JP2006110531A - Process for separating valuable materials from mixed plastics containing pvc(polyvinylidene chloride as well) and pet, and plastics/aluminum composite films - Google Patents

Process for separating valuable materials from mixed plastics containing pvc(polyvinylidene chloride as well) and pet, and plastics/aluminum composite films Download PDF

Info

Publication number
JP2006110531A
JP2006110531A JP2004327047A JP2004327047A JP2006110531A JP 2006110531 A JP2006110531 A JP 2006110531A JP 2004327047 A JP2004327047 A JP 2004327047A JP 2004327047 A JP2004327047 A JP 2004327047A JP 2006110531 A JP2006110531 A JP 2006110531A
Authority
JP
Japan
Prior art keywords
pet
pvc
ethylene glycol
aluminum
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004327047A
Other languages
Japanese (ja)
Other versions
JP4637551B2 (en
JP2006110531A5 (en
Inventor
Takashi Tachibana
孝 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AASU RECYCLE KK
Original Assignee
AASU RECYCLE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AASU RECYCLE KK filed Critical AASU RECYCLE KK
Priority to JP2004327047A priority Critical patent/JP4637551B2/en
Publication of JP2006110531A publication Critical patent/JP2006110531A/en
Publication of JP2006110531A5 publication Critical patent/JP2006110531A5/ja
Application granted granted Critical
Publication of JP4637551B2 publication Critical patent/JP4637551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for efficiently separating and recovering plastics and aluminum from mixed plastics. <P>SOLUTION: In the process, PO, PS, and ABS are first separated from PET, PVC and aluminum using ethylene glycol (EG) as a wet gravity separation liquid which does not dissolve the mixed plastics, at a temperature close to the melting temperatures of the plastics, and subsequently the heavier solids such as PVC and aluminum remaining in the lighter components are separated by sedimentation in a mixed liquid consisting of water and ethylene glycol. EG in use is separated and recovered and EG lost in the process is replenished with recycling EG formed in the depolymerization process of PET. PET and PVC are further heated together with aluminum and are depolymerized in EG containing NaOH under an atmospheric pressure to form EG and sodium terephthalate, while PVC is dechlorinated and the resulting hydrogen chloride is reacted with NaOH to form NaCl. PO and PVC sticking to aluminum are dissolved by a solvent such as xylene, and solid aluminum is recovered removing the adherent solvent by drying. The mixed solution comprising PO, sodium terephthalate, NaOH, and the solvent is heated under vacuum to evaporate and separate the solvent which is recycled and reused. PO is separated from NaOH and sodium terephthalate by washing with water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

発明の属する分野Field of Invention

本発明は混合廃プラスチック、PETボトル、アルミ複合フイルム、農業用フイルム等から有用なプラスチック、アルミ、金属等に分離しマテリアル、油化、鉄鋼還元剤等の原料にする方法。The present invention is a method for separating a useful plastic, aluminum, metal or the like from a mixed waste plastic, PET bottle, aluminum composite film, agricultural film, etc., and using it as a raw material for materials, oil conversion, steel reducing agents and the like.

1、PVC(塩化ビニリデン込み),PET、アルミ等のラミネートフイルムを含み且つ発泡、フイルム、成型品が混在する混合プラスチックから有用なプラスチックを取り出す方法は、細かく破砕した後に磁選、アルミ静電分離、風力分離、慣性分離、比重分離等の多工程で行なわれ。脱塩化水素は上記工程処理後に減容、320℃に押出機等で加熱溶融法する方法が多い。
2、アルミ複合フイルムはプラスチック分を焼却しアルミを回収する方法が行なわれていたが環境面から規制され現在最適な方法は見当たらない。
3、農業用フイルムには農ビ(PVCフイルム)と農ポリ(PEフイルム)があり、選別後アルカリ水洗、乾燥、溶融、ペレット化している。
1. The method of taking out useful plastic from mixed plastics including laminated films such as PVC (including vinylidene chloride), PET, aluminum, etc. and mixed with foam, film and molded products is magnetic separation, aluminum electrostatic separation, Performed in multiple steps such as wind separation, inertia separation, specific gravity separation. Dehydrochlorination is often performed by reducing the volume after the above-mentioned process, and heating and melting at 320 ° C. with an extruder or the like.
2. Aluminum composite film was incinerated with plastics to recover aluminum, but it is regulated by the environment and there is no optimal method at present.
3. Agricultural film includes agricultural film (PVC film) and agricultural poly (PE film), which are washed with alkaline water, dried, melted and pelletized after sorting.

発明が解決しようとする課題Problems to be solved by the invention

しかし従来PVC(塩化ビニリデン込み),PET、アルミ等のラミネートフイルムを含み且つ発泡、フイルム、成型品が混在する混合プラスチックから有用なプラスチックを取り出す方法法には次のような問題点があった。
1、フイルム、発泡、成型品が混在する混合プラスチックの湿式比重分離に於いて発泡スチロールは,PEやPPの見掛け比重(0.94)より極端に小さい(0.01以下)ので液中ではかなりの速度で浮上する。この浮上力が大きいことと、その破砕断面が粗雑であるので、絡まりあって沈降すべきプラスチックまで同伴して浮上する。
破砕プラスチックの粒子径は、PVC分離効率を上げる為に丸みを帯び、内径5mm以下で粒子分布の小さいものが必要。微破砕する必要がある。
2、液体比重分離に於いてPVCの分離効率は約90%が限界である。その理由は塩化ビニリデン樹脂、ラミネート樹脂の影響とされている。
またPET樹脂は油化装置原料として好ましくない。PETボトルは分別できてもPETが多く含まれているラミネートフイルムの処理は技術的に難しい。
3、嵩比重が小さい事は処理速度が小さく装置が大きくなる。
4、過去嵩比重を上げる為に熱風、溶剤が使用されたが樹脂の選択的減容はバラツキがあり良くない。
5、湿式比重分離法は水を多く使用する為に排水処理が必要である。
6、発泡品、フイルムの減容設備が別に必要である。
However, the conventional method of taking out useful plastic from a mixed plastic containing a laminate film such as PVC (including vinylidene chloride), PET, aluminum and the like, and having foam, film, and molded product mixed together has the following problems.
1. In the wet specific gravity separation of mixed plastics containing film, foam, and molded products, the polystyrene foam is extremely smaller (0.01 or less) than the apparent specific gravity (0.94) of PE and PP. Ascend at speed. Since this levitation force is large and the crushing cross section is rough, it floats with the entangled plastic to be settled.
The particle size of the crushed plastic must be rounded to increase the PVC separation efficiency, and must have a small particle distribution with an inner diameter of 5 mm or less. Need to be crushed.
2. In the liquid specific gravity separation, the separation efficiency of PVC is limited to about 90%. The reason is considered to be the influence of vinylidene chloride resin and laminate resin.
Moreover, PET resin is not preferable as a raw material for oil making equipment. Even if PET bottles can be separated, it is technically difficult to process a laminate film containing a large amount of PET.
3. The small bulk specific gravity results in a low processing speed and a large apparatus.
4. Hot air and solvent were used to increase the bulk specific gravity in the past, but the selective volume reduction of the resin is not good due to variations.
5. The wet specific gravity separation method requires wastewater treatment in order to use a lot of water.
6. Separate volume reduction equipment for foamed products and films is required.

