JP2006093322A - 可変容量コンデンサ - Google Patents

可変容量コンデンサ Download PDF

Info

Publication number
JP2006093322A
JP2006093322A JP2004275516A JP2004275516A JP2006093322A JP 2006093322 A JP2006093322 A JP 2006093322A JP 2004275516 A JP2004275516 A JP 2004275516A JP 2004275516 A JP2004275516 A JP 2004275516A JP 2006093322 A JP2006093322 A JP 2006093322A
Authority
JP
Japan
Prior art keywords
capacitor
variable
dielectric
electrodes
impedance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275516A
Other languages
English (en)
Inventor
Tsuneo Mishima
常雄 見島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004275516A priority Critical patent/JP2006093322A/ja
Publication of JP2006093322A publication Critical patent/JP2006093322A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】 印加電圧による容量変化が大きく、Q値が高く、温度特性の良好な可変容量コンデンサを提供すること。
【解決手段】 第1のコンデンサC1と可変インピーダンス素子Zとが直列に接続され、これら直列に接続された第1のコンデンサC1および可変インピーダンス素子Zに第2のコンデンサC2が並列に接続されているとともに、第1のコンデンサC1と第2のコンデンサC2とが静電的に結合している可変容量コンデンサである。第1のコンデンサC1および第2のコンデンサC2を構成する誘電体にはQ値の高い誘電体材料を用いることができ、また、全体の容量変化は可変インピーダンス素子Zの容量変化とともに、静電的に結合している第1のコンデンサC1と第2のコンデンサC2との結合の度合いおよび容量比によっても調整することができるので、印加電圧による容量変化が大きく、Q値が高く、温度特性の良好な可変容量コンデンサとなる。
【選択図】 図1

