JP2006103039A - Laminated sheet and its manufacturing method - Google Patents

Laminated sheet and its manufacturing method Download PDF

Info

Publication number
JP2006103039A
JP2006103039A JP2004290032A JP2004290032A JP2006103039A JP 2006103039 A JP2006103039 A JP 2006103039A JP 2004290032 A JP2004290032 A JP 2004290032A JP 2004290032 A JP2004290032 A JP 2004290032A JP 2006103039 A JP2006103039 A JP 2006103039A
Authority
JP
Japan
Prior art keywords
prepreg
resin
temperature
laminated
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290032A
Other languages
Japanese (ja)
Inventor
Shinji Ito
慎二 伊藤
Yasuyuki Hirai
康之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004290032A priority Critical patent/JP2006103039A/en
Publication of JP2006103039A publication Critical patent/JP2006103039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a laminated sheet stable in dimensional (change) characteristics, and the laminated sheet manufactured thereby. <P>SOLUTION: In the manufacturing method of the laminated sheet by laminating a predetermined number of prepregs impregnated with a resin and heating them under pressure, at least one prepreg is heat-treated once or a plurality of times at a temperature lower in 10-40°C than a temperature at which the melt viscosity of the resin infiltrated in the prepreg lowers maximally before lamination. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,積層板の製造方法とその製造方法によって製造される積層板に関するものである。   The present invention relates to a method for manufacturing a laminate and a laminate produced by the method.

従来,積層板の製造は,鏡板の上に銅箔とプリプレグと銅箔を重ね、その上に鏡板を重ねてこれを繰り返し,複数の構成と鏡板で構成した積層構成を多段プレスの熱板間に所望の数の構成をセットして、圧力を加えるとともに、熱板を所望の温度に昇温し一定時間加熱して積層加圧,加熱し,積層一体化している。また寸法特性の安定性については,特開昭59−64350号公報や特公平05−57752号公報に示される様に,積層成形後の金属箔張積層板をエージングすることにより,寸法特性のばらつきを低減させる技術が知られている。   Conventionally, the production of laminated plates is made by stacking copper foil, prepreg, and copper foil on the mirror plate, and then stacking the mirror plate on top of it, and repeating this to form a laminated structure composed of multiple configurations and mirror plates between the hot plates of the multi-stage press. A desired number of components are set and pressure is applied, and the hot plate is heated to a desired temperature and heated for a predetermined time to be laminated and pressurized to be integrated. As for the stability of dimensional characteristics, as shown in Japanese Patent Application Laid-Open No. 59-64350 and Japanese Patent Publication No. 05-57752, variation in dimensional characteristics can be achieved by aging the metal foil-clad laminate after lamination molding. A technique for reducing the above is known.

特開昭59−64350号公報JP 59-64350 A 特公平05−57752号公報Japanese Patent Publication No. 05-57752

プリプレグ製造工程で得られたプリプレグをそのまま積層工程で使用する場合,プリプレグ製造乾燥工程内で樹脂の硬化が進み収縮が発生すると同時に,ガラスクロスまたはガラスペーパーにかかるテンション(張力)により,プリプレグ内に大きな歪み(ストレス)が残存し,積層工程内では,加圧が必要であることから,この歪み(ストレス)が拘束され,積層板内に残存してしまい,寸法(変化)特性に差が生じるという課題がある。本発明は,前記の課題を解決し、寸法(変化)特性の安定した積層板を製造する方法とその製造方法によって製造された積層板を提供することを目的とする。   When the prepreg obtained in the prepreg manufacturing process is used as it is in the laminating process, the resin hardens and shrinks during the prepreg manufacturing drying process, and at the same time, the tension (tension) applied to the glass cloth or glass paper causes the prepreg to enter the prepreg. Since large strain (stress) remains and pressure is required in the lamination process, this strain (stress) is constrained and remains in the laminate, resulting in a difference in dimensional (change) characteristics. There is a problem. An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a laminated plate having stable dimensional (change) characteristics and a laminated plate produced by the production method.

