えば、コイル全長にわたる予測形状の最大値あるいは平均値が目標形状範囲に入っているかどうかに基づいて、目標形状範囲内の場合には冷却後の金属帯に対するスキンパスあるいはレベラによる形状矯正を省略し、目標形状範囲から外れている場合には前記形状矯正を実施するように、形状矯正の要否を判定することが挙げられる。   As the shape determination method, for example, based on whether the maximum value or average value of the predicted shape over the entire length of the coil is within the target shape range, if it is within the target shape range, by a skin pass or leveler for the cooled metal band It is possible to omit the shape correction and determine whether or not the shape correction is necessary so that the shape correction is performed when the shape correction is out of the target shape range.

また、他の形状判定方法として、先端あるいは後端あるいは先後端の既定の長さにおける最大値あるいは平均値が目標形状範囲に入っているかどうかに基づいて、先後端に目標形状範囲から外れた形状不良部が存在している場合には、その形状不良部の長さの情報を次工程に送ることにより、先後端の形状不良部のみを切り捨てることが可能となる。   Also, as another shape determination method, based on whether the maximum value or average value in the predetermined length of the leading edge, the trailing edge, or the leading and trailing edges is within the target shape range, the shape deviating from the target shape range at the front and rear ends If there is a defective portion, it is possible to discard only the shape defective portion at the front and rear ends by sending information on the length of the defective shape portion to the next process.

さらに、その形状矯正方法として、全長にわたる予測形状の情報を矯正工程に送ることにより、矯正条件をコイルの各位置の予測形状に基づいて設定することによって効果的な形状矯正を行うことができる。   Furthermore, as the shape correction method, effective shape correction can be performed by setting the correction condition based on the predicted shape of each position of the coil by sending information on the predicted shape over the entire length to the correction process.

以下、本発明の実施例について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の形状予測方法について、具体例に基づいて、従来の形状予測方法(仕上圧延機出側において温度分布のみを考慮して形状を予測する方法)と対比させて示す。   The shape prediction method of the present invention is shown in comparison with a conventional shape prediction method (a method for predicting a shape in consideration of only the temperature distribution on the finishing mill exit side) based on a specific example.

従来の形状予測方法により予測した形状(急峻度)と実測値との比較を図11に示す。これに対し、本発明の形状予測方法により予測した形状(急峻度)と実測値との比較を図12に示す。ここでの形状良否の判定は、目標形状(目標急峻度)を1%として、コイル全長における急峻度の最大値が1%を越えるものを形状不良(NG)とするものである。   FIG. 11 shows a comparison between the shape (steepness) predicted by the conventional shape prediction method and the actual measurement value. In contrast, FIG. 12 shows a comparison between the shape (steepness) predicted by the shape prediction method of the present invention and the actual measurement value. Here, the determination of the quality of the shape is that the target shape (target steepness) is 1%, and the shape having a maximum steepness over the entire coil length of more than 1% is regarded as a defective shape (NG).

図11に示すように、従来の形状予測方法では予測精度が十分ではなく、そのために、予測では形状不良となったコイルでも、冷却後に実測してみると目標急峻度内に入っており、形状矯正が不要なコイルを矯正ラインへと搬送することになってしまうことになったり、逆に、予測では形状良好と判断したにもかかわらず、実際には冷却後に形状不良が発生しており、次工程での通板トラブルや客先からのクレームが発生したりしてしまい、十分な効果をあげることができない。   As shown in FIG. 11, the conventional shape prediction method does not have sufficient prediction accuracy. For this reason, even if the coil has a poor shape in the prediction, it is within the target steepness when actually measured after cooling. Coils that do not require correction will be transported to the correction line, or conversely, despite the prediction that the shape is good, a shape defect actually occurs after cooling, Troubles in the next process and complaints from customers will occur, and sufficient effects cannot be achieved.

それに対して、図12に示すように、本発明の形状予測方法は非常に高い精度で常温まで冷却後の形状が予測できており、形状不良により矯正が必要なコイルのみを判別してスキンパス等の形状矯正ラインに搬送することが可能である。   On the other hand, as shown in FIG. 12, the shape prediction method of the present invention can predict the shape after cooling to room temperature with very high accuracy. It can be conveyed to the shape correction line.

以上の結果によって明らかなように、本発明では温度、応力・歪および相変態の推移を連成して解析することにより、より高精度に冷却後の形状の推定が可能であることが立証された。   As is clear from the above results, the present invention proves that the shape after cooling can be estimated with higher accuracy by analyzing the transition of temperature, stress / strain, and phase transformation in combination. It was.

