JP4710237B2 - Method for predicting deformation of thick steel plate and method for manufacturing the same - Google Patents

Method for predicting deformation of thick steel plate and method for manufacturing the same Download PDF

Info

Publication number
JP4710237B2
JP4710237B2 JP2004067002A JP2004067002A JP4710237B2 JP 4710237 B2 JP4710237 B2 JP 4710237B2 JP 2004067002 A JP2004067002 A JP 2004067002A JP 2004067002 A JP2004067002 A JP 2004067002A JP 4710237 B2 JP4710237 B2 JP 4710237B2
Authority
JP
Japan
Prior art keywords
steel plate
thick steel
deformation amount
temperature
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004067002A
Other languages
Japanese (ja)
Other versions
JP2005254264A (en
Inventor
裕一郎 渡辺
由紀雄 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004067002A priority Critical patent/JP4710237B2/en
Publication of JP2005254264A publication Critical patent/JP2005254264A/en
Application granted granted Critical
Publication of JP4710237B2 publication Critical patent/JP4710237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、熱間圧延後冷却された厚板鋼板を切断加工した際の変形量を予測する厚板鋼板の変形量予測方法、及びその予測方法を用いた厚板鋼板の製造方法に関する。   The present invention relates to a deformation amount prediction method for a thick steel plate that predicts a deformation amount when a thick steel plate cooled after hot rolling is cut, and a method for manufacturing the thick steel plate using the prediction method.

近年、厚板鋼板製造プロセスにおいて、制御圧延後に鋼板を強水冷することにより高強度、高靭性鋼板を得る加速冷却技術が広く行われるようになってきている。加速冷却は、従来の添加元素成分を低減して製造コストを大幅に削減できるのみならず、溶接性にも優れた鋼板を製造することが可能となる。加速冷却においては、高温の鋼板表面に冷却ノズルより冷却水を噴射して、鋼板表面の対流沸騰熱伝達現象により自然放冷の数百倍の高冷却速度を達成させて、より微細な結晶構造を有する鋼板、すなわち、高強度、高靭性の鋼板を製造することが可能となる。   In recent years, an accelerated cooling technique for obtaining a high-strength, high-toughness steel sheet by strongly cooling the steel sheet after controlled rolling has been widely performed in a thick steel sheet manufacturing process. Accelerated cooling can not only greatly reduce the manufacturing cost by reducing the conventional additive element components, but also can produce a steel sheet having excellent weldability. In accelerated cooling, cooling water is sprayed from the cooling nozzle onto the surface of the hot steel sheet, and the convection boiling heat transfer phenomenon on the surface of the steel sheet achieves a high cooling rate several hundred times that of natural cooling, resulting in a finer crystal structure. It is possible to manufacture a steel plate having a high strength, a high toughness.

しかし、加速冷却はその高冷却性ゆえに、冷却水の水量密度、鋼板の表面温度、スケール厚など鋼板表面性状などの冷却時のわずかな不均一要因が鋼板の大きな温度むらを生じさせる。特に、板端部近傍においては鋼板が冷えやすく温度が急激に低下する。このような温度むらが発生すると鋼板の機械的特性にばらつきが生じるだけでなく、耳伸びや腹伸びなどの形状不良、及び、残留応力による条切り時の横曲がり、すなわち、条切りキャンバーが発生する。   However, because of the high cooling capability of accelerated cooling, slight non-uniform factors during cooling such as the water content density of the cooling water, the surface temperature of the steel plate, and the surface properties of the steel plate such as the scale thickness cause large temperature unevenness of the steel plate. In particular, in the vicinity of the end of the plate, the steel plate is apt to cool and the temperature rapidly decreases. When such temperature unevenness occurs, not only does the mechanical properties of the steel sheet vary, but also shape defects such as ear stretch and belly stretch, and lateral bending due to residual stress, that is, a cut camber occurs. To do.

鋼板に生じた残留応力は、熱処理や冷間矯正などの後工程を行なうことで解消することが可能であるが、全ての鋼板にこのような処理をほどこすのは生産効率の低下や製造コストの著しい増加を招いてしまう。   Residual stress generated in steel sheets can be eliminated by post-processing such as heat treatment and cold straightening. However, applying such treatment to all steel sheets reduces production efficiency and manufacturing costs. Will lead to a significant increase.

