JP2006100708A - Three-terminal laminate capacitor and circuit board mounted therewith - Google Patents

Three-terminal laminate capacitor and circuit board mounted therewith Download PDF

Info

Publication number
JP2006100708A
JP2006100708A JP2004287274A JP2004287274A JP2006100708A JP 2006100708 A JP2006100708 A JP 2006100708A JP 2004287274 A JP2004287274 A JP 2004287274A JP 2004287274 A JP2004287274 A JP 2004287274A JP 2006100708 A JP2006100708 A JP 2006100708A
Authority
JP
Japan
Prior art keywords
gnd
terminal
signal
electrode
multilayer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287274A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mogi
宏之 茂木
Masayuki Shimizu
政行 清水
Kenichi Kitazawa
賢一 北澤
Yasushi Inoue
泰史 井上
Naoto Yokoyama
直人 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2004287274A priority Critical patent/JP2006100708A/en
Publication of JP2006100708A publication Critical patent/JP2006100708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfactorily reduce the self-calorific value of a three-terminal laminate capacitor while holding low ESL. <P>SOLUTION: A conductor pattern 30 for signal is continuously formed at an input/output side, and conductor patterns 32 and 34 for GND are segmentation-formed so as to be faced with each other with the conductor pattern 30 for signal interposed. Then, a terminal electrode 26 for signal of the three-terminal laminate capacitor is connected to the conductor pattern 30 for signal, terminal electrodes 22A and 22B for GND are connected to the conductor pattern 32 for GND, and terminal electrodes 22C and 22D for GND are mounted so as to be connected to the conductor pattern 34 for GND. The resistance of the conductor pattern 30 for signal is connected in parallel with the resistance of an internal electrode 10 for signal and a terminal electrode 26 for signal inside the capacitor, so that a resistance to a signal can be set so as to be a low value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、3端子型積層コンデンサ実装用回路基板及びそれに関連する3端子型積層コンデンサに関し、具体的には、3端子型積層コンデンサの自己発熱に対する改良に関するものである。   The present invention relates to a circuit board for mounting a three-terminal multilayer capacitor and a three-terminal multilayer capacitor related to the circuit board. Specifically, the present invention relates to an improvement in self-heating of the three-terminal multilayer capacitor.

情報機器を中心とした近年におけるデータ処理の高速化,通信回線速度の向上に伴い、LSIなどの半導体装置は動作が高速化する傾向にある。かかる半導体装置の電源回路は、半導体装置に対して動作に必要なDC(直流)成分を供給するが、電源スイッチングやクロック動作に伴う高調波は動作を不安定にし、不要な電波として放射されることもある。そこで、電源回路には、高速動作を補うための大容量コンデンサと、高い周波数まで信号を減衰させることができる低ESLコンデンサが使用される。この低ESLコンデンサとしては、例えば、下記特許文献1に示すような入力電極,出力電極,GND(グランド)電極を有する3端子型積層コンデンサが利用される。下記特許文献2には、側面のGND電極を外周全体に一周させた構造のものが開示されている。   With recent increases in data processing and communication line speeds centering on information equipment, semiconductor devices such as LSIs tend to operate faster. A power supply circuit of such a semiconductor device supplies a DC (direct current) component necessary for the operation to the semiconductor device, but harmonics accompanying power switching and clock operation destabilize the operation and are radiated as unnecessary radio waves. Sometimes. Therefore, a large capacity capacitor for supplementing high-speed operation and a low ESL capacitor capable of attenuating a signal to a high frequency are used for the power supply circuit. As this low ESL capacitor, for example, a three-terminal multilayer capacitor having an input electrode, an output electrode, and a GND (ground) electrode as shown in Patent Document 1 below is used. The following Patent Document 2 discloses a structure in which a GND electrode on a side surface is made to make a full turn on the entire outer periphery.

ところで、3端子型積層コンデンサの内部電極構造は、入力電極から出力電極に至る信号ラインが内部を貫通した構造となっており、信号は必ず内部電極を通過する。このため、部品内部の抵抗値により自己発熱するという問題があり、この発熱によって通電量が制限されてしまうという不都合がある。図13を見ながら説明すると、3端子型積層コンデンサは、同図(A)に示すようなGNDパターン900と信号パターン902を、同図(B)に示すように交互に積層し、更に上下に誘電体層904を積層した構造となっている。そして、同図(C)に示すように、信号パターン902は入力電極910,出力電極912にそれぞれ接続され、GNDパターン900はGND電極914,916にそれぞれ接続されている。   By the way, the internal electrode structure of the three-terminal multilayer capacitor has a structure in which a signal line from the input electrode to the output electrode penetrates the inside, and the signal always passes through the internal electrode. For this reason, there is a problem that self-heating occurs due to the resistance value inside the component, and there is an inconvenience that the energization amount is limited by this heat generation. Referring to FIG. 13, the three-terminal multilayer capacitor is formed by alternately stacking a GND pattern 900 and a signal pattern 902 as shown in FIG. 13A, as shown in FIG. The dielectric layer 904 is laminated. As shown in FIG. 3C, the signal pattern 902 is connected to the input electrode 910 and the output electrode 912, respectively, and the GND pattern 900 is connected to the GND electrodes 914 and 916, respectively.

一方、基板側には、入力信号ライン920,出力信号ライン922がGNDライン924を挟むようにしてパターン形成されている。そして、コンデンサ側の入力電極910と入力信号ライン920,出力電極912と出力信号ライン922,GND電極914及び916とGNDライン924がそれぞれ電気的に接続される。   On the other hand, the input signal line 920 and the output signal line 922 are patterned on the substrate side so as to sandwich the GND line 924. The capacitor-side input electrode 910 and the input signal line 920, the output electrode 912 and the output signal line 922, the GND electrodes 914 and 916, and the GND line 924 are electrically connected.

このような実装形態における3端子型積層コンデンサの等価回路は、図14(A)に示すようになる。すなわち、素子中心にキャパシタンスC10があり、これと入力電極910の間に抵抗R10とインダクタンスL10の直列回路が接続されており、また、出力電極912の間に抵抗R12とインダクタンスL12の直列回路が接続されている。また、素子中心とGND電極914との間に抵抗R14とインダクタンスL14の直列回路が接続されており、GND電極916との間に抵抗R16とインダクタンスL16の直列回路が接続されている。   An equivalent circuit of the three-terminal multilayer capacitor in such a mounting form is as shown in FIG. That is, there is a capacitance C10 at the center of the element, a series circuit of a resistor R10 and an inductance L10 is connected between this and the input electrode 910, and a series circuit of a resistor R12 and an inductance L12 is connected between the output electrode 912. Has been. A series circuit of a resistor R14 and an inductance L14 is connected between the element center and the GND electrode 914, and a series circuit of a resistor R16 and an inductance L16 is connected between the GND electrode 916.

このように、入出力信号ライン920,922間に抵抗R10,R12が存在するため、それらの抵抗成分による自己発熱が発生する。図14(B)には、従来の3端子型積層コンデンサの入出力電極間の直流抵抗値が10mΩの場合における自己発熱の計測例が示されている。同図中、横軸は直流電流値[ADC],縦軸は自己発熱量ΔT[℃]である。同図に示すように、直流電流が3Aで40℃を超える非常に大きな自己発熱が生ずる。
特開昭55−80313号公報 特開平06−244058号公報
As described above, since the resistors R10 and R12 exist between the input / output signal lines 920 and 922, self-heating occurs due to their resistance components. FIG. 14B shows a measurement example of self-heating when the DC resistance value between the input and output electrodes of the conventional three-terminal multilayer capacitor is 10 mΩ. In the figure, the horizontal axis represents the direct current value [ADC], and the vertical axis represents the self-heating value ΔT [° C.]. As shown in the figure, a very large self-heating occurs at a DC current of 3 A and exceeding 40 ° C.
JP-A-55-80313 Japanese Patent Laid-Open No. 06-244058

このような通電時の自己発熱を抑制する従来技術としては、下記特許文献3に記載されているようなコンデンサ表面に導体パターンを設けるものや、下記特許文献4に記載されている内部導体パターンを並列化するものが知られている。しかしながら、いずれの方法でも限界があり、更なる発熱量の低減が求められている。   Conventional techniques for suppressing such self-heating during energization include providing a conductor pattern on the capacitor surface as described in Patent Document 3 below and an internal conductor pattern described in Patent Document 4 below. What is parallelized is known. However, any method has a limit, and further reduction in the amount of generated heat is required.

