JP2006108949A - Crystal-controlled oscillator - Google Patents

Crystal-controlled oscillator Download PDF

Info

Publication number
JP2006108949A
JP2006108949A JP2004290818A JP2004290818A JP2006108949A JP 2006108949 A JP2006108949 A JP 2006108949A JP 2004290818 A JP2004290818 A JP 2004290818A JP 2004290818 A JP2004290818 A JP 2004290818A JP 2006108949 A JP2006108949 A JP 2006108949A
Authority
JP
Japan
Prior art keywords
crystal
capacitance
frequency
main surfaces
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004290818A
Other languages
Japanese (ja)
Other versions
JP4558433B2 (en
Inventor
Manabu Wada
学 和田
Kenzo Okamoto
謙蔵 岡本
Satoshi Umeki
三十四 梅木
Tamotsu Kurosawa
保 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2004290818A priority Critical patent/JP4558433B2/en
Publication of JP2006108949A publication Critical patent/JP2006108949A/en
Application granted granted Critical
Publication of JP4558433B2 publication Critical patent/JP4558433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystal-controlled oscillator for enlarging a capacitance ratio γ in a basic wave vibration and maintaining productivity. <P>SOLUTION: The crystal-controlled oscillator is formed of a crsytal piece including a thick center part as a vibrating region, an external circumferential part thinner than the center part, and a lead-out electrode extended to the external circumference by providing exciting electrodes provided opposed with each other to both main surfaces of the vibrating region. The opposing unit is provided by superimposing the lead-out electrode between both main surfaces of the external circumferential part, and the crystal piece is processed externally from a sheet of crystal wafer with the etching process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は水晶振動子を技術分野とし、特に容量比γを大きくして負荷変動による周波数変化を防止した水晶振動子に関する。   The present invention relates to a crystal resonator in the technical field, and more particularly to a crystal resonator in which a capacitance ratio γ is increased to prevent a frequency change due to load fluctuation.

(発明の背景)水晶振動子は電子機器に周波数及び時間の基準源として内蔵される。例えばワイヤレスLANの中継基地局に採用される無線機器(発振器)では、容量比γを大きくして周波数変動を抑制した水晶振動子が求められている。 BACKGROUND OF THE INVENTION A crystal resonator is built in an electronic device as a frequency and time reference source. For example, in a wireless device (oscillator) employed in a wireless LAN relay base station, there is a demand for a crystal resonator that suppresses frequency fluctuations by increasing the capacity ratio γ.

(従来技術の一例)第4図は一従来例を説明する水晶振動子(水晶片)の図である。 (Example of Prior Art) FIG. 4 is a diagram of a crystal resonator (crystal piece) for explaining one conventional example.

水晶振動子はATカットとした矩形状の水晶片1からなる。水晶片1の両主面には対向する一対の励振電極2(ab)が形成され、例えば一端部両側に引出電極3(ab)を延出する。そして、引出電極3(ab)の延出した一端部両側を保持して図示しない容器内に密閉封入される。   The crystal resonator is composed of a rectangular crystal piece 1 having an AT cut. A pair of opposing excitation electrodes 2 (ab) are formed on both main surfaces of the crystal piece 1, and for example, extraction electrodes 3 (ab) extend on both sides of one end. Then, both ends of the extended end portion of the extraction electrode 3 (ab) are held and sealed in a container (not shown).

このようなものでは、第5図(a)に示したような共振特性(リアクタンス周波数特性)を有する。すなわち、周波数の上昇とともに直列共振点fs及び反共振点(並列共振点)faを得る共振特性を有する。この場合、直列共振点fsと反共振点faとの間を誘導性(ωL)とし、それ以外を容量性(1/ωC)とする。   Such a thing has a resonance characteristic (reactance frequency characteristic) as shown in FIG. That is, it has resonance characteristics that obtain the series resonance point fs and the antiresonance point (parallel resonance point) fa as the frequency increases. In this case, between the series resonance point fs and the antiresonance point fa is inductive (ωL), and the others are capacitive (1 / ωC).

