JPH0366195A - Copper clad board - Google Patents

Copper clad board

Info

Publication number
JPH0366195A
JPH0366195A JP20341989A JP20341989A JPH0366195A JP H0366195 A JPH0366195 A JP H0366195A JP 20341989 A JP20341989 A JP 20341989A JP 20341989 A JP20341989 A JP 20341989A JP H0366195 A JPH0366195 A JP H0366195A
Authority
JP
Japan
Prior art keywords
resin
filler
impregnated
copper foil
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20341989A
Other languages
Japanese (ja)
Inventor
Masami Arai
正美 新井
Ikuo Hoshi
星 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20341989A priority Critical patent/JPH0366195A/en
Publication of JPH0366195A publication Critical patent/JPH0366195A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent virtually the generation of dimensional change induced by etching and its post heating by installing a resin layer which contains a specific amount of filler on an inner surface which faces a copper foil. CONSTITUTION:A copper foil 1 is laminated on both sides of a resin-impregnated base material which comprises cotton cloth impregnated with resin by way of a filler-impregnated resin layer 2. The cotton cloth 3 to be used comprises inorganic and organic fiber textile, such as glass fibers, polyamide fibers. Resin 4 is thermal plastic resin, such as epoxy resin and polyamide resin. A filler is an inorganic filler, such as aluminum hydroxide, silica powder, mica or inorganic fiber, such as glass fiber, potassium titanic acid fiber. The thickness of a filler-impregnated resin layer 2 is 10mum or more, preferably it is 30mum or more. The content of resin for the filler-impregnated resin layer is usually selected from the range between 20 to 80 weight percentage. However, selection of the range of resin content smaller than that of a laminated board comprising the cotton cloth 3 and the resin 4 is more preferable to inhibit dimensional change.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエツチングや加熱による寸法変化がほとんどな
い印刷配線用銅張り積層板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a copper-clad laminate for printed wiring, which undergoes almost no dimensional change due to etching or heating.

〔従来の技術〕[Conventional technology]

従来の印刷配線用銅張り積層板は、織布、紙等のシート
状基材にエポキシ樹脂やボリイξド樹脂、フェノール樹
脂等の熱硬化性樹脂壱含浸塗布した樹脂含浸基材を一枚
乃至複数枚重ね、最外層に銅箔を重ね合せてステンレス
鋼等の金属板に挟み、これを平行熱板間に挿入し加熱加
圧して製造されている。このように製造された銅張り積
層板は印刷回路加工を施し部品を実施する工程で、エツ
チングや加熱が施されるが、このとき銅張り積層板内に
残留していた応力が解放されて寸法変化が生したり反り
が発生するため、高密度多層配線板の製造や部品の自動
実装が困難となっていた。
Conventional copper-clad laminates for printed wiring are made by coating a sheet-like base material such as woven fabric or paper with a thermosetting resin such as epoxy resin, polyamide resin, or phenolic resin. It is manufactured by stacking multiple sheets, stacking copper foil on the outermost layer, sandwiching it between metal plates such as stainless steel, and inserting it between parallel hot plates and heating and pressurizing it. Copper-clad laminates manufactured in this way are subjected to etching and heating in the process of processing printed circuits and forming parts, but at this time, the stress remaining in the copper-clad laminates is released and the dimensions are improved. Changes and warpage occur, making it difficult to manufacture high-density multilayer wiring boards and automatically mount components.

積層板内の残留応力を減少して寸法変化の特性を向上す
る方法としては、熱圧成形時の圧力を低圧化する(特公
昭62−50305号公報)、熱圧成形時に圧力を解放
し残留応力を除去する(特開昭59−85750号公報
)、後加熱により残留応力をアニールする(特開昭60
−127150号公報)等が提案されている。
Methods for reducing residual stress in the laminate and improving dimensional change characteristics include lowering the pressure during hot-pressing (Japanese Patent Publication No. 62-50305), and releasing pressure during hot-pressing to reduce residual stress. Stress is removed (Japanese Unexamined Patent Publication No. 59-85750), and residual stress is annealed by post-heating (Japanese Unexamined Patent Publication No. 60-85).
-127150) etc. have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これらの方法によれば、加熱時の寸法変化特性は大巾に
向上するもの、エツチング時に発生する寸法変化は何ら
向上しないという問題点があった。
These methods have the problem that although the dimensional change characteristics upon heating are greatly improved, the dimensional changes occurring during etching are not improved at all.