上記課題を解決するために、本発明は次のように構成される。
(1)樹脂を含浸した所定枚数のプリプレグを積層構成し、加熱加圧してなる積層板の製造方法において,積層構成前に、少なくとも1枚の該プリプレグを、該プリプレグに含浸した樹脂の溶融粘度が最も低くなる温度より10〜40℃低い温度で、1回または複数回加熱処理することを特徴とする積層板の製造方法。
(2)項(1)に記載の積層板の製造方法によって製造された積層板。
In order to solve the above problems, the present invention is configured as follows.
(1) In a method for producing a laminated board in which a predetermined number of prepregs impregnated with resin are laminated and heated and pressed, the melt viscosity of the resin impregnated with at least one prepreg before the laminated structure A method for producing a laminated board, characterized in that heat treatment is performed once or a plurality of times at a temperature 10 to 40 ° C. lower than the lowest temperature.
(2) A laminate produced by the laminate production method according to item (1).

本発明によって、寸法(変化)特性の安定した積層板を製造する方法とその製造方法によって製造された積層板を提供できる。   According to the present invention, it is possible to provide a method of manufacturing a laminated plate having stable dimensional (change) characteristics and a laminated plate manufactured by the manufacturing method.

本発明は、樹脂を含浸した所定枚数のプリプレグを積層構成し、加熱加圧してなる積層板の製造方法において,積層構成前に、少なくとも1枚の該プリプレグを、該プリプレグに含浸した樹脂の溶融粘度が最も低くなる温度より10〜40℃低い温度で、1回または複数回加熱処理することを特徴とした積層板の製造方法であり、そしてこの製造方法で製造された積層板である。なお本発明に使用されるプリプレグとしては、ガラス繊維基材、紙繊維基材、アラミド等の樹脂繊維基材等の繊維基材に樹脂を含浸したものが挙げられる。本発明の積層板としては、両面金属張積層板、片面金属張積層板、樹脂板、配線板などが挙げられる。   The present invention relates to a method for producing a laminated plate in which a predetermined number of prepregs impregnated with a resin are laminated and heated and pressed, and before the laminated constitution, at least one prepreg is melted with the resin impregnated in the prepreg. A method for producing a laminated board characterized by heat-treating once or a plurality of times at a temperature lower by 10 to 40 ° C. than a temperature at which the viscosity is lowest, and the laminated board produced by this production method. In addition, as a prepreg used for this invention, what impregnated resin to fiber base materials, such as glass fiber base materials, paper fiber base materials, resin fiber base materials, such as an aramid, is mentioned. Examples of the laminate of the present invention include a double-sided metal-clad laminate, a single-sided metal-clad laminate, a resin plate, and a wiring board.

本発明の積層板の製造方法では、1枚又は複数枚のプリプレグを積層構成すればよく、その両面又は片面に金属箔を配置し、金属張積層板としてもよく、また金属箔を配置しない樹脂板としてもよく、あるいは、内層板を用い多層配線板としてもよい。なおプリプレグに含浸した樹脂としては、特に限定しないが、熱硬化性樹脂や熱可塑性樹脂が挙げられ、熱硬化性樹脂が好ましい。熱硬化性樹脂としては、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂、シクロペンタジエンから合成した樹脂、トリス(2−ヒドロキシエチル)イソシアヌラートを含む樹脂、芳香族ニトリルから合成した樹脂、3量化芳香族ジシアナミド樹脂、トリアリルトリメタリレートを含む樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、縮合多環芳香族を含む熱硬化性樹脂、ベンゾシクロブテン樹脂、ノルボルネン樹脂等を用いることができる。熱可塑性樹脂としては、ポリイミド樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、アラミド樹脂、液晶ポリマ等が挙げられる。樹脂には充填材を添加しても良い。充填材としては、シリカ、タルク、水酸化アルミニウム、ホウ酸アルミニウム、窒化アルミニウム、アルミナ等が挙げられる。   In the method for producing a laminate of the present invention, one or a plurality of prepregs may be laminated, and metal foil may be arranged on both sides or one side thereof to form a metal-clad laminate, or a resin that does not arrange metal foil. It may be a board, or may be a multilayer wiring board using an inner layer board. The resin impregnated in the prepreg is not particularly limited, and examples thereof include a thermosetting resin and a thermoplastic resin, and a thermosetting resin is preferable. Thermosetting resins include phenol resin, urea resin, melamine resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin, epoxy resin, silicone resin, resin synthesized from cyclopentadiene, tris (2-hydroxyethyl) ) Resin containing isocyanurate, resin synthesized from aromatic nitrile, trimerized aromatic dicyanamide resin, resin containing triallyl trimetallate, furan resin, ketone resin, xylene resin, thermosetting containing condensed polycyclic aromatic Resin, benzocyclobutene resin, norbornene resin and the like can be used. Examples of the thermoplastic resin include polyimide resin, polyphenylene oxide resin, polyphenylene sulfide resin, aramid resin, and liquid crystal polymer. A filler may be added to the resin. Examples of the filler include silica, talc, aluminum hydroxide, aluminum borate, aluminum nitride, and alumina.