本発明は、以上の点に着目したもので、その目的は、3端子型積層コンデンサの自己発熱量を良好に低減することである。他の目的は、自己発熱量が低減されても、低いESLを保つことである。
特開平06−349678号公報 実開昭61−129329号公報
The present invention focuses on the above points, and its purpose is to satisfactorily reduce the amount of self-heating of the three-terminal multilayer capacitor. Another object is to maintain a low ESL even if the self-heating value is reduced.
Japanese Patent Laid-Open No. 06-349678 Japanese Utility Model Publication No. 61-129329

前記目的を達成するため、本発明は、信号用端子電極,GND用端子電極を有する3端子型積層コンデンサが実装された回路基板であって、前記3端子型積層コンデンサは、角柱状の積層コンデンサ素体の内部において誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な側面に露出する信号用電極引き出し部を有し、前記GND用内部電極は、前記角柱状の素体の長手方向の中央部を除く側面に露出するGND用電極引き出し部を有し、前記3端子型積層コンデンサの角柱状素体の表面の長手方向の中央部には、前記信号用内部電極と前記GND用内部電極とが積層方向で重なる部分を囲むように前記素体表面を周回するとともに、前記信号用電極引き出し部に接続される信号用端子電極が形成され、前記角柱状素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されており、前記3端子型積層コンデンサの素体の長手方向の中央部の表面を周回する信号用端子電極の一部が前記信号用導体パターン上に平行に配置され、搭載されたことを特徴とする。   In order to achieve the above object, the present invention provides a circuit board on which a three-terminal multilayer capacitor having a signal terminal electrode and a GND terminal electrode is mounted. The three-terminal multilayer capacitor is a prismatic multilayer capacitor. A signal internal electrode and a GND internal electrode are formed so as to overlap at least in the stacking direction with a dielectric layer sandwiched inside the element body, and the signal internal electrode is formed at the center in the longitudinal direction of the prismatic element body. A signal electrode lead-out portion exposed on a side surface parallel to the longitudinal direction of the element body, and the GND internal electrode is exposed on a side surface excluding the central portion in the longitudinal direction of the prismatic element body. An electrode lead-out portion, and the central portion in the longitudinal direction of the surface of the prismatic element body of the three-terminal multilayer capacitor surrounds a portion where the signal internal electrode and the GND internal electrode overlap in the stacking direction In addition, the signal terminal electrode that circulates around the surface of the element body and is connected to the signal electrode lead-out portion is formed near one end of the side surface parallel to the longitudinal direction of the surface of the prismatic element body and the other A GND terminal electrode connected to the GND electrode lead-out portion is formed in the vicinity of each end portion of the capacitor, and a signal that circulates the surface of the central portion in the longitudinal direction of the element body of the three-terminal multilayer capacitor A part of the terminal electrode is arranged and mounted in parallel on the signal conductor pattern.

また、3端子型積層コンデンサ実装回路基板の他の発明は、信号用端子電極,GND用端子電極を有する3端子型積層コンデンサを実装したものであって、前記3端子型積層コンデンサが、前記信号用導体パターンの長手方向に沿って、互いに離間して複数個実装されていることを特徴とする。   Another invention of a three-terminal multilayer capacitor-mounted circuit board is one in which a three-terminal multilayer capacitor having a signal terminal electrode and a GND terminal electrode is mounted. A plurality of the conductor patterns are mounted apart from each other along the longitudinal direction of the conductor pattern.

本発明の3端子型積層コンデンサは、角柱状の積層コンデンサ素体の内部において誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な側面に露出する信号用電極引き出し部を有し、前記GND用内部電極は、前記角柱状の素体の長手方向の中央部を除く側面に露出するGND電極引き出し部を有し、前記3端子型積層コンデンサの角柱状素体の表面の長手方向の中央部には、前記信号用内部電極と前記GND用内部電極とが積層方向で重なる部分を囲むように前記素体表面を周回するとともに、前記信号用電極引き出し部に接続される信号用端子電極が形成され、前記角柱状素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されていることを特徴とする。   The three-terminal multilayer capacitor of the present invention is formed so that the signal internal electrode and the GND internal electrode overlap at least in the stacking direction with the dielectric layer sandwiched inside the prismatic multilayer capacitor body. The internal electrode has a signal electrode lead-out portion exposed on a side surface parallel to the longitudinal direction of the prismatic body at the center in the longitudinal direction of the prismatic element, and the GND internal electrode is formed of the prismatic element. A GND electrode lead portion exposed on a side surface excluding the central portion in the longitudinal direction of the element body, and the signal inner electrode and the signal inner electrode at the center portion in the longitudinal direction of the surface of the prismatic element body of the three-terminal multilayer capacitor; A signal terminal electrode connected to the signal electrode lead-out portion is formed to surround the surface of the element body so as to surround a portion where the GND internal electrode overlaps in the stacking direction, and the surface of the prismatic element body is formed. Head of Each of the vicinity of one end and near the other end in a direction parallel to the side surface, wherein the GND terminal electrode connected to the GND electrode lead-out portion is formed.

また、3端子型積層コンデンサの他の発明は、前記GND用端子電極は、前記角柱状素体の長手方向の両端面を除く側面およびこれと接する両主面に連続して形成されていることを特徴とする。   According to another invention of the three-terminal multilayer capacitor, the GND terminal electrode is formed continuously on a side surface excluding both end surfaces in the longitudinal direction of the prismatic element body and on both main surfaces in contact with the side surface. It is characterized by.

また、3端子型積層コンデンサの他の発明は、前記GND用内部電極は、前記角柱状素体の長手方向の一端側から他端側に亘って、連続して設けられたことを特徴とする。   Another invention of the three-terminal multilayer capacitor is characterized in that the GND internal electrode is provided continuously from one end side to the other end side in the longitudinal direction of the prismatic element body. .

更に、3端子型積層体コンデンサの他の発明は、前記GND用内部電極は、前記角柱状素体の長手方向中央部で2つに分割形成されていることを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   Furthermore, another invention of a three-terminal multilayer capacitor is characterized in that the GND internal electrode is divided into two at the longitudinal center of the prismatic element. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明によれば、ESLを低い値に保ちつつ、3端子型積層コンデンサの自己発熱量を良好に低減することができる。   According to the present invention, it is possible to satisfactorily reduce the amount of self-heating of the three-terminal multilayer capacitor while keeping the ESL at a low value.

以下、本発明を実施するための最良の形態を、いくつかの実施例に基づいて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on several examples.

最初に、図1〜図4を参照しながら、本発明の実施例1について説明する。なお、以下の説明では、図1(C)の左右方向端面をそれぞれ前面・後面とし、紙面方向端面を側面として説明する。本実施例1の3端子型積層コンデンサ20は、図1(A)に示す信号用内部電極10と同図(B)に示すGND用内部電極14を交互に積層している。信号用内部電極10は、セラミックスなどの誘電体シート12上に、側面方向に引き出し部10A,10Bを有するパターン形状として形成されている。一方、GND用内部電極14は、誘電体シート16上に、GND用電極引き出し部14A,14B,14C,14Dを有するパターン形状として形成されている。   First, Embodiment 1 of the present invention will be described with reference to FIGS. In the following description, the left and right end faces in FIG. 1C will be referred to as the front face and the rear face, respectively, and the paper face direction end face will be described as the side face. In the three-terminal multilayer capacitor 20 of Example 1, the signal internal electrodes 10 shown in FIG. 1A and the GND internal electrodes 14 shown in FIG. The signal internal electrode 10 is formed on a dielectric sheet 12 such as ceramics in a pattern shape having lead portions 10A and 10B in the side surface direction. On the other hand, the GND internal electrode 14 is formed on the dielectric sheet 16 as a pattern having the GND electrode lead portions 14A, 14B, 14C, and 14D.

図1(C)には、積層の様子が示されており、信号用内部電極10とGND用内部電極14を交互に各2層積層し、更に上下を誘電体層18,19で挟んだ構成となっている。このような積層体の焼結後、図1(D)に示すように信号用端子電極26,GND用端子電極22A,22B及び22C,22Dをそれぞれ形成する。信号用内部電極10の信号用電極引き出し部10A及び10Bは、角柱状積層コンデンサ素体の長手方向の中央部の表面を周回するように設けられた信号用端子電極26にそれぞれ接続されている。また、GND用内部電極14のGND用電極引き出し部14A、14B,14C,14Dは、GND用端子電極22A、22B,22C、22Dにそれぞれ接続される。   FIG. 1C shows the state of lamination, in which two layers of signal internal electrodes 10 and GND internal electrodes 14 are alternately laminated, and the upper and lower sides are sandwiched between dielectric layers 18 and 19. It has become. After sintering such a laminate, as shown in FIG. 1 (D), signal terminal electrodes 26 and GND terminal electrodes 22A, 22B and 22C, 22D are formed, respectively. The signal electrode lead portions 10A and 10B of the signal internal electrode 10 are respectively connected to signal terminal electrodes 26 provided so as to circulate around the surface of the central portion in the longitudinal direction of the prismatic multilayer capacitor body. The GND electrode lead portions 14A, 14B, 14C, and 14D of the GND internal electrode 14 are connected to the GND terminal electrodes 22A, 22B, 22C, and 22D, respectively.

