JP2006100004A - 燃料電池スタック - Google Patents
燃料電池スタック Download PDFInfo
- Publication number
- JP2006100004A JP2006100004A JP2004281646A JP2004281646A JP2006100004A JP 2006100004 A JP2006100004 A JP 2006100004A JP 2004281646 A JP2004281646 A JP 2004281646A JP 2004281646 A JP2004281646 A JP 2004281646A JP 2006100004 A JP2006100004 A JP 2006100004A
- Authority
- JP
- Japan
- Prior art keywords
- communication hole
- fuel cell
- cell stack
- oxidant gas
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】簡単且つ経済的な構成で、反応ガス連通孔に凝縮水が滞留することを確実に阻止することができ、良好な発電性能を確保することを可能にする。
【解決手段】複数の燃料電池12が積層された積層体14を備え、この積層体14を積層方向に貫通して酸化剤ガス出口連通孔40bが形成される。酸化剤ガス出口連通孔40bの底部には、ゴム部材66aを介装して挿入部材68aが配設される。挿入部材68aの上面全面には、切削加工等によって複数の凸形状部70aが形成されるとともに、前記凸形状部70a間には、少なくとも積層体14の外部まで連通する排水用溝部72aが連続して設けられる。
【選択図】図1
【解決手段】複数の燃料電池12が積層された積層体14を備え、この積層体14を積層方向に貫通して酸化剤ガス出口連通孔40bが形成される。酸化剤ガス出口連通孔40bの底部には、ゴム部材66aを介装して挿入部材68aが配設される。挿入部材68aの上面全面には、切削加工等によって複数の凸形状部70aが形成されるとともに、前記凸形状部70a間には、少なくとも積層体14の外部まで連通する排水用溝部72aが連続して設けられる。
【選択図】図1
Description
本発明は、電解質の両側に一対の電極が設けられた電解質・電極構造体と、セパレータとが水平方向に積層される積層体を備え、前記電解質・電極構造体と一方のセパレータとの間には、前記電極の面方向に沿って反応ガスを供給する反応ガス流路が形成されるとともに、前記反応ガス流路の端部に連通する反応ガス連通孔が、前記積層体を積層方向に貫通して形成される内部マニホールド型燃料電池スタックに関する。
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。この燃料電池は、固体高分子電解質膜の両側に、それぞれ電極触媒(電極触媒層)と多孔質カーボン(拡散層)からなるアノード側電極及びカソード側電極を対設した電解質膜・電極構造体を、セパレータ(バイポーラ板)によって挟持する発電セルを構成している。通常、燃料電池では、この発電セルを所定の数だけ積層した燃料電池スタックが使用されている。
この種の燃料電池において、アノード側電極には、燃料ガス(反応ガス)、例えば、主に水素を含有するガス(以下、水素含有ガスともいう)が供給される一方、カソード側電極には、酸化剤ガス(反応ガス)、例えば、主に酸素を含有するガスあるいは空気(以下、酸素含有ガスともいう)が供給されている。アノード側電極に供給された燃料ガスは、電極触媒上で水素がイオン化され、電解質膜を介してカソード側電極側へと移動する。その間に生じた電子は外部回路に取り出され、直流の電気エネルギとして利用される。
上記の燃料電池では、積層されている各発電セルのアノード側電極及びカソード側電極に、それぞれ反応ガスである燃料ガス及び酸化剤ガスを供給するため、内部マニホールドを構成する場合が多い。この内部マニホールドは、発電セルの積層方向に貫通して設けられる反応ガス入口連通孔及び反応ガス出口連通孔を備えており、電極面に沿って反応ガスを供給する反応ガス流路(酸化剤ガス流路及び燃料ガス流路)の入口側端部及び出口側端部には、前記反応ガス入口連通孔及び前記反応ガス出口連通孔がそれぞれ連通している。