加熱加圧条件は、特に限定しないが、用いられるプリプレグ(含浸した樹脂)の特性により、決定されることが望ましい。積層構成前に、積層構成されるプリプレグの少なくとも1枚のプリプレグが、加熱処理されるが、積層構成されるプリプレグが2枚以上の場合は、2枚以上加熱処理されることが好ましく、積層構成されるすべてのプリプレグが加熱処理されることがより好ましい。なお加熱処理の際のプリプレグの重ね枚数は、プリプレグ1枚でもよく、また2枚以上プリプレグを重ねてもよいが、積層構成されるプリプレグの枚数と同じであることが好ましい。   The heating and pressing conditions are not particularly limited, but are desirably determined according to the characteristics of the prepreg (impregnated resin) used. Prior to the layered configuration, at least one prepreg of the layered prepreg is heat-treated, but when there are two or more layered prepregs, two or more prepregs are preferably heat-treated. More preferably, all prepregs to be processed are heat-treated. Note that the number of prepregs to be stacked during the heat treatment may be one prepreg or two or more prepregs, but is preferably the same as the number of stacked prepregs.

積層構成前のプリプレグの加熱処理は、乾燥機等を用い行なってもよい。加熱処理の温度は、プリプレグに含浸した樹脂の溶融粘度が最も低くなる温度より10〜40℃低い温度である。10℃未満では、硬化が進みすぎ、プリプレグの硬化の程度の制御が困難になり、また40℃を超すと加熱処理の効果が乏しい。また加熱処理の時間は、特に限定しないが、10〜600秒が好ましく、20〜120秒がより好ましく、30〜60秒が特に好ましい。10秒未満では、加熱処理の効果が乏しく、また600秒を超すと硬化が進みすぎ、プリプレグの硬化の程度の制御が困難になる。また加熱処理の回数は、1回または複数回であるが、加熱処理の温度、加熱処理の時間、樹脂の特性などから適宜決定するのが望ましい。また、加熱処理後のプリプレグの冷却の方法は、特に限定しないが、常温(25℃)まで徐々に、空冷等により自然冷却することが好ましい。よってプリプレグを積層構成する場合、あるいは次の加熱処理する場合も、プリプレグが常温(25℃)に戻ってから行なうことが好ましい。積層構成前のプリプレグの加熱処理する、あるいは加熱処理し更に常温(25℃)まで徐々に自然冷却することにより、加熱処理後のプリプレグの構成位置毎に歪み(ストレス)が異なることを防ぐことが可能となり、そしてプリプレグの製造工程内でプリプレグ内に残留した歪み(ストレス)を低減することが可能となる。   The heat treatment of the prepreg before the laminated structure may be performed using a dryer or the like. The temperature of the heat treatment is a temperature that is 10 to 40 ° C. lower than the temperature at which the melt viscosity of the resin impregnated in the prepreg is lowest. If it is less than 10 degreeC, hardening will progress too much and it will become difficult to control the degree of hardening of a prepreg, and if it exceeds 40 degreeC, the effect of heat processing will be scarce. The time for the heat treatment is not particularly limited, but is preferably 10 to 600 seconds, more preferably 20 to 120 seconds, and particularly preferably 30 to 60 seconds. If it is less than 10 seconds, the effect of the heat treatment is poor, and if it exceeds 600 seconds, curing proceeds too much, and it becomes difficult to control the degree of curing of the prepreg. The number of heat treatments is one or more, but it is desirable to appropriately determine the heat treatment temperature, heat treatment time, resin characteristics, and the like. The method for cooling the prepreg after the heat treatment is not particularly limited, but it is preferable that the prepreg is naturally cooled gradually by air cooling or the like to room temperature (25 ° C.). Therefore, when the prepreg is laminated or is subjected to the next heat treatment, it is preferably performed after the prepreg returns to room temperature (25 ° C.). Heat treatment of the prepreg before the laminated structure, or heat treatment and further natural cooling gradually to room temperature (25 ° C.) can prevent the distortion (stress) from being different for each constituent position of the prepreg after the heat treatment. It becomes possible, and it becomes possible to reduce the strain (stress) remaining in the prepreg in the manufacturing process of the prepreg.