これにより、不必要な形状矯正工程を追加する割合を15%から0%へと削除することが可能となり、納期が短縮された。また、冷却後に発現する目標値を越える形状不良による次工程での通板阻害や客先からのクレームをなくすことができた。   As a result, the ratio of adding unnecessary shape correction steps can be deleted from 15% to 0%, and the delivery time was shortened. In addition, it was possible to eliminate the hindrance in the next process and complaints from customers due to shape defects exceeding the target value developed after cooling.

本発明の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of this invention. 金属帯の形状を示す模式図で、(a)耳伸び図、(b)腹伸び図 である。It is a schematic diagram which shows the shape of a metal strip, (a) Ear extension figure, (b) Belly extension figure. ランナウトテーブル〜コイラ〜コイルヤードでの冷却の各工程を示す概略図である。It is the schematic which shows each process of cooling in a runout table-coiler-coil yard. 本発明の形状予測方法における解析手順を示すフローチャートである。It is a flowchart which shows the analysis procedure in the shape prediction method of this invention. ランナウトテーブルにおける応力・歪解析モデルの模式図で、(a)幅方向の各位置の伸び差を表す図、(b)伸びを揃えた際の図である。It is a schematic diagram of a stress / strain analysis model in the run-out table, (a) a diagram showing an elongation difference at each position in the width direction, and (b) a diagram when the elongations are aligned. スリットモデルで解析する際の伸びと応力の関係を示す模式図で、(a)各変形に対する応力を表す図、(b)図5(b)に対応する板の変形を表す図である。It is a schematic diagram which shows the relationship between the elongation at the time of analyzing with a slit model, and stress, (a) The figure showing the stress with respect to each deformation | transformation, (b) The figure showing the deformation | transformation of the board corresponding to FIG.5 (b). 円筒を積層させたコイルの模式図である。It is a schematic diagram of the coil which laminated | stacked the cylinder. コイラ巻取り時の張力分布を求めるフローチャートである。It is a flowchart which calculates | requires the tension distribution at the time of coiler winding. 円筒状のコイル間の接触条件を表す図である。It is a figure showing the contact conditions between cylindrical coils. 円筒状のコイル間に作用する接触力を求めるフローチャートである。It is a flowchart which calculates | requires the contact force which acts between cylindrical coils. 従来方法により予測した冷却後の形状(急峻度)と、実測値との比較図である。It is a comparison figure of the shape (steepness) after cooling estimated by the conventional method, and an actual measurement value. 発明により予測した冷却後の形状(急峻度)と、実測値との比較図である。It is a comparison figure with the shape (steepness) after cooling estimated by the invention, and the measured value.

符号の説明Explanation of symbols

1… 板面温度計測手段(温度計)
2… 形状計測手段(形状計)
3… 演算処理制御装置
4… 表示装置
5… 金属帯
6… 仕上圧延機の最終スタンド
7… 冷却帯
8… コイル
9… ドラム
10… コイラ
11… コイルヤード
1 ... Plate surface temperature measuring means (thermometer)
2. Shape measuring means (shape meter)
3 ... Arithmetic processing control device 4 ... Display device 5 ... Metal strip 6 ... Final stand 7 of finishing mill ... Cooling zone 8 ... Coil 9 ... Drum 10 ... Coiler 11 ... Coil yard

Claims (7)