ところで、酸化剤ガスが積層方向に流れる酸化剤ガス出口連通孔や酸化剤ガス入口連通孔である酸化剤ガス連通孔(反応ガス連通孔)には、発電時に生成される反応生成水が導入され易く、この酸化剤ガス連通孔内に滞留水が存在する場合がある。一方、燃料ガスが積層方向に流れる燃料ガス出口連通孔や燃料ガス入口連通孔である燃料ガス連通孔(反応ガス連通孔)には、結露等による滞留水が発生するおそれがある。これにより、酸化剤ガス連通孔や燃料ガス連通孔が滞留水によって縮小又は閉塞され易く、酸化剤ガスや燃料ガスの流れが妨げられて発電性能が低下するという問題がある。
そこで、例えば、特許文献1に開示されている燃料電池スタックは、図9に示すように、複数のセル1を積層するとともに、前記複数のセル1の積層体は、一対のエンドプレート2により両端が挟持されている。一方のエンドプレート2には、燃料ガス又は酸化剤ガスを供給するガス供給配管3と、前記燃料ガス又は前記酸化剤ガスを排出するガス排気配管4とが接続されている。
ガス供給配管3及びガス排気配管4には、凝縮水や生成水を一旦貯留するための水溜まり部5が設けられ、この水溜まり部5の下方には、電磁弁6を介して排水管7が接続されている。
複数のセル1を一対のエンドプレート2で挟持した燃料電池スタック8には、内部マニホールド9が形成されている。この内部マニホールド9は、ガス供給配管3及びガス排気配管4に向かって孔径を徐々に広げることにより下面に傾斜を付けている。これにより、内部マニホールド9の凝縮水や生成水は、前記内部マニホールド9の下面の傾斜に沿って各水溜まり部5に円滑に流れるとともに、電磁弁6の作用下に前記水溜まり部5の水が排水管7を介して排出される、としている。
しかしながら、上記の特許文献1では、各水溜まり部5の下方に電磁弁6が接続されており、この電磁弁6の制御が必要となってシステム全体が複雑化している。しかも、運転停止後の結露や各セル1から重力によって形成される滞留水は、運転停止時にもシステムを制御して排出する必要があり、エネルギの損失、すなわち、燃費の低下が惹起される。これにより、システム全体のコストが高騰するとともに、信頼性が低下するという問題がある。
さらに、各水溜まり部5側に向かって拡径する内部マニホールド9が、複数のセル1の積層体にわたって形成されており、前記内部マニホールド9の形成作業が繁雑化するとともに、各セル1が異なる構成を有している。このため、システム全体のコストが相当に高騰し、しかも各セル1毎に取り扱いが煩雑化するという問題がある。
さらにまた、運転停止時において、内部マニホールド9には、残存水分が表面張力により水滴化して凝縮水が滞留するおそれがある。これにより、内部マニホールド9の流路面積が縮小されて、燃料ガス又は酸化剤ガスの円滑な排気が遂行されないとともに、特に氷点下の環境では、滞留水の凍結が惹起し、低温始動が良好に遂行されないという問題がある。
本発明はこの種の問題を解決するものであり、簡単且つ経済的な構成で、反応ガス連通孔に凝縮水が滞留することを確実に阻止することができ、良好な発電性能を確保することが可能な燃料電池スタックを提供することを目的とする。
本発明は、電解質の両側に一対の電極が設けられた電解質・電極構造体と、セパレータとが水平方向に積層される積層体を備え、前記電解質・電極構造体と一方のセパレータとの間には、前記電極の面方向に沿って反応ガスを供給する反応ガス流路が形成されるとともに、前記反応ガス流路の端部に連通する反応ガス連通孔が、前記積層体を積層方向に貫通して形成される内部マニホールド型燃料電池スタックである。
少なくとも反応ガス連通孔の底面には、該底面全面にわたって複数の凸形状部が形成されるとともに、前記凸形状部間には、少なくとも積層体の外部まで連通する排水用溝部が連続して設けられている。
また、燃料電池スタックは、反応ガス連通孔の底部に配設される樹脂製挿入部材を備え、前記挿入部材の上面には、凸形状部が形成されることが好ましい。これにより、構成が有効に簡素化されて、燃料電池スタックを経済的に構成することができる。