これらは、一般に、第5図(b)で示す等価回路で示され、直列腕と並列腕とからなる。直列腕は等価直列抵抗R1、同直列容量C1及び同直列インダクタL1からなり、水晶片1の圧電作用による固有の共振現象に起因する。並列腕は等価並列容量C0からなり、特に励振電極2(ab)の対向面積による電極間容量に依存する。そして、直列腕による共振周波数が直列共振点fsに、直列腕と並列腕による共振周波数が反共振点faになる。   These are generally shown by an equivalent circuit shown in FIG. 5 (b), and are composed of a serial arm and a parallel arm. The series arm includes an equivalent series resistance R1, a series capacitance C1, and a series inductor L1, and is caused by an inherent resonance phenomenon due to the piezoelectric action of the crystal piece 1. The parallel arm is composed of an equivalent parallel capacitance C0, and particularly depends on the capacitance between the electrodes due to the opposing area of the excitation electrode 2 (ab). The resonance frequency by the series arm becomes the series resonance point fs, and the resonance frequency by the series arm and the parallel arm becomes the antiresonance point fa.

そして、発振回路を構成する場合には、一般に、リアクタンス周波数特性の誘導性領域(fs−faの間)を使用し、即ち水晶振動子をインダクタとして使用する。そして、水晶振動子に接続した図示しない発振回路の容量成分(負荷容量CL)との共振周波数を発振周波数とする。   When configuring an oscillation circuit, generally, an inductive region (between fs-fa) of reactance frequency characteristics is used, that is, a crystal resonator is used as an inductor. Then, a resonance frequency with a capacitance component (load capacitance CL) of an oscillation circuit (not shown) connected to the crystal resonator is set as an oscillation frequency.

発振周波数f0は、一般には下式(1)に示したように、直列共振点fsからの周波数偏差Δf/fsで表される。但し、Δf=f0−fs、γ=C0/C1であり、γは容量比と呼ばれる。
Δf/fs=1/2γ(1+CL/C0)・・・(1)
The oscillation frequency f0 is generally represented by a frequency deviation Δf / fs from the series resonance point fs as shown in the following equation (1). However, Δf = f0−fs and γ = C0 / C1, and γ is called a capacity ratio.
Δf / fs = 1 / 2γ (1 + CL / C0) (1)

この式から明かなように、周波数偏差Δf/fsは容量比γに反比例する。すなわち、周波数偏差Δfは容量比γが大きいほど小さく、容量比γが小さいほど大きい。そして、周波数偏差Δfが大きいほど、周波数可変幅も大きいことから、通常では、水晶振動子の容量比γを小さく設計する。   As is apparent from this equation, the frequency deviation Δf / fs is inversely proportional to the capacity ratio γ. That is, the frequency deviation Δf is smaller as the capacity ratio γ is larger, and is larger as the capacity ratio γ is smaller. Since the frequency variable width increases as the frequency deviation Δf increases, the capacitance ratio γ of the crystal resonator is normally designed to be small.

容量比γは等価直列容量C1に反比例し、同並列容量C0に比例する。等価直列容量C1(fF)及び同並列容量C0(pF)は励振電極2(ab)の対向面積に依存して大きくなる。但し、等価直列容量C1の方が変化量は大きく、対向面積に対して飽和する。このことから、通常では等価直列容量C1の飽和点近傍に対向面積を設定する。そして、容量比γを小さくする。   The capacity ratio γ is inversely proportional to the equivalent series capacity C1, and is proportional to the parallel capacity C0. The equivalent series capacitance C1 (fF) and the parallel capacitance C0 (pF) increase depending on the facing area of the excitation electrode 2 (ab). However, the equivalent series capacitance C1 has a larger change amount and is saturated with respect to the facing area. Therefore, the facing area is usually set near the saturation point of the equivalent series capacitance C1. Then, the capacity ratio γ is reduced.