具体例を挙げると、原材料にチタン酸バリウム系誘電体材料を用い、この配合原料をボールミルで湿式混合し、粉砕した後乾燥し、空気中において1100℃で2時間仮焼して仮焼物を得た。この仮焼物を乾式粉砕機によって粉砕し、粒径が1μm以下の原料粉末を得る。この原料粉末に、ポリビニルブチラール系バインダ及びエタノールなどの有機溶剤を加え、ボールミルによって湿式混合し、セラミックスラリを調製した後、セラミックスラリをドクターブレード法によってシート成形し、厚み2〜3μmの矩形のグリーンシートを得た。次に、このセラミックグリーンシート上に、Niを主体とする導電ペーストを印刷し、内部電極を構成するための導電ペースト層を形成した。導電ペースト層が形成されたセラミックグリーンシートを、図1(B)に示す電極10,14が交互となるように複数枚積層し、積層体を得た。得られた積層体の角取りを行った後、外部電極ペーストを用いて、外部電極(端子電極)22A,22B,22C,22D及び26を形成する。続いて、酸素分圧が10−9〜1012MPaのH−N−空気ガスからなる還元性雰囲気中において1300℃で2時間焼成し、セラミック焼結体を得て完成品に至る。 As a specific example, a barium titanate-based dielectric material is used as a raw material, and this blended raw material is wet mixed with a ball mill, pulverized and dried, and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. It was. This calcined product is pulverized by a dry pulverizer to obtain a raw material powder having a particle size of 1 μm or less. To this raw material powder, a polyvinyl butyral binder and an organic solvent such as ethanol are added and wet mixed by a ball mill to prepare a ceramic slurry. Then, the ceramic slurry is formed into a sheet by a doctor blade method, and a rectangular green having a thickness of 2 to 3 μm. A sheet was obtained. Next, a conductive paste mainly composed of Ni was printed on the ceramic green sheet to form a conductive paste layer for constituting internal electrodes. A plurality of ceramic green sheets on which the conductive paste layer was formed were laminated so that the electrodes 10 and 14 shown in FIG. After the obtained laminate is cut, external electrodes (terminal electrodes) 22A, 22B, 22C, 22D and 26 are formed using an external electrode paste. Subsequently, it is fired at 1300 ° C. for 2 hours in a reducing atmosphere composed of H 2 —N 2 -air gas having an oxygen partial pressure of 10 −9 to 10 12 MPa, to obtain a ceramic sintered body, thereby reaching a finished product.

ところで、本実施例では、基板側には、図2に示すように、信号用導体パターン30が連続して形成されるとともに、GND用導体パターン32,34が信号用導体パターン30を挟んで対峙するように分断形成される。そして、これらの導体パターン上に、図1に示した3端子型積層コンデンサ20がハンダなどによって実装される。すなわち、信号用端子電極26が信号用導体パターン30と接続され、GND用端子電極22A,22BがGND用導体パターン32に、GND用端子電極22C,22DがGND用導体パターン34にそれぞれ接続されるように実装される。   By the way, in this embodiment, as shown in FIG. 2, the signal conductor pattern 30 is continuously formed on the substrate side, and the GND conductor patterns 32 and 34 face each other with the signal conductor pattern 30 interposed therebetween. It is formed so as to be divided. Then, the three-terminal multilayer capacitor 20 shown in FIG. 1 is mounted on these conductor patterns by solder or the like. That is, the signal terminal electrode 26 is connected to the signal conductor pattern 30, the GND terminal electrodes 22A and 22B are connected to the GND conductor pattern 32, and the GND terminal electrodes 22C and 22D are connected to the GND conductor pattern 34, respectively. Implemented as:

図2(B)には、信号ライン方向に見た接続構造が示されている。本実施例では、図2(A)に示すように、信号用端子電極26が積層体表面の全周(4面)にわたって入出力共通に設けられており、これが基板側の信号用導体パターン30に接続される。従って、信号用導体パターン30に見た接続構造は図2(B)に示すようになり、等価回路は図2(C)に示すように信号用導体パターン30の抵抗分RAと、コンデンサ内部の信号用内部電極10及び信号用端子電極26の抵抗分RCを並列に接続したものとなる。このため、入出力間の等価抵抗RTは、1/RT=1/RA+1/RCとなり、例えば、RA=1mΩ,RB=3mΩの場合、RT≒0.8mΩとなる。   FIG. 2B shows a connection structure viewed in the signal line direction. In this embodiment, as shown in FIG. 2A, the signal terminal electrode 26 is provided in common for input and output over the entire circumference (four sides) of the surface of the laminate, and this is the signal conductor pattern 30 on the substrate side. Connected to. Therefore, the connection structure as seen in the signal conductor pattern 30 is as shown in FIG. 2B, and the equivalent circuit is shown in FIG. The resistance component RC of the signal internal electrode 10 and the signal terminal electrode 26 is connected in parallel. Therefore, the equivalent resistance RT between the input and output is 1 / RT = 1 / RA + 1 / RC. For example, when RA = 1 mΩ and RB = 3 mΩ, RT≈0.8 mΩ.

一方、従来の3端子型積層コンデンサの場合は、図3(A-1)に示すように、信号ライン920,922が入出力間で分断されており、信号電流は矢印FBで示すようにコンデンサ内部を流れる。従って、抵抗分の等価回路を示すと、同図(A-2)に示すように、コンデンサ内部の信号用内部電極のみの抵抗となる。従って、仮に内部導体パターンの抵抗値が10mΩであると、これが入出力間の抵抗値となる。このように、本実施例によれば、部品自体の抵抗値が激減し、3端子型積層コンデンサ20と信号ライン30の合成抵抗が信号ライン自体の抵抗値を下回るようになり、従来構造のものに対して相対的に放熱効果を期待することもできる。   On the other hand, in the case of the conventional three-terminal multilayer capacitor, as shown in FIG. 3A-1, the signal lines 920 and 922 are divided between the input and the output, and the signal current is indicated by the arrow FB. Flows inside. Therefore, when an equivalent circuit for resistance is shown, as shown in FIG. 2A-2, the resistance is only the signal internal electrode inside the capacitor. Therefore, if the resistance value of the internal conductor pattern is 10 mΩ, this becomes the resistance value between the input and output. As described above, according to this embodiment, the resistance value of the component itself is drastically reduced, and the combined resistance of the three-terminal multilayer capacitor 20 and the signal line 30 becomes lower than the resistance value of the signal line itself. The heat dissipation effect can be expected relatively.

図3(B)には、直流電流を流したときの自己発熱量の計測例が示されている。グラフG60は本実施例の発熱量,グラフG62は従来構造の発熱量,グラフG64は信号ライン30のみによる発熱量を示す。これらのグラフから明らかなように、本実施例の発熱量は、信号ライン30のみの発熱量よりも更に発熱量が低減されており、単に発熱量が低減されるのみならず、冷却効果も認められた。   FIG. 3B shows a measurement example of the amount of self-heating when a direct current is passed. The graph G60 shows the heat generation amount of this embodiment, the graph G62 shows the heat generation amount of the conventional structure, and the graph G64 shows the heat generation amount only by the signal line 30. As is apparent from these graphs, the heat generation amount of the present embodiment is further reduced than the heat generation amount of only the signal line 30, and not only the heat generation amount is reduced but also the cooling effect is recognized. It was.

図3(C)は、周波数と入出力間のインダクタンスの関係の計測例である。同図中、横軸は周波数,縦軸はインダクタンスである。グラフG66は本実施例,グラフG67は従来の3端子構造,グラフG68は2端子構造の場合をそれぞれ示す。これらのグラフから明らかなように、3端子構造の場合は、2端子構造と比較してインダクタンスが大幅に低下することがわかる。なお、グラフG67よりもグラフG66の方が多少低いインダクタンス値を示しているが、これは、図4(E),(F)に示した電極距離LaとLbの差によるインダクタンスの減少に伴うものである。   FIG. 3C shows a measurement example of the relationship between the frequency and the inductance between the input and output. In the figure, the horizontal axis represents frequency and the vertical axis represents inductance. Graph G66 shows the present embodiment, graph G67 shows a conventional three-terminal structure, and graph G68 shows a two-terminal structure. As can be seen from these graphs, the inductance is greatly reduced in the case of the three-terminal structure as compared with the two-terminal structure. The graph G66 shows a slightly lower inductance value than the graph G67. This is due to a decrease in inductance due to the difference between the electrode distances La and Lb shown in FIGS. It is.