さらに、排水用溝部同士は、互いに連結するとともに、平面視で屈曲乃至湾曲する波形状流路を構成することが好ましい。このため、排水用溝部を流れる水の流速が減少し、水溜まりが発生することを阻止することが可能になる。
本発明によれば、反応ガス連通孔に排出される凝縮水(生成水を含む)は、凸形状部間に形成される排水用溝部に導入されるため、表面張力により孤立した水滴が形成されることを阻止することができる。しかも、排水用溝部は、積層体の外部まで連続しており、凝縮水は、前記排水用溝部に沿って前記積層体の外部に円滑且つ確実に移動し、前記反応ガス連通孔の底面に滞留することがない。
これにより、反応ガス連通孔に滞留水による閉塞等が惹起することがなく、簡単な構成で、安定した発電電圧を確実に得ることが可能になるとともに、滞留水の凍結が惹起されることがなく、特に低温始動性が良好に向上する。
図1は、本発明の第1の実施形態に係る燃料電池スタック10の概略斜視図である。
燃料電池スタック10は、複数の燃料電池12が積層された積層体14を備え、前記積層体14の積層方向(矢印A方向)両端部には、第1及び第2ターミナルプレート16a、16bと、第1及び第2絶縁プレート18a、18bと、第1及び第2エンドプレート20a、20bとが、順次、設けられる。なお、燃料電池スタック10は、図示しないが、例えば、締め付けボルトやボックス状のケーシング等により締め付け保持される。
図2に示すように、燃料電池12は、水平方向(矢印A方向)に積層される電解質膜・電極構造体(電解質・電極構造体)22と、第1及び第2金属セパレータ24、26とを備える。なお、第1及び第2金属セパレータ24、26に代替して、例えば、カーボンセパレータを使用してもよい。
電解質膜・電極構造体22は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜28と、該固体高分子電解質膜28を挟持するアノード側電極30及びカソード側電極32とを備える。アノード側電極30及びカソード側電極32は、カーボンペーパ等からなるガス拡散層(図示せず)と、白金合金が表面に担持された多孔質カーボン粒子を前記ガス拡散層の表面に一様に塗布して形成される電極触媒層(図示せず)とを有する。
燃料電池12の矢印B方向の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔(反応ガス連通孔)40a、冷却媒体を供給するための冷却媒体入口連通孔42a、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔(反応ガス連通孔)44bが、矢印C方向(鉛直方向)に配列して設けられる。
燃料電池12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス入口連通孔(反応ガス連通孔)44a、冷却媒体を排出するための冷却媒体出口連通孔42b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔(反応ガス連通孔)40bが、矢印C方向に配列して設けられる。
第1金属セパレータ24の電解質膜・電極構造体22に向かう面24aには、酸化剤ガス流路(反応ガス流路)46が設けられる。酸化剤ガス流路46は、複数の酸化剤ガス流路溝46aを有するとともに、前記酸化剤ガス流路溝46aは、矢印B方向に延在している。なお、酸化剤ガス流路溝46aは、例えば、矢印B方向に一往復半だけ折り返すサーペタイン流路溝を構成してもよい。
第2金属セパレータ26の電解質膜・電極構造体22に向かう面26aには、燃料ガス流路(反応ガス流路)48が設けられる。燃料ガス流路48は、酸化剤ガス流路46と同様に、矢印B方向に延在する複数の燃料ガス流路溝48aを有する。
第1金属セパレータ24と第2金属セパレータ26とは、互いに対向する面24b、26bに冷却媒体流路50を一体的に形成する。冷却媒体流路50は、酸化剤ガス流路46の裏面側、及び燃料ガス流路48の裏面側に一体的に形成され、矢印B方向に延在する複数の冷却媒体流路溝50aを有する。この冷却媒体流路50は、冷却媒体入口連通孔42aと冷却媒体出口連通孔42bとに連通する。