プリプレグに含浸した樹脂の溶融粘度が最も低くなる温度は、このプリプレグから樹脂を採取し、市販のフローテスタ等を用い粘度変化曲線を測定することにより求めることができる。   The temperature at which the melt viscosity of the resin impregnated in the prepreg becomes the lowest can be obtained by collecting the resin from this prepreg and measuring the viscosity change curve using a commercially available flow tester or the like.

次に本発明を実施例によって具体的に説明する。本発明は実施例によって限定されるものではない。
(プリプレグの製造)
ブロム化エポキシ樹脂(油化シェルエポキシ株式会社製エピコート5040B80(商品名)を使用)90部(重量部,以下同じ),クレゾールノボラック型エポキシ樹脂(大日本インキ化学工業株式会社製,N−673−80M(商品名)を使用)10部,ジシアンジアミド1.5部および2−エチル−4−メチルイミダゾール0.05部,メチルエチルケトン50部を混合し,固形分69.6重量%の樹脂ワニスを調整した。この樹脂ワニスと、ガラス布基材(ガラス繊維基材)として,坪量210g/m,幅510mm,厚さ0.2mmのガラスクロス(MIL規格:7629)を用い,プリプレグの樹脂固形分(無機充填剤を含む)を45重量%に調整し,9m/分の速度で170℃の乾燥炉等を通過させてプリプレグを作製した。このプリプレグから固形樹脂を採取し、島津製作所製フローテスタを用い粘度変化曲線を測定した。その結果、溶融粘度が最も低くなる温度は、120℃であり,その時の樹脂の最低溶融粘度は、45Pa・sであることがわかった。なおこのプリプレグの160℃での樹脂流れは15.6重量%,硬化時間は96秒であった。
Next, the present invention will be specifically described with reference to examples. The present invention is not limited by the examples.
(Manufacture of prepreg)
Brominated epoxy resin (using Epicoat 5040B80 (trade name) manufactured by Yuka Shell Epoxy Co., Ltd.) 90 parts (parts by weight, the same applies hereinafter), cresol novolac type epoxy resin (Dainippon Ink Chemical Co., Ltd., N-673-) 10 parts of 80M (trade name)), 1.5 parts of dicyandiamide, 0.05 part of 2-ethyl-4-methylimidazole, and 50 parts of methyl ethyl ketone were mixed to prepare a resin varnish having a solid content of 69.6% by weight. . Using this resin varnish and a glass cloth base (glass fiber base), a glass cloth (MIL standard: 7629) having a basis weight of 210 g / m 2 , a width of 510 mm, and a thickness of 0.2 mm, the resin solid content of the prepreg ( (Including inorganic filler) was adjusted to 45% by weight and passed through a drying furnace at 170 ° C. at a speed of 9 m / min to prepare a prepreg. A solid resin was collected from the prepreg, and a viscosity change curve was measured using a flow tester manufactured by Shimadzu Corporation. As a result, it was found that the temperature at which the melt viscosity was lowest was 120 ° C., and the minimum melt viscosity of the resin at that time was 45 Pa · s. The resin flow of this prepreg at 160 ° C. was 15.6% by weight, and the curing time was 96 seconds.