次に、本実施例におけるESL低減効果について説明する。本実施例では、ESLの値を以下の数式1を用いて求めた。なお、式中、ESLは、Equivalent Series Inductanceの略で等価直列インダクタンス、ωは位相角で、ω=2πf(fは周波数)である。S21はSパラメータを測定したときの通過特性を表し、1側から2側に電力を入れたときにどれだけ通過するかという量を表し、ここでは信号用導体パターンとGND用導体パターンとの間に並列に実装した際の信号減衰量を示す。Zは特性インピーダンスであり、通常測定器は入出力が50Ωで設計されているのでZ=50Ωとする。ESLについて実際の周波数特性を考慮する場合には、本数式で示す場合が多く、高い周波数でESLの比較を行う場合に有効な計算方法である。一般的に3端子型積層コンデンサでは、構造的にインダクタンスLが2つのGND方向に並列に接続されるため、全体でL/2となるとともに、GNDを2分割して両側面に引き出すことで、電流の向きが逆方向となり、磁界相殺されるためである。これらの効果を合わせて、従来の2端子コンデンサと比較してESLは約10〜25%に低減される。本考案においても、GNDを2分割して両サイドに引き出しているため、同様のESL低減効果を期待できる。

Figure 2006100708
Next, the ESL reduction effect in the present embodiment will be described. In this example, the value of ESL was obtained using the following formula 1. In the equation, ESL is an abbreviation for Equivalent Series Inductance, ω is a phase angle, and ω = 2πf (f is a frequency). S 21 represents the pass characteristics when measuring the S-parameters, much when put power from 1 side 2 side represents the amount that should be passed, wherein the signal conductor pattern and the GND conductor pattern The signal attenuation when mounted in parallel is shown. Z 0 is a characteristic impedance, and since a measuring instrument is normally designed with an input / output of 50Ω, Z 0 = 50Ω. When considering the actual frequency characteristics of ESL, this equation is often used, and this is an effective calculation method when comparing ESL at a high frequency. Generally, in a three-terminal multilayer capacitor, the inductance L is structurally connected in parallel in two GND directions, so that it becomes L / 2 as a whole, and by dividing the GND into two and pulling it out to both sides, This is because the direction of the current is reversed and the magnetic field is canceled. Together, these effects reduce ESL to about 10-25% compared to conventional two-terminal capacitors. Also in the present invention, since the GND is divided into two and pulled out to both sides, the same ESL reduction effect can be expected.
Figure 2006100708

図4(A)〜(C)には、本実施例,従来の3端子構造,2端子構造の各場合の等価回路が示されている。まず、本実施例の場合は、同図(A)に示すように、信号用端子電極26との間にコンデンサCABが並列に接続されており、これからGND電極22A,22B,22C,22Dに向けて、抵抗RGAとインダクタンスLAの直列回路,抵抗RGBとインダクタンスLBの直列回路、抵抗RGCとインダクタンスLCの直列回路,抵抗RGDとインダクタンスLDの直列回路が、それぞれ接続された等価回路となる。一方、従来の3端子構造の場合は、上述したとおりであり、同図(B)に示すとおりである。更に、2端子構造のコンデンサの場合は、同図(C)に示すように、入出力電極920,922とGND電極924の間に、コンデンサC100,抵抗R100,インダクタンスL100の直列回路が接続された等価回路となる。これらの等価回路に示すように、本実施例においてもGNDは2つの方向に分割して引き出されており、従来の3端子構造と同様のESL低減効果を得ることができる。   FIGS. 4A to 4C show equivalent circuits in each case of the present embodiment, the conventional three-terminal structure, and the two-terminal structure. First, in the case of the present embodiment, as shown in FIG. 5A, a capacitor CAB is connected in parallel with the signal terminal electrode 26, and from this point toward the GND electrodes 22A, 22B, 22C, 22D. Thus, a series circuit of a resistor RGA and an inductance LA, a series circuit of a resistor RGB and an inductance LB, a series circuit of a resistor RGC and an inductance LC, and a series circuit of a resistor RGD and an inductance LD are connected to each other. On the other hand, the conventional three-terminal structure is as described above, as shown in FIG. Further, in the case of a two-terminal capacitor, a series circuit of a capacitor C100, a resistor R100, and an inductance L100 is connected between the input / output electrodes 920 and 922 and the GND electrode 924 as shown in FIG. It becomes an equivalent circuit. As shown in these equivalent circuits, in this embodiment also, the GND is divided and drawn in two directions, and an ESL reduction effect similar to that of the conventional three-terminal structure can be obtained.

図4(D)には、3端子型コンデンサと2端子型コンデンサの減衰特性の計測例が示されている。同図中、横軸は周波数[MHz],縦軸は減衰量[dB]である。また、グラフG40は3端子型の場合であり、グラフG42は2端子型の場合である。これらのグラフから明らかなように、3端子型のほうが良好な減衰特性が得られている。   FIG. 4D shows a measurement example of the attenuation characteristics of a three-terminal capacitor and a two-terminal capacitor. In the figure, the horizontal axis represents frequency [MHz] and the vertical axis represents attenuation [dB]. Graph G40 is a case of a three-terminal type, and graph G42 is a case of a two-terminal type. As is apparent from these graphs, the three-terminal type has better attenuation characteristics.

更に、本実施例では、図4(E),(F)に本実施例と従来構造の内部導体パターンと外部電極の関係を各々示すように、信号用端子電極とGND用端子電極の間隔Laが従来構造の間隔Lbよりも狭い。このため、GNDに至る電流経路が短くなり、これによってESLが低下する効果も期待できる。   Further, in this embodiment, the distance La between the signal terminal electrode and the GND terminal electrode is shown in FIGS. 4 (E) and 4 (F) so as to show the relationship between the internal conductor pattern and the external electrode of this embodiment and the conventional structure. Is narrower than the interval Lb of the conventional structure. For this reason, the current path to GND is shortened, so that the effect of lowering ESL can be expected.

以上のように、本実施例によれば、次のような効果がある。
(1)入出力間の抵抗値が大幅に低減されるようになり、自己発熱量が良好に低減される。
(2)2つの方向に分割してGND接続されているので、ESLは低い値に保持される。
As described above, according to this embodiment, there are the following effects.
(1) The resistance value between the input and output is greatly reduced, and the amount of self-heating is favorably reduced.
(2) Since the GND connection is divided in two directions, the ESL is held at a low value.

次に、図5(A)〜(D)を参照しながら、本発明の実施例2について説明する。GND用内部電極が角柱状積層体コンデンサ素体の長手方向の一端側から他端側に亘って、連続して設けられたことは先の実施例1と同様であるが、実施例2では、GND用内部電極が、一方の端部近傍のGND用電極引き出し部40A,40Bをそれぞれ有するGND用内部電極40と、他方の端部近傍のGND用電極引き出し部42A,42Bをそれぞれ有するGND用内部電極42とを有し、前記一方の端部近傍のGND用電極引き出し部40A,40Bは、一方の端部近傍のGND用端子電極22A、22Bにそれぞれ接続され、前記他方の端部近傍のGND用電極引き出し部42A,42Bは、他方の端部近傍のGND用端子電極22C、22Dにそれぞれ接続されることを特徴とする。この実施例では、3端子型積層セラミックコンデンサ44の素体の内部で信号用内部電極10にそれぞれ対向するGND用内部電極40と42とで、流れる電流の向きが逆転するので、磁界が相殺される。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. The internal electrodes for GND are continuously provided from one end side to the other end side in the longitudinal direction of the prismatic multilayer capacitor element body in the same manner as in the first embodiment. The GND internal electrode has a GND internal electrode 40 having GND electrode lead portions 40A and 40B in the vicinity of one end portion, and a GND internal electrode 40 having GND electrode lead portions 42A and 42B in the vicinity of the other end portion, respectively. The GND electrode lead portions 40A and 40B in the vicinity of the one end portion are connected to the GND terminal electrodes 22A and 22B in the vicinity of the one end portion, respectively, and the GND in the vicinity of the other end portion is provided. The electrode lead-out portions 42A and 42B are connected to the GND terminal electrodes 22C and 22D near the other end, respectively. In this embodiment, the direction of the flowing current is reversed between the GND internal electrodes 40 and 42 facing the signal internal electrode 10 inside the element body of the three-terminal multilayer ceramic capacitor 44, so that the magnetic field is canceled out. The

次に図6(A)〜(D)を参照しながら、本発明の実施例3について説明する。実施例3の3端子型積層コンデンサ49は、GND用内部電極が前記角柱状素体の長手方向中央部で2つに分割形成され、前記分割形成された一方のGND用内部電極46の電極引き出し部46A,46Bが、一方の端部近傍のGND用端子電極22A,22Bに接続され、他方のGND用内部電極48のGND用電極引き出し部48A,48Bが前記他方の端部近傍のGND用端子電極22C,22Dに接続されていることを特徴とする。この実施例では、GND用内部電極が、積層コンデンサ素体の内部で信号用端子電極と対向するとともに、積層コンデンサ素体の長手方向の中央部で2分割されているので、3端子型積層コンデンサが回路基板の信号用導体パターン及びこれを挟んで分断形成されているGND用導体パターン上に、中心から積層コンデンサ素体の長手方向に多少位置ずれして実装された場合であっても、信号用端子電極26から信号用内部電極10を介してGND用導体パターン32,34に至る電流経路が左右対称となり、バラツキなく安定したノイズ除去効果が得られる。   Next, Embodiment 3 of the present invention will be described with reference to FIGS. 6 (A) to 6 (D). In the three-terminal multilayer capacitor 49 of Example 3, the GND internal electrode is divided into two at the longitudinal center of the prismatic element body, and the electrode lead-out of one of the divided GND internal electrodes 46 is extracted. The portions 46A and 46B are connected to the GND terminal electrodes 22A and 22B near one end, and the GND electrode lead portions 48A and 48B of the other GND internal electrode 48 are the GND terminals near the other end. It is connected to the electrodes 22C and 22D. In this embodiment, the internal electrode for GND faces the signal terminal electrode inside the multilayer capacitor element body and is divided into two at the center in the longitudinal direction of the multilayer capacitor element. Is mounted on the signal conductor pattern of the circuit board and the GND conductor pattern formed so as to be sandwiched therebetween, even if it is mounted with a slight displacement from the center in the longitudinal direction of the multilayer capacitor body. The current path from the terminal electrode 26 to the GND conductor patterns 32 and 34 via the signal internal electrode 10 is symmetrical, and a stable noise removal effect can be obtained without variation.