第1金属セパレータ24の面24a、24bには、この第1金属セパレータ24の外周縁部を周回して第1シール部材54が射出成形等により一体的に設けられる。第1シール部材54は、面24aにおいて、酸化剤ガス入口連通孔40a、酸化剤ガス出口連通孔40b及び酸化剤ガス流路46を覆って酸化剤ガスの洩れ止めを行う。第1シール部材54は、酸化剤ガス入口連通孔40a、冷却媒体入口連通孔42a、燃料ガス出口連通孔44b、燃料ガス入口連通孔44a、冷却媒体出口連通孔42b及び酸化剤ガス出口連通孔40bの内周面を覆っており、第1金属セパレータ24の液絡を防止している。なお、以下に説明する第2シール部材56も同様である。
第2金属セパレータ26の面26a、26bには、この第2金属セパレータ26の外周縁部を周回して第2シール部材56が射出成形等により一体的に設けられる。第2シール部材56は、面26aにおいて、燃料ガス入口連通孔44a、燃料ガス出口連通孔44b及び燃料ガス流路48を覆って燃料ガスの洩れ止めを行う。第2シール部材56は、面26bにおいて、冷却媒体入口連通孔42a、冷却媒体出口連通孔42b及び冷却媒体流路50を覆って冷却媒体の漏れ止めを行う。
図3に示すように、酸化剤ガス出口連通孔40b及び燃料ガス出口連通孔44bには、例えば、各々の底部62a、62b(及び必要に応じて側部64a、64b)にゴム部材66a、66bを介装して挿入部材68a、68bが配設される。ゴム部材66a、66bは、例えば、EPDM(エチレンプロピレンゴム)で構成されており、図1に示すように、積層体14の積層方向に長尺な挿入部材68a、68bの裏面側に設けられる。
挿入部材68a、68bは、樹脂材、例えば、PPS(ポリフェニレン サルファイド)で構成されており、前記挿入部材68a、68bの上面全面には、各々切削加工等によって複数の凸形状部70a、70bが形成される。図4に示すように、凸形状部70aは、上方が拡開する断面台形状に形成されるとともに、平面視で長方形状に設定され、好ましくは、角部にR(アール)を設けている。凸形状部70aは、図5に示すように、例えば、2つ1組として長手方向が矢印A方向及び矢印B方向に選択的に配設される。
凸形状部70a間には、排出酸化剤ガスの流れ方向(矢印A1方向)に沿って、少なくとも積層体14の外部まで連通する排水用溝部72aが連続して設けられる。溝部72aは、溝幅Tが1mm〜5mmの範囲内に設定されるとともに、前記溝部72a同士は、互いに連結するとともに、平面視で屈曲乃至湾曲する波形状流路を構成する。なお、凸形状部70bは、上記の凸形状部70aと同様に構成されており、同一の構成要素には同一の参照数字にbを付して、その詳細な説明は省略する。
凸形状部70aの上面の面積(長さL×幅W)は、1mm2〜50mm2の範囲内に設定される。凸形状部70aの高低差H(図4参照)は、0.5mm〜10mmの範囲内に設定される。
なお、酸化剤ガス入口連通孔40a及び燃料ガス入口連通孔44aは、必要に応じて上記の酸化剤ガス出口連通孔40b及び燃料ガス出口連通孔44bと同様に構成してもよい。また、第1エンドプレート20aにおいても、同様に構成してもよく、さらに前記第1エンドプレート20aに接続される図示しない配管を、同様に構成してもよい。
このように構成される燃料電池スタック10の動作について、以下に説明する。
図1に示すように、燃料電池スタック10を構成する第1エンドプレート20aにおいて、酸化剤ガス入口連通孔40aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔44aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔42aに純水やエチレングリコール等の冷却媒体が供給される。
図2に示すように、酸化剤ガスは、酸化剤ガス入口連通孔40aから第1金属セパレータ24の酸化剤ガス流路46に導入される。酸化剤ガス流路46では、酸化剤ガスが複数の酸化剤ガス流路溝46aに分散される。このため、酸化剤ガスは、各酸化剤ガス流路溝46aを介して電解質膜・電極構造体22のカソード側電極32に沿って移動する。