アルミ/PET/POフイルムからアルミを回収する場合、次のような問題点があった。
1、焼却法は環境保全上許されない。無酸素状態でアルミ複合フイルムを熱分解する方法はアルミにカーボンが固化し純度が約80%と低くバラツキがある。
2、高温に接触する為にアルミ表面が変色したり収縮固化する。
When recovering aluminum from aluminum / PET / PO film, there are the following problems.
1. Incineration law is not allowed for environmental conservation. In the method of thermally decomposing an aluminum composite film in an oxygen-free state, carbon is solidified in aluminum, and the purity is as low as about 80%.
2. The aluminum surface changes color or shrinks and solidifies due to contact with high temperature.

農業用フイルム処理について次のような問題点がある。
1、農ビ(PVCフイルム)、農ポリ(PEフイルム)は完全に分別する必要がある。
2、洗浄剤としてアルカリ水を使用する為に排水処理にコストがかかる。
3、フイルムを減溶する為の設備が必要である。
There are the following problems with film processing for agriculture.
1. Agricultural Bi (PVC film) and Agricultural Poly (PE film) must be completely separated.
2. Since alkaline water is used as a cleaning agent, the wastewater treatment is costly.
3. Equipment to reduce the film is necessary.

課題を解決するための手段Means for solving the problem

そこで、本発明に係るPVC(塩化ビニリデン込み),PET、アルミ等のラミネートフイルムを含み且つ発泡、フイルム、成型品が混在する混合プラスチックから有用なプラスチックを取り出す方法は湿式比重分離において各樹脂に溶解性のないエチレングリコールを使用し、その液をプラスチックの溶融温度近辺及び関係する樹脂が熱分解しない温度以下で接触することにより発泡品は脱泡減容しフイルムも減容する事が確認できた。操作条件は常圧下、120℃〜170℃℃の密閉状態で取り扱う。
その状態では各樹脂間に相溶性が現れない為に分離しやすい。ただ水分が原料中に含まれる場合は液中に気泡が発生するので水分を蒸発させた後に比重分離槽−1、4へ移送する。
比重分離槽−1、4ではPET,PVC、アルミ複合樹脂、金属等は沈降しPO,PS,ABSは浮上する。比重分離槽−1、4は砂が分離できるように槽内に穴の開いた傾斜板5が設けられている。また時にはアルミ複合フイルム、塩化ビニリデンは浮上する場合があるので、冷却を兼ねて水とエチレングリコールで比重調整された比重分離槽−2、7で処理することによりPO−PS−ABS/塩化ビニリデン・アルミ複合樹脂の2層に分離できる。
以上を工程名として減容分離工程と呼ぶ。
この塩化ビニリデンとアルミ複合フイルムは比重分離槽−1、4の沈降物と一緒に解重合工程に移送される。
エチレングリコールは循環再使用されるが量の不足する場合はPET解重合工程から補充される。減容分離工程で循環するエチレングリコールの劣化を防止するために系内に油水蒸発槽2、比重分離槽−1、4の中に金網傾斜板5、フイルター9を設けている。
Therefore, the method of taking out useful plastic from mixed plastics including laminated films such as PVC (including vinylidene chloride), PET, aluminum, etc. and containing foam, film, and molded product is dissolved in each resin in wet specific gravity separation. It was confirmed that the foamed product was defoamed and the film volume was reduced by using non-stable ethylene glycol and contacting the liquid near the melting temperature of the plastic and below the temperature at which the related resin does not thermally decompose. . The operating conditions are handled in a sealed state at 120 ° C to 170 ° C under normal pressure.
In this state, compatibility does not appear between the resins, and separation is easy. However, when water is contained in the raw material, bubbles are generated in the liquid, so that the water is evaporated and then transferred to the specific gravity separation tanks 1 and 4.
In the specific gravity separation tanks 1 and 4, PET, PVC, aluminum composite resin, metal and the like are settled, and PO, PS and ABS are floated. Specific gravity separation tanks 1 and 4 are provided with inclined plates 5 having holes in the tank so that sand can be separated. In some cases, the aluminum composite film and vinylidene chloride may float, so that it is treated with PO-PS-ABS / vinylidene chloride. It can be separated into two layers of aluminum composite resin.
The above is referred to as a volume reduction separation process as a process name.
This vinylidene chloride and aluminum composite film are transferred to the depolymerization step together with the sediment in the specific gravity separation tanks 1 and 4.
Ethylene glycol is recycled and reused from the PET depolymerization process if the amount is insufficient. In order to prevent deterioration of ethylene glycol circulated in the volume reduction separation step, a metal mesh inclined plate 5 and a filter 9 are provided in the oil / water evaporation tank 2 and the specific gravity separation tanks 1 and 4 in the system.

PET解重合の操作条件はエチレングリコールを溶媒として常圧下、170〜186℃で、反応時間を5分〜20分、触媒としてNaOHを添加しアルカリ状態で行なう。PET樹脂は解重合されてTPA−Na2(テレフタール酸塩)とエチレングリコールを生成する。
減容分離工程でエチレングリコールが不足する場合はPET樹脂の混合割合を調整することで初期運転開始以外、外部から購入する必要はない。エチレングリコールはPET樹脂1kgから約0.3Kg生成する。
また本解重合反応下ではPVCの脱塩化水素反応が進行し約60wt%の脱塩化水素が可能である。脱塩化水素はNaOHと反応してNaClとなる。
解重合反応で生成したTPA−Na2、NaCl、エチレングリコールの混合液は加熱真空蒸発槽17で処理して(粉末のTPA−Na2、NaCl)とエチレングリコールに分離される。
TPA−Na2はTPAの中間原料でありNaClは最終的にはぼう硝に含まれる。余剰エチレングリコールは精製する事により化学製品となりえる。
本解重合反応下でアルミ複合フイルムのPET樹脂は完全に分離されPO樹脂分も溶融剥離するが、その際アルミやTPA−Na2粉末、PVC等固形物に付着する場合があるので、それを分離する為に溶剤分離工程に移送する。
The operating conditions for PET depolymerization are ethylene glycol as a solvent under normal pressure at 170 to 186 ° C., the reaction time is 5 to 20 minutes, and NaOH is added as a catalyst in an alkaline state. The PET resin is depolymerized to produce TPA-Na2 (terephthalate) and ethylene glycol.
When ethylene glycol is insufficient in the volume reduction and separation step, it is not necessary to purchase from outside except for the initial operation by adjusting the mixing ratio of the PET resin. Ethylene glycol produces about 0.3 kg from 1 kg of PET resin.
Further, under this depolymerization reaction, dehydrochlorination of PVC proceeds and about 60 wt% dehydrochlorination is possible. Dehydrochlorination reacts with NaOH to become NaCl.
The mixed solution of TPA-Na2, NaCl, and ethylene glycol generated by the depolymerization reaction is processed in the heated vacuum evaporation tank 17 (powdered TPA-Na2, NaCl) and separated into ethylene glycol.
TPA-Na2 is an intermediate raw material of TPA, and NaCl is finally contained in sodium nitrate. Excess ethylene glycol can be converted into a chemical product by purification.
Under this depolymerization reaction, the PET resin of the aluminum composite film is completely separated and the PO resin is also melted and peeled off. However, it may adhere to solids such as aluminum, TPA-Na2 powder, PVC, etc. In order to do so, it is transferred to a solvent separation process.

