JP5573726B2 - Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method - Google Patents

Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method Download PDF

Info

Publication number
JP5573726B2
JP5573726B2 JP2011035286A JP2011035286A JP5573726B2 JP 5573726 B2 JP5573726 B2 JP 5573726B2 JP 2011035286 A JP2011035286 A JP 2011035286A JP 2011035286 A JP2011035286 A JP 2011035286A JP 5573726 B2 JP5573726 B2 JP 5573726B2
Authority
JP
Japan
Prior art keywords
temperature
winding
low
run
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011035286A
Other languages
Japanese (ja)
Other versions
JP2012170978A (en
Inventor
佳正 三村
広和 杉原
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2011035286A priority Critical patent/JP5573726B2/en
Publication of JP2012170978A publication Critical patent/JP2012170978A/en
Application granted granted Critical
Publication of JP5573726B2 publication Critical patent/JP5573726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、熱間圧延における低温巻取り材の製造の際のランアウト冷却歪による形状不良の測定方法およびその方法に用いられる温度測定装置に関するものである。   The present invention relates to a method for measuring a shape defect due to run-out cooling strain in the production of a low-temperature winding material in hot rolling, and a temperature measuring device used in the method.
一般に熱間圧延における鋼板の形状不良は二つの種類に分類される。一つが仕上げ圧延における形状不良であり、従来はベンダーのセットアップやランアウトでの形状測定機等で品質制御(QC)、品質保証(QA)ともに対策をとってきた(例えば特許文献1参照)。もう一つが巻取り前の冷却歪による形状不良であり、低温巻取り材(巻取り温度(CT)≦600℃)で多く発生し、仕上げ出側の形状によらずランアウトでの冷却歪により、スキンパス(SKP)や酸洗で巻戻したときに形状不良が発生するものである。形状不良は仕上げ出側の形状によらず発生するため、仕上げ出側の形状測定機等ではその最終形状を予測することができない。   Generally, the shape defect of a steel plate in hot rolling is classified into two types. One is a shape defect in finish rolling. Conventionally, measures have been taken for both quality control (QC) and quality assurance (QA) using a shape measuring machine at a vendor setup or run-out (see, for example, Patent Document 1). Another is a shape defect due to cooling distortion before winding, which occurs frequently at low-temperature winding materials (winding temperature (CT) ≦ 600 ° C.), and due to cooling distortion at runout regardless of the shape on the finish side, A shape defect occurs when rewinding with a skin pass (SKP) or pickling. Since the shape defect occurs regardless of the shape on the finishing delivery side, the shape measuring machine or the like on the finishing delivery side cannot predict the final shape.
従来、このような低温巻取り材の形状不良に対しては、上述のように圧延後の形状を予測することが困難であるため、ある確率で客先の要求レベルを満たさないものは全量一律にSKPで巻きなおすという対応をとっていた。   Conventionally, since it is difficult to predict the shape after rolling as described above for the shape defect of such a low-temperature winding material, all the products that do not satisfy the customer's required level with a certain probability are uniformly distributed. I took measures to rewind with SKP.
特開平11−347629号公報JP 11-347629 A
過去の知見では、コイラーでの巻取り前にランアウトで低温巻取り材のエッジに残留応力(引張応力)が生じ、そのエッジに塑性歪が発生することで、常温で巻き戻したときに形状不良(耳波)になるといわれていた。このエッジの残留応力の原因として、(1)巻取り温度(CT)や鋼種成分による硬度の差、(2)低温巻取り材のセンターとエッジとの温度差による熱膨張差等、諸説あったが、計算結果を最終形状に定量的に結びつけることは困難であった。また、この冷却歪による形状不良は、ランアウトでの通板中もしくはコイラーでの巻取り後の変態や、コイル冷却の時間や場所、コイラー張力等によっても程度に差があらわれるとされており、形状の予測を行うことができなかった。   According to past knowledge, residual stress (tensile stress) occurs at the edge of the low-temperature winding material at run-out before winding with a coiler, and plastic distortion occurs at that edge, resulting in poor shape when rewinding at room temperature It was said that it would become (an ear wave). There were various theories such as (1) difference in hardness due to coiling temperature (CT) and steel type components, and (2) difference in thermal expansion due to temperature difference between center and edge of low-temperature winding material. However, it is difficult to quantitatively link the calculation results to the final shape. In addition, the shape defect due to this cooling strain is said to show a difference in degree depending on the transformation during winding through the runout or after winding with a coiler, the time and place of coil cooling, the coiler tension, etc. Could not be predicted.