このような問題を解決するために、例えば、「厚鋼板加速冷却時の温度、熱応力、形状不良の解析」、鉄と鋼 Vol.1.83,No.2(1997)(非特許文献1)に鋼板の残留応力及び条切りキャンバー量を予測する技術が記載されている。これは、圧延終了時の初期温度分布から、水冷及び空冷時の抜熱、熱伝導の計算により相変態を考慮して鋼板の幅方向温度分布を計算し、降伏応力、ヤング率及び線膨張係数などの材料物性値の温度依存性を考慮しつつ弾塑性応力解析を行い、鋼板の温度むらにともなう熱膨張量差が残留応力として露見するとして求め、条切りキャンバーを予測する手法である。一方、特開昭61−262428号公報(特許文献1)及び特開平4−66271号公報(特許文献2)では、それぞれ最高温度と最低温度差、板幅中央部とエッジ部の温度差など温度差そのものを判定基準とする技術が開示されている。
「厚鋼板加速冷却時の温度、熱応力、形状不良の解析」、鉄と鋼 Vol.1.83,No.2(1997) 特開昭61−262428号公報 特開平4−66271号公報
In order to solve such a problem, for example, “analysis of temperature, thermal stress, and shape defect during accelerated cooling of thick steel plate”, Iron and Steel Vol.1.83, No.2 (1997) (Non-Patent Document 1) ) Describes a technique for predicting the residual stress of the steel sheet and the amount of the cut camber. This is because the temperature distribution in the width direction of the steel sheet is calculated from the initial temperature distribution at the end of rolling, taking into account the phase transformation by calculating heat removal and heat conduction during water cooling and air cooling, yield stress, Young's modulus and linear expansion coefficient. This is a technique for predicting a cut camber by performing an elasto-plastic stress analysis in consideration of the temperature dependence of material property values such as the above, and finding that the difference in thermal expansion due to temperature unevenness of the steel sheet is exposed as residual stress. On the other hand, in Japanese Patent Application Laid-Open No. 61-262428 (Patent Document 1) and Japanese Patent Application Laid-Open No. 4-66271 (Patent Document 2), the temperature such as the maximum temperature and the minimum temperature difference, the temperature difference between the center portion of the plate width and the edge portion, respectively. A technique using the difference itself as a criterion is disclosed.
"Analysis of temperature, thermal stress, and shape defects during accelerated cooling of thick steel plates", Iron and Steel Vol.1.83, No.2 (1997) JP 61-262428 A JP-A-4-66271

上記の従来の技術(非特許文献1)は、鋼板温度分布からキャンバー量を算出する過程が複雑であり、繰り返し計算をする必要が生じることもあることからプロセスコンピューターにロジックをインプットしてオンライン判定を行なうためには多大な労力を要し、また、計算負荷も大きいという問題点がある。また、従来の技術(特許文献1,2)は、条切りキャンバーに対しては温度差だけではなく温度分布形態も多々影響するため、判定精度が思わしくないという問題点がある。    In the above conventional technique (Non-patent Document 1), the process of calculating the camber amount from the steel plate temperature distribution is complicated, and it may be necessary to perform repeated calculations. However, there is a problem that a great deal of labor is required to perform the calculation and the calculation load is heavy. In addition, the conventional techniques (Patent Documents 1 and 2) have a problem in that the accuracy of determination is not conspicuous because not only the temperature difference but also the temperature distribution form affects the cut camber.

本発明は、上記のような問題点を解決するためになされたものであり、複雑な理論計算を行なわずに、変形量を精度良く予測することを可能にした厚板鋼板の変形量予測方法、及びその予測され変形量に基づいて後工程の追加判定を行なうことで変形量を許容値以内とする厚板鋼板の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and a deformation amount prediction method for a thick steel plate that can accurately predict the deformation amount without performing complicated theoretical calculation. An object of the present invention is to provide a method of manufacturing a thick steel plate that makes the deformation amount within an allowable value by performing an additional determination in a subsequent process based on the predicted deformation amount.