(実施例1)
上記で作成したプリプレグを縦510mm,横510mmの寸法に切断し,そのプリプレグを樹脂の粘度が最も低くなる温度(120℃)より10℃低くなる様,110℃に設定した乾燥機の中で30秒間加熱処理し,常温(25℃)まで自然冷却する工程を1回行なったものを,それぞれ鏡板(材質SUS304)の上に厚さ35μmの銅箔を乗せ,その上に前記加熱処理したプリプレグを1枚乗せ,その上に厚さ35μmの銅箔を乗せ,更に鏡板を重ね,これを10回繰り返した構成品を熱板間に装填して積層温度185℃,圧力2.5MPaの条件で加熱,加圧を開始し,100分間加熱して,厚さ0.2mmのガラス基材両面銅張積層板を作製した。
(Example 1)
The prepreg prepared above is cut into dimensions of 510 mm in length and 510 mm in width, and the prepreg is 30 in a dryer set at 110 ° C. so that it becomes 10 ° C. lower than the temperature at which the resin viscosity is lowest (120 ° C.). Heat-treatment for 2 seconds and natural cooling to room temperature (25 ° C.) once were performed, and a 35 μm thick copper foil was placed on each end plate (material SUS304), and the heat-treated prepreg was placed thereon. Place one sheet, put a 35μm thick copper foil on it, stack a mirror plate, and repeat the process 10 times. Load the components between the hot plates and heat them at the lamination temperature of 185 ° C and the pressure of 2.5MPa. Then, pressurization was started and heating was performed for 100 minutes to produce a glass substrate double-sided copper-clad laminate having a thickness of 0.2 mm.

(実施例2)
上記で作製したプリプレグを縦510mm,横510mmの寸法に切断し,そのプリプレグを樹脂の粘度が最も低くなる温度(120℃)より40℃低くなる様,80℃に設定した乾燥機の中で30秒間加熱処理し,常温(25℃)まで自然冷却する工程を3回繰り返したものを用いた以外は,実施例1と同様の方法で厚さ0.2mmのガラス基材両面銅張積層板を作製した。
(Example 2)
The prepreg produced above is cut into dimensions of 510 mm in length and 510 mm in width, and the prepreg is 30 in a dryer set at 80 ° C. so that the temperature of the resin becomes 40 ° C. lower than the lowest temperature (120 ° C.). A glass substrate double-sided copper-clad laminate having a thickness of 0.2 mm was prepared in the same manner as in Example 1 except that the heat treatment for 2 seconds and the process of natural cooling to room temperature (25 ° C.) were repeated three times. Produced.

(実施例3)
上記で作製したプリプレグを縦510mm,横510mmの寸法に切断し,そのプリプレグを3枚重ね合わせ,そのプリプレグを樹脂の粘度が最も低くなる温度(120℃)より10℃低くなる様,110℃に設定した乾燥機の中で30秒間加熱処理し,常温(25℃)まで自然冷却する工程を1回行なったものを,それぞれ鏡板(材質SUS304)の上に厚さ35μmの銅箔を乗せ,その上に前記加熱処理したプリプレグを3枚乗せ,その上に厚さ35μmの銅箔を乗せ,更に鏡板を重ね,これを10回繰り返した構成品を熱板間に装填して積層温度185℃,圧力2.5MPaの条件で加熱,加圧を開始し,100分間加熱して,厚さ0.6mmのガラス基材両面銅張積層板を作製した。
(Example 3)
The prepreg produced above is cut into a dimension of 510 mm in length and 510 mm in width, and the three prepregs are overlapped, and the prepreg is adjusted to 110 ° C. so that the temperature becomes lower by 10 ° C. than the temperature at which the resin has the lowest viscosity (120 ° C.). Heat treatment for 30 seconds in the set dryer and natural cooling to room temperature (25 ° C) once were put on each end plate (material SUS304) with a 35 μm thick copper foil. Three heat-treated prepregs are placed on top, a 35 μm thick copper foil is placed thereon, a mirror plate is further stacked, and a component obtained by repeating this 10 times is loaded between the hot plates, and the lamination temperature is 185 ° C. Heating and pressurization were started under conditions of a pressure of 2.5 MPa, and heating was performed for 100 minutes to produce a glass substrate double-sided copper-clad laminate having a thickness of 0.6 mm.