Description

本発明は、直流電圧の印加により静電容量が変化する可変容量コンデンサに関するものであり、特に印加電圧による容量変化が大きく、Q値が高く、温度特性の良好な可変容量コンデンサに関するものである。
従来より使用されているコンデンサの中には、上下の電極層および誘電体層が薄膜で形成された薄膜コンデンサがある。これは通常、電気絶縁性の支持基板上に薄膜状の下部電極層、誘電体層および上部電極層がこの順に積層されて構成されている。
このような薄膜コンデンサでは、下部電極層および上部電極層がそれぞれスパッタリング法や真空蒸着法等で形成されており、誘電体層もスパッタリング法やゾルゲル法等で形成されている。また、このような薄膜コンデンサの製造には、通常、以下のようにフォトリソグラフィの手法が用いられる。
まず、絶縁性支持基板上の全面に下部電極層となる導体層を形成した後、必要部のみをフォトレジストで覆い、その後、ウエットエッチングまたはドライエッチングで不要部を除去して、所定形状の下部電極層を形成する。次に、支持基板上に薄膜誘電体層となる誘電体層を全面に形成し、下部電極層と同様に、不要部を除去して所定形状の薄膜誘電体層を形成する。最後に、上部電極層となる導体層を全面に形成し、不要部を除去して所定形状の上部電極層を形成する。また、保護層やハンダ端子部を形成することにより、表面実装が可能になる。
また、薄膜誘電体層の材料として、(BaSr1−x)Tiから成る誘電体材料を用いて、上部電極層と下部電極層との間に所定電位を与えて、薄膜誘電体層の誘電率を変化させて容量を変化させる可変容量コンデンサも同様な構造である。薄膜誘電体層への直流バイアス電圧の印加により容量を変化させる可変容量コンデンサとしては、例えば特許文献1に開示されている。
また、別の従来の可変容量コンデンサとして、2つの容量引出し用電極と2つの電圧印加電極との4つの電極を有しており、その内の少なくとも1つの電極が複数本の線状電極からなり、2つの電圧印加用電極に電圧を印加することにより2つの容量引出し用電極間の容量を変化することができるコンデンサが、特許文献2に開示されている。
特開平11−260667号公報 特開平7−335490号公報
特許文献1に開示されたような従来の可変容量コンデンサでは、可変容量コンデンサの基本的な特性は使用する薄膜誘電体層の特性でほぼ決まってしまうため、印加電圧による容量変化が大きく、Q値が高く、温度特性の良好な可変容量コンデンサを提供するためには、印加電圧による誘電率変化が大きく、Q値が高く、温度特性の良好な薄膜誘電体層を用意する必要がある。
しかしながら、通常、薄膜誘電体層には、印加電圧による誘電率変化が大きければ、Q値が低くなったり温度特性が悪くなったりし、また、温度特性が良好であれば、印加電圧による誘電率変化が小さくなったりQ値が低くなったりするという問題点がある。
また、特許文献2に示されたような可変容量コンデンサでは、コンデンサに印加される信号の電圧と同位相で容量制御用電圧を変化させる必要があるため、容量制御用電圧として直流電圧を用いた場合には、容量の変化は直流電圧に対してのみ可能であり、交流電圧に対しては周期的に容量が変動してしまうため、可変容量コンデンサとしては機能しないという問題点がある。
本発明は以上のような従来の技術における問題点に鑑みて案出されたものであり、その目的は、薄膜誘電体層を用いなくとも実現可能な、印加電圧による容量変化が大きく、Q値が高く、温度特性の良好な可変容量コンデンサを提供することにある。
本発明の可変容量コンデンサは、1)第1のコンデンサと可変インピーダンス素子とが直列に接続され、これら直列に接続された第1のコンデンサおよび可変インピーダンス素子に第2のコンデンサが並列に接続されているとともに、前記第1のコンデンサと前記第2のコンデンサとが静電的に結合していることを特徴とするものである。
また、本発明の可変容量コンデンサは、2)上記1)の構成において、前記可変インピーダンス素子は、印加電圧に応じて容量が変化する誘電体薄膜コンデンサであることを特徴とするものである。
また、本発明の可変容量コンデンサは、3)上記1)の構成において、前記可変インピーダンス素子は、印加電圧に応じて容量が変化するバラクタダイオードであることを特徴とするものである。
また、本発明の可変容量コンデンサは、4)上記1)〜3)のいずれかの構成において、前記第1のコンデンサに抵抗またはインダクタが並列に接続されていることを特徴とするものである。
また、本発明の可変容量コンデンサは、5)上記1)〜4)のいずれかの構成において、前記第1のコンデンサおよび前記第2のコンデンサは、下部電極と誘電体と上部電極とを有しており、それら下部電極同士および上部電極同士が隣接していることを特徴とするものである。
また、本発明の可変容量コンデンサは、6)上記1)〜4)のいずれかの構成において、前記第1のコンデンサは、誘電体基板とこの誘電体基板上に形成された2つの隣接した電極とからなり、前記第2のコンデンサは、前記第1のコンデンサ上に形成された誘電体層とこの誘電体層上に形成された2つの隣接した電極とからなることを特徴とするものである。
また、本発明の可変容量コンデンサは、7)上記1)〜4)のいずれかの構成において、前記第1のコンデンサおよび前記第2のコンデンサは、誘電体基板と、この誘電体基板上に形成された4つの隣接した電極とからなることを特徴とするものである。
また、本発明の可変容量コンデンサは、8)上記5)〜7)のいずれかの構成において、前記第1のコンデンサおよび前記第2のコンデンサの前記電極は、櫛型電極であることを特徴とするものである。