本発明に係る厚板鋼板の変形量予測方法は、熱間圧延された厚板鋼板の板幅方向の温度分布を測定する工程と、板幅方向の温度分布の基準温度点からの温度差と距離とを乗じて積算して評価指数を求める工程とを有する。そして、前記温度分布を、前記厚板鋼板の板幅方向に所定のピッチで温度を測定し、更に、その温度を長手方向に平均化して求める。
また、本発明に係る厚板鋼板の変形量予測方法は、前記評価指数に基づいて厚板鋼板の切断加工後の変形量を予測する工程を更に有する。
また、本発明に係る厚板鋼板の変形量予測方法は、前記厚板鋼板の切断領域の板幅方向の温度分布を測定し、切断領域の評価指数を求め又は切断後の前記厚板鋼板の前記変形量を予測する。
また、本発明に係る厚板鋼板の変形量予測方法は、前記厚板鋼板の熱間矯正前又は熱間矯正後の板幅方向の温度分布を測定する。
また、本発明に係る厚板鋼板の変形量予測方法は、厚板鋼板の変形量としてキャンバー量を予測する。
The method for predicting the deformation amount of a thick steel plate according to the present invention includes a step of measuring the temperature distribution in the plate width direction of the hot-rolled thick steel plate, and a temperature difference from a reference temperature point of the temperature distribution in the plate width direction. And multiplying the distance and integrating to obtain an evaluation index. The temperature distribution is obtained by measuring the temperature at a predetermined pitch in the plate width direction of the thick steel plate and further averaging the temperature in the longitudinal direction.
Moreover, the deformation amount prediction method for a thick steel plate according to the present invention further includes a step of predicting the deformation amount after cutting of the thick steel plate based on the evaluation index.
Further, the method for predicting the amount of deformation of a thick steel plate according to the present invention measures the temperature distribution in the plate width direction of the cutting region of the thick steel plate, determines the evaluation index of the cutting region, or determines the thickness of the thick steel plate after cutting. The deformation amount is predicted.
Moreover, deformation of the prediction method of thick steel sheet according to the present invention, that measure the hot straightening before or temperature distribution in the plate width direction after the hot straightening of the thick steel plates.
Moreover, the deformation amount prediction method of the thick steel plate according to the present invention predicts the camber amount as the deformation amount of the thick steel plate.

また、本発明に係る厚板鋼板の製造方法は、上記の厚板鋼板の変形量予測方法により求められ前記評価指数又は前記変形量に基づいて後段側の冷間矯正又は加熱処理を行うかどうか又はその条件を設定する。
また、本発明に係る厚板鋼板の製造方法は、 前記評価指数又は前記変形量が所定の基準値より大であると判断された場合には切断後に冷間矯正を行う。
Moreover, the manufacturing method of the thick steel plate according to the present invention is obtained by the deformation amount prediction method for the thick steel plate, and whether or not to perform cold correction or heat treatment on the rear stage side based on the evaluation index or the deformation amount. Or set the conditions.
Moreover, the manufacturing method of the thick steel plate which concerns on this invention performs cold correction after a cutting | disconnection, when it is judged that the said evaluation index or the said deformation | transformation amount is larger than a predetermined reference value.

本発明によれば、複雑な計算ロジックなしで、鋼板温度分布の測定結果から直接判定することができる評価指数(パラメータ)を算出することができるので、例えば条切りキャンバーの不良判定を高精度に行なうことができる。   According to the present invention, it is possible to calculate an evaluation index (parameter) that can be directly determined from the measurement result of the steel plate temperature distribution without complicated calculation logic. Can be done.

図1は本発明の厚板鋼板の変形量予測方法及び厚板鋼板の製造方法が適用された製造ラインの一例を示した説明図である。図1において、1は圧延機、2は加速冷却装置、3はホットレベラー、4は鋼板の板幅方向温度計、5は変形量予測コンピュータ、6は仕分け装置、7はコールドレベラー(冷間矯正機)である。なお、変形量予測コンピュータ5は、厚板鋼板10が切断された後の変形量を予測する演算処理を行うが、その演算処理の原理を図2〜図5を用いて以下説明する。   FIG. 1 is an explanatory view showing an example of a production line to which a method for predicting a deformation amount of a thick steel plate and a method for producing a thick steel plate according to the present invention are applied. In FIG. 1, 1 is a rolling mill, 2 is an accelerated cooling device, 3 is a hot leveler, 4 is a plate width direction thermometer, 5 is a deformation amount prediction computer, 6 is a sorting device, and 7 is a cold leveler (cold straightening). Machine). The deformation amount prediction computer 5 performs a calculation process for predicting a deformation amount after the thick steel plate 10 is cut. The principle of the calculation process will be described below with reference to FIGS.