(実施例4)
上記で作製したプリプレグを縦510mm,横510mmの寸法に切断し,そのプリプレグを3枚重ね合わせ,そのプリプレグを樹脂の粘度が最も低くなる温度(120℃)より40℃低くなる様,80℃に設定した乾燥機の中で30秒間加熱処理し,常温(25℃)まで自然冷却する工程を5回繰り返したものを,それぞれ鏡板(材質SUS304)の上に厚さ35μmの銅箔を乗せ,その上に前記加熱処理したプリプレグを3枚乗せ,その上に厚さ35μmの銅箔を乗せ,更に鏡板を重ね,これを10回繰り返した構成品を熱板間に装填して積層温度185℃,圧力2.5MPaの条件で加熱,加圧を開始し,100分間加熱して,厚さ0.6mmのガラス基材両面銅張積層板を作製した。
(Example 4)
The prepreg produced above is cut into a dimension of 510 mm in length and 510 mm in width, the three prepregs are overlapped, and the prepreg is heated to 80 ° C. so that it is 40 ° C. lower than the temperature at which the resin viscosity is lowest (120 ° C.). A process of heat treatment for 30 seconds in a set dryer and natural cooling to room temperature (25 ° C.) was repeated 5 times, and a 35 μm thick copper foil was placed on each end plate (material SUS304). Three heat-treated prepregs are placed on top, a 35 μm thick copper foil is placed thereon, a mirror plate is further stacked, and a component obtained by repeating this 10 times is loaded between the hot plates, and the lamination temperature is 185 ° C. Heating and pressurization were started under conditions of a pressure of 2.5 MPa, and heating was performed for 100 minutes to produce a glass substrate double-sided copper-clad laminate having a thickness of 0.6 mm.

(比較例1)
上記で作製したプリプレグを縦510mm,横510mmの寸法に切断し,鏡板(材質SUS304)の上に厚さ35μmの銅箔を乗せ,その上に前記プリプレグを1枚乗せ,その上に厚さ35μmの銅箔を乗せ,更に鏡板を重ね,これを10回繰り返した構成品を熱板間に装填して積層温度185℃,圧力2.5MPaの条件で加熱,加圧を開始し,100分間加熱して,厚さ0.2mmのガラス基材両面銅張積層板を作製した。
(Comparative Example 1)
The prepreg produced above is cut into dimensions of 510 mm in length and 510 mm in width, and a copper foil with a thickness of 35 μm is placed on the end plate (material SUS304), one prepreg is placed thereon, and a thickness of 35 μm is placed thereon. Put the copper foil on top, and stack the end plate, and repeat the process 10 times. Load the components between the hot plates and start heating and pressurization under the conditions of a lamination temperature of 185 ° C and a pressure of 2.5 MPa. Heat for 100 minutes. Thus, a glass substrate double-sided copper-clad laminate having a thickness of 0.2 mm was produced.

(比較例2)
上記で作成したプリプレグを縦510mm,横510mmの寸法に切断し,鏡板(材質SUS304)の上に厚さ35μmの銅箔を乗せ,その上に前記プリプレグを3枚乗せ,その上に厚さ35μmの銅箔を乗せ,更に鏡板を重ね,これを10回繰り返した構成品を熱板間に装填して積層温度185℃,圧力2.5MPaの条件で加熱,加圧を開始し,100分間加熱して,厚さ0.6mmのガラス基材両面銅張積層板を作製した。
(Comparative Example 2)
The prepreg prepared above is cut into dimensions of 510 mm in length and 510 mm in width, and a copper foil with a thickness of 35 μm is placed on a mirror plate (material SUS304), three prepregs are placed on it, and a thickness of 35 μm is placed thereon. Put the copper foil on top, and stack the end plate, and repeat the process 10 times. Load the components between the hot plates and start heating and pressurization under the conditions of a lamination temperature of 185 ° C and a pressure of 2.5 MPa. Heat for 100 minutes. Thus, a glass substrate double-sided copper-clad laminate having a thickness of 0.6 mm was produced.