(従来技術の問題点)しかしながら、上記構成の水晶振動子では、等価直列容量C1を大きくして容量比γを小さくすることによって次の問題があった。すなわち、発振周波数f0は等価直列容量C1が大きいほどリアクタンス(1/ωC1)が小さいため、直列接続となる負荷容量CL(発振回路)の影響を受けやすい。したがって、負荷容量CLに依存して発振周波数f0が変化する所謂負荷変動の問題があった。 (Problems of the prior art) However, the quartz resonator having the above-described configuration has the following problems by increasing the equivalent series capacitance C1 and reducing the capacitance ratio γ. That is, since the reactance (1 / ωC1) is smaller as the equivalent series capacitance C1 is larger, the oscillation frequency f0 is easily affected by the load capacitance CL (oscillation circuit) connected in series. Therefore, there is a problem of so-called load fluctuation in which the oscillation frequency f0 changes depending on the load capacitance CL.

特に、ワイヤレスLAN等の中継機に用いられる発振器では、セット基板への組立後にトリミングコンデンサ等の可変周波数調整素子を有しない、即ち負荷容量(発振周波数)の調整素子を有しない無調整型とする。したがって、発振回路を構成する各回路素子値のばらつきによって負荷容量CLが不均一になり、負荷変動を生じやすい。   In particular, an oscillator used in a repeater for a wireless LAN or the like is a non-adjustable type that does not have a variable frequency adjusting element such as a trimming capacitor after assembling to a set substrate, that is, does not have a load capacitance (oscillation frequency) adjusting element. . Accordingly, the load capacitance CL becomes non-uniform due to variations in circuit element values constituting the oscillation circuit, and load fluctuations are likely to occur.

また、負荷容量CLの調整素子を有していたとしても、発振回路の搭載されるセット基板の浮遊容量等に起因した負荷容量CLの変化によって、負荷変動を生ずる。なお、浮遊容量CLは例えば湿気等の環境条件によって変化する。これらのことから、一般とは逆に容量比γが大きく、発振周波数f0の負荷変動を抑圧する水晶振動子が求められた。   Even if a load capacitance CL adjustment element is provided, a load change occurs due to a change in the load capacitance CL caused by the stray capacitance of the set substrate on which the oscillation circuit is mounted. Note that the stray capacitance CL varies depending on environmental conditions such as humidity. From these facts, there has been a demand for a crystal resonator that has a large capacitance ratio γ and suppresses load fluctuations at the oscillation frequency f0.

このことから、オーバトーン振動を利用することが考えられた。オーバトーン振動は基本波振動の奇数次倍調波で、例えば40MHz(厚みが約41μm)の振動周波数を次数nを3とした3次オーバトーン振動を得る場合は、基本波での振動周波数は約13.3MHzになる。   From this, it was considered to use overtone vibration. The overtone vibration is an odd-order harmonic of the fundamental wave vibration. For example, when obtaining a third-order overtone vibration with a vibration frequency of 40 MHz (thickness of about 41 μm) and an order n of 3, the vibration frequency of the fundamental wave is It becomes about 13.3MHz.

そして、オーバトーン次数をnとすると、容量比γ′は基本波での容量比γに対してn2γなる。ちなみに、ATカットの場合は、基本波でのγは約250であり、3次オーバトーン振動にすると2000以上になる。このことから、容量比γ′を大きくできる。   When the overtone order is n, the capacity ratio γ ′ is n2γ with respect to the capacity ratio γ in the fundamental wave. By the way, in the case of AT cut, γ at the fundamental wave is about 250, which is 2000 or more when the third-order overtone vibration is used. From this, the capacity ratio γ ′ can be increased.