尚、上記実施例1〜3では、いずれもGND用端子電極22A〜22Dが角柱状3端子型積層コンデンサ素体の長手方向と平行な側面及びこれと接する両主面のみに形成されているため、これまでの3端子型コンデンサでは不可欠であった角柱状積層コンデンサ素体の6面すべてに電極を塗布するための最低4回の電極塗布工程から開放され、長手方向と平行な両側面及びこれと接する両主面の4面のみで最低2回塗布が可能となり、塗布回数の削減に伴う特性バラツキを低減することができるとともに、通常のコンデンサアレイの生産設備により製造が可能となる。   In the first to third embodiments, the GND terminal electrodes 22A to 22D are formed only on the side surface parallel to the longitudinal direction of the prismatic three-terminal multilayer capacitor body and on both main surfaces in contact therewith. In addition, it has been released from a minimum of four electrode coating processes for coating electrodes on all six surfaces of a prismatic multilayer capacitor body, which has been indispensable with conventional three-terminal capacitors, and both side surfaces parallel to the longitudinal direction The coating can be performed at least twice on only the four main surfaces that are in contact with each other, and the variation in characteristics due to the reduction in the number of coatings can be reduced, and the production can be performed with the production equipment of a normal capacitor array.

次に、図7を参照しながら、本発明の実施例4について説明する。実施例4の3端子型積層コンデンサ50は、GND用内部電極54が、前記角柱状素体の長手方向の一端側から他端側に亘って連続して設けられるとともに、GND電極引き出し部54A〜54Fが、角柱状積層コンデンサ素体の長手方向の中央部を除く両側面及び両端面にそれぞれ設けられ、角柱状積層体コンデンサ素体の長手方向両端部近傍に設けられた一対のGND用端子電極56A,56Bに接続されている。本実施例では、角柱状素体の長手方向と平行な側面にGND用電極引き出し部54A,54B,54D,54Eを備えているため、従来の3端子型積層コンデンサに比べて、ESLを低減する効果を有するのは先の実施例と同様であるが、さらに、GND電極引き出し部54C及び54Fを備え、GND用端子電極56A,56Bの面積が増大したことにより、放熱性が良好となる効果がある。   Next, Embodiment 4 of the present invention will be described with reference to FIG. In the three-terminal multilayer capacitor 50 according to the fourth embodiment, the GND internal electrode 54 is continuously provided from one end side to the other end side in the longitudinal direction of the prismatic element body, and the GND electrode lead-out portions 54A to 54A- 54F is a pair of GND terminal electrodes provided on both side surfaces and both end surfaces of the prismatic multilayer capacitor body excluding the central portion in the longitudinal direction, and provided in the vicinity of both longitudinal ends of the prismatic multilayer capacitor body. 56A and 56B. In this embodiment, the GND electrode lead portions 54A, 54B, 54D, and 54E are provided on the side surfaces parallel to the longitudinal direction of the prismatic element body, so that the ESL is reduced as compared with the conventional three-terminal multilayer capacitor. Although the effect is the same as in the previous embodiment, the GND electrode lead portions 54C and 54F are further provided, and the area of the GND terminal electrodes 56A and 56B is increased, so that the heat dissipation is improved. is there.

次に、図8を参照しながら、本発明の実施例5について説明する。図8は具体的な使用例を示す回路図で、(A)は本発明の場合の回路図,(B)は従来構造の場合の回路図である。なお、この実施例では、前記実施例4に示したものと同様の電極構成の3端子型積層コンデンサが用いられている。同図(A)から説明すると、3端子型積層コンデンサ100の信号用端子電極100Aは、一方において信号用導体パターンを介して電源102に接続され、他方において電力供給対象のIC104に接続されている。3端子型積層コンデンサ100のGND用端子電極100B及び100Cは、いずれもアースされている。これに対し、(B)の従来構造の3端子型積層コンデンサ110では、電源102が入力用端子電極110Aに接続され、出力用端子電極110BがIC104に接続される。GND用端子電極110Cはアースされている。   Next, Embodiment 5 of the present invention will be described with reference to FIG. FIG. 8 is a circuit diagram showing a specific use example, where (A) is a circuit diagram in the case of the present invention, and (B) is a circuit diagram in the case of a conventional structure. In this example, a three-terminal multilayer capacitor having the same electrode configuration as that shown in Example 4 is used. Referring to FIG. 2A, the signal terminal electrode 100A of the three-terminal multilayer capacitor 100 is connected to the power source 102 via the signal conductor pattern on one side, and connected to the IC 104 to be supplied with power on the other side. . The GND terminal electrodes 100B and 100C of the three-terminal multilayer capacitor 100 are both grounded. On the other hand, in the conventional three-terminal multilayer capacitor 110 of (B), the power source 102 is connected to the input terminal electrode 110A, and the output terminal electrode 110B is connected to the IC 104. The GND terminal electrode 110C is grounded.

次に、図9〜図11を参照しながら本発明の実施例6について説明する。上述した実施例は、3端子型積層コンデンサや信号用導体パターンなどを集中定数として扱ったものであるが、本実施例は分布定数として扱ったものである。例えば周波数が1[GHz]の場合、自由空間中の交流信号の波長λは、λ[m]=f[Hz]/V[m/s](Vは光速)で求められ、約33[cm]である。誘電体中では誘電率によって波長短縮が起きるため、仮にコンデンサの誘電率εrを3000とすると、波長λbは、λb=λ/√(εr)から、約0.6[cm]となる。つまりノイズ成分や高調波成分の周波数が1[GHz]の場合、λb/4となる0.15[cm]以上の長さに渡って存在するコンデンサは分布定数回路として扱われる。図9(A)にはその様子が示されており、同図(A)は自由空間中の波長λの波形,同図(B)は誘電体中の波長λbの波形である。   Next, Embodiment 6 of the present invention will be described with reference to FIGS. In the above-described embodiment, a three-terminal multilayer capacitor, a signal conductor pattern, and the like are handled as lumped constants, but this embodiment is handled as a distributed constant. For example, when the frequency is 1 [GHz], the wavelength λ of the AC signal in free space is obtained by λ [m] = f [Hz] / V [m / s] (V is the speed of light), and is approximately 33 [cm]. ]. Since the wavelength is shortened by the dielectric constant in the dielectric, if the dielectric constant εr of the capacitor is 3000, the wavelength λb is about 0.6 [cm] from λb = λ / √ (εr). That is, when the frequency of the noise component and the harmonic component is 1 [GHz], a capacitor existing over a length of 0.15 [cm] or more that is λb / 4 is treated as a distributed constant circuit. FIG. 9 (A) shows such a state. FIG. 9 (A) shows the waveform of wavelength λ in free space, and FIG. 9 (B) shows the waveform of wavelength λb in the dielectric.

分布定数回路は、物理的な長さの関数を持った電気回路であり、ある範囲内にL,C,Rの各要素がまんべんなく存在する。一般には、L,C,Rの各素子の直列回路で表現されるコンデンサも、長さをもっているとL,C,Rの素子が物理的に存在することになる。このような長さを持つことを利用して、広帯域で減衰するフィルタ効果を得ることができる。   The distributed constant circuit is an electric circuit having a function of a physical length, and each element of L, C, and R exists in a certain range. In general, if a capacitor expressed by a series circuit of L, C, and R elements has a length, the L, C, and R elements physically exist. A filter effect that attenuates in a wide band can be obtained by utilizing such a length.

図10には、その一例が示されている。まず、同図(A-1)は、コンデンサ単体の場合の実装の様子を示し、信号ライン202を挟んでGNDライン204,206が平行に形成されている。3端子型積層コンデンサ200は、上述した実施例と同様に実装される。これを分布定数の等価回路で示すと、同図(A-2)のようになる。次に、3端子型積層コンデンサ200を同図(B-1)のように複数並列に分布実装すると、等価回路は同図(B-2)のようになる。これらのうち、並列のキャパシタンス及びインダクタンスを比較すると、C200<C202,L200>L202となる。このため、全体として、広帯域で減衰するフィルタ効果を得ることができる。   An example is shown in FIG. First, FIG. 1A-1 shows a state of mounting in the case of a single capacitor, and GND lines 204 and 206 are formed in parallel with the signal line 202 in between. The three-terminal multilayer capacitor 200 is mounted in the same manner as in the above-described embodiment. This can be represented by an equivalent circuit of distributed constants as shown in FIG. Next, when a plurality of three-terminal multilayer capacitors 200 are distributed and mounted in parallel as shown in FIG. 1B, the equivalent circuit is as shown in FIG. Of these, when the parallel capacitance and inductance are compared, C200 <C202, L200> L202. For this reason, as a whole, a filter effect that attenuates in a wide band can be obtained.