実施例1〜4と比較例1,2で作製したガラス基材両面銅張積層板及びプリプレグについて、以下のようにして特性を測定した。その結果を表1に示した。
(ガラス基材両面銅張積層板の寸法特性)
ガラス基材両面銅張積層板の寸法特性は,330mm×250mmのサンプルサイズの4隅に穴を明け、たて方向、よこ方向の寸法変化率を測定した。寸法変化率は,常態を基準とし,全面エッチング(残銅率0%)して170℃30分乾燥処理した後の寸法変化より算出した。なお、本実施例における、たて方向とはガラス基材両面銅張積層板のガラスクロスの繊維方向と平行であり、よこ方向は、繊維方向と垂直である。
About the glass base-material double-sided copper clad laminated board and prepreg produced in Examples 1-4 and Comparative Examples 1 and 2, the characteristic was measured as follows. The results are shown in Table 1.
(Dimensional characteristics of glass substrate double-sided copper-clad laminate)
Regarding the dimensional characteristics of the glass-based double-sided copper-clad laminate, holes were made in four corners of a sample size of 330 mm × 250 mm, and the dimensional change rate in the vertical direction and the horizontal direction was measured. The dimensional change rate was calculated from the dimensional change after etching the entire surface (remaining copper ratio 0%) and drying at 170 ° C. for 30 minutes, based on the normal state. In this example, the warp direction is parallel to the fiber direction of the glass cloth of the double-sided copper-clad laminate of the glass substrate, and the weft direction is perpendicular to the fiber direction.

(プリプレグの性能特性)
加熱処理したプリプレグ(実施例1〜4)及び未加熱プリプレグ(比較例1,2)より,プリプレグの性能特性を求めた。プリプレグの性能特性である樹脂流れの試験条件は,プリプレグを150mm角のバイアスに切断し3枚重ね合わせたものを試料とし,160℃,1MPaにて10分間加熱加圧し,150mm角のサンプルのプレス前後における重量変化により算出した。またプリプレグの性能特性である硬化時間は,プリプレグを50mm角のバイアスに切断したものを全体の重量が約15gとなる様,複数枚重ね合わせ160℃±1℃に保持された熱板間に挿入し,1MPaにて10秒間加圧し,その後,熱板を開放し,その熱板上にて,流れ出した樹脂が硬化するまでの時間とした。
(Performance characteristics of prepreg)
The performance characteristics of the prepreg were determined from the heat-treated prepreg (Examples 1 to 4) and the unheated prepreg (Comparative Examples 1 and 2). The resin flow test condition, which is a performance characteristic of the prepreg, was prepared by cutting three prepregs into 150 mm square biases and superposing three sheets, heating and pressing at 160 ° C. and 1 MPa for 10 minutes, and pressing a 150 mm square sample. It was calculated from the weight change before and after. The curing time, which is a performance characteristic of prepreg, is inserted between hot plates held at 160 ° C ± 1 ° C, with multiple prepregs cut to 50 mm square bias so that the total weight is about 15 g. Then, pressurization was performed at 1 MPa for 10 seconds, and then the hot plate was opened, and the time until the resin that had flowed out hardened on the hot plate.

(ガラス基材両面銅張積層板の成形性)
ガラス基材両面銅張積層板の銅を全面エッチングし,積層板のかすれ並びにボイドの発生の有無を確認した。○:かすれ、ボイドの発生無、×:かすれ、ボイドの発生有とした。
(Formability of glass substrate double-sided copper-clad laminate)
The copper of the glass-based double-sided copper-clad laminate was etched all over, and the presence or absence of blurring and voids in the laminate was confirmed. ○: Blurring, no generation of voids, X: Hazing, generation of voids.

Figure 2006103039
Figure 2006103039

板厚が0.2mmの積層板の場合、実施例1、2に示したように、比較例1と比べ、寸法変化率が、たて方向で、−0.0202%から、−0.0172%と−0.0182%になり、またよこ方向で、−0.0176%から、−0.0148%と−0.0162%になるなど、寸法変化率が、加熱処理することにより8〜16%低減されることがわかった。板厚が0.6mmの積層板の場合、同様に、実施例3、4と比較例2を比べ、寸法変化率が、10〜16%低減されることがわかった。   In the case of a laminated plate having a plate thickness of 0.2 mm, as shown in Examples 1 and 2, compared with Comparative Example 1, the dimensional change rate is -0.0202% to -0.0172 in the vertical direction. % To −0.0182%, and in the transverse direction, from −0.0176% to −0.0148% and −0.0162%, the dimensional change rate is 8 to 16 by heat treatment. % Was found to be reduced. Similarly, in the case of a laminated plate having a plate thickness of 0.6 mm, it was found that the dimensional change rate was reduced by 10 to 16% by comparing Examples 3 and 4 with Comparative Example 2.