一方、燃料ガスは、燃料ガス入口連通孔44aから第2金属セパレータ26の燃料ガス流路48に導入される。この燃料ガス流路48では、燃料ガスが複数の燃料ガス流路溝48aに分散される。さらに、燃料ガスは、各燃料ガス流路溝48aを介して電解質膜・電極構造体22のアノード側電極30に沿って移動する。
従って、電解質膜・電極構造体22では、カソード側電極32に供給される酸化剤ガスと、アノード側電極30に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費され、発電が行われる。
次いで、カソード側電極32に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔40bに排出される(図1及び図2参照)。同様に、アノード側電極30に供給されて消費された燃料ガスは、燃料ガス出口連通孔44bに排出される。
一方、冷却媒体入口連通孔42aに供給された冷却媒体は、第1及び第2金属セパレータ24、26間に形成された冷却媒体流路50に導入される(図2参照)。この冷却媒体流路50では、冷却媒体が水平方向(矢印B方向)に移動する。従って、冷却媒体は、電解質膜・電極構造体22の発電面全面にわたって冷却した後、冷却媒体出口連通孔42bに排出される。
この場合、第1の実施形態では、図3に示すように、例えば、酸化剤ガス出口連通孔40bの底部62aには、ゴム部材66aを介して挿入部材68aが配設されている。挿入部材68aの上面には、図1及び図5に示すように、全面にわたって複数の凸形状部70aが形成されるとともに、前記凸形状部70a間には、排出酸化剤ガスの流れ方向(矢印A1方向)に沿って、少なくとも積層体14の外部まで連通する溝部72aが連続して設けられている。
このため、酸化剤ガス流路46の排出側端部から酸化剤ガス出口連通孔40bに排出される水分(生成水等)は、溝部72aに導入されることにより、表面張力で孤立した水滴が形成されることがない。しかも、溝部72aは、積層体14の外部まで連続しており、水分は前記溝部72aに沿って円滑且つ確実に移動し(図5中、破線矢印参照)、酸化剤ガス出口連通孔40bから良好に排出される。
これにより、第1の実施形態では、酸化剤ガス出口連通孔40bに滞留水が発生することがなく、前記酸化剤ガス出口連通孔40bに該滞留水による閉塞等が惹起することはない。従って、簡単な構成で、安定した発電電圧を確実に得ることが可能になるととともに、特に低温始動性が良好に向上するという効果が得られる。
さらに、溝部72aは、平面視で屈曲乃至湾曲する波形状流路を構成している。このため、溝部72aを流れる水の流速が減少し、水溜まりが発生することを阻止することができる。
さらにまた、溝部72aは、溝幅Tが1mm〜5mmの範囲内に設定されている。ここで、溝幅Tが1mm未満では、水の流れが阻害される一方、該溝幅Tが5mmを超えると、流速が早くなり過ぎて水の分離による水滴の残留が発生する。従って、溝幅Tを1mm〜5mmの範囲内に設定することにより、酸化剤ガス出口連通孔40bに導出される水分は、溝部72aに沿って連続的(水滴を形成することがなく)に排出されるという利点がある。
また、凸形状部70aの上面の面積は、1mm2〜50mm2の範囲内に設定されている。面積が1mm2未満では、溝部72aを流れる水量が減少して流動抵抗が増大し、水の流れが阻止される一方、前記面積が50mm2を超えると、水溜りが発生し易いからである。
さらに、凸形状部70aの高低差Hは、0.5mm〜10mmの範囲内に設定されている。高低差Hが、0.5mm未満では、溝部72aを流れる水量が減少して水の流れが阻止される一方、前記高低差Hが10mmを超えると、凸形状部70aに水滴が残存し易くなるとともに、燃料電池スタック10自体の体積が増大するからである。
なお、燃料ガス出口連通孔44bでは、上記の酸化剤ガス出口連通孔40bと同様の効果が得られる。
また、酸化剤ガス出口連通孔40b及び燃料ガス出口連通孔44bでは、各々の底部62a、62bにゴム部材66a、66bを介装して、挿入部材68a、68bが配設されているが、これに限定されるものではない。例えば、ゴム部材66a、66bを用いずに、挿入部材68a、68bを直接底部62a、62bに配設してもよく、あるいは、前記底部62a、62bに直接凸形状部70a、70bを形成してもよい。以下に説明する第2〜第4の実施形態においても、同様である。