しかし、この場合には、基本波での振動周波数が13.3MHzとなって水晶片1の厚みが大きく(約125μm)なる。また、厚みが大きくなる分、平面外形も大きくなって、ベベル加工等の端面処理を必要とする。一般には、振動周波数が概ね30MHz以下になると端面処理が必要になる。また、水晶片1の厚みが大きい分、人工水晶からの取り分が少なくなって、生産性に欠ける問題があった。   However, in this case, the vibration frequency of the fundamental wave is 13.3 MHz, and the thickness of the crystal piece 1 is increased (about 125 μm). Further, as the thickness is increased, the planar outer shape is also increased, and end face processing such as bevel processing is required. Generally, when the vibration frequency is about 30 MHz or less, end face processing is required. Further, since the quartz piece 1 is thick, the amount of the artificial quartz is reduced, resulting in a lack of productivity.

(発明の目的)本発明は基本波振動での容量比γを大きくし、生産性を維持した水晶振動子を提供することを目的とする。 (Object of the Invention) An object of the present invention is to provide a crystal resonator in which the capacity ratio γ in the fundamental wave vibration is increased and productivity is maintained.

本発明は特許請求の範囲(請求項1)に示したように、振動領域とした厚みの大きい中央部と前記中央部よりも厚みの小さい外周部とを有し、前記振動領域の両主面に対向する励振電極を設けて前記外周部に引出電極を延出した水晶片からなる水晶振動子において、前記引出電極を前記外周部の両主面間で重畳させて対向部を設けた構成とする。   The present invention has a central portion having a large thickness as an oscillating region and an outer peripheral portion having a smaller thickness than the central portion, and both main surfaces of the oscillating region, as indicated in the claims (Claim 1). A quartz crystal unit comprising a quartz crystal piece provided with an excitation electrode facing the outer periphery and extending an extraction electrode on the outer peripheral portion, and a configuration in which the opposing portion is provided by superimposing the extraction electrode between both main surfaces of the outer peripheral portion; To do.

このような構成であれば、引出電極の対向部によって電極間容量C0を増加できる。これに対し、励振電極の対向面積は一定なので、等価直列容量C1に変化はなく一定に維持される。したがって、オーバトーン振動を利用することなく、基本波振動での容量比γを大きくできる。そして、厚みが小さい分、ベベル等の端面処理を必要とせず、人工水晶からの取り分を多くするので、生産性を向上できる。   With such a configuration, the interelectrode capacitance C0 can be increased by the opposing portion of the extraction electrode. On the other hand, since the opposing area of the excitation electrode is constant, the equivalent series capacitance C1 is not changed and is maintained constant. Therefore, the capacity ratio γ in the fundamental wave vibration can be increased without using overtone vibration. Further, since the thickness is small, end face processing such as a bevel is not required, and the amount taken from the artificial quartz is increased, so that productivity can be improved.

本発明の請求項2に示したように、請求項1の前記励振電極は前記中央部の全面に設けて、前記対向部は前記励振電極の全外周とする。同請求項3では、請求項1の前記水晶片は一枚の水晶ウェハからエッチングによって外形加工される。   According to a second aspect of the present invention, the excitation electrode according to the first aspect is provided on the entire surface of the central portion, and the opposing portion is the entire outer periphery of the excitation electrode. In the third aspect of the invention, the crystal piece according to the first aspect is processed by etching from a single crystal wafer.

第1図は本発明の一実施例を説明する水晶振動子の図で、同図(a)は平面図、同図(b)はA−A断面図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。   FIGS. 1A and 1B are diagrams of a crystal resonator for explaining an embodiment of the present invention. FIG. 1A is a plan view and FIG. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.

水晶振動子は前述したようにATカットとした矩形状の水晶片1からなる。ここでは、水晶片1は写真製版技術を用いたエッチングによって外形加工され、厚みの大きい中央部とその外周を包囲する厚みの大きい外周部とからなる。厚みの大きい中央部は振動領域として、両主面に励振電極2(ab)が形成される。   As described above, the crystal resonator is composed of the rectangular crystal piece 1 which is AT-cut. Here, the crystal piece 1 is externally processed by etching using a photoengraving technique, and is composed of a thick central portion and a thick outer peripheral portion surrounding the outer periphery thereof. The central portion having a large thickness is used as a vibration region, and excitation electrodes 2 (ab) are formed on both main surfaces.