また、プリプレグの性能特性及びガラス基材両面銅張積層板の成形性は、本発明の加熱処理によって、ほとんど低下しないことがわかる。


Moreover, it turns out that the performance characteristic of a prepreg and the moldability of a glass base material double-sided copper clad laminated board hardly fall by the heat processing of this invention.


Claims (2)

樹脂を含浸した所定枚数のプリプレグを積層構成し、加熱加圧してなる積層板の製造方法において,積層構成前に、少なくとも1枚の該プリプレグを、該プリプレグに含浸した樹脂の溶融粘度が最も低くなる温度より10〜40℃低い温度で、1回または複数回加熱処理することを特徴とする積層板の製造方法。   In a method of manufacturing a laminated board in which a predetermined number of prepregs impregnated with resin are laminated and heated and pressed, at least one of the prepregs impregnated with the prepreg has the lowest melt viscosity before being laminated. The manufacturing method of the laminated board characterized by heat-processing 1 time or several times at the temperature 10-40 degreeC lower than the temperature to become. 請求項1に記載の積層板の製造方法によって製造された積層板。


The laminated board manufactured by the manufacturing method of the laminated board of Claim 1.


JP2004290032A 2004-10-01 2004-10-01 Laminated sheet and its manufacturing method Pending JP2006103039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290032A JP2006103039A (en) 2004-10-01 2004-10-01 Laminated sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290032A JP2006103039A (en) 2004-10-01 2004-10-01 Laminated sheet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006103039A true JP2006103039A (en) 2006-04-20

Family

ID=36373296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290032A Pending JP2006103039A (en) 2004-10-01 2004-10-01 Laminated sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006103039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341749B1 (en) * 2013-03-14 2013-12-16 주식회사 한국카본 Method of building interior and exterior material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341749B1 (en) * 2013-03-14 2013-12-16 주식회사 한국카본 Method of building interior and exterior material

Similar Documents

Publication Publication Date Title
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
JP2006319324A (en) Resin-laminated board for printed circuit board, and its manufacturing method
JP2011109122A (en) Method for manufacturing multilayer printed wiring board
JP2018001764A (en) Metal-clad laminate and method for manufacturing the same, method for manufacturing printed wiring board, and method for manufacturing multilayer printed circuit board
TWI775905B (en) Manufacturing method of multi-layered printed wiring board
WO2013042751A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
KR101671120B1 (en) Method for manufacturing double-faced metal laminate, method for manufacturing printed circuit board, method for manufacturing multiple layered laminate, and method for manufacturing multiple layered printed circuit board
US10371612B2 (en) Prepreg, metal-clad laminated plate, wiring board, and method for measuring thermal stress of wiring board material
JP2006103039A (en) Laminated sheet and its manufacturing method
JP2006057074A (en) Prepreg and laminated sheet, and printed wiring board
JP2008137291A (en) Manufacturing method of laminated plate
JP6645033B2 (en) Manufacturing method of metal-clad laminate, metal-clad laminate and printed wiring board
JP2001030279A (en) Manufacture of laminated sheet
JP6331433B2 (en) Method for manufacturing metal-clad laminate and metal-clad laminate
JP2021150609A (en) Method for manufacturing laminate, and method for manufacturing printed wiring board
JPH1110777A (en) Manufacture of multilayer plate
JPH11157009A (en) Manufacture of metal foil-clad laminated sheet
TW201945191A (en) Laminate sheet, printed wiring board, multilayer printed wiring board, laminate body, and method for producing laminate sheet
JP2003313420A (en) Resin composition for laminate, prepreg and multilayer laminate
JP2002316333A (en) Method for manufacturing metal foil-clad laminated sheet
JP2008037881A (en) Prepreg, metallic foil-clad laminated plate using prepreg and multi-layer printed wiring board
JPH0366195A (en) Copper clad board
JP2006224587A (en) Manufacturing process of metal foil stretched laminate
JP2006196585A (en) Multilayer printed wiring board and method of manufacturing the same
JPH05147058A (en) Production of multilayered copper clad laminated sheet