本発明は、エツチング時及びその後の加熱による寸法変
化がほとんど発生しない銅張り積層板を提供するもので
ある。
The present invention provides a copper-clad laminate that undergoes almost no dimensional change during etching and subsequent heating.

〔課題を解決するための手段] 係る目的は本発明によれば、織布に樹脂を含浸した樹脂
含浸基材の両面に銅箔を積層してなる銅張り積層板にお
いて、少なくとも銅箔と接する内面に20〜80重量%
の充填剤を含む樹脂層を設けることにより遠戚される。
[Means for Solving the Problem] According to the present invention, in a copper-clad laminate in which copper foil is laminated on both sides of a resin-impregnated base material made of a woven fabric impregnated with resin, at least the copper foil is in contact with the copper foil. 20-80% by weight on the inner surface
A distant relative is achieved by providing a resin layer containing a filler.

以下本発明を実施例を示した図面を参照しつつ説明する
と、第1図は織布3に樹脂を含浸した樹脂含浸基材の両
面に充填剤含浸樹脂層2を介して銅V31を積層してな
る銅張り積N板であり、第2図は同様に複数の樹脂含浸
基材の両側に充填剤含有樹脂層2を設けるとともに銅箔
1を積層してなる銅張り積層板の構造を示した断面図で
ある。
The present invention will be explained below with reference to drawings showing examples. Fig. 1 shows a resin-impregnated base material in which a woven fabric 3 is impregnated with resin, and copper V31 is laminated on both sides of the resin-impregnated base material through a filler-impregnated resin layer 2. Figure 2 shows the structure of a copper-clad laminate in which filler-containing resin layers 2 are provided on both sides of a plurality of resin-impregnated base materials and copper foil 1 is laminated. FIG.

本発明に用いられる織布としては、ガラス繊維、ボリア
くド繊維等の無機、有機繊維を織製してなる織布であっ
て、種類の異なる繊維を組み合せた織布でもよい。
The woven fabric used in the present invention may be a woven fabric made of inorganic or organic fibers such as glass fibers or boria fibers, or may be a woven fabric made by combining different types of fibers.

樹脂としては、エポキシ樹脂、ポリイミド樹脂、ビスマ
レイミド樹脂等の熱硬化性樹脂やフッ素樹脂等の熱可塑
性樹脂であり、樹脂4と充填剤含有樹脂2に用いる樹脂
は同一樹脂でなくてもよく、充填剤含有樹脂には熱彫版
係数やガラス転移温度の高い樹脂を用いるのが好ましい
。充填剤としては、水酸化アルミニウム、シリカ粉末、
マイカ、タルク、ガラス粉末やガラスピーズ等の無機充
填剤、ガラス繊維やチタン酸カリウム繊維等の無機繊維
であり、これを単独または二種以上を併用して用いても
よい。
The resin may be a thermosetting resin such as an epoxy resin, a polyimide resin, or a bismaleimide resin, or a thermoplastic resin such as a fluororesin, and the resins used for the resin 4 and the filler-containing resin 2 may not be the same resin. It is preferable to use a resin having a high thermal engraving coefficient and a high glass transition temperature as the filler-containing resin. Fillers include aluminum hydroxide, silica powder,
These include inorganic fillers such as mica, talc, glass powder and glass peas, and inorganic fibers such as glass fiber and potassium titanate fiber, and these may be used alone or in combination of two or more.

充填剤含有樹脂層の厚さとしては、10μm以上好まし
くは30μm以上である。10μm以下では寸法変化を
抑える効果が少ない。充填剤含有樹脂層の樹脂含有率と
しては20〜80重量%の範囲で選定されるが、織布3
と樹脂4で構成される積層板の樹脂含有率よりも少ない
範囲で選定するのが寸法変化を抑えるうえで好ましい。
The thickness of the filler-containing resin layer is 10 μm or more, preferably 30 μm or more. If the thickness is 10 μm or less, there is little effect in suppressing dimensional changes. The resin content of the filler-containing resin layer is selected in the range of 20 to 80% by weight, but the woven fabric 3
In order to suppress dimensional changes, it is preferable to select a resin content in a range smaller than the resin content of the laminate made of resin 4 and resin 4.

次に本発明に係る銅張り積層板の製造法について説明す
ると、第1図に示したものは織布に樹脂を塗布、含浸し
た樹脂含浸基材を一枚乃至複数枚重ね合せ、更に上記充
填剤含有樹脂と銅箔を重ね合せた後、熱圧成形して製造
される。
Next, to explain the method for manufacturing the copper-clad laminate according to the present invention, the method shown in FIG. It is manufactured by laminating the agent-containing resin and copper foil and then hot-pressing them.

充填剤含有樹脂層2は通常は銅箔1に塗布して用いられ
るが、充填剤含有樹脂層を無機繊維より構成された不織
布に塗布したものであってもよい。
The filler-containing resin layer 2 is usually used by coating it on the copper foil 1, but the filler-containing resin layer 2 may also be coated on a nonwoven fabric made of inorganic fibers.

また第2図に示したものにおいては、通常第3図の織布
3に樹脂4を塗布し、さらに充填剤含有樹脂層2を両表
面に設けた樹脂含浸基材を用いて構成される。充填剤含
有樹脂層はコーティングや浸漬法等の通常の方法で形成
されるが、無機繊維で構成した不織布に充填剤を含有し
た樹脂を塗布して、別途に充填剤含有樹脂層を作威し、
樹脂含浸基材や銅箔を用いて構成し、熱圧成形してもよ
い。
Further, in the case shown in FIG. 2, it is usually constructed using a resin-impregnated base material in which a resin 4 is applied to the woven fabric 3 shown in FIG. 3, and filler-containing resin layers 2 are provided on both surfaces. The filler-containing resin layer is formed by a conventional method such as coating or dipping, but it is also possible to separately create a filler-containing resin layer by applying a filler-containing resin to a nonwoven fabric made of inorganic fibers. ,
It may be configured using a resin-impregnated base material or copper foil and may be hot-press molded.

〔作用〕[Effect]

銅張り積層板内の残留応力は回路加工時のエツチング工
程や加熱工程で解放され寸法変化が生じるが、従来の構
成からなる銅張り積層板の残留応力は熱圧成形時に加圧
を保持するために、樹脂の硬化収縮が拘束されたり、塑
性変形が生じるために発生すると考えられる。この残留
応力は低圧で成形することで軽減でき、また熱圧成形後
に無加圧状態で後加熱することにより取り除くことがで
きるが、HA f&をエツチングするときに発生する寸
法変化を減少することはできない。銅箔のエツチング時
に発生する寸法変化は、銅張り積層板を熱圧成形すると
きの加熱温度から室温まで冷却する間に、銅箔と積層板
の熱収縮量が異なるために発生した熱応力が残留応力と
なり、銅箔をエツチングすることで力のバランスが崩れ
積層板が変形し、これが寸法変化として発現すると考え
られる。積層板の面内熱彫版特性は、織布の織密度や樹
脂分に影響されるが、おおむね銅箔の熱膨脹特性とは異
なっており、一致させることは可能であるが、コスト上
昇を招く。
Residual stress in copper-clad laminates is released during the etching and heating processes during circuit processing, causing dimensional changes, but residual stress in copper-clad laminates with conventional configurations maintains pressure during hot-press forming. It is thought that this occurs because curing shrinkage of the resin is restricted or plastic deformation occurs. This residual stress can be reduced by molding at low pressure, and can be removed by post-heating without applying pressure after hot-press molding, but it is not possible to reduce the dimensional change that occurs when etching HA f&. Can not. The dimensional change that occurs during etching of copper foil is due to thermal stress that occurs due to the difference in the amount of thermal shrinkage between the copper foil and the laminate during cooling from the heating temperature when hot-pressing the copper-clad laminate to room temperature. It is thought that residual stress occurs, and as the copper foil is etched, the force balance is disrupted and the laminate deforms, which manifests itself as a dimensional change. The in-plane thermal engraving characteristics of laminates are affected by the weave density and resin content of the woven fabric, but are generally different from the thermal expansion characteristics of copper foil, and although it is possible to match them, it will increase costs. .

本発明の銅張り積層板は、樹脂4よりも熱膨脹特性が銅
箔の値に近い充填剤含有樹脂2を配置し、積層板の面内
剛性をも増加させたことにより、銅箔1をエツチングし
たときの残留応力の解放に伴う基板の変形を抑えること
ができるため、寸法変化特性が向上するものと考えられ
る。
The copper-clad laminate of the present invention has a filler-containing resin 2 whose thermal expansion properties are closer to those of the copper foil than the resin 4, and the in-plane rigidity of the laminate is also increased, thereby making it possible to etch the copper foil 1. It is thought that the dimensional change characteristics are improved because the deformation of the substrate due to the release of residual stress can be suppressed.

〔実施例〕〔Example〕

実施例1 エポキシ樹脂としてアラルダイト8011 (臭素化ビ
スフェノールA型エポキシ樹脂、チバガイギー社製商品
名)100重量部に硬化剤としてジシアンジアミド4重
量部及び硬化促進剤としてベンジルジメチルアミン0.
2重量部を溶解して坪両209g/n(のガラス布に塗
布し、160″Cで4分間乾燥し、樹脂分が40重量%
の樹脂含浸基材を得た。また、上記エポキシ樹脂液にエ
ポキシ樹脂と同量のガラスパウダー(平均繊維径9μm
、平均繊維長0.7mm)を添加し、これを厚さ0゜0
18mmの電解銅箔に塗布、乾燥し、充填剤含有樹脂の
厚さが50μmである銅箔を得た。
Example 1 100 parts by weight of Araldite 8011 (brominated bisphenol A type epoxy resin, trade name manufactured by Ciba Geigy) as an epoxy resin, 4 parts by weight of dicyandiamide as a curing agent, and 0.0 parts by weight of benzyldimethylamine as a curing accelerator.
2 parts by weight was dissolved and applied to a glass cloth weighing 209 g/n (209 g/n), dried at 160"C for 4 minutes, and the resin content was 40% by weight.
A resin-impregnated base material was obtained. In addition, the same amount of glass powder (average fiber diameter 9 μm) as the epoxy resin was added to the above epoxy resin liquid.
, average fiber length 0.7 mm), and this was added to a thickness of 0°0.
It was coated on an 18 mm electrolytic copper foil and dried to obtain a copper foil with a filler-containing resin having a thickness of 50 μm.

上記樹脂含浸基材を8枚重ね、更に上記充填剤含浸樹脂
を塗布した銅を重ね合せて金型用金属板に挟み、これを
平行熱板間に挿入して170 ’Cで60分間、圧力3
0 kg f /c+ftで熱圧成形し厚さ1゜6ff
II11の銅張り積層板を得た。
8 sheets of the above resin-impregnated base material were stacked, and then the copper coated with the filler-impregnated resin was stacked and sandwiched between metal mold plates, and this was inserted between parallel hot plates and heated at 170'C for 60 minutes under pressure. 3
Hot pressure molded at 0 kg f/c+ft, thickness 1°6ff
A copper-clad laminate of II11 was obtained.

実施例2 エポキシ樹脂としてアラルダイト8011(臭素化ビス
フェノールA型エポキシ樹脂、チバガイギー社製商品名
)100重量部に硬化剤としてジシアンジアミド4重量
部及び硬化促進剤としてベンジルジメチルアミン0.2
重量部を溶剤に溶解して樹脂液Aを調整し、これを坪両
209g/rrfのガラス布に塗布し、160℃で2分
間乾燥し、樹脂分が38重量%の樹脂含浸基材Cを得た
。また、アラルダイト8011の100重量部に対し、
ジシアンシアく14重量部、ベンジルジメチルアミン0
.3重量部、平均繊維長径が9μmで平均繊維長0. 
7mmのガラスパウダー1000重量部を溶剤に溶解、
混合した樹脂液Bを上記樹脂含浸基材Cに塗布し160
°Cで2分間乾燥して、充填剤含有樹脂層の厚さが30
μmの樹脂含浸基材りを得た。これを8枚重ね合せ、更
に両表面に厚さ0.018mmの銅箔を重ね合せて金型
用金属板に挟みこれを平行熱板間に挿入して170°C
で60分間、圧力30kgf/cJで熱圧成形し厚さ1
.6閣の銅張り積層板を得た。
Example 2 100 parts by weight of Araldite 8011 (brominated bisphenol A type epoxy resin, trade name manufactured by Ciba Geigy) as an epoxy resin, 4 parts by weight of dicyandiamide as a curing agent, and 0.2 parts by weight of benzyldimethylamine as a curing accelerator.
Resin liquid A was prepared by dissolving part by weight in a solvent, and this was applied to a glass cloth with a tsubo of 209 g/rrf, and dried at 160°C for 2 minutes to form a resin-impregnated base material C with a resin content of 38% by weight. Obtained. In addition, for 100 parts by weight of Araldite 8011,
Dicyanthia 14 parts by weight, benzyldimethylamine 0
.. 3 parts by weight, the average fiber length is 9 μm, and the average fiber length is 0.
Dissolve 1000 parts by weight of 7mm glass powder in a solvent.
The mixed resin liquid B was applied to the resin-impregnated base material C, and 160
Dry for 2 minutes at °C until the thickness of the filled resin layer is 30 °C.
A resin-impregnated base material of μm was obtained. Layer 8 sheets of this, then layer copper foil with a thickness of 0.018 mm on both surfaces, sandwich it between metal plates for molds, insert it between parallel heating plates, and heat it to 170°C.
Heat and pressure molded for 60 minutes at a pressure of 30 kgf/cJ to a thickness of 1
.. Six copper-clad laminates were obtained.

比較例1 実施例で用いた樹脂液Aを坪量209g/rrfのガラ
ス布に塗布し、160°Cで4分間乾燥し、樹脂分が4
2重量%の樹脂含浸基材を得た。これを8枚重ね、更に
最外層に厚さ0.018mm0銅箔を重ね合せて実施例
と同様の方法で熱圧成形して厚さ1.6++++nの銅
張り積層板を得た。
Comparative Example 1 Resin liquid A used in the example was applied to a glass cloth with a basis weight of 209 g/rrf, and dried at 160°C for 4 minutes, resulting in a resin content of 4
A 2% by weight resin-impregnated base material was obtained. Eight sheets of this were stacked, and a copper foil having a thickness of 0.018 mm was superimposed on the outermost layer, which was then hot-press molded in the same manner as in the example to obtain a copper-clad laminate with a thickness of 1.6+++n.

比較例2 比較例1で作製した積層板を更に170°Cの乾燥機中
で無加圧状態に保ち、60分間加熱後放冷し、厚さ1.
6aの銅張り積層板を得た。
Comparative Example 2 The laminate prepared in Comparative Example 1 was further kept under no pressure in a dryer at 170°C, heated for 60 minutes, and then allowed to cool to a thickness of 1.
A copper-clad laminate of No. 6a was obtained.

実施例及び比較例で得た250ml11角の銅張り積層
板の4隅に0. 9m+nの穴を明け、投影機で大間距
離を測定した後、エツチング及び170°C1時間の加
熱を行い、このとき大間距離を測定し、もとの寸法に対
する寸法変化率を求めた結果を表1に示す。
0.0. After drilling a hole of 9 m + n and measuring the distance between the holes with a projector, etching and heating at 170°C for 1 hour were performed, the distance between the holes was measured and the dimensional change rate with respect to the original dimensions was determined. Table 1 shows the results. Shown below.

表1 〔発明の効果〕 本発明よりなる印刷配線用銅張り積層板はエツチングや
加熱による寸法変化がほとんど無く、また銅張り積層板
の表面の凹凸も小さくなることから、印刷特性に優れ、
高密度印刷配線用鋼張り積層板としても好適である。
Table 1 [Effects of the Invention] The copper-clad laminate for printed wiring according to the present invention has almost no dimensional change due to etching or heating, and the unevenness on the surface of the copper-clad laminate is reduced, so it has excellent printing characteristics.
It is also suitable as a steel-clad laminate for high-density printed wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る銅張り積層板の縦断
面図、第3図は本発明に用いる樹脂含浸基材の一例の縦
断面図である。 符号の説明 1゜ 3゜ 銅箔 織布 2゜ 4゜ 充填剤含有樹脂層 樹脂
1 and 2 are longitudinal cross-sectional views of a copper-clad laminate according to the present invention, and FIG. 3 is a longitudinal cross-sectional view of an example of a resin-impregnated base material used in the present invention. Explanation of symbols 1゜3゜ Copper foil woven fabric 2゜4゜ Filler-containing resin layer resin

Claims (1)

【特許請求の範囲】[Claims]  1.織布に樹脂を含浸した樹脂含浸基材の両面に銅箔
を積層してなる銅張り積層板において、少なくとも銅箔
と接する内面に20〜80重量%の充填剤を含む樹脂層
を設けたことを特徴とする銅張り積層板。
1. In a copper-clad laminate made by laminating copper foil on both sides of a resin-impregnated base material made of woven fabric impregnated with resin, a resin layer containing 20 to 80% by weight of a filler is provided at least on the inner surface in contact with the copper foil. A copper-clad laminate featuring:
JP20341989A 1989-08-04 1989-08-04 Copper clad board Pending JPH0366195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20341989A JPH0366195A (en) 1989-08-04 1989-08-04 Copper clad board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20341989A JPH0366195A (en) 1989-08-04 1989-08-04 Copper clad board

Publications (1)

Publication Number Publication Date
JPH0366195A true JPH0366195A (en) 1991-03-20

Family

ID=16473764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20341989A Pending JPH0366195A (en) 1989-08-04 1989-08-04 Copper clad board

Country Status (1)

Country Link
JP (1) JPH0366195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324486B1 (en) * 1991-06-18 2002-06-20 추네오 모리야 Double Sided Copper Foil with Protective Film
JP2009045915A (en) * 2007-07-26 2009-03-05 Kyocera Corp Composite substrate, wiring substrate and mounting structure, and manufacturing process of composite substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324486B1 (en) * 1991-06-18 2002-06-20 추네오 모리야 Double Sided Copper Foil with Protective Film
JP2009045915A (en) * 2007-07-26 2009-03-05 Kyocera Corp Composite substrate, wiring substrate and mounting structure, and manufacturing process of composite substrate

Similar Documents

Publication Publication Date Title
MXPA97002059A (en) Preimpregnado material unidirectionally oriented of thin thread and laminar unit for printed wiring board prepared from mi
JP6624573B2 (en) Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board
JP2006319324A (en) Resin-laminated board for printed circuit board, and its manufacturing method
JP7281745B2 (en) Method for manufacturing multilayer printed wiring board
JPH0366195A (en) Copper clad board
JPH0263821A (en) Laminated plate
JPH0381122A (en) Manufacture of thermosetting resin laminated sheet plated with metallic foil
JP3356010B2 (en) Manufacturing method of metal foil-clad laminate
JPH04208597A (en) Multilayer printed circuit board
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JP2004237447A (en) Adhesive film, and method for manufacturing multilayered printed wiring board using the film
JP3402392B2 (en) Multilayer printed wiring board
JP3542612B2 (en) Metal clad laminate
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP3118961B2 (en) Method for manufacturing single-sided copper-clad laminate
JPH0771839B2 (en) Laminated board manufacturing method
JPH10173345A (en) Multilayer printed wiring board
JPH05147058A (en) Production of multilayered copper clad laminated sheet
JPH0360863B2 (en)
JPS63224936A (en) Laminated board
JPH0563324A (en) Multilayer printed wiring board
JPH1029260A (en) Production of laminated sheet
JPH04223113A (en) Manufacture of laminated sheet
JPS6395916A (en) Manufacture of multi layer printed wiring board
JPS59109350A (en) Laminated board