引出電極3(ab)は厚みの小さい外周部に設けられ、両主面にて各励振電極2(ab)の全外周に接続して両主面間で対向する環状対向部4を有する。そして、環状対向部4から水晶片1の一端部両側に延出する。励振電極2(ab)及び引出電極3(ab)は水晶片1の外形加工時に写真製版技術を用いたエッチングによって形成される。そして、引出電極3(ab)の延出した一端部両側は前述同様に保持され、水晶片1が容器内に密閉封入される。   The extraction electrode 3 (ab) is provided on the outer peripheral portion having a small thickness, and has an annular facing portion 4 that is connected to the entire outer periphery of each excitation electrode 2 (ab) at both main surfaces and is opposed between both main surfaces. Then, it extends from the annular facing portion 4 to both sides of one end of the crystal piece 1. The excitation electrode 2 (ab) and the extraction electrode 3 (ab) are formed by etching using a photoengraving technique when processing the outer shape of the crystal piece 1. Then, both ends of the extended end portion of the extraction electrode 3 (ab) are held in the same manner as described above, and the crystal piece 1 is hermetically sealed in the container.

このような構成であれば、等価並列容量C0を決定する両主面間の電極間容量C01は、励振電極2(ab)及び引出電極3(ab)の環状対向部4に依存する。すなわち、励振電極2(ab)による電極間容量C0aと環状対向部4による電極間容量C0bとの和になる。   With such a configuration, the interelectrode capacitance C01 between the two main surfaces that determines the equivalent parallel capacitance C0 depends on the annular facing portion 4 of the excitation electrode 2 (ab) and the extraction electrode 3 (ab). That is, the sum of the interelectrode capacitance C0a by the excitation electrode 2 (ab) and the interelectrode capacitance C0b by the annular facing portion 4 is obtained.

ちなみに、振動周波数を40MHz即ち振動領域の厚みd1を41μm、環状対向部4(外周部)の厚みd2を10μmとし、励振電極2(ab)の面積S1を0.72mm2(一辺が0.85mm、正方形)、環状対向部4の面積S2を0.41mm2とし、誘電率εを4.5とすると、電極間容量C01は次になる。
C01=C0a+C0b=εS1/d1+εS2/d2=1+2.3=3.3pF
Incidentally, the vibration frequency is 40 MHz, that is, the thickness d1 of the vibration region is 41 μm, the thickness d2 of the annular facing portion 4 (outer peripheral portion) is 10 μm, and the area S1 of the excitation electrode 2 (ab) is 0.72 mm 2 (one side is 0.85 mm, square ) If the area S2 of the annular facing portion 4 is 0.41 mm 2 and the dielectric constant ε is 4.5, the interelectrode capacitance C01 is as follows.
C01 = C0a + C0b = εS1 / d1 + εS2 / d2 = 1 + 2.3 = 3.3pF

したがって、この場合には、電極間容量C01(3.3pF)は励振電極2(ab)のみの場合(C0a=1pF)に比較して3.3倍になる。一方、等価直列容量C1は励振電極2(ab)の大きさに依存して3.5fFとなる。このことから、容量比γ=C0/C1は約1000になる。なお、等価並列容量C0には電極間容量C01に浮遊容量が加算される。   Therefore, in this case, the interelectrode capacitance C01 (3.3 pF) is 3.3 times that in the case of only the excitation electrode 2 (ab) (C0a = 1 pF). On the other hand, the equivalent series capacitance C1 is 3.5 fF depending on the size of the excitation electrode 2 (ab). From this, the capacity ratio γ = C0 / C1 is about 1000. Note that stray capacitance is added to the interelectrode capacitance C01 to the equivalent parallel capacitance C0.