さらに、放射温度計での測定は通常、鋼板の真上から、鋼板の下面に何も熱源がない状態で行い、その測定データの板エッジの温度勾配に閾値を設け、その閾値の箇所を板最エッジと定義していたが、それでは板最エッジの位置と温度が正確にわからないという問題があった。   Furthermore, measurement with a radiation thermometer is usually performed from directly above the steel plate with no heat source on the bottom surface of the steel plate, and a threshold is set for the temperature gradient at the plate edge of the measurement data. Although it was defined as the edge, there was a problem that the position and temperature of the edge of the plate were not accurately known.
本発明者の研究によれば、冷却歪によって形状が悪いとされていた従来の低温巻取り材(低CT材)では、ランアウトでの冷却中に板最エッジから10mm以内の範囲で板エッジ温度が200℃程度下がっていることが判明した。これは沸騰形状が膜沸騰から遷移沸騰へ変わるためと推定されるが、この板エッジの過冷却によって板エッジに塑性歪が入るため、圧延後に形状不良が生じていることが判明した。また、板最エッジの温度とSKPでの板形状とには強い相関があることが判明しており、これは圧延後の形状が板エッジ温度にほぼ支配されていることを示している。   According to the research of the present inventor, in the conventional low-temperature winding material (low CT material) which has been considered to have a poor shape due to cooling strain, the plate edge temperature within a range of 10 mm or less from the plate outermost edge during cooling in the runout. Was found to be about 200 ° C. lower. This is presumed to be because the boiling shape changes from film boiling to transition boiling. However, it was found that a shape defect occurred after rolling because the plate edge was subjected to plastic strain due to overcooling of the plate edge. Further, it has been found that there is a strong correlation between the temperature at the edge of the plate and the plate shape at SKP, which indicates that the shape after rolling is almost governed by the plate edge temperature.
そこで、本発明者は、下記の方法を用いることによって熱間圧延における低温巻取り材のランアウト冷却歪による形状不良を予測することが可能であることに想到した。
(1)ランアウト巻取り前の低温巻取り材の温度を放射温度計にて全長および全幅に亘り測定する。
(2)このときその放射温度計の下方の低温巻取り材の少なくとも板エッジの下側に放射エネルギーの反射物を配置し、その反射物からの照り返しによる放射エネルギーを放射温度計で測定してその測定結果から低温巻取り材の最エッジ温度を判断する。
(3)低温巻取り材のセンターの平均温度と最エッジの温度との温度差ΔTに所定の閾値を設け、上記測定結果における上記温度差ΔTがその閾値以上になった低温巻取り材に、ランアウト冷却歪による形状不良(耳波)が発生すると予測する。
Therefore, the present inventor has conceived that it is possible to predict a shape defect due to run-out cooling strain of a low-temperature winding material in hot rolling by using the following method.
(1) The temperature of the low-temperature winding material before the run-out winding is measured over the entire length and the entire width with a radiation thermometer.
(2) At this time, place a reflector of radiant energy at least below the plate edge of the low-temperature winding material below the radiant thermometer, and measure the radiant energy caused by reflection from the reflector with the radiant thermometer. The most edge temperature of the low-temperature winding material is judged from the measurement result.
(3) A predetermined threshold is provided for the temperature difference ΔT between the average temperature at the center of the low-temperature winding material and the temperature of the outermost edge, and the low-temperature winding material in which the temperature difference ΔT in the measurement result is equal to or greater than the threshold. It is predicted that shape defects (ear waves) will occur due to run-out cooling distortion.
また本発明者は、上述の方法に下記の温度測定装置を用いることによって圧延後の冷却歪を予測することが可能であることに想到した。
前記ランアウト冷却歪による形状不良の予測方法に用いられる温度測定装置において、
前記低温巻取り材の全幅にわたる放射エネルギーを上方から測定する放射温度計と、
前記低温巻取り材の少なくとも板エッジの下面に向けて前記放射温度計の下方に配置された、前記放射エネルギーの反射物としての反射板と、
を備えることを特徴とする温度測定装置。
Further, the present inventor has conceived that the cooling strain after rolling can be predicted by using the following temperature measuring apparatus in the above-described method.
In the temperature measuring device used in the method for predicting a shape defect due to the runout cooling strain,
A radiation thermometer for measuring the radiant energy over the entire width of the cold winding material from above;
A reflector as a reflector of the radiant energy, disposed below the radiation thermometer toward at least the lower surface of the plate edge of the cold winding material;
A temperature measuring device comprising:
本発明の温度測定装置によれば、低温巻取り材の少なくとも板エッジの下面に向けて、放射エネルギーの反射物あるいは反射板を設け、その反射物あるいは反射板からの照り返しによる放射エネルギーを放射温度計で測定するので、その測定結果から低温巻取り材の最エッジの位置を正確に判断することができ、これにより最エッジ温度を正確に判断することができる。   According to the temperature measuring device of the present invention, a reflector or reflector of radiant energy is provided toward at least the lower surface of the plate edge of the low-temperature winding material, and the radiant energy caused by reflection from the reflector or reflector is radiated to the temperature. Since the measurement is performed by the meter, the position of the outermost edge of the low-temperature winding material can be accurately determined from the measurement result, and thus the outermost edge temperature can be accurately determined.
従って本発明の形状不良の予測方法によれば、ランアウト冷却歪による形状不良の予測精度を高め得て、従来は形状不良によって一律スキンパス更正としていた低温巻取り材を、閾値を超えたもののみ更正対象とすることができるので、低温巻取り材の形状不良の更正に要する工数および費用を低減させることができる。   Therefore, according to the method for predicting a shape defect according to the present invention, it is possible to improve the accuracy of predicting a shape defect due to run-out cooling strain, and to correct only a low-temperature winding material that has conventionally been subjected to uniform skin path correction due to a shape defect, exceeding a threshold value. Since it can be used as a target, it is possible to reduce the man-hours and costs required for correcting the shape defect of the low-temperature winding material.
なお、前記温度測定装置においては、前記放射温度計は、前記低温巻取り材の幅方向に並べて複数台配置されていてもよく、このようにすれば、一台当たりの測定範囲が狭まるので、温度測定精度を高めることができる。   In the temperature measurement device, a plurality of the radiation thermometers may be arranged side by side in the width direction of the low-temperature winding material, and in this way, the measurement range per unit is narrowed, The temperature measurement accuracy can be increased.