PO樹脂が付着したアルミ,TPA−Na2粉末、PVC等固形物は溶剤分離工程に移送され溶剤でPO樹脂は溶解される。溶剤は、トルエン、キシレン、プラスチック熱分解軽質油(蒸留範囲〜140℃)等が使用される。操作条件は常圧下、PVCが熱分解しない約145℃以下で又は溶剤が蒸発しない温度の低い方でPO樹脂を溶解分離する。新にアルミ等固形物には溶剤が付着しているので更にPVCが熱分解しない145℃以下で乾燥する事で100%純度のアルミ固形物が得られる。
PO樹脂が溶解している溶液(TPA−Na2粉末と少量のNaOH分も含む)は加熱真空蒸発23する事により溶剤は回収再使用され槽底にはPO樹脂とTPA−Na2粉末とNaOH分が残る。これらは水洗する事でPO樹脂と(TPA−Na2、NaOH)に分離し後者はTPA製造工程で処理される。
Solids such as aluminum, TPA-Na2 powder, and PVC to which PO resin is attached are transferred to the solvent separation step, and the PO resin is dissolved in the solvent. As the solvent, toluene, xylene, plastic pyrolysis light oil (distillation range to 140 ° C.) or the like is used. The operating condition is that the PO resin is dissolved and separated under normal pressure at a temperature of about 145 ° C. or lower at which PVC does not thermally decompose or at a lower temperature at which the solvent does not evaporate. Since a solvent is attached to a solid material such as aluminum, 100% purity aluminum solid material can be obtained by drying at 145 ° C. or lower where PVC does not thermally decompose.
The solution in which the PO resin is dissolved (including the TPA-Na2 powder and a small amount of NaOH) is heated and evaporated under vacuum 23 to recover and reuse the solvent, and the PO resin, TPA-Na2 powder and NaOH content are present at the bottom of the tank. Remain. These are separated into PO resin and (TPA-Na2, NaOH) by washing with water, and the latter is treated in the TPA production process.

これら経済的に分離する事が難しいとされる廃棄物プラスチックを連続的に処理する方法を開発した。大きく分けて減容分離,PET解重合、溶剤分離の3つの工程からなり、その機器名と工程を図−1に示す。
廃プラスチック等の流体の移送は全て可変式スクリューコンベアーにて行い。全工程は密閉構造とする。溶媒であるエチレングリコールは加熱真空蒸発槽17にて回収し循環再使用する。溶剤分離工程で使用するキシレン等の溶剤も加熱真空蒸発槽23にて回収し循環再使用する。
減容分離工程で循環しているエチレングリコールの温度は加熱器8で温度調整する。解重合工程の循環しているエチレングリコールの温度は加熱器19にて調整する。
原料中に含まれる砂は比重分離槽−1、4の槽底から金属、石、熱硬化性樹脂の固形物はアルミと一緒に排出される。水分、油分(沸点140℃以下の油、溶剤)は油水蒸発槽2で加熱蒸発分離する。
減容分離工程で循環するエチレングリコールの劣化を防止するために系内に油水蒸発槽2、比重分離槽−1、4の中に金網傾斜板5、フイルター9を設けている。
工程の詳細説明は発明の実施の形態で記述する。
本法はスクリューコンベアーを使用した連続式で説明しているが解重合反応部は槽式でもキルン式でも可能である。バッチ式も十分可能である。
We have developed a method for continuously treating these waste plastics, which are considered difficult to separate economically. It is roughly divided into three steps: volume reduction separation, PET depolymerization, and solvent separation. The equipment names and steps are shown in Fig.-1.
All of the fluid such as waste plastic is transferred by a variable screw conveyor. All processes are sealed. Ethylene glycol, which is a solvent, is recovered in the heating vacuum evaporation tank 17 and recycled. A solvent such as xylene used in the solvent separation step is also collected in the heated vacuum evaporation tank 23 and recycled.
The temperature of ethylene glycol circulated in the volume reduction separation process is adjusted by the heater 8. The temperature of ethylene glycol circulating in the depolymerization step is adjusted by a heater 19.
Sand contained in the raw material is discharged from the bottoms of the specific gravity separation tanks 1 and 4, and solids of metal, stone and thermosetting resin are discharged together with aluminum. Water and oil (oil and solvent having a boiling point of 140 ° C. or lower) are separated by heating and evaporating in the oil-water evaporation tank 2.
In order to prevent deterioration of ethylene glycol circulated in the volume reduction separation step, a metal mesh inclined plate 5 and a filter 9 are provided in the oil / water evaporation tank 2 and the specific gravity separation tanks 1 and 4 in the system.
Detailed description of the process will be described in the embodiment of the invention.
Although this method is described as a continuous type using a screw conveyor, the depolymerization reaction part can be either a tank type or a kiln type. A batch type is also possible.