図11には、かかる3端子型積層コンデンサを複数利用した場合のフィルタ効果の具体例が示されている。同図(A)は、3端子型積層コンデンサ200を間隔なし(=0mm)で基板上に実装した場合であり、同図(B)は間隔=1mmで実装した場合である。使用した3端子型積層コンデンサ200は、容量1[uF],寸法が2.0mm×0.85mm×1.25mmである。減衰量を測定した結果、同図(C)に示すような結果が得られた。同図中、横軸は周波数[MHz],縦軸は減衰量[dB]であり、グラフG11Aは間隔なしの場合,グラフG11Bは間隔1mmの場合である。これらのグラフから、同じ個数のコンデンサを使用する場合でも、部品間隔を空けることによって更に大きな減衰量が得られることが分かる。   FIG. 11 shows a specific example of the filter effect when a plurality of such three-terminal multilayer capacitors are used. FIG. 6A shows the case where the three-terminal multilayer capacitor 200 is mounted on the substrate without any interval (= 0 mm), and FIG. 6B shows the case where it is mounted with an interval = 1 mm. The used three-terminal multilayer capacitor 200 has a capacitance of 1 [uF] and dimensions of 2.0 mm × 0.85 mm × 1.25 mm. As a result of measuring the attenuation, a result as shown in FIG. In the figure, the horizontal axis is the frequency [MHz], the vertical axis is the attenuation [dB], the graph G11A is when there is no interval, and the graph G11B is when the interval is 1 mm. From these graphs, it can be seen that even when the same number of capacitors are used, a larger amount of attenuation can be obtained by separating the parts.

次に、図12を参照しながら実施例7について説明する。この実施例は、具体的な実装の例である。まず、同図(A)に示す例は、主基板260上に電源262とLSI263が設けられており、それらの間に平行に設けられた信号ライン266,GNDライン268,270上に、適宜の間隔をおいて3端子型積層コンデンサ264を複数設けた例である。効果的に高周波成分を除去するためには、3端子型積層コンデンサ264を電源262やLSI263の近傍に配置するようにする。同図(B)の例は、半導体パッケージ内での実装例で、サブ基板280上の中心にLSI282が設けられており、該LSI282を囲むように本発明の3端子型積層コンデンサ284が設けられている。同図(B)の例も、同様の例で、サブ基板290上のLSI292の周囲に本発明の3端子型積層コンデンサ294が設けられている。これらの実施例は、特に高速動作しながら緻密な電源制御を行う必要がある場合に好適であり、LSI周辺をコンデンサで囲むことで、サブ基板では難しいコンデンサ容量の供給と低ESL化,広帯域なデカップリングが可能となる。   Next, Example 7 will be described with reference to FIG. This embodiment is an example of a specific implementation. First, in the example shown in FIG. 6A, a power source 262 and an LSI 263 are provided on a main board 260, and appropriate signal lines 266 and GND lines 268 and 270 provided in parallel between them are provided. This is an example in which a plurality of three-terminal multilayer capacitors 264 are provided at intervals. In order to effectively remove the high frequency component, the three-terminal multilayer capacitor 264 is disposed in the vicinity of the power source 262 and the LSI 263. The example of FIG. 5B is an example of mounting in a semiconductor package. An LSI 282 is provided at the center of the sub-board 280, and the three-terminal multilayer capacitor 284 of the present invention is provided so as to surround the LSI 282. ing. The example of FIG. 5B is also a similar example, and the three-terminal multilayer capacitor 294 of the present invention is provided around the LSI 292 on the sub-substrate 290. These embodiments are particularly suitable when it is necessary to perform precise power control while operating at high speed. By surrounding the LSI with a capacitor, it is difficult to supply a capacitor capacity, lower ESL, and wide bandwidth. Decoupling is possible.

ここで、上述した実施例についての効果についてまとめる。
(1)従来の3端子型積層コンデンサでは、柱状積層コンデンサ素体の長手方向の両端面および長手方向と平行な両側面にそれぞれ端子電極を有するため、従来の2端子型の端子電極形成設備のほかに、両側面に端子電極を形成するための特別なプロセス及び電極形成設備を必要とする。これに対し、実施例1〜3及び6,7では、GND用端子電極及び信号用端子電極が積層コンデンサの長手方向の端面を除く両側面に設けられているので、例えば、アレイタイプの端子電極形成設備を用いることができ、両側面に複数の端子電極を少ない工数で一括で形成できるというメリットを有する。
Here, the effects of the above-described embodiment will be summarized.
(1) Since the conventional three-terminal multilayer capacitor has terminal electrodes on both end faces in the longitudinal direction of the columnar multilayer capacitor body and both side faces parallel to the longitudinal direction, the conventional two-terminal type terminal electrode forming equipment In addition, a special process and electrode forming equipment for forming terminal electrodes on both sides are required. On the other hand, in Examples 1 to 3, 6 and 7, the GND terminal electrode and the signal terminal electrode are provided on both side surfaces excluding the end surface in the longitudinal direction of the multilayer capacitor. Forming equipment can be used, and it has the merit that a plurality of terminal electrodes can be collectively formed on both side surfaces with less man-hours.

(2)また、従来の3端子型積層コンデンサ実装回路基板では、コンデンサを実装する実装回路基板のGNDライン及び信号ラインが、通常の2端子コンデンサを実装する場合のライン形状と異なり、GNDラインと信号ラインとが交差する箇所を有する特別なラインパターンを作らなければならず、3端子型積層コンデンサの取り付け箇所の移動や増設が困難であった。これに対し、上述した実施例の3端子型積層コンデンサ実装回路基板では、GNDラインと信号ラインとが交差する箇所など、特別なラインパターンを必要としないため、3端子型積層コンデンサの取り付け箇所の移動や増設を容易に行うことができる。   (2) Also, in the conventional 3-terminal multilayer capacitor mounting circuit board, the GND line and signal line of the mounting circuit board on which the capacitor is mounted are different from the line shape when mounting a normal 2-terminal capacitor, A special line pattern having a location where the signal line intersects must be created, and it is difficult to move or add a location where the three-terminal multilayer capacitor is attached. On the other hand, in the three-terminal multilayer capacitor mounting circuit board of the above-described embodiment, no special line pattern is required such as a location where the GND line and the signal line intersect. It can be easily moved and expanded.

(3)上述した実施例1〜7においては、信号用電極引き出し部を幅広に引き出すことにより、信号ラインに大きな電流を流す場合や、信号ラインの抵抗値を下げて消費電力を小さくするために幅広の信号ラインを採用した実装回路基板においては、信号用端子電極の幅をGND用端子電極の幅に比べて幅広とすることができる。これにより、信号用端子電極、信号用電極引き出し部,信号用内部電極,GND用内部電極,GND用電極引き出し部,GND用端子電極に至る電流経路を短くして、ESLを低い値にすることができる。   (3) In the above-described first to seventh embodiments, in order to reduce the power consumption by flowing a large current through the signal line by extending the signal electrode lead-out portion or reducing the signal line resistance value In a mounting circuit board employing a wide signal line, the width of the signal terminal electrode can be made wider than the width of the GND terminal electrode. This shortens the current path to the signal terminal electrode, signal electrode lead-out portion, signal internal electrode, GND internal electrode, GND electrode lead-out portion, GND terminal electrode, and lowers the ESL. Can do.

(4)また、本発明の実施例1〜3,6,7に記載の3端子型積層コンデンサでは、実装回路基板に実装した際に、半田フィレットが、信号ラインの長手方向に沿って形成されるだけなので、特別なランドを必要としない。このため、周囲に他の実装部品が搭載されている場合でも、これらの部品を避けて、信号ラインに並行したわずかな隙間に実装することが可能となる   (4) In the three-terminal multilayer capacitors described in Examples 1 to 3, 6 and 7 of the present invention, when mounted on a mounting circuit board, a solder fillet is formed along the longitudinal direction of the signal line. It does n’t require a special land. For this reason, even when other mounting parts are mounted in the vicinity, it is possible to avoid these parts and mount them in a slight gap parallel to the signal line.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例に示した材料,寸法は一例であり、必要に応じて適宜変更してよい。
(2)前記実施例に示した信号用電極引き出し部,GND用電極引き出し部,信号用端子電極,GND用端子電極の形状も一例であり、同様の効果を奏するように適宜変更可能である。
(3)信号用内部電極とGND用内部電極の積層数も一例であり、必要に応じて適宜増減してよい。
(4)前記実施例に示した製造手順や製造条件は一例であり、何ら前記実施例に限定されるものではない。
(5)上述した実施例7に示す3端子型積層コンデンサの実装例も一例であり、同様の効果を奏するように適宜配置を変更してよい。
In addition, this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are also included.
(1) The materials and dimensions shown in the above embodiments are examples, and may be appropriately changed as necessary.
(2) The shapes of the signal electrode lead-out portion, the GND electrode lead-out portion, the signal terminal electrode, and the GND terminal electrode shown in the above embodiment are also examples, and can be appropriately changed so as to achieve the same effect.
(3) The number of laminated signal internal electrodes and GND internal electrodes is also an example, and may be appropriately increased or decreased as necessary.
(4) The manufacturing procedure and manufacturing conditions shown in the above embodiment are examples, and the present invention is not limited to the above embodiment.
(5) The above-described mounting example of the three-terminal multilayer capacitor shown in the seventh embodiment is also an example, and the arrangement may be changed as appropriate so as to achieve the same effect.