本発明の可変容量コンデンサによれば、1)第1のコンデンサと可変インピーダンス素子とが直列に接続され、これら直列に接続された第1のコンデンサおよび可変インピーダンス素子に第2のコンデンサが並列に接続されているとともに、第1のコンデンサと第2のコンデンサとが静電的に結合しているものであり、第1のコンデンサと可変インピーダンス素子とが直列に接続されていることから、第1のコンデンサと可変インピーダンス素子とに印加される交流電圧は第1のコンデンサと可変インピーダンス素子とのインピーダンス比に応じて分圧される。このため、可変インピーダンス素子に直流電圧を印加してインピーダンス比を変化させると分圧比も変化し、第1のコンデンサに印加される交流電圧が変化する。ここで、直列に接続された第1のコンデンサおよび可変コンデンサに第2のコンデンサが並列に接続されているとともに、第1のコンデンサと第2のコンデンサとが静電的に結合しているため、第1のコンデンサの電極上には印加された交流電圧に応じた電荷に加えて、静電誘導により第2のコンデンサの電荷に応じた電荷が生じ、同様に第2のコンデンサの電極上には印加された交流電圧に応じた電荷に加えて、静電誘導により第1のコンデンサの電荷に応じた電荷が生じる。この静電誘導による電荷のため、第1のコンデンサおよび第2のコンデンサはともに形状および誘電体の誘電率で決定される静電容量よりも見かけの静電容量が増加することになる。そして、前述のように、可変インピーダンス素子のインピーダンスを変化させることにより第1のコンデンサに印加される交流電圧を変化させることができるので、静電誘導により第2のコンデンサに生じる電荷が変化することになり、第2のコンデンサの見かけの静電容量が変化し、その結果、全体の容量を変化させることができる可変容量コンデンサとなる。
また、本発明の可変容量コンデンサによれば、2)可変インピーダンス素子は印加電圧に応じて容量が変化する誘電体薄膜コンデンサであるときには、第1のコンデンサおよび第2のコンデンサを構成する誘電体には印加電圧によって誘電率が変化する誘電体を用いる必要がなく、Q値の高い誘電体材料を用いることができる。また、全体の容量変化は可変インピーダンス素子としての誘電体薄膜コンデンサの容量変化とともに、静電的に結合している第1のコンデンサと第2のコンデンサとの結合の度合いおよび容量比によっても調整することができるため、誘電体薄膜コンデンサの温度特性が良好であれば、印加電圧による容量変化が大きく、Q値が高く、さらに温度特性が良好な可変容量コンデンサを得ることができる。
また、本発明の可変容量コンデンサによれば、3)可変インピーダンス素子は印加電圧に応じて容量が変化するバラクタダイオードであるときには、バラクタダイオードは印加電圧による容量変化が大きく、温度特性も良好であるが、Q値が低いという特性があるのに対して、前述のように第1のコンデンサおよび第2のコンデンサには印加電圧によって誘電率が変化する誘電体を用いる必要がなく、Q値の高い誘電体材料を用いることができるので、第1のコンデンサ、第2のコンデンサおよびバラクタダイオードの容量比を調整することにより、印加電圧による容量変化が大きく、温度特性も良好で、さらにQ値が高い可変容量コンデンサを得ることができる。
また、本発明の可変容量コンデンサによれば、4)第1のコンデンサに抵抗またはインダクタが並列に並列接続されているときには、抵抗またはインダクタのインピーダンスを可変インピーダンス素子の制御用に用いる直流電流は通すが交流電流は通さないように選ぶことにより、制御用の直流電圧は可変インピーダンス素子のみに印加されるようになり、低い電圧で可変インピーダンス素子のインピーダンスを変化できるようになり、低い電圧で全体の容量を変化させることができるようになる。
また、本発明の可変容量コンデンサによれば、5)第1のコンデンサおよび第2のコンデンサは下部電極と誘電体と上部電極を有しており、それら下部電極同士および上部電極同士が隣接しているときには、下部電極同士および上部電極同士が隣接していることから第1のコンデンサと第2のコンデンサとが効率よく静電的に結合されることになり、以上のような本発明の可変容量コンデンサによる作用効果を確実に得ることができるものとなる。
また、本発明の可変容量コンデンサによれば、6)第1のコンデンサは誘電体基板とこの誘電体基板上に形成された2つの隣接した電極からなり、第2のコンデンサは第1のコンデンサ上に形成された誘電体層とこの誘電体層上に形成された2つの隣接した電極とからなるときには、第2のコンデンサが第1のコンデンサ上に形成された誘電体層上に形成されていることから第1のコンデンサと第2のコンデンサとが効率よく静電的に結合されることになり、以上のような本発明の可変容量コンデンサによる作用効果を確実に得ることができるものとなる。
また、本発明の可変容量コンデンサによれば、7)第1のコンデンサおよび第2のコンデンサは誘電体基板とこの誘電体基板上に形成された4つの隣接した電極とからなるときには、第1のコンデンサおよび第2のコンデンサが誘電体基板上に形成された4つの隣接した電極からなることから、第1のコンデンサと第2のコンデンサとが効率よく静電的に結合されることになり、以上のような本発明の可変容量コンデンサによる作用効果を確実に得ることができるものとなる。
また、本発明の可変容量コンデンサによれば、8)第1のコンデンサおよび第2のコンデンサの電極は櫛型電極であるときには、電極形状を櫛型とすることで第1のコンデンサおよび第2のコンデンサを形成する電極が隣接する距離を長くすることができるので、第1のコンデンサと第2のコンデンサとの静電的な結合を強めることができ、以上のような本発明の可変容量コンデンサによる作用効果をさらに確実に得ることができるものとなる。
以上のように、本発明の可変容量コンデンサによれば、印加電圧による容量変化が大きく、Q値が高く、温度特性の良好な可変容量コンデンサを提供することができる。
以下、本発明の可変容量コンデンサについて図面を参照しつつ説明する。図1は本発明の可変容量コンデンサの実施の形態の一例の等価回路を示す回路図である。図1において、C1は第1のコンデンサ、C2は第2のコンデンサであり、Zは可変インピーダンス素子である。前述のように本発明の可変容量コンデンサでは、第1のコンデンサC1と可変インピーダンス素子Zとが直列に接続され、これら直列に接続された第1のコンデンサC1および可変インピーダンス素子Zに第2のコンデンサC2が並列に接続されているとともに、第1のコンデンサC1と第2のコンデンサC2とが静電的に結合している。図1に示す第1のコンデンサC1と第2のコンデンサC2とを取り囲む破線は、これら第1および第2のコンデンサC1・C2が静電的に結合していることを示す。可変インピーダンス素子Zとしては印加電圧に応じて容量が変化する誘電体薄膜コンデンサ、あるいは印加電圧に応じて容量が変化するバラクタダイオードを始めとして、印加電圧に応じて抵抗値が変化するバリスタの他、機械的に容量を変化できるコンデンサ,抵抗,インダクタ等が利用できる。これらのうち、可変インピーダンス素子Zとして印加電圧に応じて容量が変化する誘電体薄膜コンデンサを利用するときには、全体の容量を電気的に制御できるとともに、インピーダンスの変化がリアクタンスの変化によるものであるので高Q値の可変容量コンデンサを実現できるものとなる。また、可変インピーダンス素子Zとして印加電圧に応じて容量が変化するバラクタダイオードを利用するときには、全体の容量を電気的に制御できるとともに、インピーダンスの変化がリアクタンスの変化によるものであるので高Q値の可変容量コンデンサを実現でき、さらに、バラクタダイオードは一般に温度特性に優れていることから、温度特性に優れた可変容量コンデンサを実現できるものとなる。
次に、図2は本発明の容量可変コンデンサの実施の形態の他の例の等価回路を示す回路図であり、第1のコンデンサC1に抵抗Rが並列に接続されている場合の本発明の可変容量コンデンサの等価回路を示すものである。この例の本発明の可変容量コンデンサによれば、印加される直流に対しては、第1および第2のコンデンサC1・C2はオープンであることから、可変インピーダンス素子Zと抵抗Rとが直列に接続されたものと同等になる。ここで、可変インピーダンス素子Zの抵抗値に比べて抵抗Rの抵抗値が十分小さければ、可変容量コンデンサ全体に印加された直流電圧とほぼ同じ電圧が可変インピーダンス素子Zに印加されることになる。また、印加される交流、特に高周波に対しては、第1および第2のコンデンサC1・C2のインピーダンスは小さくなるので、抵抗Rの抵抗値が第1のコンデンサC1のインピーダンスに対して十分大きければ、抵抗Rはオープンになり図2の等価回路は図1の等価回路と同等になる。これにより、可変容量コンデンサ全体に印加された直流電圧とほぼ同じ電圧が可変インピーダンス素子Zに印加されることになるので、低い電圧で可変インピーダンス素子Zのインピーダンスを変化できるようになり、低い電圧で可変容量コンデンサ全体の容量を変化させることができるものとなる。
なお、図2に示した抵抗Rは、以上のような適当なインピーダンスを持つインダクタであっても構わない。
次に、図3は、本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態の一例の断面構造を示す断面図である。図3において、1は支持基板であり、21は第1のコンデンサの下部電極であり、22はそれに隣接して配置された第2のコンデンサの下部電極である。31は第1のコンデンサの薄膜誘電体層であり、32は第2のコンデンサの薄膜誘電体層である。41は第1のコンデンサの上部電極であり、42はそれに隣接して配置された第2のコンデンサの上部電極である。なお、図3には示していないが、必要に応じてBCB樹脂やポリイミド樹脂等の有機物あるいはSiNやSiO等の無機物から成る保護膜等が薄膜誘電体層31・32を大気に露出させないように設置されても構わない。
支持基板1はアルミナセラミックス等のセラミック基板,サファイア等の単結晶基板,ガラス基板,表面酸化されたSi基板等である。そして、支持基板1の表面には、下部電極21・22が形成されている。下部電極21・22、薄膜誘電体層31・32、および上部電極41・42は、スパッタリング法等の成膜法によって支持基板1上の全面にそれぞれ同一バッチで形成され、全層のスパッタリング終了後に、上部電極41・42、薄膜誘電体層31・32、および下部電極21・22がそれぞれ所定形状のフォトレジスト層を用いて物理的または化学的にエッチングされて所定の形状に形成される。
下部電極21・22は、Au,Pt,Ag,Cu,Al等の単体金属あるいは合金から成る電極層である。この下部電極21・22は、例えば、スパッタリング法等の成膜法によって基板温度が室温から400℃の範囲で形成されている。
この下部電極21・22の厚みは、これらに接続される端子部から容量形成部までの配線の抵抗成分、下部電極21・22の連続性(これらを良好にするには、いずれも下部電極21・22の厚みが厚い方が望ましい。)および支持基板1との密着性(これを良好にするには下部電極21・22の厚みが相対的に薄い方が望ましい。)を考慮して決定され、例えば、0.1〜10μmとされる。下部電極21・22の厚みが0.1μmよりも小さくなると、下部電極21・22自身の抵抗が大きくなると同時に、電極の連続性がなくなり、信頼性が劣る傾向にある。一方、下部電極21・22の厚みが10μmを超えると、支持基板1との密着信頼性が低下したり、支持基板1に反りが生じたりする傾向がある。
薄膜誘電体層31・32は、例えば、SiOx等の酸化物あるいはSiNx等の窒化物から成る誘電体材料の層である。例えば、ターゲットとしてSiを用い、基板温度を400℃としてスパッタリング法によって成膜することにより、Q値が500程度の薄膜誘電体層31・32を得ることができる。
上部電極41・42は、下部電極21・22と同じくAu,Pt,Ag,Cu,Al等の単体金属あるいは合金から成る電極層である。
このような第1および第2のコンデンサに対し、図示していない可変インピーダンス素子は外付けとしてもよいし、通常の薄膜工程により同一の支持基板1上に誘電体薄膜コンデンサを形成して接続するようにしても構わない。
図3に示すような第1および第2のコンデンサを用いた本発明の可変容量コンデンサによれば、下部電極21・22同士および上部電極41・42同士が隣接していることから第1のコンデンサと第2のコンデンサとが効率よく静電的に結合されることになるので、可変インピーダンス素子のインピーダンス変化に応じて容量を変化させることができ、また、薄膜誘電体層31・32にQ値の高い誘電体を用いることができるので、可変容量コンデンサ全体のQ値を高くすることができるものとなる。
次に、図4は、本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態の他の例の断面構造を示す断面図である。図4において、10は誘電体基板であり、51および52は誘電体基板10上に形成された、第1のコンデンサを構成する2つの隣接した電極であり、61・62は誘電体基板10と2つの隣接した電極51・52とからなる第1のコンデンサ上に形成された誘電体層であり、71および72は誘電体層61・62上に形成された、第2のコンデンサを構成する2つの隣接した電極である。なお、図4には示していないが、必要に応じてBCB樹脂やポリイミド樹脂等の有機物あるいはSiNやSiO等の無機物から成る保護膜等が誘電体層61・62を大気に露出させないように設置されても構わない。
誘電体基板10は、アルミナセラミックス等のセラミック基板,サファイア等の単結晶基板,ガラス基板等である。そして、誘電体基板10の表面には、第1のコンデンサを構成する2つの隣接した電極51および52が形成されている。
また、誘電体層61・62は、例えば、SiO等の酸化物あるいはSiN等の窒化物から成る誘電体材料の層である。例えば、ターゲットとしてSiを用い、基板温度を400℃としてスパッタリング法によって成膜することにより、Q値が500程度の誘電体層61・62を得ることができる。
2つの隣接した電極51・52および71・72は、前述の下部電極21・22および上部電極41・42と同様の電極層であり、前述の材料を用いて同じようにして形成される。第1のコンデンサおよび第2のコンデンサは、ともにギャップ型コンデンサと呼ばれるものであり、2つの電極間の距離と隣接している部分の長さおよび誘電体基板10,誘電体層61・62およびエアギャップの誘電率で容量が決まる。また、第2のコンデンサは第1のコンデンサ上に誘電体層61・62を介して積層されているので、第1および第2のコンデンサ間の距離を短くすることができ、両者の静電的な結合を強くすることができる。
なお、図4に示す例では第1のコンデンサ上に形成された誘電体層61・62はそれぞれ隣接した2つの電極51・52の上に独立した層として形成した場合を示したが、これら誘電体層61・62は連続した1つの層として形成してもよい。その場合には、その層の上に形成される隣接した2つの電極71・72間の誘電率がエアギャップを介した場合よりも大きくなり、容量がより大きい第2のコンデンサとすることができる。
このような第1および第2のコンデンサに対し、図示していない可変インピーダンス素子は外付けとしてもよいし、通常の薄膜工程により同一の誘電体基板10上に誘電体薄膜コンデンサを形成して接続するようにしても構わない。
図4に示すような第1および第2のコンデンサを用いた本発明の可変容量コンデンサによれば、第1のコンデンサ上に誘電体層61・62を介して第2のコンデンサが積層されており、第1のコンデンサと第2のコンデンサとが効率よく静電的に結合されることになるので、可変インピーダンス素子のインピーダンス変化に応じて容量を変化でき、また、誘電体層61・62にQ値の高い誘電体を用いることができるので、可変容量コンデンサ全体のQ値を高くすることができるものとなる。
次に、図5は、本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態のさらに他の例の断面構造を示す断面図である。図5において、10は誘電体基板であり、211は第1のコンデンサの第1の電極であり、212は第1のコンデンサの第2の電極である。また、221は第2のコンデンサの第1の電極であり、222は第2のコンデンサの第2の電極である。
誘電体基板10はアルミナセラミックス等のセラミック基板,サファイア等の単結晶基板,ガラス基板等である。そして、誘電体基板10の上面には、4つの隣接した電極211・212・221・222が形成されて、誘電体基板10と2つの隣接した電極211・212とにより第1のコンデンサが形成され、誘電体基板10と2つの隣接した電極221・222とにより第2のコンデンサが形成されており、2つの電極212と221とが隣接していることによって第1のコンデンサと第2のコンデンサとが静電的に結合している。これら4つの隣接した電極211・212・221・222は、所定形状のフォトレジストを用いて物理的または化学的にエッチングされて形成される。
これら4つの隣接した電極211・212・221・222は、Au,Pt,Ag,Cu,Al等の単体金属あるいは合金から成る電極層である。これら4つの隣接した電極211・212・221・222は、例えば、スパッタリング法により基板温度を室温から400℃の範囲として形成されている。
これら4つの隣接した電極211・212・221・222の厚みは、それぞれこれらに接続される端子部から容量形成部までの配線の抵抗成分、電極211・212・221・222の連続性(これらを良好にするには、いずれも電極211・212・221・222の厚みが厚い方が望ましい。)および誘電体基板10との密着性(これを良好にするには電極211・212・221・222の厚みが相対的に薄い方が望ましい。)を考慮して決定され、例えば、0.1〜10μmとされる。これら4つの電極211・212・221・222の厚みが0.1μmよりも小さくなると、電極211・212・221・222自身の抵抗が大きくなると同時に、電極の連続性がなくなり、信頼性が劣る傾向にある。一方、電極211・212・221・222の厚みが10μmを超えると、誘電体基板10との密着信頼性が低下したり、誘電体基板10に反りが生じたりする傾向がある。
次に、図6(a)は、本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態のさらに他の例の平面構造を示す平面図であり、図6(b)は、図6(a)中のA−A’線に沿った断面構造を示す断面図である。図6において、1は支持基板であり、21は第1のコンデンサの下部電極であり、22はそれに隣接して配置された第2のコンデンサの下部電極である。31は第1のコンデンサの薄膜誘電体層であり、32は第2のコンデンサの薄膜誘電体層である。41は第1のコンデンサの上部電極であり、42はそれに隣接して配置された第2のコンデンサの上部電極である。
そして、この例では、下部電極21・22および上部電極41・42をそれぞれ櫛型電極としている。このように下部電極21・22および上部電極41・42をそれぞれ櫛型電極とすることにより、第1のコンデンサと第2のコンデンサとの隣接している部分が長くなるので、第1のコンデンサと第2のコンデンサとを効率よく静電的に結合させることができるものとなる。
このような櫛型電極としては、第1のコンデンサと第2のコンデンサの静電的な結合度を強くするために第1のコンデンサと第2のコンデンサとの隣接している部分ができるだけ長くなるように、櫛歯の本数が多く、櫛歯部分の長さが長く、また、第1のコンデンサと第2のコンデンサとの間隔が短く配置されているようにすることが望ましい。
なお、この例では図3に示した例に対して下部電極21・22および上部電極41・42を櫛型電極とした場合を示したが、図4および図5に示した例についてそれらの電極51・52・71・72あるいは211・212・221・222を櫛型電極とした場合にも、同様の作用効果が得られるものである。
以上より、本発明の可変容量コンデンサによれば、印加電圧による容量変化が大きく、Q値が高く、温度特性の良好な可変容量コンデンサを提供することができる。
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。例えば、櫛型電極の櫛歯の形状を直線状の代わりに十字状等としてもよく、その場合には第1のコンデンサと第2のコンデンサとの隣接している部分がさらに長くなるので、両者の静電的な結合をさらに強くすることができる。
回路シミュレータを用いた等価回路によるインピーダンスの計算に基づいて、可変インピーダンス素子Zとして静電容量が1pFであり、印加電圧による容量変化が63%であり、Q値が60の誘電体薄膜コンデンサを用い、第1のコンデンサC1として静電容量が2pFでQ値が500のコンデンサを用い、第2のコンデンサC2として静電容量が0.2pFでQ値が500のコンデンサを用いて、図1に示す構成で本発明の可変容量コンデンサを構成した。この可変容量コンデンサについてその静電容量、Q値および容量変化を測定したところ、全体の静電容量は0.87pFとなり、Q値は105であり、印加電圧による容量変化が41%であった。
この結果、可変インピーダンス素子のQ値が60であるにもかかわらず、可変容量コンデンサ全体のQ値は105であることから、本発明の可変容量コンデンサによりQ値が高く、印加電圧による容量変化が大きなものとできるものであることが確認できた。
また、図3〜図6に示した例の可変容量コンデンサについても同様に構成したところ、いずれも可変容量コンデンサ全体のQ値が高く、印加電圧による容量変化が大きなものとすることができた。
本発明の可変容量コンデンサの実施の形態の一例の等価回路を示す回路図である。 本発明の可変容量コンデンサの実施の形態の他の例の等価回路を示す回路図である。 本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態の一例の断面構造を示す断面図である。 本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態の他の例の断面構造を示す断面図である。 本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態のさらに他の例の断面構造を示す断面図である。 (a)は本発明の可変容量コンデンサにおける第1のコンデンサおよび第2のコンデンサの容量形成部の実施の形態のさらに他の例の平面構造を示す平面図であり、(b)は(a)中のA−A’線に沿った断面構造を示す断面図である。
符号の説明
1・・・支持基板
10・・・誘電体基板
21,22・・・下部電極
31,32・・・薄膜誘電体層
41,42・・・上部電極
51,52・・・2つの隣接した電極
61,62・・・誘電体層
71,72・・・2つの隣接した電極
211,212,221,222・・・4つの隣接した電極
C1・・・第1のコンデンサ
C2・・・第2のコンデンサ
Z・・・可変インピーダンス素子
R・・・抵抗

Claims (8)

  1. 第1のコンデンサと可変インピーダンス素子とが直列に接続され、これら直列に接続された第1のコンデンサおよび可変インピーダンス素子に第2のコンデンサが並列に接続されているとともに、前記第1のコンデンサと前記第2のコンデンサとが静電的に結合していることを特徴とする可変容量コンデンサ。
  2. 前記可変インピーダンス素子は、印加電圧に応じて容量が変化する誘電体薄膜コンデンサであることを特徴とする請求項1記載の可変容量コンデンサ。
  3. 前記可変インピーダンス素子は、印加電圧に応じて容量が変化するバラクタダイオードであることを特徴とする請求項1記載の可変容量コンデンサ。
  4. 前記第1のコンデンサに抵抗またはインダクタが並列に接続されていることを特徴とする請求項1乃至請求項3のいずれかに記載の可変容量コンデンサ。
  5. 前記第1のコンデンサおよび前記第2のコンデンサは、下部電極と誘電体と上部電極とを有しており、それら下部電極同士および上部電極同士が隣接していることを特徴とする請求項1乃至請求項4のいずれかに記載の可変容量コンデンサ。
  6. 前記第1のコンデンサは、誘電体基板と該誘電体基板上に形成された2つの隣接した電極とからなり、前記第2のコンデンサは、前記第1のコンデンサ上に形成された誘電体層と該誘電体層上に形成された2つの隣接した電極とからなることを特徴とする請求項1乃至請求項4のいずれかに記載の可変容量コンデンサ。
  7. 前記第1のコンデンサおよび前記第2のコンデンサは、誘電体基板と、該誘電体基板上に形成された4つの隣接した電極とからなることを特徴とする請求項1乃至請求項4のいずれかに記載の可変容量コンデンサ。
  8. 前記第1のコンデンサおよび前記第2のコンデンサの前記電極は、櫛型電極であることを特徴とする請求項5乃至請求項7のいずれかに記載の可変容量コンデンサ。
JP2004275516A 2004-09-22 2004-09-22 可変容量コンデンサ Pending JP2006093322A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275516A JP2006093322A (ja) 2004-09-22 2004-09-22 可変容量コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275516A JP2006093322A (ja) 2004-09-22 2004-09-22 可変容量コンデンサ

Publications (1)

Publication Number Publication Date
JP2006093322A true JP2006093322A (ja) 2006-04-06

Family

ID=36234014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275516A Pending JP2006093322A (ja) 2004-09-22 2004-09-22 可変容量コンデンサ

Country Status (1)

Country Link
JP (1) JP2006093322A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681350B1 (ko) 2012-05-16 2016-11-30 삼성전기주식회사 가변 커패시터 회로
CN110954195A (zh) * 2018-09-26 2020-04-03 黄显核 一种快速动态称重传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681350B1 (ko) 2012-05-16 2016-11-30 삼성전기주식회사 가변 커패시터 회로
CN110954195A (zh) * 2018-09-26 2020-04-03 黄显核 一种快速动态称重传感器

Similar Documents

Publication Publication Date Title
JP5225879B2 (ja) 多層膜キャパシタ構造及び方法
US10424440B2 (en) Capacitor having an auxiliary electrode
JP4916715B2 (ja) 電子部品
JP7425084B2 (ja) 広帯域性能を有するコンパクトな薄膜表面実装可能結合器
CN110959188A (zh) 电容器
JP4566012B2 (ja) 可変容量コンデンサ,回路モジュールおよび通信装置
JP4749052B2 (ja) 可変容量コンデンサ,回路モジュールおよび通信装置
JP4684856B2 (ja) 電子部品
US7002435B2 (en) Variable capacitance circuit, variable capacitance thin film capacitor and radio frequency device
JP2009135311A (ja) 薄膜コンデンサ及びその製造方法
WO2018083973A1 (ja) キャパシタ
JP2006093322A (ja) 可変容量コンデンサ
JP2006165380A (ja) 可変容量コンデンサ
JP2006093323A (ja) 可変容量コンデンサ
JP4738182B2 (ja) 薄膜コンデンサ
JP2006303389A (ja) 薄膜コンデンサ素子および薄膜コンデンサアレイ
JP2006179674A (ja) 可変容量コンデンサ
JP4959366B2 (ja) コンデンサ
JPH01220422A (ja) 積層磁器コンデンサ
JP2008211064A (ja) 可変容量コンデンサアレイ及び可変容量コンデンサリレー
JP6416102B2 (ja) 可変容量デバイスおよび通信装置
JP4651355B2 (ja) 可変容量コンデンサ
JP2006210589A (ja) 薄膜コンデンサ
JP4157375B2 (ja) 可変容量コンデンサ及びそれを用いた高周波部品
JP2005136074A (ja) コンデンサおよび直列コンデンサならびに可変コンデンサ