以下、本発明を図−1に示す基本フローに基づいて詳細に説明する。
処理原料は家庭から排出された分別廃プラスチックしたものでありビニール、プラスチックの組成はPE30wt%、PP21wt%、PS24wt%、PVC(塩化ビニリデン含む)6wt%、PET12wt%、ABS2wt%、水分2wt%、その他固形物3wt%である。
分別廃プラスチックは破砕機1で約20mmに破砕し油水蒸発槽2に投入する。油水蒸発槽2は常圧でエチレングリコールが約150℃に加熱されている。廃プラスチックと同伴した2wt%の水分は加熱蒸発し冷却器3で冷却して系外に排出される。沸点140℃以下の有機物(油、溶剤)も一緒に蒸発分離する。
ほとんどの発泡品、フイルム品は脱泡、減容して比重分離槽−1、4に移送する。
比重分離槽−1、4の内槽には金網状の傾斜板5が設けられ砂のような粒状異物は金網を通過して沈降分離ができる構造となっている。
エチレングリコールの比重は約1.1であるのでPE,PP,PS,ABSは浮上しPVC、PET、アルミ、金属、陶器、石、ガラスは沈降するが塩化ビニリデン減容物、アルミ複合フイルムは浮上する場合もあるので比重分離槽−1,4で浮上した全ての浮上物はエチレングリコール分離槽6でエチレングリコールを分離した後に冷却も兼ねて比重分離槽−2、7に通すことにより塩化ビニリデン、アルミ複合フイルムは全て沈降分離できるように比重分離槽は直列に2基設けている。浮上物はPE,PP,PS、ABS、木、紙類である。
比重分離槽−2,7は水とエチレングリコールの混合液で混合割合を変化させることにより比重の値を自由に変える事ができる。
比重分離槽−1,4に沈降したPET,PVC、アルミ複合フイルム、金属、陶器等と比重分離槽−2,7で沈降した物質は一緒に傾斜のあるスクリューコンベアー10の中でエチレングリコールを分離しながらPET解重合装置にFEEDする。
比重分離槽−1,4のエチレングリコールは分離槽6で回収後ポンプにてフイルター9を経由して加熱器8で約150℃に昇温後、油水蒸発槽2へ再循環する。循環量は廃プラスチック投入量に対して常に油水蒸発槽2の温度が約150℃を保持できる量とする。
エチレングリコールの劣化を防ぐ為に油水蒸発槽2、金網傾斜板5、フイルター9を設けている。エチレングリコール量が不足する場合はPET解重合工程から補充を受ける。それでも不足の場合はPET投入量を増やす事で調整する。
Hereinafter, the present invention will be described in detail based on the basic flow shown in FIG.
The raw material used for treatment is plastic waste separated from the household. The composition of vinyl and plastic is 30 wt% PE, 21 wt% PP, 24 wt% PS, 6 wt% PVC (including vinylidene chloride), 12 wt% PET, 2 wt% ABS, 2 wt% moisture, etc. 3 wt% solids.
The waste plastic waste is crushed to about 20 mm by the crusher 1 and put into the oil / water evaporation tank 2. In the oil-water evaporation tank 2, ethylene glycol is heated to about 150 ° C. at normal pressure. The 2 wt% water accompanying the waste plastic is evaporated by heating, cooled by the cooler 3 and discharged outside the system. Organic substances (oil, solvent) having a boiling point of 140 ° C. or lower are also evaporated and separated together.
Most foamed products and film products are defoamed, reduced in volume, and transferred to specific gravity separation tanks 1 and 4.
In the inner tanks of the specific gravity separation tanks 1 and 4, a metal mesh-like inclined plate 5 is provided, and a granular foreign substance such as sand is allowed to settle and separate through the metal mesh.
Since the specific gravity of ethylene glycol is about 1.1, PE, PP, PS, ABS floats and PVC, PET, aluminum, metal, ceramics, stone, and glass settle, but vinylidene chloride volume-reduced material and aluminum composite film float. In some cases, all the levitated substances floating in the specific gravity separation tanks 1 and 4 are separated from the ethylene glycol in the ethylene glycol separation tank 6 and then passed through the specific gravity separation tanks 2 and 7 for cooling. Two specific gravity separation tanks are provided in series so that all of the aluminum composite film can be settled and separated. Floating objects are PE, PP, PS, ABS, wood and paper.
The specific gravity separation tanks 2 and 7 can freely change the specific gravity value by changing the mixing ratio with a mixture of water and ethylene glycol.
PET, PVC, aluminum composite film, metal, earthenware, etc. settled in the specific gravity separation tanks 1 and 4 and substances settled in the specific gravity separation tanks 2 and 7 are separated together in the inclined screw conveyor 10 with ethylene glycol. FEED to the PET depolymerizer.
The ethylene glycol in the specific gravity separation tanks 1 and 4 is recovered in the separation tank 6 and then heated to about 150 ° C. by the heater 8 via the filter 9 by the pump and then recirculated to the oil / water evaporation tank 2. The amount of circulation is such that the temperature of the oil-water evaporation tank 2 can always maintain about 150 ° C. with respect to the amount of waste plastic input.
In order to prevent deterioration of ethylene glycol, an oil / water evaporation tank 2, a wire mesh inclined plate 5, and a filter 9 are provided. When the amount of ethylene glycol is insufficient, it is replenished from the PET depolymerization step. If it is still insufficient, adjust by increasing the amount of PET input.

PET解重合工程での操作条件は常圧下、エチレングリコールを約180℃に加熱しNaOHを添加してPET解重合反応を10〜20分かけることにより、粉末状のTPA−Na2とエチレングリコールを生成する。同時にPVCは脱塩化水素反応が進行し約60wt%脱塩化水素が期待できる。脱塩化水素はNaOHと反応してNaClとなる。
減容分離工程でエチレングリコールが不足する場合はPET樹脂の混合割合を調整する事により外部から購入する必要はない。エチレングリコールはPET樹脂1kgから約0.3Kg生成する。解重合反応は可変式スクリューコンベアー11内で完遂する。
傾斜スクリューコンベアー12内では解重合反応によるガスが発生する為に傾斜スクリューコンベアー出口部に冷却器13を設けている。
溶媒であるエチレングリコールは一定量循環しながら傾斜スクリューコンベアー内12中間部からオーバフロー14してTPA−Na2と伴にエチレングリコール槽16に入る。また傾斜スクリューコンベアー12の底部15からもTPA−Na2とエチレングリコールの混合物を排出しエチレングリコール槽16に入るようになっている。傾斜スクリューコンベアー12の冷却器13出口の物質の状態は本解重合反応下ではアルミ複合フイルムのPET樹脂は完全に除去されPO樹脂分も溶融剥離するが、そのままアルミPVC、金属等固形物、TPA−Na2に溶融PO樹脂が付着し且つNaOHがCarry Overする場合があるので、それらを分離する為に溶剤分離工程に移送する。
解重合反応で生成したTPA−Na2、NaCl、エチレングリコールの混合液は加熱真空蒸発槽17で処理して(粉末のTPA−Na2、NaCl)とエチレングリコールに分離される。
TPA−Na2はTPAの中間原料でありNaClは最終的にぼう硝に含まれる。蒸発したエチレングリコールは凝縮器18を通してエチレングリコール槽16にストックされる。余剰エチレングリコールは精製する事により化学製品となりえる。
解重合反応を確実に進める為には温度管理が重要であり温度は加熱器19で調整する。
The operating conditions in the PET depolymerization process are: TPA-Na2 and ethylene glycol in powder form by heating the ethylene glycol to about 180 ° C under normal pressure, adding NaOH and taking the PET depolymerization reaction for 10-20 minutes. To do. At the same time, dehydrochlorination of PVC proceeds and about 60 wt% dehydrochlorination can be expected. Dehydrochlorination reacts with NaOH to become NaCl.
When ethylene glycol is insufficient in the volume reduction separation step, it is not necessary to purchase from the outside by adjusting the mixing ratio of the PET resin. Ethylene glycol produces about 0.3 kg from 1 kg of PET resin. The depolymerization reaction is completed in the variable screw conveyor 11.
In order to generate gas due to the depolymerization reaction in the inclined screw conveyor 12, a cooler 13 is provided at the outlet of the inclined screw conveyor.
Ethylene glycol, which is a solvent, overflows 14 from the middle portion of the inclined screw conveyor 12 while circulating a certain amount, and enters the ethylene glycol tank 16 together with TPA-Na2. A mixture of TPA-Na 2 and ethylene glycol is also discharged from the bottom 15 of the inclined screw conveyor 12 and enters the ethylene glycol tank 16. The state of the material at the outlet of the cooler 13 of the inclined screw conveyor 12 is that the PET resin of the aluminum composite film is completely removed and the PO resin is melted and peeled off under this depolymerization reaction, but the aluminum PVC, solid matter such as metal, TPA as it is -Since molten PO resin may adhere to Na2 and NaOH may carry over, it is transferred to a solvent separation step to separate them.
The mixed solution of TPA-Na2, NaCl, and ethylene glycol generated by the depolymerization reaction is processed in the heated vacuum evaporation tank 17 (powdered TPA-Na2, NaCl) and separated into ethylene glycol.
TPA-Na2 is an intermediate raw material of TPA, and NaCl is finally contained in the sodium nitrate. The evaporated ethylene glycol is stored in the ethylene glycol tank 16 through the condenser 18. Excess ethylene glycol can be converted into a chemical product by purification.
The temperature control is important in order to advance the depolymerization reaction reliably, and the temperature is adjusted by the heater 19.