本発明によれば、低いESL値を保ったまま自己発熱量が低減されるので、集積回路の電源回路などに好適である。   According to the present invention, the amount of self-heating is reduced while maintaining a low ESL value, which is suitable for a power supply circuit of an integrated circuit.

本発明の実施例1の3端子型積層コンデンサを示す図である。It is a figure which shows the 3 terminal type | mold multilayer capacitor of Example 1 of this invention. 前記実施例1の3端子型積層コンデンサの実装の様子を示す図である。It is a figure which shows the mode of mounting of the 3 terminal type | mold multilayer capacitor of the said Example 1. FIG. 前記実施例1の信号ラインに沿った構造,等価回路,発熱特性を示す図である。It is a figure which shows the structure along the signal line of the said Example 1, an equivalent circuit, and a heat generation characteristic. 前記実施例1におけるESL低減の様子を示す図である。It is a figure which shows the mode of ESL reduction in the said Example 1. FIG. 本発明の実施例2の3端子型積層コンデンサを示す図である。It is a figure which shows the 3 terminal type | mold multilayer capacitor of Example 2 of this invention. 本発明の実施例3の3端子型積層コンデンサを示す図である。It is a figure which shows the 3 terminal type | mold multilayer capacitor of Example 3 of this invention. 本発明の実施例4の3端子型積層コンデンサを示す図である。It is a figure which shows the 3 terminal type | mold multilayer capacitor of Example 4 of this invention. 本発明の実施例5の3端子型積層コンデンサと従来の3端子型積層コンデンサとの実装状態の比較を示す図である。It is a figure which shows the comparison of the mounting state of the 3 terminal type multilayer capacitor of Example 5 of this invention, and the conventional 3 terminal type multilayer capacitor. 本発明の実施例6における波長変化の様子を示す図である。It is a figure which shows the mode of the wavelength change in Example 6 of this invention. 前記実施例6における実装の様子と分布定数回路の等価回路を示す図である。It is a figure which shows the mode of mounting in the said Example 6, and the equivalent circuit of a distributed constant circuit. 前記実施例6の実装の様子と減衰特性を示す図である。It is a figure which shows the mode of mounting of the said Example 6, and an attenuation | damping characteristic. 本発明の実施例7を示す図である。It is a figure which shows Example 7 of this invention. 従来の3端子型積層コンデンサの導体パターン,積層状態,実装の様子を示す図である。It is a figure which shows the conductor pattern of a conventional 3 terminal type | mold multilayer capacitor, a lamination | stacking state, and the mode of mounting. 前記従来例の等価回路と発熱特性を示す図である。It is a figure which shows the equivalent circuit and heat generation characteristic of the said prior art example.

符号の説明Explanation of symbols

10:信号用内部電極
10A,10B:引き出し部
12:誘電体シート
14:GND用内部電極
14A,14B:引き出し部
16:誘電体シート
18,19:誘電体層
20:3端子型積層コンデンサ
22A〜22D:GND用端子電極
26:信号用端子電極
30:信号用導体パターン
32,34:GND用導体パターン
40,42:GND用内部電極
40A,40B,42A,42B:引き出し部
44,49,50:3端子型積層コンデンサ
52:誘電体シート
54:GND用内部電極
54A〜54F:引き出し部
56A,56B:GND用端子電極
100:3端子型積層コンデンサ
100A:信号用端子電極
100B,100C:GND用端子電極
102:電源
104:IC
110:3端子型積層コンデンサ
110A:入力用端子電極
110B:出力用端子電極
110C:GND用端子電極
130,132:信号用導体パターン
134,136:GND用導体パターン
140,142:信号用導体パターン
144:GND用導体パターン
150,152:信号用導体パターン
160,162:GND用導体パターン
200:3端子型積層コンデンサ
202:信号ライン
204,206:GNDライン
260:主基板
262:電源
263:LSI
264:3端子型積層コンデンサ
266:信号ライン
268,270:GNDライン
280:サブ基板
282:LSI
284:3端子型積層コンデンサ
290:サブ基板
292:LSI
294:3端子型積層コンデンサ

10: Signal internal electrodes 10A, 10B: Lead part 12: Dielectric sheet 14: GND internal electrode 14A, 14B: Lead part 16: Dielectric sheet 18, 19: Dielectric layer 20: Three-terminal multilayer capacitor 22A- 22D: GND terminal electrode 26: Signal terminal electrode 30: Signal conductor pattern 32, 34: GND conductor pattern 40, 42: GND internal electrodes 40A, 40B, 42A, 42B: Lead portions 44, 49, 50: Three-terminal multilayer capacitor 52: Dielectric sheet 54: GND internal electrodes 54A to 54F: Lead portions 56A, 56B: GND terminal electrode 100: Three-terminal multilayer capacitor 100A: Signal terminal electrode 100B, 100C: GND terminal Electrode 102: Power supply 104: IC
110: Three-terminal multilayer capacitor 110A: Input terminal electrode 110B: Output terminal electrode 110C: GND terminal electrode 130, 132: Signal conductor pattern 134, 136: GND conductor pattern 140, 142: Signal conductor pattern 144 : GND conductor pattern 150, 152: Signal conductor pattern 160, 162: GND conductor pattern 200: Three-terminal multilayer capacitor 202: Signal line 204, 206: GND line 260: Main board 262: Power supply 263: LSI
264: Three-terminal multilayer capacitor 266: Signal line 268, 270: GND line 280: Sub-board 282: LSI
284: Three-terminal multilayer capacitor 290: Sub-board 292: LSI
294: Three-terminal multilayer capacitor

Claims (6)

信号用端子電極,GND用端子電極を有する3端子型積層コンデンサが実装された回路基板であって、
該回路基板の表面には、前記信号用端子電極が接続される信号用導体パターンが同一ラインとして連続形成されており、該信号用導体パターンを挟んで、前記GND電極が接続されるGND用導体パターンが分断形成されており、
前記3端子型積層コンデンサは、角柱状の積層コンデンサ素体の内部において誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、
前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な側面に露出する信号用電極引き出し部を有し、
前記GND用内部電極は、前記角柱状の素体の長手方向の中央部を除く側面に露出するGND用電極引き出し部を有し、
前記3端子型積層コンデンサの角柱状素体の表面の長手方向の中央部には、前記信号用内部電極と前記GND用内部電極とが積層方向で重なる部分を囲むように前記素体表面を周回するとともに、前記信号用電極引き出し部に接続される信号用端子電極が形成され、
前記角柱状素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されており、
前記3端子型積層コンデンサの素体の長手方向の中央部の表面を周回する信号用端子電極の一部が前記信号用導体パターン上に平行に配置され、搭載されたことを特徴とする3端子型積層コンデンサ実装回路基板。
A circuit board on which a three-terminal multilayer capacitor having a signal terminal electrode and a GND terminal electrode is mounted,
A signal conductor pattern to which the signal terminal electrode is connected is continuously formed on the surface of the circuit board as the same line, and a GND conductor to which the GND electrode is connected across the signal conductor pattern. The pattern is divided,
The three-terminal multilayer capacitor is formed so that the signal internal electrode and the GND internal electrode overlap at least in the stacking direction with the dielectric layer sandwiched inside the prismatic multilayer capacitor body,
The signal internal electrode has a signal electrode lead-out portion exposed on a side surface parallel to the longitudinal direction of the element body at a central portion in the longitudinal direction of the prismatic element body,
The GND internal electrode has a GND electrode lead portion exposed on a side surface excluding a central portion in the longitudinal direction of the prismatic element.
In the central part of the longitudinal direction of the surface of the prismatic element body of the three-terminal multilayer capacitor, the surface of the element body is circulated so as to surround a portion where the signal internal electrode and the GND internal electrode overlap in the stacking direction. And a signal terminal electrode connected to the signal electrode lead portion is formed,
A GND terminal electrode connected to the GND electrode lead-out portion is formed in the vicinity of one end portion of the side surface parallel to the longitudinal direction of the surface of the prismatic element body and in the vicinity of the other end portion, respectively. ,
A part of the signal terminal electrode that circulates on the surface of the central portion in the longitudinal direction of the element body of the three-terminal multilayer capacitor is arranged and mounted in parallel on the signal conductor pattern. Type multilayer capacitor mounting circuit board.
前記3端子型積層コンデンサが、前記信号用導体パターンの長手方向に沿って、互いに離間して複数個実装されていることを特徴とする請求項1記載の3端子型積層コンデンサ実装回路基板。   The three-terminal multilayer capacitor mounting circuit board according to claim 1, wherein a plurality of the three-terminal multilayer capacitors are mounted apart from each other along the longitudinal direction of the signal conductor pattern. 角柱状の積層コンデンサ素体の内部において誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、
前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な側面に露出する信号用電極引き出し部を有し、
前記GND用内部電極は、前記角柱状の素体の長手方向の中央部を除く側面に露出するGND電極引き出し部を有し、
前記3端子型積層コンデンサの角柱状素体の表面の長手方向の中央部には、前記信号用内部電極と前記GND用内部電極とが積層方向で重なる部分を囲むように前記素体表面を周回するとともに、前記信号用電極引き出し部に接続される信号用端子電極が形成され、
前記角柱状素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されていることを特徴とする3端子型積層コンデンサ。
The signal internal electrode and the GND internal electrode are formed so as to overlap at least in the stacking direction with the dielectric layer sandwiched inside the prismatic multilayer capacitor body,
The signal internal electrode has a signal electrode lead-out portion exposed on a side surface parallel to the longitudinal direction of the element body at a central portion in the longitudinal direction of the prismatic element body,
The GND internal electrode has a GND electrode lead portion exposed on a side surface excluding a central portion in the longitudinal direction of the prismatic element.
In the central part of the longitudinal direction of the surface of the prismatic element body of the three-terminal multilayer capacitor, the surface of the element body is circulated so as to surround a portion where the signal internal electrode and the GND internal electrode overlap in the stacking direction. And a signal terminal electrode connected to the signal electrode lead portion is formed,
A GND terminal electrode connected to the GND electrode lead portion is formed in the vicinity of one end of the side surface parallel to the longitudinal direction of the surface of the prismatic element body and in the vicinity of the other end, respectively. A three-terminal multilayer capacitor.
前記GND用端子電極は、前記角柱状素体の長手方向の両端面を除く側面およびこれと接する両主面に連続して形成されていることを特徴とする請求項3記載の3端子型積層コンデンサ。   4. The three-terminal laminate according to claim 3, wherein the GND terminal electrode is continuously formed on a side surface excluding both end surfaces in the longitudinal direction of the prismatic element body and on both main surfaces in contact with the side surface. Capacitor. 前記GND用内部電極は、前記角柱状素体の長手方向の一端側から他端側に亘って、連続して設けられたものであることを特徴とする請求項3記載の3端子型積層コンデンサ。   4. The three-terminal multilayer capacitor according to claim 3, wherein the GND internal electrode is provided continuously from one end side to the other end side in the longitudinal direction of the prismatic element body. . 前記GND用内部電極は、前記角柱状素体の長手方向中央部で2つに分割形成されていることを特徴とする請求項3記載の3端子型積層コンデンサ。   4. The three-terminal multilayer capacitor according to claim 3, wherein the GND internal electrode is divided into two at the longitudinal center of the prismatic element.
JP2004287274A 2004-09-30 2004-09-30 Three-terminal laminate capacitor and circuit board mounted therewith Pending JP2006100708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287274A JP2006100708A (en) 2004-09-30 2004-09-30 Three-terminal laminate capacitor and circuit board mounted therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287274A JP2006100708A (en) 2004-09-30 2004-09-30 Three-terminal laminate capacitor and circuit board mounted therewith