これにより、容量比γを例えば1000以上に大きくできるので、周波数可変幅を小さくして発振周波数の負荷変動を防止できる。そして、振動周波数を40MHzとした基本波振動なので、オーバトーン振動を利用する場合に比較して、厚みも小さくて平面外形を大きくすることがない。したがって、ベベル等の端面処理を要せず、厚みが小さい分、人工水晶からの取り分を多くして生産性を高める。   As a result, the capacity ratio γ can be increased to, for example, 1000 or more, so that the frequency variable width can be reduced to prevent load fluctuation of the oscillation frequency. And since it is a fundamental wave vibration with a vibration frequency of 40 MHz, compared with the case where overtone vibration is used, the thickness is small and the planar outer shape is not enlarged. Therefore, end face processing such as a bevel is not required, and the productivity is increased by increasing the portion of the artificial quartz because the thickness is small.

なお、引出電極3(ab)の環状対向部4によってエネルギーが閉じ込められ、副振動が発生するが、振動領域による振動周波数よりも高域に発生するので、格別の問題は生じない。また、振動周波数が高いほど、厚みが小さくなって励振電極2(ab)の面積を小さくできて環状対向部4の面積を大きくできる。   The energy is confined by the annular facing portion 4 of the extraction electrode 3 (ab), and sub-vibration occurs. However, since it occurs in a higher frequency than the vibration frequency of the vibration region, no particular problem occurs. Further, as the vibration frequency is higher, the thickness is reduced, the area of the excitation electrode 2 (ab) can be reduced, and the area of the annular facing portion 4 can be increased.

(他の事項)上記実施例では、励振電極2(ab)は厚みの大きい振動領域の全面に設けたが、例えば第2図に示したようにしてもよい。すなわち、振動領域の輪郭から離間した中央に励振電極2(ab)形成して、環状対向部4を厚みの小さい外周部に設けてもよい。 (Other matters) In the above embodiment, the excitation electrode 2 (ab) is provided on the entire surface of the vibration region having a large thickness. However, for example, it may be as shown in FIG. That is, the excitation electrode 2 (ab) may be formed in the center separated from the contour of the vibration region, and the annular facing portion 4 may be provided on the outer peripheral portion having a small thickness.

また、引出電極3(ab)の対向部は励振電極2(ab)を取り巻く環状としたが、これに限らず両主面間で対向部4があればく例えば第3図に示したようにしてもよい。すなわち、引出電極3(ab)の対向部4は、水晶片1の長さ方向の励振電極2(ab)の両側となる外周部に設けてもよい。また、環状対向部に設けた引出電極3(ab)をトリミングすることによって容量比を制御できる。   Further, the opposing portion of the extraction electrode 3 (ab) has an annular shape surrounding the excitation electrode 2 (ab). However, the present invention is not limited to this, and there is an opposing portion 4 between both main surfaces. For example, as shown in FIG. Also good. That is, the opposing portion 4 of the extraction electrode 3 (ab) may be provided on the outer peripheral portion that is on both sides of the excitation electrode 2 (ab) in the length direction of the crystal piece 1. Further, the capacitance ratio can be controlled by trimming the extraction electrode 3 (ab) provided in the annular facing portion.

本発明の一実施例を説明する水晶振動子(水晶片)の図で、同図(a)は平面図、同図(b)はA−A断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure of the crystal oscillator (crystal piece) explaining one Example of this invention, The figure (a) is a top view, The figure (b) is AA sectional drawing. 本発明の他の実施例を説明する水晶振動子の図で、同図(a)は平面図、同図(b)はA−A断面図である。4A and 4B are diagrams of a crystal resonator illustrating another embodiment of the present invention, in which FIG. 4A is a plan view and FIG. 本発明のさらに他の実施例を説明する水晶振動子の平面図である。It is a top view of the crystal oscillator explaining the further another Example of this invention. 従来例を説明する水晶振動子の平面図である。It is a top view of the crystal oscillator explaining a prior art example. 従来例を説明する図で、同図(a)は水晶振動子の共振特性図、同図(b)は等価回路図である。It is a figure explaining a prior art example, the figure (a) is a resonance characteristic figure of a crystal oscillator, and the figure (b) is an equivalent circuit diagram.