図6は、本発明の第2の実施形態に係る燃料電池スタックを構成する挿入部材80の平面説明図である。
挿入部材80の上面全面には、切削加工等によって複数の凸形状部82が形成される。凸形状部82は、平面視で長方形状に設定されるとともに、それぞれの長手方向が矢印B方向に配設される。凸形状部82間には、排出酸化剤ガスの流れ方向(矢印A1方向)に沿って、少なくとも積層体(図示せず)の外部まで連通する排水用溝部84が連続して設けられる。溝部84は、平面視で屈曲乃至湾曲する波形状流路を構成する。凸形状部82は、凸形状部70aと同様に構成される一方、溝部84は、溝部72aと同様に構成される。
図7は、本発明の第3の実施形態に係る燃料電池スタックを構成する挿入部材90の平面説明図である。
挿入部材90の上面全面には、切削加工等によって複数の凸形状部92が形成される。凸形状部92は、平面視で三角形状に設定されるとともに、前記凸形状部82間には、排出酸化剤ガスの流れ方向(矢印A1方向)に沿って、少なくとも積層体(図示せず)の外部まで連通する排水用溝部94が連続して設けられる。溝部94は、平面視で屈曲乃至湾曲する波形状流路を構成する。溝部94は、溝部72aと同様に構成される。
図8は、本発明の第4の実施形態に係る燃料電池スタックを構成する挿入部材100の平面説明図である。
挿入部材100の上面全面には、切削加工等によって複数の凸形状部102が形成される。凸形状部102は、平面視で曲線形状(波形状)に設定されるとともに、前記凸形状部102間には、排出酸化剤ガスの流れ方向(矢印A1方向)に沿って、少なくとも積層体(図示せず)の外部まで連通する排水用溝部104が連続して設けられる。溝部104は、平面視で湾曲する波形状流路を構成しており、矢印A1方向に向かう水分の流速を曲線の流動抵抗により遅くする。
このように構成される第2〜第4の実施形態では、水分が溝部84、94及び104に沿って円滑且つ確実に移動する。従って、簡単な構成で、安定した発電電圧を確実に得ることが可能になるととともに、特に低温始動性が良好に向上する等、第1の実施形態と同様の効果が得られる。
10…燃料電池スタック 12…燃料電池
22…電解質膜・電極構造体 24、26…金属セパレータ
28…固体高分子電解質膜 30…アノード側電極
32…カソード側電極 40a…酸化剤ガス入口連通孔
40b…酸化剤ガス出口連通孔 42a…冷却媒体入口連通孔
42b…冷却媒体出口連通孔 44a…燃料ガス入口連通孔
44b…燃料ガス出口連通孔 46…酸化剤ガス流路
46a…酸化剤ガス流路溝 48…燃料ガス流路
48a…燃料ガス流路溝 50…冷却媒体流路
62a、62b…底部 66a、66b…ゴム部材
68a、68b、80、90、100…挿入部材
70a、70b、82、92、102…凸形状部
72a、84、94、104…溝部
22…電解質膜・電極構造体 24、26…金属セパレータ
28…固体高分子電解質膜 30…アノード側電極
32…カソード側電極 40a…酸化剤ガス入口連通孔
40b…酸化剤ガス出口連通孔 42a…冷却媒体入口連通孔
42b…冷却媒体出口連通孔 44a…燃料ガス入口連通孔
44b…燃料ガス出口連通孔 46…酸化剤ガス流路
46a…酸化剤ガス流路溝 48…燃料ガス流路
48a…燃料ガス流路溝 50…冷却媒体流路
62a、62b…底部 66a、66b…ゴム部材
68a、68b、80、90、100…挿入部材
70a、70b、82、92、102…凸形状部
72a、84、94、104…溝部
Claims (3)
- 電解質の両側に一対の電極が設けられた電解質・電極構造体と、セパレータとが水平方向に積層される積層体を備え、前記電解質・電極構造体と一方のセパレータとの間には、前記電極の面方向に沿って反応ガスを供給する反応ガス流路が形成されるとともに、前記反応ガス流路の端部に連通する反応ガス連通孔が、前記積層体を積層方向に貫通して形成される内部マニホールド型燃料電池スタックであって、
少なくとも前記反応ガス連通孔の底面には、該底面全面にわたって複数の凸形状部が形成されるとともに、
前記凸形状部間には、少なくとも前記積層体の外部まで連通する排水用溝部が連続して設けられることを特徴とする燃料電池スタック。 - 請求項1記載の燃料電池スタックにおいて、前記反応ガス連通孔の底部に配設される樹脂製挿入部材を備え、
前記挿入部材の上面には、前記凸形状部が形成されることを特徴とする燃料電池スタック。 - 請求項1又は2記載の燃料電池スタックにおいて、前記排水用溝部同士は、互いに連結するとともに、平面視で屈曲乃至湾曲する波形状流路を構成することを特徴とする燃料電池スタック。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004281646A JP2006100004A (ja) | 2004-09-28 | 2004-09-28 | 燃料電池スタック |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004281646A JP2006100004A (ja) | 2004-09-28 | 2004-09-28 | 燃料電池スタック |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006100004A true JP2006100004A (ja) | 2006-04-13 |
Family
ID=36239606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004281646A Pending JP2006100004A (ja) | 2004-09-28 | 2004-09-28 | 燃料電池スタック |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006100004A (ja) |
-
2004
- 2004-09-28 JP JP2004281646A patent/JP2006100004A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4939100B2 (ja) | 燃料電池スタック | |
JP2008103241A (ja) | 燃料電池 | |
WO2005109556A1 (en) | Fuel cell and separator thereof | |
JP3477926B2 (ja) | 固体高分子電解質型燃料電池 | |
JP2010282866A (ja) | 燃料電池スタック | |
JP2010073626A (ja) | 燃料電池用セパレータ及び燃料電池スタック | |
JP3673252B2 (ja) | 燃料電池スタック | |
JP5063350B2 (ja) | オフセットを有するバイポーラプレート | |
JP2006236841A (ja) | 燃料電池スタック | |
JP4613030B2 (ja) | 燃料電池スタック | |
JP5095936B2 (ja) | 燃料電池スタック | |
JP5653867B2 (ja) | 燃料電池 | |
JP2006147503A (ja) | 燃料電池スタック | |
JP2007026856A (ja) | 燃料電池スタック | |
JP2006100016A (ja) | 燃料電池スタック | |
JP2006147217A (ja) | 燃料電池システム | |
JP2005251604A (ja) | 燃料電池スタック | |
JP2006100004A (ja) | 燃料電池スタック | |
JP4661103B2 (ja) | 燃料電池 | |
JP2008146897A (ja) | 燃料電池用セパレータおよび燃料電池 | |
JP4739880B2 (ja) | 固体高分子形燃料電池 | |
JP2003168468A (ja) | 固体高分子型燃料電池 | |
JP4498681B2 (ja) | 高分子電解質型燃料電池 | |
JP2006066172A (ja) | 燃料電池 | |
JP2006092991A (ja) | 燃料電池スタック |