PO樹脂が付着したアルミ,PA−Na2粉末、PVC等固形物は溶剤分離工程に移送され溶剤槽20で攪拌しながらPO樹脂は溶解される。溶剤は、トルエン、キシレン、プラスチック熱分解軽質油(蒸留範囲〜140℃)等が良い。操作条件は常圧下、PVCが熱分解しない約145℃以下又は溶剤が蒸発しない温度の低い温度でPO樹脂を溶解し傾斜型スクリューコンベアーにて溶液と分離しながら傾斜型スクリューコンベアー出口部21でフレッシュな溶剤を使用して溶液を洗浄22し分離する。アルミ、PVC、金属、石、陶器等の固形物には溶剤が付着しているので更にPVCが熱分解しない145℃以下で乾燥25する事で100%純度のアルミと未付着物の固形物が得られる。PO樹脂が溶解している溶液(TPA−Na2粉末と少量のNaOH分も含む)は加熱真空蒸発槽23で処理する事により溶剤は蒸発後凝縮器24を通って傾斜型スクリューコンベアー21の22に再循環される。加熱真空蒸発槽23の底にはPO樹脂とTPA−Na2粉末とNaOH分の混合物は水洗26によりPO樹脂と(TPA−Na2、NaOH)に分離される。後者はTPA製造工程の原料となる。
以上の3工程で処理することにより処理原料組成に近い結果が得られた。
Solids such as aluminum, PA-Na2 powder, PVC, etc. to which the PO resin is attached are transferred to the solvent separation step, and the PO resin is dissolved while stirring in the solvent tank 20. The solvent is preferably toluene, xylene, plastic pyrolysis light oil (distillation range to 140 ° C.) or the like. The operating conditions are about 145 ° C or lower where PVC does not thermally decompose under normal pressure, or the PO resin is dissolved at a low temperature at which the solvent does not evaporate, and fresh from the inclined screw conveyor outlet 21 while being separated from the solution by the inclined screw conveyor. The solution is washed 22 and separated using a suitable solvent. Since solids such as aluminum, PVC, metal, stone, and earthenware have a solvent attached, PVC is not thermally decomposed and dried at 145 ° C. or lower to obtain a solid of 100% purity aluminum and non-adhered matter. can get. The solution in which the PO resin is dissolved (including TPA-Na2 powder and a small amount of NaOH) is treated in a heating vacuum evaporation tank 23, whereby the solvent passes through the condenser 24 after evaporation to the 22 of the inclined screw conveyor 21. Recirculated. A mixture of PO resin, TPA-Na2 powder, and NaOH is separated into PO resin and (TPA-Na2, NaOH) by water washing 26 at the bottom of the heating vacuum evaporator 23. The latter is a raw material for the TPA manufacturing process.
By processing in the above three steps, a result close to the processing raw material composition was obtained.

発明の効果The invention's effect

本発明によれば次のような効果が得られる。
PVC,PET、異物(金属、アルミ、陶器等)を含む混合プラスチック(家庭用分別プラスチック)の分離について
1、従来法でのPVC分離率は約90wt%であったが本装置で処理すれば塩化ビニリデン、ラミネートフイルムも分離でき100wt%に近いPVCの分離が可能である。
2、更に解重合工程でPVCの脱塩化水素率は約60wt%得られる。
3、発泡品、フイルム品を選択的に減容する為に新たな減容装置は必要ない。
減容によれ嵩比重が上昇し分離効率が改善され且つ処理速度が速くなる。
4、本装置では溶媒としてエチレングリコールと溶剤としてキシレン等を使用するが、それらは再循環回収しながら行なう。特にエチレングリコールはPET解重合工程で生成するために通常は外部から購入する必要はない。不足する場合はPET樹脂の割合を増やせばよい。溶剤についても油化装置を併設すれば熱分解油軽質油が利用できる。よってコスト増にはならない。
5、本装置は密閉構造で臭気は出ない。排水も原料中の水分のみで少量である。
6、PET樹脂は解重合されTPA−Na2が生成する。これは価値のあるTPAの中間原料品である。
7、エチレングリコールの劣化を防止するために本装置の入口部に水分、軽質な液体(アルコール、トルエン等)を蒸発分離する槽や、砂等微粒子を分離する比重分離槽−1に金網傾斜板や、循環ラインにフイルターを設けている為に原料制限は厳しくはない。
8、本装置で処理すると従来より安価なコストで良質のマテリアル、油化、鉄鋼還元剤が得られる。特に油化処理ではPET,PVCの影響は大きく設備が重装備になり且つ熱分解油の品質が悪化する。本装置を前処理として設置すれば経済性は大幅に改善される。
According to the present invention, the following effects can be obtained.
Separation of mixed plastics (household plastics) including PVC, PET, and foreign substances (metal, aluminum, ceramics, etc.) 1. The PVC separation rate in the conventional method was about 90 wt%. Vinylidene and laminate films can also be separated, and PVC can be separated by nearly 100 wt%.
2. Further, the dehydrochlorination rate of PVC is about 60 wt% in the depolymerization step.
3. No new volume reduction device is required to selectively reduce the volume of foamed products and film products.
Volume reduction increases the bulk specific gravity, improving the separation efficiency and increasing the processing speed.
4. In this apparatus, ethylene glycol is used as a solvent and xylene is used as a solvent. In particular, since ethylene glycol is produced in the PET depolymerization step, it is usually not necessary to purchase it from the outside. If it is insufficient, the proportion of the PET resin may be increased. As for the solvent, pyrolysis oil and light oil can be used if an oil generator is also installed. Therefore, the cost does not increase.
5. This device has a sealed structure and does not emit odor. Drainage is also small with only water in the raw material.
6. The PET resin is depolymerized to produce TPA-Na2. This is a valuable intermediate product of TPA.
7. In order to prevent the deterioration of ethylene glycol, a tank for evaporating and separating moisture and light liquids (alcohol, toluene, etc.) at the inlet of this apparatus, and a specific gravity separation tank-1 for separating fine particles such as sand, etc. In addition, since the circulation line is equipped with a filter, the raw material restrictions are not strict.
8. When treated with this device, a good quality material, oily, steel reducing agent can be obtained at a lower cost than before. Especially in the oiling process, the influence of PET and PVC is great, and the equipment becomes heavy and the quality of the pyrolysis oil deteriorates. If this device is installed as a pretreatment, the economy will be greatly improved.

アルミ/PET/PO複合フイルムの分離について
1、従来法では技術的に困難であったが本装置で処理すれば適性環境の中で高純度のアルミが回収できる。
Separation of aluminum / PET / PO composite film 1. Although it was technically difficult by the conventional method, high-purity aluminum can be recovered in a suitable environment if it is processed by this apparatus.

農業用フイルムの処理について
1、農ビ(PVC)、農ポリ(PE)が混在していても処理可能である。
2、排水はフイルムに付着した水分のみで少量である。
3、本装置内で減容もできるので新たな減溶機は必要ない。
4、エチレングリコール量が不足する場合はPET樹脂量で調整できる。
Regarding the processing of the agricultural film, it can be processed even if agricultural bean (PVC) and agricultural poly (PE) are mixed.
2. Drainage is only a small amount of water adhering to the film.
3. Since the volume can be reduced in this device, a new melting machine is not required.
4. When the amount of ethylene glycol is insufficient, it can be adjusted by the amount of PET resin.

廃プラスチック処理に関するあらゆる場所で利用できる。
例えばマテリアル、油化、鉄鋼還元剤、セメント向け燃料、RDF(固形燃料),PET樹脂等の前処理としてアルミ複合フイルムからアルミの回収(医薬、菓子袋)、農業用フイルムの処理として利用範囲は広い。
It can be used everywhere regarding waste plastic processing.
For example, as a pretreatment for materials, oil production, steel reducing agent, cement fuel, RDF (solid fuel), PET resin, etc. wide.

本発明に係る混合プラスチックの分離法の好ましい実施形態を示す工程図である。It is process drawing which shows preferable embodiment of the separation method of the mixed plastics concerning this invention.

符号の説明Explanation of symbols

1、破砕機
2、油水蒸発槽
3、油水冷却器
4、比重分離槽−1
5、金網傾斜板
6、エチレングリコール分離槽
7、比重分離槽−2
8、加熱器1
9、フイルター
10、傾斜スクリューコンベアー(解重合FEED用)
11、水平スクリューコンベアー(解重合)
12、傾斜スクリューコンベアー(解重合)
13、傾斜スクリューコンベアー冷却器
14、エチレングリコールOVER FLOW管
15、エチレングリコール/TPA−Na2排出管1
16、エチレングリコール槽
17、エチレングリコール加熱真空蒸発槽
18、エチレングリコール凝縮器
19、加熱器2
20、溶剤分離槽
21、溶剤分離傾斜スクリューコンベアー
22、溶剤分離傾斜スクリューコンベアー洗浄部
23、溶剤加熱真空蒸発槽
24、溶剤凝縮器
25、乾燥機
26、水洗槽
1, crusher 2, oil-water evaporation tank 3, oil-water cooler 4, specific gravity separation tank-1
5, wire mesh inclined plate 6, ethylene glycol separation tank 7, specific gravity separation tank-2
8. Heater 1
9, Filter 10, Inclined screw conveyor (for depolymerized FEED)
11. Horizontal screw conveyor (depolymerization)
12. Inclined screw conveyor (depolymerization)
13. Inclined screw conveyor cooler 14, ethylene glycol OVER FLOW pipe 15, ethylene glycol / TPA-Na2 discharge pipe 1
16, ethylene glycol tank 17, ethylene glycol heating vacuum evaporation tank 18, ethylene glycol condenser 19, heater 2
20, Solvent Separation Tank 21, Solvent Separation Inclined Screw Conveyor 22, Solvent Separation Inclined Screw Conveyor Washing Unit 23, Solvent Heating Vacuum Evaporation Tank 24, Solvent Condenser 25, Dryer 26, Water Washing Tank

Claims (4)

PET(ポリエチレンテレフタレート),PVC(ポリ塩化ビニル)、塩化ビニリデンを含む混合プラスチックやアルミ/PET/PO複合フイルムで、それらの形態はフイルム、発泡、成型品の混在からなる廃棄物を湿式比重差選別でPO(ポリオレフイン系樹脂,)、PS(ポリスチレン)・ABS(アクリロニトリル−ブタジエン−スチレンコポリマー)、PVC、アルミ金属等に分離する場合、まず液体として、それら樹脂に溶解性をもたないエチレングリコールに着目しそれら樹脂の融点近辺(120〜170℃)でエチレングリコールを加熱すると、それら樹脂と液中接触しても各樹脂間に相溶性のない状態が確立できる事を発見した。その時、発泡品は脱泡減容し同時にフイルムも減容する。その結果嵩比重が上昇することで比重分離効率が大幅に改善し比重分離槽−1の上層にPO樹脂、PS,ABSと下層にPVC(塩化ビニリデン含む),PET、アルミ複合フイルムの2層に分離する。但し時にはアルミ複合フイルムや塩化ビニリデンが浮上する場合があるので比重分離槽−1で浮上した物の冷却を兼ねて水とエチレングリコールの混合液体(両液体は自由に混和する)有する比重分離槽−2を設けることによりアルミ複合フイルムや塩化ビニリデンは全て沈降分離できる。エチレングルコールは加熱真空蒸発槽で分離して循環再使用するが不足する場合は後に設けているPET解重合工程から補充する為に新に外部から購入する必要がない事を特徴とする。
エチレングリコールの劣化を防止する為に減容分離工程の入口部に油水蒸発槽、比重分離槽−1内に金網傾斜板及びエチレングリコール循環ラインにフイルターを設けている。
Mixed plastics including PET (polyethylene terephthalate), PVC (polyvinyl chloride), and vinylidene chloride, and aluminum / PET / PO composite films. These forms consist of mixed films, foams, and molded products. In the case of separation into PO (polyolefin resin), PS (polystyrene) / ABS (acrylonitrile-butadiene-styrene copolymer), PVC, aluminum metal, etc., first, as a liquid, to ethylene glycol which has no solubility in these resins It was discovered that when ethylene glycol was heated in the vicinity of the melting point of these resins (120 to 170 ° C.), incompatible states could be established between the resins even when they were in contact with the liquid. At that time, the foamed product is defoamed and the volume is reduced at the same time. As a result, the specific gravity separation efficiency is greatly improved by increasing the bulk specific gravity, and the upper layer of the specific gravity separation tank-1 is PO resin, PS, ABS, and the lower layer is PVC (including vinylidene chloride), PET, aluminum composite film. To separate. However, since aluminum composite film and vinylidene chloride may sometimes float, the specific gravity separation tank that has a liquid mixture of water and ethylene glycol (both liquids can be mixed freely) also serves to cool the objects floating in the specific gravity separation tank-1. 2 can all precipitate and separate aluminum composite film and vinylidene chloride. Ethylene glycol is separated in a heated vacuum evaporation tank and reused by circulation, but in the case of shortage, it is not necessary to purchase from the outside newly in order to supplement from the PET depolymerization step provided later.
In order to prevent the deterioration of ethylene glycol, an oil / water evaporation tank is provided at the inlet of the volume reduction separation process, and a metal mesh inclined plate and a filter are provided in the ethylene glycol circulation line in the specific gravity separation tank-1.
比重分離槽1,2で沈降したPVC(塩化ビニリデン)、PET、アルミ複合フイルムは常圧下、170℃〜186℃に加熱したエチレングリコール溶媒中に一定量のNaOHを添加し約5〜20分間の反応時間を与える事によりPETの解重合反応が進行し粉末状のTPA−Na2(テレフタール酸塩)とエチレングリコールが生成する。エチレングリコールはPET樹脂1kgに対して約0.3kg生成する事を確認した。
同時にPVCは約60wt%の脱塩化水素反応が進み発生した塩化水素はNaOHと反応してNaCIとなる。
混合プラスチック中にPET樹脂の割合が少ない場合や農業用フイルムのみを処理する場合はPET樹脂の割合を増量して解重合しエチレングリコール量を調整する事で対応する事を特徴とする。
PVC (vinylidene chloride), PET, and aluminum composite film precipitated in specific gravity separation tanks 1 and 2 were added with a certain amount of NaOH in an ethylene glycol solvent heated to 170 ° C. to 186 ° C. under normal pressure for about 5 to 20 minutes. By giving reaction time, the depolymerization reaction of PET proceeds, and powdered TPA-Na2 (terephthalate) and ethylene glycol are generated. It was confirmed that about 0.3 kg of ethylene glycol was produced with respect to 1 kg of PET resin.
At the same time, PVC undergoes a dehydrochlorination reaction of about 60 wt%, and the generated hydrogen chloride reacts with NaOH to become NaCI.
When the proportion of the PET resin in the mixed plastic is small or when only the agricultural film is processed, it is characterized by increasing the proportion of the PET resin to depolymerize and adjusting the amount of ethylene glycol.
PET解重合時にPO樹脂等は溶融してしまいPVC、アルミ等の固形物に付着する場合があるので例えばキシレン、トルエン、プラスチック熱分解油軽質油(蒸留範囲〜140℃)の溶剤を使用して溶解分離する。使用条件は常圧下でPVCが熱分解しない145℃以下又は溶剤が蒸発しない温度の低い温度でPO樹脂を溶解する。新にアルミ等固形物表面には溶剤が付着しているのでPVCが熱分解しない145℃以下で乾燥除去する。そうすることにより100%純度のアルミ、固形物が回収できる。
溶剤に溶解したPO樹脂、TPA−Na2、NaOHの混合溶液は加熱真空蒸発で溶剤と(PO樹脂、TPA−Na2、NaOH)に分離し溶剤は再循環使用する。PO樹脂、TPA−Na2、NaOHは水洗してPO樹脂と(TPA−Na2,NaOH)に分離する。
Since the PO resin, etc. melts during PET depolymerization and may adhere to PVC, aluminum, and other solid materials, for example, using a solvent of xylene, toluene, plastic pyrolysis oil light oil (distillation range ~ 140 ° C) Dissolve and separate. The use condition is that the PO resin is dissolved at a temperature of 145 ° C. or lower where the PVC is not thermally decomposed under normal pressure or a temperature at which the solvent does not evaporate. Since the solvent is newly attached to the surface of a solid material such as aluminum, it is removed by drying at 145 ° C. or lower where PVC does not thermally decompose. By doing so, 100% purity aluminum and solids can be recovered.
The mixed solution of PO resin, TPA-Na2, and NaOH dissolved in the solvent is separated into the solvent and (PO resin, TPA-Na2, NaOH) by heating and vacuum evaporation, and the solvent is recycled. The PO resin, TPA-Na2, and NaOH are washed with water and separated into PO resin and (TPA-Na2, NaOH).
上記に示す工程1(減容分離)、工程2(PET解重合)、工程3(溶剤分離)を組み合わせる事によりPVC,PETを含む混合プラスチックやアルミ複合フイルムや農業用フイルムの処理が可能となる。本法はバッチ式、連続式いずれも可能である。特に解重合反応は槽式、キルン式、スクリューコンベアー式があるがいずれも可能である。今回は連続式でスクリューコンベアーを使用した処理法を説明する。それを図−1に示す。By combining Step 1 (volume reduction separation), Step 2 (PET depolymerization), and Step 3 (solvent separation) shown above, it is possible to process mixed plastics, aluminum composite films and agricultural films containing PVC and PET. . This method can be either batch type or continuous type. In particular, the depolymerization reaction includes a tank type, a kiln type, and a screw conveyor type, but any of them is possible. This time, I will explain the processing method using a screw conveyor in a continuous mode. This is shown in Figure-1.
JP2004327047A 2004-10-13 2004-10-13 Separation of useful substances from PVC (also vinylidene chloride), mixed plastics including PET, aluminum composite films, etc. Expired - Fee Related JP4637551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327047A JP4637551B2 (en) 2004-10-13 2004-10-13 Separation of useful substances from PVC (also vinylidene chloride), mixed plastics including PET, aluminum composite films, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327047A JP4637551B2 (en) 2004-10-13 2004-10-13 Separation of useful substances from PVC (also vinylidene chloride), mixed plastics including PET, aluminum composite films, etc.

Publications (3)

Publication Number Publication Date
JP2006110531A true JP2006110531A (en) 2006-04-27
JP2006110531A5 JP2006110531A5 (en) 2006-06-15
JP4637551B2 JP4637551B2 (en) 2011-02-23

Family

ID=36379481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327047A Expired - Fee Related JP4637551B2 (en) 2004-10-13 2004-10-13 Separation of useful substances from PVC (also vinylidene chloride), mixed plastics including PET, aluminum composite films, etc.

Country Status (1)