本発明の熱間圧延における低温巻取り材のランアウト冷却歪による形状不良の予測方法の一実施例に用いられる本発明の温度測定装置の一実施例に係る放射温度計によるランアウト入側の鋼板熱間圧延終了温度(FT)およびランアウト出側の鋼板巻取り温度(CT)の測定位置並びにサーモビュアによるランアウト出側の鋼板巻取り温度(CT)の測定位置を示す説明図である。Steel plate heat on the runout inlet side by the radiation thermometer according to one embodiment of the temperature measuring device of the present invention used in one embodiment of a method for predicting a shape defect due to runout cooling strain of a low temperature winding material in hot rolling of the present invention It is explanatory drawing which shows the measurement position of the steel strip winding temperature (CT) of the runout exit side by a thermoviewer, and the measurement position of hot rolling end temperature (FT) and the runout exit steel plate winding temperature (CT). (a)および(b)は、上記サーモビュアによる通常の鋼板と低温巻取り材との巻取り温度(CT)の測定結果をそれぞれ示すサーモグラフィであり、(c)は、上記放射温度計による温度測定結果を示すグラフである。(A) And (b) is a thermography which each shows the measurement result of the coiling temperature (CT) of the normal steel plate and low temperature winding material by the said thermoviewer, (c) is the temperature measurement by the said radiation thermometer. It is a graph which shows a result. (a)は、上記実施例の温度測定装置で測定した鋼板のコイル長手方向の温度分布を示すグラフであり、(b)はその鋼板の耳波高さ実績を示すグラフである。(A) is a graph which shows the temperature distribution of the coil longitudinal direction of the steel plate measured with the temperature measuring apparatus of the said Example, (b) is a graph which shows the actual acoustic wave height of the steel plate. (a)は、従来の温度測定装置および上記実施例の温度測定装置における放射温度計による低温巻取り材の巻取り温度(CT)の測定位置をそれぞれ示すサーモグラフィであり、(b),(c)は、従来の温度測定装置および上記実施例の温度測定装置による温度測定結果をそれぞれ示すグラフである。(A) is the thermography which each shows the measurement position of the coiling temperature (CT) of the low temperature winding material by the radiation thermometer in the conventional temperature measuring apparatus and the temperature measuring apparatus of the said Example, (b), (c) ) Is a graph showing the results of temperature measurement by the conventional temperature measuring device and the temperature measuring device of the above-described embodiment. 上記実施例の温度測定装置の構成を示す略線図である。It is a basic diagram which shows the structure of the temperature measuring apparatus of the said Example. 本発明の温度測定装置の他の一実施例の構成を示す略線図である。It is an approximate line figure showing the composition of other examples of the temperature measuring device of the present invention.
以下、この発明の実施の形態を図面に基づき詳細に説明する。ここに、図1は、本発明の熱間圧延における低温巻取り材のランアウト冷却歪による形状不良の予測方法の一実施例に用いられる本発明の温度測定装置の一実施例に係る放射温度計によるランアウト入側の鋼板熱間圧延終了温度(FT)およびランアウト出側の鋼板巻取り温度(CT)の測定位置を示すとともにサーモビュアによるランアウト出側の鋼板巻取り温度(CT)の測定位置を示す説明図であり、また図2(a)および(b)は、上記サーモビュアによる通常の鋼板と低温巻取り材との巻取り温度(CT)の測定結果をそれぞれ示すサーモグラフィ、図2(c)は、上記放射温度計による温度測定結果を示すグラフである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a radiation thermometer according to an embodiment of the temperature measuring device of the present invention used in an embodiment of a method for predicting a shape defect due to run-out cooling strain of a low-temperature winding material in hot rolling of the present invention. Shows the measurement position of the steel sheet hot rolling finish temperature (FT) on the run-out entry side and the steel take-up temperature (CT) on the run-out exit side, and shows the measurement position of the steel take-up temperature (CT) on the run-out exit side by the thermoviewer. 2 (a) and 2 (b) are thermographs showing the results of measuring the coiling temperature (CT) of a normal steel plate and a low-temperature coiled material by the thermoviewer, and FIG. It is a graph which shows the temperature measurement result by the said radiation thermometer.
図2(c)の温度測定結果は、鋼板巻取り温度(CT)の測定位置で鋼板の真上から温度計測を行ったものであり、CTが低い560℃の低温巻取り材(CT560℃)では板最エッジからその約10mm内側までの間の板エッジ位置で温度が約200℃低下している。   The temperature measurement results in FIG. 2 (c) are obtained by measuring the temperature from directly above the steel sheet at the measurement position of the steel sheet winding temperature (CT). The low temperature winding material (CT 560 ° C.) at 560 ° C. with low CT. Then, the temperature is reduced by about 200 ° C. at the plate edge position between the plate edge and about 10 mm inside.
図3(a)は、上記実施例の温度測定装置で測定した鋼板の板センターと板最エッジとの温度の差をΔTとしてコイル長手方向のΔTの推移を示したグラフであり、図3(b)は、その鋼板の耳波高さの長手方向推移の実績を示すグラフである。これらのグラフから明らかなように、コイル長手方向のΔTの推移と、実際の耳波高さの長手方向推移との間には相関があり、冷却歪による形状不良はΔTが支配的であることがわかる。   FIG. 3 (a) is a graph showing the transition of ΔT in the coil longitudinal direction, where ΔT is the temperature difference between the plate center and the plate outermost edge of the steel plate measured by the temperature measuring device of the above embodiment. b) is a graph showing results of longitudinal transition of the ear wave height of the steel plate. As is apparent from these graphs, there is a correlation between the transition of ΔT in the longitudinal direction of the coil and the longitudinal transition of the actual ear wave height, and ΔT is dominant in shape defects due to cooling strain. Recognize.
上記実施例のランアウト冷却歪による形状不良の予測方法によれば、このΔTの値をコイル全長について管理することによって、SKPあるいは酸洗の入側での形状を予測することができる。すなわち、この実施例のランアウト冷却歪による形状不良の予測方法では、鋼板の板センターと板最エッジとの測定した温度の差ΔTを、あらかじめ実験あるいは実績に基づいて定めた閾値と比較して、温度差ΔTがその閾値以上になった低温巻取り材に、ランアウト冷却歪による形状不良(耳波)が発生すると予測する。   According to the method for predicting a shape defect due to run-out cooling strain in the above embodiment, the shape on the entry side of SKP or pickling can be predicted by managing the value of ΔT for the entire coil length. That is, in the predictive method of shape failure due to run-out cooling strain of this embodiment, the measured temperature difference ΔT between the plate center of the steel plate and the plate outermost edge is compared with a threshold value determined in advance based on experiments or results, It is predicted that a shape defect (ear wave) due to run-out cooling strain will occur in a low-temperature winding material having a temperature difference ΔT equal to or greater than the threshold value.
従って、この実施例の方法によれば、上記温度差ΔTが上記閾値を超えたもののみ更正対象とすることができるので、低温巻取り材の形状不良の更正に要する工数および費用を低減させることができる。   Therefore, according to the method of this embodiment, only those whose temperature difference ΔT exceeds the threshold value can be corrected, and therefore the man-hour and cost required for correcting the shape defect of the low-temperature winding material can be reduced. Can do.
ところで、上述のように板エッジ位置の10mm幅での温度が支配的になる状態では、鋼板の最エッジの温度を正確に評価することが極めて重要であるが、従来の温度測定装置では鋼板の最エッジの温度を評価することが困難であった。それは(1)放射温度計の測定間隔が大きい(約10〜20mmに一点)ということと、(2)図4(b)に示すように、鋼板の最エッジ付近において温度勾配が急激となるものの、どこが最エッジか判断することが困難である、といった理由からくるものである。   By the way, in the state where the temperature at the 10 mm width of the plate edge position becomes dominant as described above, it is extremely important to accurately evaluate the temperature of the outermost edge of the steel plate. It was difficult to evaluate the temperature of the outermost edge. (1) The measurement interval of the radiation thermometer is large (one point at about 10 to 20 mm), and (2) As shown in FIG. 4 (b), the temperature gradient becomes steep near the outermost edge of the steel plate. This is because it is difficult to determine where the edge is.
図4(a)は、従来の温度測定装置および上記実施例の温度測定装置における放射温度計による低温巻取り材の巻取り温度(CT)の測定位置をそれぞれ示すサーモグラフィであり、従来は通常、温度を測定する際、図4(a)のA一A’断面のように、鋼板の下にテーブルロール等がない場所で温度を測定するが、上記実施例の温度測定装置では、図4(a)のB−B’断面のように、鋼板1の下側にテーブルロール等の反射物Rがある状態で放射温度計により温度を測定する。   FIG. 4 (a) is a thermography showing the measurement position of the coiling temperature (CT) of the low-temperature winding material by the radiation thermometer in the conventional temperature measuring device and the temperature measuring device of the above-described embodiment. When measuring the temperature, the temperature is measured at a place where there is no table roll or the like under the steel plate, as in the A-1A ′ cross section of FIG. 4A. In the temperature measuring apparatus of the above embodiment, FIG. The temperature is measured with a radiation thermometer in the state where there is a reflector R such as a table roll on the lower side of the steel plate 1 as in the section BB ′ of a).
すなわちこの実施例の温度測定装置では、図5に示すように、低温巻取り材である鋼板Mの下側にテーブルロール等の反射物Rがある位置で、鋼板Mの上方に放射温度計1を鋼板Mの幅方向に複数台(図示例では2台)並べて配置(相対的に見れば、放射温度計1の下方に反射物Rを配置)して、鋼板Mの全幅に亘る温度を測定しており、ランアウトとコイラーとの間で鋼板はその長手方向へ送られるので、鋼板Mの全長および全幅に亘る温度測定が可能になる。   That is, in the temperature measuring device of this embodiment, as shown in FIG. 5, the radiation thermometer 1 is located above the steel plate M at a position where the reflector R such as a table roll is located below the steel plate M, which is a low-temperature winding material. Are arranged side by side in the width direction of the steel plate M (two in the illustrated example) (relatively, the reflector R is arranged below the radiation thermometer 1), and the temperature over the entire width of the steel plate M is measured. Since the steel sheet is fed in the longitudinal direction between the runout and the coiler, temperature measurement over the entire length and the entire width of the steel sheet M becomes possible.
図4(c)は、上記実施例の温度測定装置による温度測定結果をそれぞれ示すグラフであり、このグラフから明らかなように、鋼板の最エッジで最も低下した測定温度が鋼板温度のテーブルロールからの照り返しによって再び上昇するので、上記実施例の温度測定装置によれば、鋼板温度のテーブルロールからの照り返しによる放射エネルギーを利用することで、最エッジの位置を特定してその温度を測定することができる。   FIG.4 (c) is a graph which respectively shows the temperature measurement result by the temperature measuring apparatus of the said Example, and as is clear from this graph, the measured temperature which fell most at the outermost edge of the steel plate is from the table roll of steel plate temperature. Therefore, according to the temperature measuring device of the above embodiment, the position of the outermost edge is specified and the temperature is measured by using the radiant energy by the reflection from the table roll of the steel plate temperature. Can do.
しかも、この実施例の温度測定装置によれば、放射温度計1が、鋼板Mの幅方向に並べて複数台配置されていることから、一台当たりの測定範囲が狭まるので、温度測定精度を高めることができる。   Moreover, according to the temperature measuring apparatus of this embodiment, since a plurality of the radiation thermometers 1 are arranged in the width direction of the steel plate M, the measurement range per unit is narrowed, so that the temperature measurement accuracy is increased. be able to.
図6は、本発明の温度測定装置の他の一実施例の構成を示しており、先の実施例の温度測定装置では熱の照り返しを得るためにテーブルロールを用いているが、この実施例の温度測定装置では、図示のように鋼板Mの上方に放射温度計1を鋼板Mの幅方向に例えば1台配置するとともに、その放射温度計1を配置した位置で鋼板Mの下方に鋼板Mの下面に向けて、鋼板よりも幅広の反射板2を配置しており、この実施例の温度測定装置によれば、鋼板温度の反射板2からの照り返しによる放射エネルギーを利用することで、最エッジの位置を特定してその温度を測定することができる。   FIG. 6 shows the configuration of another embodiment of the temperature measuring device of the present invention. In the temperature measuring device of the previous embodiment, a table roll is used to obtain heat reflection. As shown in the figure, for example, one radiation thermometer 1 is disposed above the steel plate M in the width direction of the steel plate M, and the steel plate M is disposed below the steel plate M at the position where the radiation thermometer 1 is disposed. The reflector 2 that is wider than the steel plate is disposed toward the lower surface of the steel plate. According to the temperature measuring device of this embodiment, by utilizing the radiant energy generated by the reflection from the reflector 2 at the steel plate temperature, The position of the edge can be identified and its temperature measured.
以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載の範囲内で適宜変更し得るものであり、例えば、反射物Rは、テーブルロール以外の既設物でも良く、また反射板2は、鋼板Mの両板エッジ付近のみに設けてもよい。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples and can be appropriately changed within the scope of the claims. For example, the reflector R is a table. Existing objects other than a roll may be sufficient, and the reflecting plate 2 may be provided only in the vicinity of both plate edges of the steel plate M.
かくして本発明の温度測定装置によれば、低温巻取り材の少なくとも板エッジの下面に向けて、放射エネルギーの反射物あるいは反射板を設け、その反射物あるいは反射板からの照り返しによる放射エネルギーを放射温度計で測定するので、その測定結果から低温巻取り材の最エッジの位置を正確に判断することができ、これにより最エッジ温度を正確に判断することができる。   Thus, according to the temperature measurement device of the present invention, a reflector or reflector of radiant energy is provided toward at least the lower surface of the plate edge of the low-temperature winding material, and the radiant energy due to reflection from the reflector or reflector is radiated. Since it measures with a thermometer, the position of the outermost edge of a low-temperature winding material can be judged correctly from the measurement result, and, thereby, the outermost edge temperature can be judged correctly.
従って、本発明の熱間圧延における低温巻取り材のランアウト冷却歪による形状不良の予測方法によれば、ランアウト冷却歪による形状不良の予測精度を高め得て、従来は形状不良によって一律スキンパス更正としていた低温巻取り材を、閾値を超えたもののみ更正対象とすることができるので、低温巻取り材の形状不良の更正に要する工数および費用を低減させることができる。   Therefore, according to the method for predicting the shape defect due to the run-out cooling strain of the low-temperature winding material in the hot rolling of the present invention, it is possible to improve the prediction accuracy of the shape defect due to the run-out cooling strain. Since the low-temperature winding material that has exceeded the threshold value can be corrected, it is possible to reduce the man-hours and costs required for correcting the defective shape of the low-temperature winding material.
1 放射温度計
2 反射板
M 鋼板
1 Radiation thermometer 2 Reflector M Steel plate

Claims (3)

  1. 熱間圧延における低温巻取り材のランアウト冷却歪による形状不良を予測するに際し、
    ランアウトの出後であってコイラーでの巻取り前の低温巻取り材の温度を放射温度計にて全長および全幅に亘り測定し、
    このときその放射温度計の下方の低温巻取り材の少なくとも板エッジの下側に放射エネルギーの反射物を配置し、その反射物からの照り返しによる放射エネルギーを放射温度計で測定してその測定結果から低温巻取り材の最エッジ温度を判断し、
    低温巻取り材のセンターの平均温度と最エッジ温度との温度差ΔTに所定の閾値を設け、上記測定結果における上記温度差ΔTがその閾値以上になった低温巻取り材に、ランアウト冷却歪による形状不良が発生すると予測することを特徴とするランアウト冷却歪による形状不良の予測方法。
    In predicting shape defects due to run-out cooling distortion of low-temperature winding material in hot rolling,
    Measure the temperature of the low-temperature winding material after the runout and before winding with a coiler over the entire length and width with a radiation thermometer,
    At this time, a radiant energy reflector is placed at least under the edge of the cold winding material under the radiant thermometer, and the radiant energy caused by reflection from the reflector is measured with the radiant thermometer. To determine the lowest edge temperature of the cold winding material,
    A predetermined threshold is provided for the temperature difference ΔT between the average temperature of the center of the low temperature winding material and the outermost edge temperature, and the low temperature winding material in which the temperature difference ΔT in the measurement result is equal to or greater than the threshold is caused by run-out cooling strain. A method for predicting a shape defect due to run-out cooling strain, wherein a shape defect is predicted to occur.
  2. 請求項1記載のランアウト冷却歪による形状不良の予測方法に用いられる温度測定装置において、
    前記低温巻取り材の全幅にわたる放射エネルギーを上方から測定する放射温度計と、
    前記低温巻取り材の少なくとも板エッジの下面に向けて前記放射温度計の下方に配置された、前記放射エネルギーの反射物としての反射板と、
    を備えることを特徴とする温度測定装置。
    In the temperature measuring apparatus used for the prediction method of the shape defect by the runout cooling distortion according to claim 1,
    A radiation thermometer for measuring the radiant energy over the entire width of the cold winding material from above;
    A reflector as a reflector of the radiant energy, disposed below the radiation thermometer toward at least the lower surface of the plate edge of the cold winding material;
    A temperature measuring device comprising:
  3. 請求項2記載の温度測定装置において、
    前記放射温度計は、前記低温巻取り材の幅方向に並べて複数台配置されていることを特徴とする温度測定装置。
    The temperature measuring device according to claim 2, wherein
    A plurality of the radiation thermometers are arranged side by side in the width direction of the low temperature winding material.
JP2011035286A 2011-02-22 2011-02-22 Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method Active JP5573726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035286A JP5573726B2 (en) 2011-02-22 2011-02-22 Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035286A JP5573726B2 (en) 2011-02-22 2011-02-22 Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method

Publications (2)

Publication Number Publication Date
JP2012170978A JP2012170978A (en) 2012-09-10
JP5573726B2 true JP5573726B2 (en) 2014-08-20

Family

ID=46974377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035286A Active JP5573726B2 (en) 2011-02-22 2011-02-22 Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method

Country Status (1)

Country Link
JP (1) JP5573726B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392115B2 (en) * 2000-08-03 2009-12-24 日鐵プラント設計株式会社 Method and apparatus for controlling flatness of metal plate
JP4262142B2 (en) * 2003-10-28 2009-05-13 新日本製鐵株式会社 Metal plate shape prediction method and metal plate manufacturing method
JP4710237B2 (en) * 2004-03-10 2011-06-29 Jfeスチール株式会社 Method for predicting deformation of thick steel plate and method for manufacturing the same
JP5195528B2 (en) * 2009-03-03 2013-05-08 新日鐵住金株式会社 Method for predicting camber amount at room temperature and operation method using the same

Also Published As

Publication number Publication date
JP2012170978A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP2007216246A (en) Method for controlling shape of metal strip in hot rolling
KR100432682B1 (en) Metal plate flatness controlling method and device
JP4106040B2 (en) Abnormality diagnosis and abnormality avoidance method for steel sheet cooling control device
TW401328B (en) Rolling roll profile control equipment
US20110103426A1 (en) Steel plate quality assurance system and equipment thereof
JP5391205B2 (en) Control device
JP4701742B2 (en) Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method
JP3302914B2 (en) Method and apparatus for manufacturing hot-rolled steel sheet
JP5573726B2 (en) Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method
KR101592741B1 (en) Temperature distribution prediction apparatus
AT513245B1 (en) Flatness measurement and measurement of residual stresses for a metallic flat product
JP2013150990A (en) Apparatus and method of controlling hot rolling mill for thin plate
JP2012011448A (en) Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied
JP5928721B2 (en) Prediction method and prediction device for shape defects due to runout cooling strain
JP5195528B2 (en) Method for predicting camber amount at room temperature and operation method using the same
JP5381740B2 (en) Thickness control method of hot rolling mill
JP4109407B2 (en) Method and apparatus for controlling flatness of metal plate
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
JPH11138205A (en) Method for predicting material temperature in multi-pass rolling
JP5589260B2 (en) Thick steel plate quality assurance system
JP3895602B2 (en) Steel plate manufacturing method and steel plate manufacturing apparatus
JP2001137943A (en) Method and device for controlling flatness of metallic sheet
JP5391758B2 (en) Thick steel plate quality assurance equipment
JP5310146B2 (en) Thick steel plate quality assurance equipment
JP5630337B2 (en) Steel sheet quality control temperature setting device and quality control temperature setting method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250