図1の製造ラインにおいて、例えば板厚19mm、板幅2060mmの厚板鋼板10を、圧延機1、加速冷却装置2及びホットレベラー3を介して製造した後に、標点法により鋼板の板幅方向の残留応力分布を測定するとともに、例えば条切り幅150mm、条切り長さ10mで条切り加工を行い、条切りキャンバー量dを測定した。   In the production line of FIG. 1, for example, a thick steel plate 10 having a plate thickness of 19 mm and a plate width of 2060 mm is manufactured via the rolling mill 1, the accelerated cooling device 2, and the hot leveler 3. The residual stress distribution was measured, and for example, the cutting process was performed with a cutting width of 150 mm and a cutting length of 10 m, and the cutting camber amount d was measured.

図2は残留応力の測定結果及びホットレベラー3の出側での鋼板温度分布の測定結果を合わせた特性図である。ホットレベラー3の出側での鋼板の温度分布と残留応力分布とは相似形の分布になっている。これは、ホットレベラー3以前で発生した熱応力がホットレベラー3により除去されるため、次の(1)式にしたがって温度偏差がそのまま熱応力差、すなわち、残留応力として露見するためである。   FIG. 2 is a characteristic diagram combining the measurement result of the residual stress and the measurement result of the steel plate temperature distribution on the outlet side of the hot leveler 3. The temperature distribution and residual stress distribution of the steel plate on the outlet side of the hot leveler 3 are similar to each other. This is because the thermal stress generated before the hot leveler 3 is removed by the hot leveler 3, so that the temperature deviation is exposed as the thermal stress difference, that is, the residual stress according to the following equation (1).

Figure 0004710237
ここで、Δσ(x):残留応力差、α:線膨張係数、E:ヤング率、ΔT(x):温度偏差であり、xは板幅方向の位置を表す。
Figure 0004710237
Here, Δσ (x): residual stress difference, α: linear expansion coefficient, E: Young's modulus, ΔT (x): temperature deviation, and x represents a position in the plate width direction.

図3は条切りキャンバーの概念図であり、厚板鋼板から破線に示される領域を切断して取り出したときに、鋼板に生じた残留応力が切断加工により開放されて生じるものであり、以下の式で計算できる。すなわち、鋼板に作用する曲げモーメントMは次の(2)式で計算される。   FIG. 3 is a conceptual diagram of a line-cut camber. When a region indicated by a broken line is cut out from a thick steel plate, the residual stress generated in the steel plate is released by cutting and is generated as follows. It can be calculated by the formula. That is, the bending moment M acting on the steel plate is calculated by the following equation (2).

Figure 0004710237
曲率Kは、次の(3)式で計算される。
Figure 0004710237
The curvature K is calculated by the following equation (3).

Figure 0004710237
Figure 0004710237

ここで、I:断面2次モーメントである。キャンバーを円弧と仮定すると、キャンバー量dは、次の(4)式で示される。   Here, I: sectional moment of inertia. Assuming that the camber is an arc, the camber amount d is expressed by the following equation (4).

Figure 0004710237
Figure 0004710237

ここで、L:条切り長さ、W:条切り幅である。(4)式に(1)式を代入すると、次の(5)式が得られる。   Here, L is the cut length, and W is the cut width. Substituting equation (1) into equation (4) yields the following equation (5).

Figure 0004710237
Figure 0004710237

図4は厚板鋼板の幅方向の温度分布を示した特性図であり、鋼板温度の測定結果から条切り長さ10m部分に相当する温度データを圧延長さ方向に平均化処理したものである。本実施形態1においては、以上のような知見に基づき、図4に示されるように条切り範囲内のn個の温度データを用いて次の(6)式に示すパラメーター(評価指数)Ωを計算する。   FIG. 4 is a characteristic diagram showing the temperature distribution in the width direction of the thick steel plate, and the temperature data corresponding to the section of 10 m of the cut length is averaged in the rolling length direction from the measurement result of the steel plate temperature. . In the first embodiment, based on the above knowledge, the parameter (evaluation index) Ω shown in the following equation (6) is set using n pieces of temperature data within the cutting range as shown in FIG. calculate.

Figure 0004710237
Figure 0004710237

ここで、Ti:板幅方向各位置での温度測定値の長手方向平均値、Tc:条幅中央部に相当する温度(基準温度)、xi:条幅方向温度測定位置、Δx:温度測定ピッチである。   Here, Ti: average value in the longitudinal direction of temperature measurement values at each position in the sheet width direction, Tc: temperature corresponding to the center part of the strip width (reference temperature), xi: temperature measurement position in the strip width direction, Δx: temperature measurement pitch .

図5は上記のパラメータΩと条切りキャンバーの実測値との関係を示した特性図である。パラメータΩとキャンバーとには相関関係がみられる。今、L=10000mm、α=1.4×10-51/℃とすると、図5に示された最小2乗法での近似直線の傾きは、(5)式の3L3α/2(=2100)に相当する値となる。 FIG. 5 is a characteristic diagram showing the relationship between the parameter Ω and the measured value of the cut camber. There is a correlation between the parameter Ω and the camber. Assuming that L = 10000 mm and α = 1.4 × 10 −5 1 / ° C., the slope of the approximate straight line in the least square method shown in FIG. 5 is 3L 3 α / 2 (= 2100).

以上のように、条切り幅部分の鋼板温度の測定結果からパラメータΩを計算することで簡易的に精度良く条切りキャンバー量を予測することが可能となる。   As described above, by calculating the parameter Ω from the measurement result of the steel plate temperature at the cut width portion, the cut camber amount can be predicted easily and accurately.

図6は図1の変形量予測コンピュータ5の処理過程を示したフローチャートである。変形量予測コンピュータ5は、ホットレベラー3の出側に配置された板幅方向温度計4から板幅方向の温度分布のデータを取り込み(S1)、上記の(6)式の演算処理を行ってパラメーターΩを計算する(S2)。このとき、板幅方向温度計4は厚板鋼板10の幅方向に所定のピッチで温度を測定し、変形量予測コンピュータ5は例えば図3の破線に示される領域(条切りされる領域毎に)の幅方向の温度分布を取り込んで、それに対応したパラメーターΩを計算することになる。そして、変形量予測コンピュータ5は、そのパラメーターΩが、パラメーターΩ≦許容値の関係にあるかどうかを判断し(S3)、上記の関係式を満たしていると判断すると、仕分け装置6に対して指令を出力し、仕分け装置6は厚板鋼板10の次工程に移送させる(S4)。図1の例では、コールドレベラー7による矯正を省略してそれ以降の処理に進むことになる。上記の関係式が満たされないときには、例えば顧客先で切断したときに条切りキャンバー量が許容範囲にないものとして、図1の例では、仕分け装置6によって厚板鋼板10をコールドレベラー7側に移送させて、コールドレベラー7による矯正を行って製品の変形を抑制する(S5)。   FIG. 6 is a flowchart showing the process of the deformation amount prediction computer 5 of FIG. The deformation amount prediction computer 5 takes in the data of the temperature distribution in the plate width direction from the plate width direction thermometer 4 arranged on the outlet side of the hot leveler 3 (S1), and performs the arithmetic processing of the above equation (6). The parameter Ω is calculated (S2). At this time, the plate width direction thermometer 4 measures the temperature at a predetermined pitch in the width direction of the thick plate steel plate 10, and the deformation amount prediction computer 5 is, for example, the region indicated by a broken line in FIG. ), And the corresponding parameter Ω is calculated. Then, the deformation amount predicting computer 5 determines whether or not the parameter Ω satisfies the relationship of parameter Ω ≦ allowable value (S3). The command is output, and the sorting device 6 is transferred to the next process of the thick steel plate 10 (S4). In the example of FIG. 1, the correction by the cold leveler 7 is omitted, and the process proceeds to the subsequent processing. When the above relational expression is not satisfied, for example, the cutting camber amount is not within an allowable range when cutting at the customer site, and in the example of FIG. 1, the thick steel plate 10 is transferred to the cold leveler 7 side by the sorting device 6. Then, correction by the cold leveler 7 is performed to suppress deformation of the product (S5).

なお、ここでは、ホットレベラー3の出側に板幅方向温度計4を設けた例について説明したが、ホットレベラー3の入側に板幅方向温度計4を設けてもよい。ホットレベラー3による矯正はその時点での鋼板10の形状又は反りの矯正が主であって、残留応力の抑制には殆ど効果がないので、ホットレベラー3の入側の幅方向の温度分布を求めても、同様に鋼板の切断後の変形量を予測することができる。また、上記の関係式が満たされないときには、コールドレベラー7による矯正を行って製品の変形を抑制する例について説明したが、それに代えて又はそれとともに熱処理を後工程においてするようにしてもよい。   Here, the example in which the plate width direction thermometer 4 is provided on the exit side of the hot leveler 3 has been described, but the plate width direction thermometer 4 may be provided on the entry side of the hot leveler 3. The correction by the hot leveler 3 is mainly correction of the shape or warpage of the steel plate 10 at that time and has little effect on suppressing the residual stress. Therefore, the temperature distribution in the width direction on the entry side of the hot leveler 3 is obtained. However, the deformation amount after cutting of the steel sheet can be predicted in the same manner. Moreover, when the above relational expression is not satisfied, the example in which the correction by the cold leveler 7 is performed to suppress the deformation of the product has been described. However, instead of or in addition to this, heat treatment may be performed in the subsequent process.

また、上記の例においては、条切りキャンバー量を予測する例について説明したが、温度分布さえ適切に得られれば任意の形状に対する切断後の変形量を同様にして予測することができる。また、上記の例においてはパラメータΩを求めてその値が許容値以下であるかどうかについて判断する例について説明したが、パラメータΩから変形量を求めてその変形量が許容値以下であるかどうかについて判断するようにしてもよい。また、基準温度点として、条幅中央部の例について説明したが、条幅中央部に限定されず、例えばその近傍の位置であってもよい。   In the above example, the example of predicting the amount of the cut camber has been described. However, as long as the temperature distribution is obtained appropriately, the amount of deformation after cutting of an arbitrary shape can be similarly predicted. In the above example, the parameter Ω is obtained to determine whether the value is less than the allowable value. However, the deformation amount is obtained from the parameter Ω, and whether the deformation amount is less than the allowable value. You may make it judge about. Moreover, although the example of the strip width center part was demonstrated as a reference | standard temperature point, it is not limited to a strip width center part, For example, the position of the vicinity may be sufficient.

板厚14〜25mm、板幅2200〜3200mmの加速冷却材を、条切り幅150mm〜400mm、条切り長さ10〜15mの各種の条件で条切り加工を行なった。その際、条切りキャンバーが許容範囲内であるかをどうかを、本発明及び従来方法(条切り幅内での最大温度偏差)をそれぞれ用いて判定し、実測の条切りキャンバー量と比較した結果をそれぞれ図7(本発明)及び図8(従来方法)に示す。従来法では、キャンバーの大きなものを良好と判定し、また、小さなものを不良と判定しているものがあるが、本発明によれば、複雑な計算なしで条切りキャンバーの不良判定を高精度に行なうことができる。   An accelerated coolant having a plate thickness of 14 to 25 mm and a plate width of 2200 to 3200 mm was subjected to cutting under various conditions of a cutting width of 150 mm to 400 mm and a cutting length of 10 to 15 m. At that time, whether or not the cut-off camber is within the allowable range is determined using the present invention and the conventional method (maximum temperature deviation within the cut-off width), respectively, and the result of comparison with the actually measured cut-off camber amount. Are shown in FIG. 7 (present invention) and FIG. 8 (conventional method), respectively. In the conventional method, a large camber is determined to be good and a small one is determined to be bad. However, according to the present invention, it is possible to accurately determine the defect of the cut camber without complicated calculation. Can be done.

本発明が適用された厚板鋼板の製造ラインの一例を示した説明図。Explanatory drawing which showed an example of the production line of the thick steel plate to which this invention was applied. 残留応力とホットレベラー出側での温度分布の測定結果を示す図。The figure which shows the measurement result of the temperature distribution in a residual stress and a hot leveler delivery side. 条切りキャンバーの概念図。The conceptual diagram of a line cutting camber. 厚板鋼板の幅方向の温度分布を示した特性図。The characteristic view which showed the temperature distribution of the width direction of a thick steel plate. パラメータΩと条切りキャンバーの実測値との関係を示す図。The figure which shows the relationship between parameter (omega) and the measured value of a line cutting camber. 変形量予測コンピュータの処理過程を示したフローチャート。The flowchart which showed the process of the deformation | transformation amount prediction computer. 本発明によって条切りキャンバーの判定を行なった結果を示す図。The figure which shows the result of having performed the determination of a line cutting camber by this invention. 従来法によって条切りキャンバーの判定を行なった結果を示す図。The figure which shows the result of having determined the line cutting camber by the conventional method.

符号の説明Explanation of symbols

1 圧延機、2 加速冷却装置、3 ホットレベラー(熱間矯正機)、4 板幅方向温度計、5 変形量予測コンピュータ、6 仕分け装置、7 コールドレベラー(冷間矯正機)、10 厚板鋼板。
DESCRIPTION OF SYMBOLS 1 Rolling machine, 2 Accelerated cooling device, 3 Hot leveler (hot straightening machine), 4 Sheet width direction thermometer, 5 Deformation amount prediction computer, 6 Sorting device, 7 Cold leveler (cold straightening machine), 10 Thick plate steel plate .

Claims (7)

熱間圧延された厚板鋼板の板幅方向の温度分布を測定する工程と、
板幅方向の温度分布の基準温度点からの温度差と距離とを乗じて積算して評価指数を求める工程とを有し、
前記温度分布を、前記厚板鋼板の板幅方向に所定のピッチで温度を測定し、更に、その温度を長手方向に平均化して求めることを特徴とする厚板鋼板の変形量予測方法。
A step of measuring the temperature distribution in the plate width direction of the hot-rolled thick steel plate,
A step of obtaining an evaluation index by multiplying the temperature difference from the reference temperature point of the temperature distribution in the plate width direction and the distance and integrating the temperature difference, and
A method for predicting a deformation amount of a thick steel plate, wherein the temperature distribution is obtained by measuring the temperature at a predetermined pitch in the plate width direction of the thick steel plate and further averaging the temperature in the longitudinal direction .
前記評価指数に基づいて厚板鋼板の切断加工後の変形量を予測する工程
を更に有することを特徴とする請求項1記載の厚板鋼板の変形量予測方法。
2. The method for predicting a deformation amount of a thick steel plate according to claim 1, further comprising a step of predicting a deformation amount after cutting the thick steel plate based on the evaluation index.
前記厚板鋼板の切断領域の板幅方向の温度分布を測定し、切断領域の評価指数を求め又は切断後の前記厚板鋼板の前記変形量を予測することを特徴とする請求項1又は2記載の厚板鋼板の変形量予測方法。   The temperature distribution in the plate width direction of the cutting region of the thick steel plate is measured, the evaluation index of the cutting region is obtained, or the deformation amount of the thick steel plate after cutting is predicted. The deformation amount prediction method for the thick steel plate described. 前記厚板鋼板の熱間矯正前又は熱間矯正後の板幅方向の温度分布を測定することを特徴とする請求項1〜3の何れかに記載の厚板鋼板の変形量予測方法。   The method for predicting a deformation amount of a thick steel plate according to any one of claims 1 to 3, wherein a temperature distribution in the plate width direction of the thick steel plate before hot correction or after hot correction is measured. 前記厚板鋼板の変形量として条切りキャンバー量を予測することを特徴とする請求項1〜の何れかに記載の厚板鋼板の変形量予測方法。 The method of predicting a deformation amount of a thick steel plate according to any one of claims 1 to 4 , wherein a cutting camber amount is predicted as the deformation amount of the thick steel plate. 請求項1〜の何れかに記載の厚板鋼板の変形量予測方法により求められた前記評価指数又は厚板鋼板の変形量に基づいて後段側の冷間矯正若しくは熱処理を行うかどうか又はその条件を設定することを特徴とする厚板鋼板の製造方法。 Whether or not to perform cold correction or heat treatment on the rear stage side based on the evaluation index obtained by the deformation amount prediction method of the thick steel plate according to any one of claims 1 to 5 or the deformation amount of the thick steel plate or A method for producing a thick steel plate, characterized by setting conditions. 前記評価指数又は変形量が所定の基準値より大であると判断された場合には冷間矯正を行うことを特徴とする請求項記載の厚板鋼板の製造方法。 The method for producing a thick steel plate according to claim 6, wherein cold correction is performed when it is determined that the evaluation index or the deformation amount is larger than a predetermined reference value.
JP2004067002A 2004-03-10 2004-03-10 Method for predicting deformation of thick steel plate and method for manufacturing the same Expired - Fee Related JP4710237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067002A JP4710237B2 (en) 2004-03-10 2004-03-10 Method for predicting deformation of thick steel plate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067002A JP4710237B2 (en) 2004-03-10 2004-03-10 Method for predicting deformation of thick steel plate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005254264A JP2005254264A (en) 2005-09-22
JP4710237B2 true JP4710237B2 (en) 2011-06-29