熱間圧延後の金属帯の板幅方向温度分布と板幅方向形状分布を熱間にて測定し、該測定値に基づき、相変態を考慮した解析モデルにより、前記金属帯をコイルに巻取り常温まで冷却した後の形状を予測することを特徴とする金属帯の形状予測方法。   The metal strip after hot rolling is measured for the temperature distribution in the plate width direction and the shape distribution in the plate width direction, and based on the measured values, the metal strip is wound into a coil by an analysis model that takes into account the phase transformation. A method for predicting the shape of a metal strip, wherein the shape after cooling to room temperature is predicted. 仕上圧延機出側で金属帯の板幅方向温度分布と板幅方向形状分布を測定するとともに、前記解析モデルが、ランナウトテーブルでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイラ巻取りでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイル冷却での伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップとからなることを特徴とする請求項1に記載の金属帯の形状予測方法。   Step of measuring the temperature distribution in the plate width direction and the shape distribution in the plate width direction at the delivery side of the finishing mill and analyzing the heat transfer model, phase transformation model and stress / strain model in the run-out table. And a step of analyzing the heat transfer model, phase transformation model and stress / strain model in coiler winding, and a step of analyzing the heat transfer model, phase transformation model and stress / strain model in coil cooling. The metal band shape prediction method according to claim 1, wherein the metal band shape is predicted. コイラ手前で金属帯の板幅方向温度分布と板幅方向形状分布を測定するとともに、前記解析モデルが、コイラ巻取りでの伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップと、コイル冷却での伝熱モデル、相変態モデルおよび応力・歪モデルを解析するステップとからなることを特徴とする請求項1に記載の金属帯の形状予測方法。   Measuring the sheet width direction temperature distribution and the sheet width direction shape distribution of the metal strip before the coiler, and the analysis model analyzing a heat transfer model, a phase transformation model and a stress / strain model in the coiler winding; The method for predicting the shape of a metal strip according to claim 1, comprising a step of analyzing a heat transfer model in coil cooling, a phase transformation model, and a stress / strain model. 金属帯の板幅方向温度分布と板幅方向形状分布を全長にわたり測定するとともに、前記金属帯をコイルに巻取り常温まで冷却した後の形状を全長にわたり予測することを特徴とする請求項1ないし3のいずれかに記載の金属帯の形状予測方法。   The plate width direction temperature distribution and the plate width direction shape distribution of the metal strip are measured over the entire length, and the shape after the metal strip is wound around a coil and cooled to room temperature is predicted over the entire length. The shape prediction method of the metal strip in any one of 3. 請求項1ないし4のいずれかに記載の金属帯の形状予測方法によって求めた常温での金属帯の予測形状が、目標形状範囲内の場合には冷却後の金属帯に対する形状矯正を省略し、目標形状範囲から外れている場合には次工程において前記形状矯正を実施するように、形状矯正の要否判定を行うことを特徴とする金属帯の形状判定方法。   If the predicted shape of the metal band at room temperature obtained by the metal band shape prediction method according to any one of claims 1 to 4 is within a target shape range, shape correction for the cooled metal band is omitted, A shape determination method for a metal strip, characterized by determining whether or not shape correction is necessary so that the shape correction is performed in the next step when the shape is out of a target shape range. 請求項1ないし4のいずれかに記載の金属帯の形状予測方法によって求めた常温での金属帯の予測形状に基づき、次工程において切り捨てる金属帯先後端の目標形状範囲から外れた形状不良部長さを判定することを特徴とする金属帯の形状判定方法。   The shape defect portion length deviated from the target shape range of the rear end of the metal band to be discarded in the next step based on the predicted shape of the metal band at room temperature obtained by the metal band shape prediction method according to any one of claims 1 to 4. A method for determining the shape of a metal band, characterized in that 請求項1ないし4のいずれかに記載の金属帯の形状予測方法によって求めた常温での金属帯の予測形状に基づき、次工程の形状矯正条件を予測形状に合わせて設定することを特徴とする金属帯の形状矯正方法。   The shape correction condition of the next process is set according to the predicted shape based on the predicted shape of the metal band at room temperature obtained by the metal band shape prediction method according to any one of claims 1 to 4. Metal band shape correction method.
JP2005044020A 2005-02-21 2005-02-21 Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method Active JP4701742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044020A JP4701742B2 (en) 2005-02-21 2005-02-21 Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044020A JP4701742B2 (en) 2005-02-21 2005-02-21 Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method

Publications (2)

Publication Number Publication Date
JP2006224177A true JP2006224177A (en) 2006-08-31
JP4701742B2 JP4701742B2 (en) 2011-06-15

Family

ID=36985980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044020A Active JP4701742B2 (en) 2005-02-21 2005-02-21 Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method

Country Status (1)