符号の説明Explanation of symbols

1 水晶片、2 励振電極、3 引出電極、4 対向部。   1 crystal piece, 2 excitation electrode, 3 extraction electrode, 4 facing part.

Claims (3)

振動領域とした厚みの大きい中央部と前記中央部よりも厚みの小さい外周部とを有し、前記振動領域の両主面に対向する励振電極を設けて前記外周部に引出電極を延出した水晶片からなる水晶振動子において、前記引出電極を前記外周部の両主面間で重畳させて対向部を設けたことを特徴とする水晶振動子。   The vibration region has a central portion with a large thickness and an outer peripheral portion with a smaller thickness than the central portion, and excitation electrodes are provided opposite to both main surfaces of the vibration region to extend the extraction electrode to the outer peripheral portion. A quartz resonator comprising a quartz piece, wherein the lead electrode is overlapped between both main surfaces of the outer peripheral portion to provide a facing portion. 前記励振電極は前記中央部の全面に設けて、前記対向部は前記励振電極の全外周とした請求項1の水晶振動子。   2. The crystal resonator according to claim 1, wherein the excitation electrode is provided on the entire surface of the central portion, and the opposing portion is the entire outer periphery of the excitation electrode. 前記水晶片は一枚の水晶ウェハからエッチングによって外形加工された水晶振動子。   The crystal piece is a crystal resonator that is externally processed by etching from a single crystal wafer.
JP2004290818A 2004-10-01 2004-10-01 Crystal oscillator Expired - Fee Related JP4558433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290818A JP4558433B2 (en) 2004-10-01 2004-10-01 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290818A JP4558433B2 (en) 2004-10-01 2004-10-01 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2006108949A true JP2006108949A (en) 2006-04-20
JP4558433B2 JP4558433B2 (en) 2010-10-06

Family

ID=36378175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290818A Expired - Fee Related JP4558433B2 (en) 2004-10-01 2004-10-01 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP4558433B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306594A (en) * 2007-06-08 2008-12-18 Epson Toyocom Corp Mesa-type oscillation piece and mesa-type oscillation device
JP2010109527A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Crystal vibration chip and method of manufacturing the same
JP2012114496A (en) * 2010-11-19 2012-06-14 Seiko Epson Corp Piezoelectric vibrating reed and piezoelectric vibrator
JP2012142974A (en) * 2012-02-27 2012-07-26 Seiko Epson Corp Mesa type piezoelectric vibration reed, mesa type piezoelectric vibration device, oscillator, and electronic apparatus
CN102684638A (en) * 2011-03-18 2012-09-19 精工爱普生株式会社 Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2012191446A (en) * 2011-03-10 2012-10-04 Seiko Instruments Inc Electronic device and method of manufacturing electronic device
JP2014030116A (en) * 2012-07-31 2014-02-13 Kyocera Crystal Device Corp Crystal vibration element
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9837982B2 (en) 2011-03-09 2017-12-05 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device with stepped excitation section
US10075171B2 (en) 2015-03-27 2018-09-11 Seiko Epson Corporation Oscillator, electronic apparatus, and moving object