Family

ID=35080508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067002A Expired - Fee Related JP4710237B2 (en) 2004-03-10 2004-03-10 Method for predicting deformation of thick steel plate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4710237B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280602A (en) * 2007-05-14 2008-11-20 Nippon Steel Corp High productivity type high-strength high-toughness steel plate and its production method
JP5326611B2 (en) * 2009-02-03 2013-10-30 Jfeスチール株式会社 Thick steel plate quality assurance equipment
JP5326612B2 (en) * 2009-02-03 2013-10-30 Jfeスチール株式会社 Thick steel plate quality assurance equipment
JP5573726B2 (en) * 2011-02-22 2014-08-20 Jfeスチール株式会社 Prediction method of shape defect due to run-out cooling strain and temperature measuring device used in the method
KR101291058B1 (en) 2012-01-18 2013-08-07 삼성중공업 주식회사 Strain prediction system and method for predicting strain
KR102605258B1 (en) * 2021-06-24 2023-11-24 서진산업 주식회사 Vehicle chassis frame correction system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319945A (en) * 1998-05-18 1999-11-24 Nkk Corp Manufacture of steel plate and its device
JP2003071517A (en) * 2002-06-14 2003-03-11 Kobe Steel Ltd Steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319945A (en) * 1998-05-18 1999-11-24 Nkk Corp Manufacture of steel plate and its device
JP2003071517A (en) * 2002-06-14 2003-03-11 Kobe Steel Ltd Steel plate

Also Published As

Publication number Publication date
JP2005254264A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4523010B2 (en) Steel plate manufacturing method
KR101516476B1 (en) Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value
JP5391205B2 (en) Control device
JP4701742B2 (en) Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method
JP3302914B2 (en) Method and apparatus for manufacturing hot-rolled steel sheet
JP5168170B2 (en) Method for estimating the material constant and straightening state of the material to be straightened in roller straightening, and roller roller leveling method
JP5811046B2 (en) Method for predicting temperature unevenness of hot-rolled steel sheet, method for controlling flatness, method for controlling temperature unevenness, and manufacturing method
JP4710237B2 (en) Method for predicting deformation of thick steel plate and method for manufacturing the same
JP6481677B2 (en) Steel sheet residual stress estimation method, steel sheet manufacturing method, steel sheet residual stress estimation apparatus, and steel sheet manufacturing equipment
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP3947485B2 (en) Steel plate manufacturing method
JP4123582B2 (en) Steel plate shape prediction method and apparatus
JP4018572B2 (en) Manufacturing method of steel sheet with small variation in yield stress and residual stress
JP4289480B2 (en) Straightening method to obtain steel plate with good shape with little variation in residual stress
JP4269394B2 (en) Steel plate shape prediction method
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JP3307229B2 (en) Method of estimating stripped camber and method of manufacturing steel sheet with less stripped camber
JP5369468B2 (en) Method for producing hot-rolled metal strip using temperature prediction method of material to be rolled in hot rough rolling
JP6627609B2 (en) Cooling control method and cooling device
JP2008297583A (en) Method for manufacturing thick steel plate having surface hardness of which upper limit is specified, and manufacturing facility therefor
JP2000301220A (en) Steel plate and method and device for manufacturing steel plate
JP4089607B2 (en) Heat treatment method for steel sheet
JP3839753B2 (en) Steel plate evaluation method
JP3239761B2 (en) Method of estimating stripped camber and method of manufacturing steel sheet with less stripped camber
JP4089606B2 (en) Heat treatment method for steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

LAPS Cancellation because of no payment of annual fees