Country Link
JP (1) JP4701742B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208086A (en) * 2008-02-29 2009-09-17 Sumitomo Metal Ind Ltd Method of manufacturing hot-rolled steel plate and array of manufacturing equipment
CN102658298A (en) * 2012-04-29 2012-09-12 北京科技大学 Plate-shape quality online judgment method applicable to hot-rolled thin strip steel
JP2014000593A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Temperature unevenness prediction method of hot rolled steel sheet, flatness control method, temperature unevenness control method and manufacturing method
CN104946872A (en) * 2015-07-08 2015-09-30 武汉钢铁(集团)公司 Method for preparing low-stress hot-rolling high-strength steel with steel plate thickness of 8-20 mm
DE102018220382A1 (en) 2018-11-28 2020-05-28 Sms Group Gmbh Process for the production of a metallic band
CN113976624A (en) * 2021-10-28 2022-01-28 攀钢集团攀枝花钢钒有限公司 Method for controlling plate shape of hot continuous rolling titanium and titanium alloy strip coil
CN115034121A (en) * 2022-08-11 2022-09-09 太原科技大学 Strip steel process regulation and control method based on organization performance intelligent prediction model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202002B (en) * 2019-07-01 2020-08-07 山西云时代太钢信息自动化技术有限公司 High-magnetic-induction cold-rolled silicon steel equipment and control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252710A (en) * 2000-03-10 2001-09-18 Nippon Steel Corp Device and method for judging shape of steel sheet and storage medium readable with computer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252710A (en) * 2000-03-10 2001-09-18 Nippon Steel Corp Device and method for judging shape of steel sheet and storage medium readable with computer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208086A (en) * 2008-02-29 2009-09-17 Sumitomo Metal Ind Ltd Method of manufacturing hot-rolled steel plate and array of manufacturing equipment
CN102658298A (en) * 2012-04-29 2012-09-12 北京科技大学 Plate-shape quality online judgment method applicable to hot-rolled thin strip steel
JP2014000593A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Temperature unevenness prediction method of hot rolled steel sheet, flatness control method, temperature unevenness control method and manufacturing method
CN104946872A (en) * 2015-07-08 2015-09-30 武汉钢铁(集团)公司 Method for preparing low-stress hot-rolling high-strength steel with steel plate thickness of 8-20 mm
DE102018220382A1 (en) 2018-11-28 2020-05-28 Sms Group Gmbh Process for the production of a metallic band
EP3660173A1 (en) 2018-11-28 2020-06-03 SMS Group GmbH Method for producing a metallic strip
CN113976624A (en) * 2021-10-28 2022-01-28 攀钢集团攀枝花钢钒有限公司 Method for controlling plate shape of hot continuous rolling titanium and titanium alloy strip coil
CN113976624B (en) * 2021-10-28 2023-11-21 攀钢集团攀枝花钢钒有限公司 Plate shape control method for hot continuous rolling titanium and titanium alloy strip coil
CN115034121A (en) * 2022-08-11 2022-09-09 太原科技大学 Strip steel process regulation and control method based on organization performance intelligent prediction model
CN115034121B (en) * 2022-08-11 2022-10-25 太原科技大学 Strip steel process regulation and control method based on organization performance intelligent prediction model

Also Published As

Publication number Publication date
JP4701742B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4701742B2 (en) Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method
JP2007216246A (en) Method for controlling shape of metal strip in hot rolling
JP5685208B2 (en) Control device for hot rolling mill for thin plate and control method for hot rolling mill for thin plate
KR100432682B1 (en) Metal plate flatness controlling method and device
KR102537661B1 (en) Methods and electronic devices for monitoring the manufacture of metal products, related computer programs and apparatus
JP6806099B2 (en) Rolling machine leveling setting method, rolling mill leveling setting device, and steel sheet manufacturing method
JP2002045908A (en) Method and device for controlling flatness of metallic sheet
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP2016163893A (en) Control method of rolling mill, control device of rolling mill, and manufacturing method of steel plate
JP4109407B2 (en) Method and apparatus for controlling flatness of metal plate
JP4710237B2 (en) Method for predicting deformation of thick steel plate and method for manufacturing the same
JP4269394B2 (en) Steel plate shape prediction method
JP6680284B2 (en) Rolling mill leveling setting method, rolling mill leveling setting device, and steel plate manufacturing method
JP2003311326A (en) Steel plate manufacturing method
JP5195528B2 (en) Method for predicting camber amount at room temperature and operation method using the same
JP6627609B2 (en) Cooling control method and cooling device
JP6416676B2 (en) How to determine the amount of roll profile correction
JP5928721B2 (en) Prediction method and prediction device for shape defects due to runout cooling strain
JP2843273B2 (en) Hot rolled steel sheet shape prediction method
JP4846680B2 (en) Thermal crown prediction method and thermal crown prediction apparatus
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JP4849906B2 (en) Method for reducing surface defects in hot rolling
JP5573726B2 (en) Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method
JP6466756B2 (en) Rolling control method in rolling mill
JP3895602B2 (en) Steel plate manufacturing method and steel plate manufacturing apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4701742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250