Publications (1)

Publication Number Publication Date
JP2006100708A true JP2006100708A (en) 2006-04-13

Family

ID=36240196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287274A Pending JP2006100708A (en) 2004-09-30 2004-09-30 Three-terminal laminate capacitor and circuit board mounted therewith

Country Status (1)

Country Link
JP (1) JP2006100708A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044483A1 (en) * 2006-10-13 2008-04-17 Sanyo Electric Co., Ltd. Composite electric element
US7495884B2 (en) 2006-09-06 2009-02-24 Tdk Corporation Multilayer capacitor
JP2010045103A (en) * 2008-08-11 2010-02-25 Tdk Corp Multilayer capacitor
JP2011049515A (en) * 2009-07-29 2011-03-10 Kyocera Corp Electronic device
JP2014220377A (en) * 2013-05-08 2014-11-20 Tdk株式会社 Laminated feedthrough capacitor
US9060461B2 (en) 2012-11-05 2015-06-16 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component, manufacturing method therefor, serial taping electronic component, manufacturing method therefor, and direction identification method for laminated ceramic electronic component
JP2015216201A (en) * 2014-05-09 2015-12-03 株式会社村田製作所 Multilayer capacitor and method for using the same
JP2016127262A (en) * 2014-12-26 2016-07-11 太陽誘電株式会社 Feedthrough multilayer ceramic capacitor
JP2018067612A (en) * 2016-10-19 2018-04-26 Tdk株式会社 Differential transmission circuit
JP6338784B1 (en) * 2017-02-06 2018-06-06 三菱電機株式会社 Noise filter
CN110010349A (en) * 2014-12-26 2019-07-12 太阳诱电株式会社 Feedthrough multilayer ceramic capacitor
US10629378B2 (en) 2017-11-10 2020-04-21 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor
KR20200055653A (en) * 2018-11-13 2020-05-21 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
US10840024B2 (en) 2017-11-10 2020-11-17 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor
WO2023243186A1 (en) * 2022-06-17 2023-12-21 株式会社村田製作所 Three-terminal multilayer ceramic capacitor
CN117673696A (en) * 2023-12-11 2024-03-08 广东微容电子科技有限公司 Preparation method of sheet type three-terminal capacitive filter

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495884B2 (en) 2006-09-06 2009-02-24 Tdk Corporation Multilayer capacitor
KR101386947B1 (en) * 2006-09-06 2014-04-18 티디케이가부시기가이샤 Multi-layer capacitor
WO2008044483A1 (en) * 2006-10-13 2008-04-17 Sanyo Electric Co., Ltd. Composite electric element
US8050015B2 (en) 2006-10-13 2011-11-01 Sanyo Electric Co., Ltd. Composite electric element
JP2010045103A (en) * 2008-08-11 2010-02-25 Tdk Corp Multilayer capacitor
JP4618348B2 (en) * 2008-08-11 2011-01-26 Tdk株式会社 Multilayer capacitor
JP2011049515A (en) * 2009-07-29 2011-03-10 Kyocera Corp Electronic device
US9060461B2 (en) 2012-11-05 2015-06-16 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component, manufacturing method therefor, serial taping electronic component, manufacturing method therefor, and direction identification method for laminated ceramic electronic component
JP2014220377A (en) * 2013-05-08 2014-11-20 Tdk株式会社 Laminated feedthrough capacitor
JP2015216201A (en) * 2014-05-09 2015-12-03 株式会社村田製作所 Multilayer capacitor and method for using the same
JP2016127262A (en) * 2014-12-26 2016-07-11 太陽誘電株式会社 Feedthrough multilayer ceramic capacitor
CN110010349A (en) * 2014-12-26 2019-07-12 太阳诱电株式会社 Feedthrough multilayer ceramic capacitor
JP2018067612A (en) * 2016-10-19 2018-04-26 Tdk株式会社 Differential transmission circuit
JP6338784B1 (en) * 2017-02-06 2018-06-06 三菱電機株式会社 Noise filter
US10629378B2 (en) 2017-11-10 2020-04-21 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor
US10840024B2 (en) 2017-11-10 2020-11-17 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor
KR20200055653A (en) * 2018-11-13 2020-05-21 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
US11342118B2 (en) 2018-11-13 2022-05-24 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
KR102412702B1 (en) * 2018-11-13 2022-06-24 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
WO2023243186A1 (en) * 2022-06-17 2023-12-21 株式会社村田製作所 Three-terminal multilayer ceramic capacitor
CN117673696A (en) * 2023-12-11 2024-03-08 广东微容电子科技有限公司 Preparation method of sheet type three-terminal capacitive filter

Similar Documents

Publication Publication Date Title
JP2006100708A (en) Three-terminal laminate capacitor and circuit board mounted therewith
US7630208B2 (en) Multilayer chip capacitor, circuit board apparatus having the capacitor, and circuit board
US7928819B2 (en) Multilayer LC composite component
JP2006100682A (en) Three-terminal laminated capacitor and packaging circuit board thereof
JP2000208361A (en) Multilayer capacitor
JP2007035877A (en) Multilayer capacitor
JP2006521073A (en) Compact RF stripline linear phase filter
US9147513B2 (en) Series inductor array implemented as a single winding and filter including the same
JP2006100451A (en) Three-terminal multilayer capacitor and packaging structure
JP2000223348A (en) Multilayer ceramic capacitor
JP2004296940A (en) Laminated capacitor
JP2001044074A (en) Multilayer ceramic capacitor
US11356073B2 (en) Multilayer filter
JP3694040B2 (en) High frequency module
JPH0855758A (en) Layered capacitor
JP4087884B2 (en) High frequency module
KR100660652B1 (en) Mmic electromagnetic noise filter and microwave integrated circuit device incluing the same
JP4047640B2 (en) Multilayer circuit board
US20090021887A1 (en) Multi-layer capacitor and wiring board having a built-in capacitor
JPH0653046A (en) Noise filter
JP2000150290A (en) Capacitor
US11316492B2 (en) Balun
JP6327084B2 (en) Power supply circuit and electronic equipment
JP4761904B2 (en) Multilayer capacitor
JP2003282785A (en) High-frequency circuit multilayer board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407