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568315U (en) * 1979-06-28 1981-01-24
JPS57151023U (en) * 1981-03-16 1982-09-22
JPS5847316A (en) * 1981-09-16 1983-03-19 Seikosha Co Ltd Thickness slip piezoelectric oscillator and its production
JPH02231808A (en) * 1989-03-03 1990-09-13 Toyo Commun Equip Co Ltd Electrode structure of crystal resonator
JPH04127709A (en) * 1990-09-19 1992-04-28 Seiko Epson Corp At cut crystal oscillator
JPH11355094A (en) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd Piezoelectric vibrator
JP2005094410A (en) * 2003-09-18 2005-04-07 Toyo Commun Equip Co Ltd Structure of piezoelectric vibrator and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568315U (en) * 1979-06-28 1981-01-24
JPS57151023U (en) * 1981-03-16 1982-09-22
JPS5847316A (en) * 1981-09-16 1983-03-19 Seikosha Co Ltd Thickness slip piezoelectric oscillator and its production
JPH02231808A (en) * 1989-03-03 1990-09-13 Toyo Commun Equip Co Ltd Electrode structure of crystal resonator
JPH04127709A (en) * 1990-09-19 1992-04-28 Seiko Epson Corp At cut crystal oscillator
JPH11355094A (en) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd Piezoelectric vibrator
JP2005094410A (en) * 2003-09-18 2005-04-07 Toyo Commun Equip Co Ltd Structure of piezoelectric vibrator and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306594A (en) * 2007-06-08 2008-12-18 Epson Toyocom Corp Mesa-type oscillation piece and mesa-type oscillation device
JP2010109527A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Crystal vibration chip and method of manufacturing the same
JP2012114496A (en) * 2010-11-19 2012-06-14 Seiko Epson Corp Piezoelectric vibrating reed and piezoelectric vibrator
US9837982B2 (en) 2011-03-09 2017-12-05 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device with stepped excitation section
JP2012191446A (en) * 2011-03-10 2012-10-04 Seiko Instruments Inc Electronic device and method of manufacturing electronic device
CN102684638A (en) * 2011-03-18 2012-09-19 精工爱普生株式会社 Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
CN107681991A (en) * 2011-03-18 2018-02-09 精工爱普生株式会社 Piezoelectric vibration device, piezoelectric vibrator, piezoelectric oscillator and electronic equipment
JP2012142974A (en) * 2012-02-27 2012-07-26 Seiko Epson Corp Mesa type piezoelectric vibration reed, mesa type piezoelectric vibration device, oscillator, and electronic apparatus
JP2014030116A (en) * 2012-07-31 2014-02-13 Kyocera Crystal Device Corp Crystal vibration element
US9716484B2 (en) 2014-07-31 2017-07-25 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US10075171B2 (en) 2015-03-27 2018-09-11 Seiko Epson Corporation Oscillator, electronic apparatus, and moving object

Also Published As

Publication number Publication date
JP4558433B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP2007158486A (en) Crystal resonator element, crystal resonator, and crystal oscillator
JP2008306594A (en) Mesa-type oscillation piece and mesa-type oscillation device
TW201236362A (en) Piezoelectric oscillator
JP4558433B2 (en) Crystal oscillator
US20140125422A1 (en) Self-oscillation circuit
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
US4205248A (en) Quartz crystal vibrator electrode configuration
JP2007208771A (en) Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
KR20110076824A (en) Vibrating reed, vibrator, oscillator, electronic device and method of adjusting frequency
JPS62230108A (en) Piezoelectric viblator
JP2005039768A (en) Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator
JP2001257558A (en) Piezoelectric vibrator
JP2001196886A (en) Crystal resonator
JP2006020020A (en) Crystal oscillator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPH07212171A (en) Thickness-shear crystal oscillator
JPH0379111A (en) Surface mount type composite piezoelectric element
TWI828973B (en) Method of designing driven electrode of crystal unit, method of manufacturing crystal unit, method of manufacturing crystal oscillator, and method of manufacturing driven electrode of crystal unit
JPH10145179A (en) Frame-type crystal vibrator and device element using it
JP2003273696A (en) Method for manufacturing crystal unit and method of manufacturing crystal oscillator
JP2003229739A (en) Quartz oscillator and its manufacturing method
JP2004207913A (en) Crystal vibrator
JP2023031666A (en) Vibration element and oscillator
JP2010081317A (en) Crystal oscillator
JP2003273647A (en) Crystal oscillator and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees