JP2006093674A - レーザー装置 - Google Patents

レーザー装置 Download PDF

Info

Publication number
JP2006093674A
JP2006093674A JP2005241289A JP2005241289A JP2006093674A JP 2006093674 A JP2006093674 A JP 2006093674A JP 2005241289 A JP2005241289 A JP 2005241289A JP 2005241289 A JP2005241289 A JP 2005241289A JP 2006093674 A JP2006093674 A JP 2006093674A
Authority
JP
Japan
Prior art keywords
laser
wavelength
angle
oscillation
confirmed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005241289A
Other languages
English (en)
Inventor
Tetsuei Hamano
哲英 濱野
Takashige Omatsu
尾松  孝茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2005241289A priority Critical patent/JP2006093674A/ja
Publication of JP2006093674A publication Critical patent/JP2006093674A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】 1つの固体結晶から多波長のレーザー光を同時に得ることができ、信頼性と発振効率が高く、小型で安価なレーザー装置の提供。
【解決手段】 レーザー媒質10の固体結晶にラマン結晶を使用し、レーザー媒質10を励起させてレーザー光を発生させるレーザー発振器12と、レーザー媒質10から発生したレーザー光を共振させる反射鏡16及びレーザー出力鏡18と、角度調整により可視域を発振する多波長の中から選択的に単一波長を取り出し可能とする高調波素子22とを備えるレーザー装置1を構成する。
【選択図】 図1

Description

本発明は、レーザー発振と同時にラマン変換の結果生じるストークス光ならびに反ストークス光、及び、ラマン光の第2高調波発振を含めた多波長から、選択的に単一波長を取り出し可能なレーザー装置に関するものである。
従来、化学測定用機器、赤外吸収を利用する微量検出器、同位体分離等の光源として、各種のレーザー装置が用いられている。
波長可変域が広く、広帯域において高出力のコヒーレント光を得ることができるレーザー装置として、誘導ラマン散乱による波長変換方法を用いた波長可変レーザー装置が特許文献1に提唱されている。
図7に示すように、波長可変レーザー装置50は、励起光源となる波長可変固体レーザー52から射出されたレーザー光を、複数のレンズからなる平行ビーム生成機構54によって平行ビームとし、この平行ビームを高圧ラマンセル56によって波長変換し、波長変換したレーザー光をさらに多重反射型ラマンセル58によって波長変換している。高圧ラマンセル56及び多重反射型ラマンセル58には、水素又は重水素がラマン物質として充填されている。
特開平5−249513号公報
しかしながら、前述の波長可変レーザー装置50においては、希望波長に応じて、波長可変固体レーザー52から射出されるレーザー光の波長を選択する必要がある。このため、波長可変レーザー装置50が複雑化するとともに大型化し、その結果コストが嵩む。また、高圧ラマンセル56及び多重反射型ラマンセル58に充填されているラマン物質は、気体の水素又は重水素であり、リーク等で劣化しやすいので信頼性が低く、発振効率も悪い。
本発明は、上記問題を解決するものであり、その目的とするところは、1つの固体結晶から多波長のレーザー光を同時に得ることができ、信頼性と効率に優れ、小型で安価なレーザー装置を提供することである。
本発明は、その課題を解決するために以下のような構成をとる。本発明に係るレーザー装置は、レーザー媒質を励起させてレーザー光を発生させる励起用の光源手段と、光源手段で発生したレーザー光を共振させる共振手段と、レーザー光の波長を変調する高調波素子とを備えたレーザー装置であって、レーザー媒質をラマン物質の固体結晶で構成することにより、又は、レーザー媒質を非ラマン物質の固体結晶で構成し共振手段にラマン物質の固体結晶を備えることにより、同時に多波長のレーザー発振を行うレーザー装置において、光軸に対する高調波素子の角度調整により可視域を発振する多波長の中から選択的に単一波長を取り出す。また、ラマン物質の固体結晶がタングステン酸塩である。さらに、高調波素子がLBO(LiB35)、KTP(KTiOPO4)、PPKTP(Periodically Poled KTiOPO4)、KDP(KH2PO4)又はBBO(BaB24)のうちのいずれかである。
本発明に係るレーザー装置では、例えば、レーザー媒質の固体結晶にラマン結晶KGd(WO42を使用し、この固体結晶にレーザー活性物質としてNd、Yb、Er、Pr、Eu、Tb、Sm等を含有させることで、固体結晶から発振したレーザー光と、ラマンシフト量が901cm-1のラマン変換されたストークス光並び反ストークス光が同時発振する。
レーザー活性物質としてNdを使用した場合、900nm、1067nm、1350nm等の基本波長を発振可能であり、これらの基本波長からラマンシフト量901cm-1をラマン変換されてストークス光並び反ストークス光が同時発振する。
レーザー装置において高い変換効率を得るには、入力ビームと発生ビームの各位相ベクトルが一致し、次式(1)で示される位相不整合が零とならねばならない。
Δk=k3−k2−k1
=2πn3/λ3−2πn2/λ2−2πn1/λ1 ・・・(1)
ただし、Δk:位相不整合
i:波長λiにおける位相ベクトル
i:波長λiにおける屈折率
Δk=0となる角度が位相整合角と呼ばれる。低出力の場合、変換効率と位相整合との間の関係は次式(2)により表される。
η∝{sin(ΔkL)/ΔkL}2 ・・・(2)
ただし、η:変換効率
L:結晶長
位相整合角が各波長においてそれぞれ存在する。基本波長1067nmの場合、ラマン散乱の結果生じた1181nm、1250nmの各位相整合角に高調波素子をあわせることにより、1/2の波長である緑色波長(534nm)、黄色波長(591nm)、赤色波長(660nm)をそれぞれ発振させることが可能であり、共振手段内から種々の波長を選択して取り出すことが可能である。位相不整合が増えると変換効率が急激に低下する。光軸に対する高調波素子の角度を調整して位相整合を得れば、変換効率が高まる。温度調整等により位相整合を得る場合に比べ、高調波素子の角度調整は簡単であり有利である。光軸とビーム伝播方向との角度が90度又は0度のときの位相整合角を非微調位相整合(NCPM)角といい、それ以外の位相整合角を微調位相整合(CPM)角という。なお、NCPMとはNon−Critical Phase Matchingの略であり、CPMとはCritical Phase Matchingの略である。
レーザー媒質をY3Al512(YAG)、YVO4、LiYF4(YLF)等の非ラマン物質の固体結晶とし、これにAl2(WO43、CaWO4、CsLa(WO42、Gd2(WO43、KY(WO42、KEr(WO42、KGd(WO42、KLu(WO42、NaY(WO42、NaLa(WO42、NaGd(WO42、NaBi(WO42、PbWO4、ZnWO4、RbNd(WO42、SrWO4、CdWO4、LiNbO3、KH2PO4、NaClO3又はBa(NO32等のラマン物質の固体結晶を組み合わせることにより、ラマン波を発生することが可能である。
レーザー媒質をラマン物質の固体結晶とすると発振効率が向上する。ラマン物質の固体結晶にはタングステン酸塩を使用することが好ましい。タングステン酸塩として、例えば、Al2(WO43、CaWO4、CsLa(WO42、Gd2(WO43、KY(WO42、KEr(WO42、KGd(WO42、KLu(WO42、NaY(WO42、NaLa(WO42、NaGd(WO42、NaBi(WO42、PbWO4、ZnWO4、RbNd(WO42、SrWO4、CdWO4等を挙げることができる。
高調波素子の固体結晶にLBO、KTP、PPKTP、KDP又はBBOを使用することによっても発振効率が向上する。
高次高調波素子からの3次高調波や4次高調波等を利用すれば、より短い波長のレーザー光が得られる。
したがって、多波長のレーザー光を同時に得る場合でも、レーザー発振装置以外の余分な設備は不要である。
本発明のレーザー装置は、1つの固体結晶から多波長のレーザー光を同時に得ることができ、信頼性と発振効率に優れ、小型かつ安価である。
本発明を実施するための最良の形態を図1(i)及び(ii)を参照しつつ説明する。
レーザー装置1は、レーザー媒質10、レーザー発振器12、集光レンズ14、反射鏡16、レーザー出力鏡18、Qスイッチ20、高調波素子22を備えている。
レーザー媒質10はラマン物質からなる固体結晶である。ラマン物質として、例えば、KGd(WO42単結晶が使用されている。なお、レーザー媒質10の固体結晶にKGd(WO42以外のタングステン酸塩又は他のラマン物質を使用することも可能である。
また、図2(i)及び(ii)の変形例に示すように、レーザー媒質10をY3Al512(YAG)、YVO4、LiYF4(YLF)等の非ラマン物質の固体結晶とし、これにAl2(WO43、CaWO4、CsLa(WO42、Gd2(WO43、KY(WO42、KEr(WO42、KGd(WO42、KLu(WO42、NaY(WO42、NaLa(WO42、NaGd(WO42、NaBi(WO42、PbWO4、ZnWO4、RbNd(WO42、SrWO4、CdWO4、LiNbO3、KH2PO4、NaClO3又はBa(NO32等のラマン物質の固体結晶11を組み合わせ、ラマン波を発生することも可能である。
レーザー媒質10は、レーザー活性物質として、例えば、Ndを5モル%含有する。Ndの他に、Yb、Er、Pr、Eu、Tb、Sm等をレーザー活性物質とすることも可能である。
レーザー媒質10中のレーザー活性物質は、一般的には含有量の多い方が変換効率が上がるので好ましい。しかし、KGd(WO42単結晶中において、レーザー活性物質濃度が20モル%を超えると、単結晶の切断や研磨等の加工が困難となり、レーザー活性物質濃度が25モル%を超えると、単結晶構造を形成できない。また、レーザー活性物質濃度が0.01モル%未満であると、レーザー発振を生じない。したがって、KGd(WO42単結晶中のレーザー活性物質濃度を20モル%以下、且つ、0.01モル%以上とすることが必要であり、15モル%以下、且つ、0.05モル%以上とすることが好ましい。
レーザー媒質10の励起光が照射される面10aには、励起光の発振波長でありNdの吸収波長でもある809nmに対する反射防止コーティングが施されている。レーザー媒質10の光軸面には、Ndの発振波長1067nmと、ラマン散乱の結果生ずるストークス光の発振波長1181nm及び1321nmに対する反射防止コーティングが施されている。
なお、レーザー媒質10中のレーザー活性物質がNdと異なる場合には、レーザー媒質10の面10aに、励起光の発振波長に対する反射防止コーティングを施す必要があり、光軸面に、そのレーザー活性物質の発振波長と、ラマン散乱の結果生ずるストークス光の発振波長に対する反射防止コーティングを施す必要がある。
レーザー発振器12は、例えば、100〜10000Hzのパルス発振型の半導体レーザー発振器であり、レーザー媒質10の励起用の光源手段をなし、励起光を発振可能に構成されている。なお、レーザー発振器12を連続発振型の半導体レーザー発振器とすることも可能である。
レーザー発振器12とレーザー媒質10の間に集光レンズ14が位置しており、レーザー発振器12が発振する励起光をレーザー媒質10に照射可能に構成されている。レーザー媒質10への励起光の照射方向は、光軸と90度をなす方向となっている。なお、レーザー媒質10への励起光の照射方向は、光軸と90度をなす方向に限定されるものではないが、90度より大きくずれると照射面での反射が多くなり照射エネルギーのロスが多くなるので不利である。レーザー媒質10への励起光の照射方向は、光軸と90度±45度以内とすることが好ましい。勿論、レーザー媒質10を励起させる一般的な方法である光軸方向からの照射でも差し支えない。
反射鏡16及びレーザー出力鏡18は共振手段であり、レーザー媒質10から発振される光を共振可能に構成されている。
Qスイッチ20と高調波素子22がレーザー媒質10とレーザー出力鏡18の間の光軸上に位置しており、Qスイッチ20がレーザー媒質10側にあり、高調波素子22がレーザー出力鏡18側にある。Qスイッチ20は出力増幅手段であり、SiO2結晶を用いたAOQスイッチを使用している。高調波素子22は、例えば、LBO結晶であり、光軸に対する角度を調整可能に構成されている。なお、Qスイッチ20に過飽和吸収体であるCr:YAG結晶や過飽和色素、半導体MQW型過飽和吸収素子を使用することも可能である。
次に、作用について説明する。
レーザー発振器12に電流を流し、レーザー発振した励起光を、集光レンズ14を通してレーザー媒質10に照射する。
レーザー媒質10が含有するレーザー活性物質のNdは、900nm、1067nm、1350nm等の基本波長を発振可能であり、基本波長からラマンシフト量の901cm-1をラマン変換されたストークス光並び反ストークス光が同時発振される。基本波長1067nmからラマンシフト量901cm-1をラマン変換されたストークス光並び反ストークス光について、これらの発振可能波長を表1に示す。
Figure 2006093674
高調波素子22の光軸に対する角度を調整すると、同時発振される同時多波長から選択的に単一波長が取り出される。図1(i)に示すレーザー装置1は、光軸に対する高調波素子22の角度が0度であるときのものであり、図1(ii)に示すレーザー装置1は、光軸に対して高調波素子22が傾斜するときのものである。また、図2の変形例に示すレーザー装置1においても同様であり、図2(i)に示すレーザー装置1は、光軸に対する高調波素子22の角度が0度であるときのものであり、図2(ii)に示すレーザー装置1は、光軸に対して高調波素子22が傾斜するときのものである。
高調波素子22を用いることによって、反射鏡16とレーザー出力鏡18との間に存在する種々の波長を取り出すことが可能となる。
本発明に係る上述のレーザー装置1を用いて、同時発振される同時多波長から選択的に波長を取り出した。
レーザー発振器12に90Aの電流を流し、レーザー発振した励起光をレーザー媒質10に照射した。励起光の照射エネルギーを28mJとした。反射鏡16とレーザー出力鏡18からなる共振手段内で、基本波長1067nmのレーザー発振が確認された。Qスイッチ20を使用すると、1181nmのラマン波と1321nmのラマン波が確認された。そして、高調波素子22を回転し、光軸に対する高調波素子22の角度θを変化させ、発振される波長を調べた。
この結果、角度θが−1度のとき、青色波長(485nm)の発振が確認された。
角度θが0度のとき、黄色波長(590nm)の発振が確認された。
角度θが1度のとき、緑色波長(534nm)と黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長、黄緑色波長(560nm)、黄色波長及び赤色波長(660nm)の発振が確認された。
角度θが2度のとき、緑色波長の発振が確認された。
角度θが3度のとき、赤色波長の発振が確認された。
図3に黄色波長の発振があるときのスペクトル図、図4に緑色波長の発振があるときのスペクトル図、図5に赤色波長の発振があるときのスペクトル図、図6に黄色波長、黄緑色波長、緑色波長及び赤色波長の多波長の発振があるときのスペクトル図を示す。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、高調波素子22にKTP結晶を用いた。
この結果、角度θが−1.5度のとき、青色波長の発振が確認された。
角度θが1度のとき、緑色波長の発振が確認された。
角度θが1.5度のとき、緑色波長と黄色波長の発振が確認された。
角度θが2度のとき、黄色波長の発振が確認された。
角度θが2.5度のとき、緑色波長、黄色波長及び赤色波長の発振が確認された。
角度θが3度のとき、赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、高調波素子22にKDP結晶を用いた。
この結果、角度θが−1.5度のとき、青色波長の発振が確認された。
角度θが0度のとき、緑色波長の発振が確認された。
角度θが1度のとき、黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長と黄色波長の発振が確認された。
角度θが2度のとき、赤色波長の発振が確認された。
角度θが2.5度のとき、緑色波長、黄色波長及び赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、高調波素子22にBBO結晶を用いた。
この結果、角度θが−1.5度のとき、青色波長の発振が確認された。
角度θが0度のとき、緑色波長の発振が確認された。
角度θが1度のとき、黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長と黄色波長の発振が確認された。
角度θが2度のとき、赤色波長の発振が確認された。
角度θが2.5度のとき、緑色波長、黄色波長及び赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、高調波素子22にPPKTP結晶を用いた。
この結果、角度θが−1.5度のとき、青色波長の発振が確認された。
角度θが0度のとき、緑色波長の発振が確認された。
角度θが1度のとき、黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長と黄色波長の発振が確認された。
角度θが2度のとき、赤色波長の発振が確認された。
角度θが2.5度のとき、緑色波長、黄色波長及び赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、レーザー媒質10中に含有されるNdの濃度を15モル%とした。
この結果、角度θが−1度のとき、青色波長の発振が確認された。
角度θが0度のとき、黄色波長の発振が確認された。
角度θが1度のとき、緑色波長と黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長、黄緑色波長、黄色波長及び赤色波長の発振が確認された。
角度θが2度のとき、緑色波長の発振が確認された。
角度θが3度のとき、赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、レーザー媒質10中に含有されるNdの濃度を0.05モル%とした。
この結果、角度θが−1度のとき、青色波長の発振が確認された。
角度θが0度のとき、黄色波長の発振が確認された。
角度θが1度のとき、緑色波長と黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長、黄緑色波長、黄色波長及び赤色波長の発振が確認された。
角度θが2度のとき、緑色波長の発振が確認された。
角度θが3度のとき、赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、レーザー媒質10にKY(WO42単結晶を使用し、レーザー媒質10中に含有されるNdの濃度を5モル%とし、高調波素子22にPPKTP結晶を用いた。
この結果、角度θが−1.5度のとき、青色波長の発振が確認された。
角度θが0度のとき、緑色波長の発振が確認された。
角度θが1度のとき、黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長と黄色波長の発振が確認された。
角度θが2度のとき、赤色波長の発振が確認された。
角度θが2.5度のとき、緑色波長、黄色波長及び赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、レーザー媒質10にNaY(WO42単結晶を使用し、レーザー活性物質をYbとし、レーザー媒質10中に含有されるYbの濃度を5モル%とし、高調波素子22にPPKTP結晶を用いた。また、レーザー発振器12から照射される励起光を波長980nmとした。
この結果、角度θが−1.5度のとき、青色波長の発振が確認された。
角度θが0度のとき、緑色波長の発振が確認された。
角度θが1度のとき、黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長と黄色波長の発振が確認された。
角度θが2度のとき、赤色波長の発振が確認された。
角度θが2.5度のとき、緑色波長、黄色波長及び赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、レーザー媒質10にLiNbO3単結晶を使用し、レーザー媒質10中に含有されるNdの濃度を3モル%とし、高調波素子22にPPKTP結晶を用いた。
この結果、角度θが−1.5度のとき、青色波長の発振が確認された。
角度θが0度のとき、緑色波長の発振が確認された。
角度θが1度のとき、黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長と黄色波長の発振が確認された。
角度θが2度のとき、赤色波長の発振が確認された。
角度θが2.5度のとき、緑色波長、黄色波長及び赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、実施例1と同様に、同時発振される同時多波長から選択的に波長を取り出した。ただし、Qスイッチ20にCr:YAG結晶を使用した。
この結果、角度θが−1度のとき、青色波長の発振が確認された。
角度θが0度のとき、黄色波長の発振が確認された。
角度θが1度のとき、緑色波長と黄色波長の発振が確認された。
角度θが1.5度のとき、緑色波長、黄緑色波長、黄色波長及び赤色波長の発振が確認された。
角度θが2度のとき、緑色波長の発振が確認された。
角度θが3度のとき、赤色波長の発振が確認された。
本発明に係る上述のレーザー装置1を用いて、同時発振される同時多波長から選択的に波長を取り出した。ただし、レーザー媒質10に、3mm×3mm×15mmの大きさのPbWO4単結晶を使用し、レーザー媒質10中に含有されるNdの濃度を0.5モル%とした。また、レーザー発振器12から照射される励起光を、波長808nm、振動数20Hzのレーザー光とした。
角度θを変化させると、緑色波長、黄緑色波長、黄色波長及び赤色波長の発振が確認された。
また、Qスイッチ20に過飽和色素、半導体MQW型過飽和吸収素子を使用した場合、角度θを変化させることにより、緑色波長、黄緑色波長、黄色波長及び赤色波長の発振が確認された。
さらに、レーザー発振器12を連続発振型の半導体レーザー発振器とし、レーザー発振器12から波長808nmの励起光を連続発振させた場合も、角度θを変化させることにより、緑色波長、黄緑色波長、黄色波長及び赤色波長の発振が確認された。
図2に示す本発明の変形例に係るレーザー装置1を用いて、同時発振される同時他波長から選択的に波長を取り出した。
レーザー発振器12に90Aの電流を流し、レーザー発振した励起光をレーザー媒質10に照射した。レーザー媒質10はNdを1モル%含有したYAG(Y3Al512)を使用し、高調波素子22はLBOを使用した。励起光の照射エネルギーを20mJとした。
ラマン物質の固体結晶11にはBa(NO32を使用し、反射鏡16とレーザー出力鏡18からなる共振手段内で、基本波1064nmのレーザー発振が確認された。Qスイッチを使用すると、975nmのラマン波と1197nmのラマン波と1367nmのラマン波が確認された。
そして高調波素子22を回転し、光軸に対する高調波素子22の角度θを変化させ、発振される波長を調べた。
この結果、角度θが−1度のとき青色波長487nmの発振が確認された。
角度θが1度のとき黄色波長598nmの発振が確認された。
角度θが0度のとき緑色波長534nmの発振が確認された。
角度θが2度のとき赤色波長683nmの発振が確認された。
図2に示す本発明の変形例に係るレーザー装置1を用いて、実施例13と同様に、同時発振される同時多波長から選択的に波長を取り出した。但し、レーザー媒質10は、Nd濃度0.5モル%のYVO4を使用し、固体ラマン結晶11はKGd(WO42、高調波素子22にはPPKPTを使用した。
反射鏡16とレーザー出力鏡18からなる共振手段内で、基本波1064nmのレーザー発振が確認された。Qスイッチを使用すると、970nmのラマン波と1176nmのラマン波と1316nmのラマン波が確認された。
この結果、角度θが−1度のとき青色波長485nmの発振が確認された。
角度θが1度のとき黄色波長588nmの発振が確認された。
角度θが0度のとき緑色波長534nmの発振が確認された。
角度θが2度のとき赤色波長658nmの発振が確認された。
本発明に係るレーザー装置の構成図である。 本発明の変形例に係るレーザー装置の構成図である。 黄色波長の発振があるときのスペクトル図である。 緑色波長の発振があるときのスペクトル図である。 赤色波長の発振があるときのスペクトル図である。 多波長の発振があるときのスペクトル図である。 従来の波長可変レーザー装置の構成図である。
符号の説明
1 レーザー装置
10 レーザー媒質
10a レーザー媒質の励起光が照射される面
11 固体結晶
12 レーザー発振器
14 集光レンズ
16 反射鏡
18 レーザー出力鏡
20 Qスイッチ
22 高調波素子

Claims (3)

  1. レーザー媒質を励起させてレーザー光を発生させる励起用の光源手段と、光源手段で発生したレーザー光を共振させる共振手段と、レーザー光の波長を変調する高調波素子とを備えたレーザー装置であって、
    レーザー媒質をラマン物質の固体結晶で構成することにより、又は、レーザー媒質を非ラマン物質の固体結晶で構成し共振手段にラマン物質の固体結晶を備えることにより、同時に多波長のレーザー発振を行うレーザー装置において、
    光軸に対する高調波素子の角度調整により可視域を発振する多波長の中から選択的に単一波長を取り出すことを特徴とするレーザー装置。
  2. ラマン物質の固体結晶がタングステン酸塩であることを特徴とする請求項1記載のレーザー装置。
  3. 高調波素子がLBO(LiB35)、KTP(KTiOPO4)、PPKTP(Periodically Poled KTiOPO4)、KDP(KH2PO4)又はBBO(BaB24)のうちのいずれかであることを特徴とする請求項1又は請求項2のいずれかに記載のレーザー装置。

JP2005241289A 2004-08-23 2005-08-23 レーザー装置 Pending JP2006093674A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241289A JP2006093674A (ja) 2004-08-23 2005-08-23 レーザー装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004242490 2004-08-23
JP2005241289A JP2006093674A (ja) 2004-08-23 2005-08-23 レーザー装置

Publications (1)

Publication Number Publication Date
JP2006093674A true JP2006093674A (ja) 2006-04-06

Family

ID=36234299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241289A Pending JP2006093674A (ja) 2004-08-23 2005-08-23 レーザー装置

Country Status (1)

Country Link
JP (1) JP2006093674A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533847A (ja) * 2006-04-13 2009-09-17 マックォーリー・ユニバーシティ 連続波レーザー
JP2016134584A (ja) * 2015-01-22 2016-07-25 株式会社島津製作所 レーザモジュール及びレーザ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170982A (ja) * 1987-01-08 1988-07-14 Hamamatsu Photonics Kk 波長可変レ−ザ装置
JPH0938101A (ja) * 1995-07-27 1997-02-10 Nidek Co Ltd レ−ザ治療装置
JP2002252404A (ja) * 2001-02-27 2002-09-06 Furukawa Co Ltd 二波長レーザー装置
JP2004504732A (ja) * 2000-07-26 2004-02-12 マッコリー リサーチ リミテッド 安定な固体ラマンレーザおよびそれを動作させる方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170982A (ja) * 1987-01-08 1988-07-14 Hamamatsu Photonics Kk 波長可変レ−ザ装置
JPH0938101A (ja) * 1995-07-27 1997-02-10 Nidek Co Ltd レ−ザ治療装置
JP2004504732A (ja) * 2000-07-26 2004-02-12 マッコリー リサーチ リミテッド 安定な固体ラマンレーザおよびそれを動作させる方法
JP2002252404A (ja) * 2001-02-27 2002-09-06 Furukawa Co Ltd 二波長レーザー装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533847A (ja) * 2006-04-13 2009-09-17 マックォーリー・ユニバーシティ 連続波レーザー
JP2016134584A (ja) * 2015-01-22 2016-07-25 株式会社島津製作所 レーザモジュール及びレーザ装置

Similar Documents

Publication Publication Date Title
JP4925085B2 (ja) 深紫外レーザー光の発生方法および深紫外レーザー装置
US8503068B2 (en) Radiation source apparatus and DUV beam generation method
US8000357B2 (en) Compact, efficient and robust ultraviolet solid-state laser sources based on nonlinear frequency conversion in periodically poled materials
US20050190809A1 (en) Ultraviolet, narrow linewidth laser system
JPH11258645A (ja) 波長変換装置
US7801188B2 (en) Continuous-wave ultraviolet laser
JP6214070B2 (ja) 深紫外レーザ発生装置および光源装置
EP1630912A1 (en) Frequency-doubled solid-state Raman laser
JP2006066436A (ja) 内部共振器型和周波混合レーザ
JP4202730B2 (ja) 固体レーザ装置
US20070064750A1 (en) Deep ultraviolet laser apparatus
JP2009058782A (ja) レーザ光発生装置およびレーザ光発生方法
WO2018231116A1 (en) Laser arrangement and method for generation of laser radiation
JP2006093674A (ja) レーザー装置
Capmany et al. Continuous wave simultaneous multi-self-frequency conversion in Nd 3+-doped aperiodically poled bulk lithium niobate
Mooradian Tunable infrared lasers
US7269189B2 (en) Coherent light source based on sum-frequency mixing
Sakuma et al. High-power CW deep-UV coherent light sources around 200 nm based on external resonant sum-frequency mixing
Simon et al. 9. Nonlinear optical frequency conversion techniques
JP3421067B2 (ja) 固体レーザ装置
Barnes Optical parametric oscillators
JP2005123226A (ja) 内部共振器型の和周波混合レーザ
JP2011090254A (ja) レーザ光発生装置およびレーザ光発生方法
Chen et al. 303.5 nm cw Pr: BYF–BBO laser emission under 447 nm all-solid-state Nd: GdVO4–BiBO blue laser pumping
JP2005242257A (ja) 高効率コヒーレント紫外線発生装置および同方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412