Country Link
JP (1) JP4637551B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328123A (en) * 2005-05-24 2006-12-07 Nikkiso Co Ltd Method and apparatus for treating recovered spent halogen-containing plastic
JP2008088285A (en) * 2006-10-02 2008-04-17 Hiroshima Recycle Center:Kk Method for regenerating waste plastic
CN103599845A (en) * 2013-11-30 2014-02-26 巨锋 Paste type aluminum wrappage separation recovery method and device
WO2014098229A1 (en) * 2012-12-20 2014-06-26 アースリサイクル株式会社 Method for separation and recovery of plastic-based composite waste
CN104226668A (en) * 2013-06-18 2014-12-24 师衍海 A1000T type garbage disposal system
CN109438751A (en) * 2018-11-01 2019-03-08 中北大学 A kind of Thermal degradation method of halogen plastics
CN110561652A (en) * 2019-09-24 2019-12-13 漳州市陆海环保产业开发有限公司 separation device of aluminum-plastic composite membrane and alkaline separation process
WO2020059516A1 (en) 2018-09-19 2020-03-26 Dic株式会社 Method for separating and recovering layered film
WO2020066652A1 (en) 2018-09-25 2020-04-02 Dic株式会社 Separation/recovery method for laminated film
WO2021163099A1 (en) * 2020-02-10 2021-08-19 Eastman Chemical Company Particulate plastic solids handling apparatus and methods
JP7470195B2 (en) 2020-02-10 2024-04-17 イーストマン ケミカル カンパニー Chemical recycling of treated mixed plastic waste streams.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120976A (en) * 1974-08-16 1976-02-19 Mitsubishi Heavy Ind Ltd
JPS54127983A (en) * 1978-03-29 1979-10-04 Furukawa Netsugaku Enjiniaring Recovering resin aluminum from scrap of resin laminate aluminum material
JPH10258425A (en) * 1997-03-21 1998-09-29 Nkk Corp Method for granulating granular matter of polyethylene and polypropylene from waste plastic
JPH11323003A (en) * 1998-05-20 1999-11-26 Tokuyama Corp Removing covering layer
JP2002155020A (en) * 2000-11-15 2002-05-28 Toyo Seikan Kaisha Ltd Industrial method for recovering terephthalic acid from pulverized product of recovered polyethylene terephthalate
JP2002212571A (en) * 2001-01-24 2002-07-31 Aasu Recycle Kk Method for thermal cracking of waste plastic
JP2002332374A (en) * 2001-03-08 2002-11-22 Masao Umemoto Method, apparatus, and system for recovering scrap
JP2003181835A (en) * 2001-12-18 2003-07-02 Is:Kk Method for separating polyethylene terephthalate from pulverized substance of used pet bottle
JP2003225646A (en) * 2002-02-05 2003-08-12 Sharp Corp Method for recycling waste
JP2003253039A (en) * 2002-03-04 2003-09-10 Taketoshi Kito Method for dechlorinating vinyl chloride polymer
WO2004044042A1 (en) * 2002-11-12 2004-05-27 Masao Umemoto Waste collecting method, waste collecting apparatus, volume reducing or softening solution, waste collecting system, waste recycling method, and classified waste collecting method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120976A (en) * 1974-08-16 1976-02-19 Mitsubishi Heavy Ind Ltd
JPS54127983A (en) * 1978-03-29 1979-10-04 Furukawa Netsugaku Enjiniaring Recovering resin aluminum from scrap of resin laminate aluminum material
JPH10258425A (en) * 1997-03-21 1998-09-29 Nkk Corp Method for granulating granular matter of polyethylene and polypropylene from waste plastic
JPH11323003A (en) * 1998-05-20 1999-11-26 Tokuyama Corp Removing covering layer
JP2002155020A (en) * 2000-11-15 2002-05-28 Toyo Seikan Kaisha Ltd Industrial method for recovering terephthalic acid from pulverized product of recovered polyethylene terephthalate
JP2002212571A (en) * 2001-01-24 2002-07-31 Aasu Recycle Kk Method for thermal cracking of waste plastic
JP2002332374A (en) * 2001-03-08 2002-11-22 Masao Umemoto Method, apparatus, and system for recovering scrap
JP2003181835A (en) * 2001-12-18 2003-07-02 Is:Kk Method for separating polyethylene terephthalate from pulverized substance of used pet bottle
JP2003225646A (en) * 2002-02-05 2003-08-12 Sharp Corp Method for recycling waste
JP2003253039A (en) * 2002-03-04 2003-09-10 Taketoshi Kito Method for dechlorinating vinyl chloride polymer
WO2004044042A1 (en) * 2002-11-12 2004-05-27 Masao Umemoto Waste collecting method, waste collecting apparatus, volume reducing or softening solution, waste collecting system, waste recycling method, and classified waste collecting method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605602B2 (en) * 2005-05-24 2011-01-05 日機装株式会社 Method and apparatus for processing halogen-containing plastics
JP2006328123A (en) * 2005-05-24 2006-12-07 Nikkiso Co Ltd Method and apparatus for treating recovered spent halogen-containing plastic
JP2008088285A (en) * 2006-10-02 2008-04-17 Hiroshima Recycle Center:Kk Method for regenerating waste plastic
WO2014098229A1 (en) * 2012-12-20 2014-06-26 アースリサイクル株式会社 Method for separation and recovery of plastic-based composite waste
JPWO2014098229A1 (en) * 2012-12-20 2017-01-12 アースリサイクル株式会社 Separating and collecting plastic composite waste
CN104226668A (en) * 2013-06-18 2014-12-24 师衍海 A1000T type garbage disposal system
CN103599845A (en) * 2013-11-30 2014-02-26 巨锋 Paste type aluminum wrappage separation recovery method and device
CN103599845B (en) * 2013-11-30 2017-04-05 巨锋 A kind of Paste type aluminum wrappage separation recovery method and device
WO2020059516A1 (en) 2018-09-19 2020-03-26 Dic株式会社 Method for separating and recovering layered film
WO2020066652A1 (en) 2018-09-25 2020-04-02 Dic株式会社 Separation/recovery method for laminated film
CN109438751A (en) * 2018-11-01 2019-03-08 中北大学 A kind of Thermal degradation method of halogen plastics
CN109438751B (en) * 2018-11-01 2021-06-04 中北大学 Low-temperature degradation method of halogen-containing plastic
CN110561652A (en) * 2019-09-24 2019-12-13 漳州市陆海环保产业开发有限公司 separation device of aluminum-plastic composite membrane and alkaline separation process
CN110561652B (en) * 2019-09-24 2024-04-12 漳州市陆海环保产业开发有限公司 Separation device of aluminum-plastic composite membrane and alkaline separation process
WO2021163099A1 (en) * 2020-02-10 2021-08-19 Eastman Chemical Company Particulate plastic solids handling apparatus and methods
JP7425217B2 (en) 2020-02-10 2024-01-30 イーストマン ケミカル カンパニー Apparatus and method for handling particulate plastic solids
JP7470195B2 (en) 2020-02-10 2024-04-17 イーストマン ケミカル カンパニー Chemical recycling of treated mixed plastic waste streams.

Also Published As

Publication number Publication date
JP4637551B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
AU777435C (en) Process for preparing food contact grade polyethylene terephthalate resin from waste pet containers
JP4637551B2 (en) Separation of useful substances from PVC (also vinylidene chloride), mixed plastics including PET, aluminum composite films, etc.
EP1325066B1 (en) Polystyrene reclamation process
US5246116A (en) Method and apparatus for separation and recovery of the components from foil-containing laminates
EP0469904B1 (en) Process and apparatus for separating heterogeneous plastic material into homogeneous fractions
KR20220099983A (en) Waste treatment method and its reactor system
JP4768920B2 (en) Thermal decomposition of waste plastic
KR102246042B1 (en) Polysthylene extraction system for recycling of fire resilient styroform
US20220297026A1 (en) Clog free condensation system for pyrolysis vapor of pet containing polymer
JP2009084543A (en) Waste plastic liquefying apparatus
JP2000043044A (en) Apparatus for heat-treating plastic/inorganic composite waste
JPH07205146A (en) Continuously regenerating method for resin with coating film
JP2002523254A (en) Method and apparatus for recovering pure PVC from PVC-containing plastic waste
JPH07179651A (en) Process for treating thermoplastic resin waste
US20100013116A1 (en) Method and System for Removing Polychlorinated Biphenyls from Plastics
JP3027155B1 (en) An Improved Recycling Method for Waste Plastics Based on PVC Polymer
JP2006130756A (en) Manufacturing method of raw material pellet for material recycling
JP2003191238A (en) Pretreatment method and apparatus of material- recycling waste plastic
WO2016209094A1 (en) Device and method for separation of components of composite packaging materials
JP2002317071A (en) Method for recycling hybrid-type plastic
JPH0872058A (en) Method and apparatus for recycling plastic
JP2002177704A (en) Defoaming method for wet type gravity separator for waste plastic
JPH11222533A (en) Plastic waste granule and method for treating plastic waste
CN108659260A (en) A kind of recovery process of polyvinyl chloride wastes
KR20060096592A (en) Thermal separation method of waste synthetic resins and apparatus using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100823

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees