JP2006090892A - Apparatus and method for measuring coated sheet, using x-ray transmission method - Google Patents

Apparatus and method for measuring coated sheet, using x-ray transmission method Download PDF

Info

Publication number
JP2006090892A
JP2006090892A JP2004277864A JP2004277864A JP2006090892A JP 2006090892 A JP2006090892 A JP 2006090892A JP 2004277864 A JP2004277864 A JP 2004277864A JP 2004277864 A JP2004277864 A JP 2004277864A JP 2006090892 A JP2006090892 A JP 2006090892A
Authority
JP
Japan
Prior art keywords
sheet
ray
coating
measured
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004277864A
Other languages
Japanese (ja)
Inventor
Shigetoshi Kurozumi
重利 黒住
Mitsuaki Kameyama
光章 亀山
Tomonori Ishii
知憲 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futec Inc
Original Assignee
Futec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futec Inc filed Critical Futec Inc
Priority to JP2004277864A priority Critical patent/JP2006090892A/en
Publication of JP2006090892A publication Critical patent/JP2006090892A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and easily measure the weight per unit area and/or the thickness of a coating film of the coated sheet in a traveling state, using an X-ray transmission method. <P>SOLUTION: In measuring the coating film of the coated sheet in the traveling state of the coated sheet 10, using an X-ray source 11 and an X-ray detector 12, data in which the amount of transmitted X-ray of the coated sheet is measured and data in which the amount of transmitted X-ray of the uncoated sheet is measured are processed by a computating part 30, and the weight per unit area and/or the thickness of the coating film of the coated sheet 10 are calculated substantially continuously. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、X線透過法を用いた塗工シートの測定装置および測定方法に係り、特に塗工シートの塗工膜の単位面積当りの重量および/または厚みを測定する装置および方法に関するもので、例えば高分子膜、金属膜などの基材シート上に単層または多層の塗工膜が形成された塗工シート、2枚のシートがラミネートされたラミネートシートの走行状態においてほぼ連続的に測定する際に使用されるものである。   The present invention relates to an apparatus and a method for measuring a coated sheet using an X-ray transmission method, and more particularly to an apparatus and a method for measuring the weight and / or thickness per unit area of a coated film of a coated sheet. For example, a coating sheet in which a single layer or multilayer coating film is formed on a base material sheet such as a polymer film or a metal film, and continuously measured in a running state of a laminate sheet in which two sheets are laminated It is used when doing.

シート状の金属フォイルや鋼材を製造するラインでは、金属フォイル等の被測定部材に照射したX線等の放射線の透過量によって被測定部材の厚さを測定する放射線厚さ計が広く用いられている(特許文献1参照)。この放射線厚さ計は、所定の方向に定速度で移動する被測定部材を囲むように設けられたC型あるいはO型フレームを有し、被測定部材の移動方向と直角方向に測定装置を走査させ、被測定部材の各位置における放射線の透過量を測定することにより厚さを計るものである。   In a line for producing sheet-like metal foil or steel material, a radiation thickness meter that measures the thickness of a member to be measured by the amount of X-ray radiation transmitted to the member to be measured such as a metal foil is widely used. (See Patent Document 1). This radiation thickness meter has a C-type or O-type frame provided so as to surround a member to be measured that moves at a constant speed in a predetermined direction, and scans the measuring device in a direction perpendicular to the direction of movement of the member to be measured. The thickness is measured by measuring the amount of radiation transmitted at each position of the member to be measured.

ところで、上記した従来の放射線厚さ計により基材シート上に塗工膜が形成された塗工シートの塗工膜の厚さを製造ライン中で測定する場合には、塗工前の基材シートの厚さおよび塗工後の塗工シートの厚さを2台の厚さ計で別々に測定し、各測定値の差を求めて算出する方法と、1台の厚さ計で測定する場合がある。   By the way, when measuring the thickness of the coating film of the coating sheet in which the coating film is formed on the base sheet by the above-mentioned conventional radiation thickness meter, the base material before coating is measured. The thickness of the sheet and the thickness of the coated sheet after coating are measured separately with two thickness gauges, and the difference between each measured value is calculated and measured with one thickness gauge. There is a case.

しかし、前者の2台の厚さ計を必要とするので、コストが高くなる。これに対して、後者の1台の厚さ計で測定する場合は、塗工後の塗工シートの全体の総合した厚さを測定することができたとしても、塗工膜の厚さを精度良く測定することは困難である。また、1台の厚さ計で測定する場合、基材と塗工膜の総合の単位面積当り重量あるいは厚みの吸収係数で測定を行うか、塗工膜の吸収係数で測定を行うとしても、別途手計算等で求めた吸収係数及び補正係数で測定を行っていたので、測定処理が繁雑であった。
特開平11−142128号公報
However, since the former two thickness gauges are required, the cost increases. On the other hand, when measuring with the latter one thickness meter, even if the total thickness of the entire coated sheet after coating can be measured, the thickness of the coated film is It is difficult to measure with high accuracy. In addition, when measuring with one thickness meter, even if measuring with the absorption coefficient of the weight or thickness of the total unit area of the base material and the coating film, or measuring with the absorption coefficient of the coating film, Since the measurement was performed using the absorption coefficient and the correction coefficient separately obtained by manual calculation or the like, the measurement process was complicated.
JP-A-11-142128

本発明は前記した従来の問題点を解決すべくなされたもので、塗工シートの塗工膜の単位面積当り重量および/または厚みを精度良く簡単に測定し得るX線透過法を用いた塗工シートの測定装置および測定方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned conventional problems, and is a coating using an X-ray transmission method that can easily and accurately measure the weight and / or thickness per unit area of a coating film of a coated sheet. An object of the present invention is to provide a measuring device and a measuring method for a work sheet.

本発明のX線透過法を用いた塗工シートの測定装置は、基材シート上に塗工膜が形成されてなる被測定塗工シートの塗工膜の単位面積当り重量および/または厚みをX線透過法を用いて測定する塗工シートの測定装置であって、互いに対向し合うように配置されたX線源およびX線検出器と、前記基材シート上に前記塗工膜が形成されていない状態の未塗工シートが前記X線源およびX線検出器の対向間隔部に存在する時に前記X線源から照射したX線ビームが前記未塗工シートを透過した透過X線を前記X線検出器で検出した第1の透過X線量のデータと、前記X線源およびX線検出器の対向間隔部に前記被測定塗工シートが存在する時に前記X線源から照射したX線ビームが前記被測定塗工シートを透過した透過X線を前記X線検出器で検出した第2の透過X線量のデータと、規定値とを用い、所定の計算式に基づいて前記未塗工シートの単位面積当り重量および/または厚みと、前記被測定塗工シートの単位面積当り重量および/または厚みを算出し、前記各算出値を用いて前記被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを算出する演算部とを具備することを特徴とする。   An apparatus for measuring a coated sheet using the X-ray transmission method of the present invention is to determine the weight and / or thickness per unit area of the coating film of the coating sheet to be measured in which the coating film is formed on the base sheet. An apparatus for measuring a coating sheet that is measured using an X-ray transmission method, wherein an X-ray source and an X-ray detector arranged so as to face each other, and the coating film is formed on the substrate sheet X-ray beams irradiated from the X-ray source pass through the uncoated sheet when there is an uncoated sheet in an unspaced position between the X-ray source and the X-ray detector. Data of the first transmitted X-ray dose detected by the X-ray detector and the X-ray irradiated from the X-ray source when the coating sheet to be measured is present in the opposing space between the X-ray source and the X-ray detector The X-ray detector transmits the transmitted X-ray transmitted through the measured coating sheet. Using the data of the second transmitted X-ray dose and the prescribed value, the weight and / or thickness per unit area of the uncoated sheet and the unit area of the measured coated sheet based on a predetermined calculation formula A calculation unit for calculating a weight and / or thickness per unit area and calculating a weight and / or thickness per unit area of the coating film of the coating sheet to be measured using the calculated values. .

ここで、前記X線源およびX線検出器は、被測定塗工シートの走行パスの両側で走行パスを挟んで対向し合うように配置されており、さらに、前記X線源およびX線検出器の相対位置を維持し、前記X線源およびX線検出器を前記走行パスの幅方向に走査させ、かつ、前記走行パスの幅方向に往復走査させる走査手段を具備することにより、前記演算部は、前記被測定塗工シートの走行状態において塗工膜の単位面積当り重量および/または厚みを繰り返し測定することが可能になる。   Here, the X-ray source and the X-ray detector are arranged so as to face each other across the travel path on both sides of the travel path of the coating sheet to be measured, and further, the X-ray source and the X-ray detection A scanning means for maintaining the relative position of the detector, causing the X-ray source and the X-ray detector to scan in the width direction of the traveling path, and to reciprocate in the width direction of the traveling path. The part can repeatedly measure the weight and / or thickness per unit area of the coating film in the running state of the coating sheet to be measured.

本発明のX線透過法を用いた塗工シートの測定方法は、互いに対向し合うように配置されたX線源およびX線検出器と、前記X線検出器で検出したX線量のデータを用い、所定の計算式に基づいて演算を行う演算部とを有する測定装置を用いて、基材シート上に塗工膜が形成されてなる被測定塗工シートの前記塗工膜の単位面積当り重量および/または厚みを測定する際、予め、厚みtおよび/または密度ρが既知の試料として、前記被測定塗工シートの基材シートと同じ材質の基材シートからなる未塗工シート試料と、前記被測定塗工シートと同じ材質、構成からなる塗工シート試料とを用意し、前記各試料に対して別々に前記X線源からX線を照射した場合に当該試料を透過した透過X線を前記X線検出器で検出した透過X線量のデータを用い、所定の計算式に基づいて前記演算部で演算処理して前記未塗工シート試料のX線吸収係数μB および/または質量吸収係数(μ/ρ)B と前記塗工シート試料の全体のX線吸収係数μおよび/または質量吸収係数(μ/ρ)とを算出し、これらの既知の値および算出値を規定値として前記演算部に記憶させる第1のステップと、前記第1のステップで算出された前記未塗工シート試料のX線吸収係数μB および/または質量吸収係数(μ/ρ)B と、前記塗工シート試料の全体のX線吸収係数μおよび/または質量吸収係数(μ/ρ)と、前記塗工シート試料の塗工膜の厚みtC および/または単位面積当り重量WC を用い、所定の計算式に基づいて前記演算部で演算処理して前記塗工シート試料の塗工膜のX線吸収係数μC および前記厚みtC の補正値、および/または、前記塗工シート試料の塗工膜の質量吸収係数(μ/ρ)C および前記単位面積当り重量WC の補正値を算出させ、前記演算部に記憶させる第2のステップと、
前記被測定塗工シートに対して前記X線源からX線が照射された場合に当該被測定塗工シートを透過した透過X線を前記X線検出器で検出した透過X線量のデータおよび前記演算部の記憶データを用い、所定の計算式に基づいて前記演算部で演算処理して前記被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを算出させる第3のステップとを具備することを特徴とする
なお、本発明において、塗工シートの塗工膜は、単層構造に限らず、多層(二層以上)構造でもよく、多層構造の場合には、塗工膜の最上層を単層構造と見做し、それ以外の下層の塗工膜および基材シートを未塗工シートと見做して取り扱うことができる。
The method for measuring a coated sheet using the X-ray transmission method of the present invention includes an X-ray source and an X-ray detector arranged so as to face each other, and X-ray dose data detected by the X-ray detector. Per unit area of the coating film of the coating sheet to be measured in which the coating film is formed on the base sheet using a measuring device having a calculation unit that performs calculation based on a predetermined calculation formula When measuring the weight and / or thickness, an uncoated sheet sample comprising a base material sheet of the same material as the base material sheet of the coating sheet to be measured, as a sample having a known thickness t and / or density ρ A coated sheet sample made of the same material and composition as the coated sheet to be measured is prepared, and when each sample is separately irradiated with X-rays from the X-ray source, the transmitted X is transmitted through the sample. X-ray data of transmitted X-ray detected by X-ray detector Used, the whole of the X-ray absorption coefficient mu B and / or mass absorption coefficient of the uncoated sheet sample was processing in the calculating portion (μ / ρ) B and the coated sheet sample based on a predetermined calculation formula A first step of calculating an X-ray absorption coefficient μ and / or a mass absorption coefficient (μ / ρ), and storing the known value and the calculated value in the arithmetic unit as a specified value; The X-ray absorption coefficient μ B and / or mass absorption coefficient (μ / ρ) B of the uncoated sheet sample calculated in the step, and the entire X-ray absorption coefficient μ and / or mass absorption of the coated sheet sample Using the coefficient (μ / ρ) and the thickness t C and / or the weight W C per unit area of the coated sheet sample, the coating unit computes the coating based on a predetermined formula. Compensation of X-ray absorption coefficient μ C and thickness t C of coated film of coated sheet sample A positive value and / or a correction value for the mass absorption coefficient (μ / ρ) C of the coating film of the coated sheet sample and the weight W C per unit area are calculated and stored in the calculation unit. Steps,
Data of transmitted X-ray dose detected by the X-ray detector when transmitted X-rays transmitted through the measured coating sheet when the measured coated sheet is irradiated with X-rays from the X-ray source and A third step of calculating the weight and / or thickness per unit area of the coating film of the coating sheet to be measured by using the storage data of the calculation unit and performing calculation processing in the calculation unit based on a predetermined calculation formula; In the present invention, the coating film of the coating sheet is not limited to a single layer structure, and may have a multilayer (two or more layers) structure. In the case of a multilayer structure, the coating film The uppermost layer can be regarded as a single layer structure, and other lower coating films and substrate sheets can be regarded as uncoated sheets.

本発明のX線透過法を用いた塗工シートの測定装置および測定方法によれば、塗工済みの塗工シートと未塗工シート(基材シート)を所定の手順にしたがって測定することにより、塗工シートの塗工部分(塗工膜)の単位面積当り重量あるいは厚みを精度良く簡単に測定することが可能になった。   According to the measuring apparatus and measuring method of a coated sheet using the X-ray transmission method of the present invention, by measuring a coated sheet and a non-coated sheet (base material sheet) according to a predetermined procedure. The weight or thickness per unit area of the coated portion (coated film) of the coated sheet can be easily and accurately measured.

したがって、高分子膜、金属膜などの基材シート上に塗工膜を有する塗工シートを連続的に製造する設備とか、二枚のシートがラミネートされたラミネートシートを連続的に製造する設備などに適用して、インラインで塗工シートの塗工膜(多層構造の場合には最上層の塗工膜)の厚みを精度良く簡単に測定することができる。   Therefore, equipment for continuously producing a coating sheet having a coating film on a base material sheet such as a polymer film or a metal film, or equipment for continuously producing a laminated sheet in which two sheets are laminated, etc. The thickness of the coating film of the coating sheet (the uppermost coating film in the case of a multilayer structure) can be easily and accurately measured in-line.

以下、図面を参照して本発明の実施形態を説明する。この説明に際して、全図にわたり共通する部分には共通する参照符号を付す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this description, common parts are denoted by common reference numerals throughout the drawings.

<第1の実施形態>
図1は、本発明の第1の実施形態に係る塗工シートの測定装置の基本構成を示す側面図である。
<First Embodiment>
FIG. 1 is a side view showing a basic configuration of a coating sheet measuring apparatus according to the first embodiment of the present invention.

図1において、X線源11およびX線検出器12は互いに対向し合うように配置されている。なお、X線源は、照射エリアをコリメータ13で制限することが好ましい。X線源・X線検出器の対向間隔部にシートが存在する時には、X線源から照射したX線ビームはシートを透過し(X線の一部はシートで吸収されるが、一部は直進する)、X線検出器12に入射し、透過X線強度が検出される。X線源・X線検出器の対向間隔部にシートが存在しない時には、X線源から照射したX線ビームは直接にX線検出器12に入射し、照射X線強度が検出される。   In FIG. 1, an X-ray source 11 and an X-ray detector 12 are arranged so as to face each other. Note that the X-ray source preferably limits the irradiation area with the collimator 13. When a sheet is present at the opposite interval between the X-ray source and the X-ray detector, the X-ray beam irradiated from the X-ray source passes through the sheet (a part of the X-ray is absorbed by the sheet, but a part of Straight), it enters the X-ray detector 12 and the transmitted X-ray intensity is detected. When there is no sheet at the facing interval between the X-ray source and the X-ray detector, the X-ray beam irradiated from the X-ray source directly enters the X-ray detector 12 and the irradiated X-ray intensity is detected.

そして、X線検出器12の検出出力を適宜増幅する増幅器(図示せず)と、この増幅器の出力を電流値データに変換するアナログ・デジタル・コンバータ(ADC)23と、このADC23から入力される電流値データをデータ処理し、所定の計算式に基づいて演算する演算部30が設けられている。   Then, an amplifier (not shown) that appropriately amplifies the detection output of the X-ray detector 12, an analog / digital converter (ADC) 23 that converts the output of this amplifier into current value data, and the ADC 23. A calculation unit 30 is provided that performs data processing on the current value data and calculates based on a predetermined calculation formula.

演算部30は、例えばパーソナルコンピュータが用いられており、その一例は、装置全体を統括するとともに各種演算処理を実行するCPU(中央処理装置)31と、プログラム記憶用のROM32と、データメモリ用のRAM33と、パラメータ記憶部34などを有し、パラメータ設定部35、ディスプレイ等で構成された表示部36などが接続されている。前記パラメータ設定部35は、後述する計算式に関連するパラメータ(規定値)を演算部30に入力する機能を有する。前記パラメータ記憶部34は、パラメータ設定部35から入力されたパラメータ、あるいは、予め本例の測定装置を用いて実測されたパラメータを、例えばデータテーブル形式で記憶している。   For example, a personal computer is used as the arithmetic unit 30, and an example thereof is a CPU (central processing unit) 31 that controls the entire apparatus and executes various arithmetic processes, a ROM 32 for program storage, and a data memory A RAM 33, a parameter storage unit 34, and the like are connected to a parameter setting unit 35, a display unit 36 including a display, and the like. The parameter setting unit 35 has a function of inputting a parameter (specified value) related to a calculation formula, which will be described later, to the calculation unit 30. The parameter storage unit 34 stores parameters input from the parameter setting unit 35 or parameters actually measured using the measurement apparatus of this example in the form of a data table, for example.

上記演算部30において、CPU31は、ADC23から入力される電流値データを測定位置データとセットにしてRAM33に格納し、ROM32に格納されているプログラムに基づいてデータ処理を行い、塗工シートの塗工膜の単位面積当り重量および/または厚みを算出し、演算結果をRAM33に格納するとともに表示装置36で表示させる。 さらに、X線源11およびX線検出器12を互いに同期して走行パスの幅方向(塗工シート10の走行方向と直角方向)に定速度で往復駆動させるために、モータ等を含む駆動機構を用いた走査手段24が設けられている。この走査手段24は、X線源11から照射されるX線が走行パスの幅方向外側に少しずれた位置まで突出するように走査領域の一端を設定している。ここで、塗工シートの走行方向と、測定器の走査方向と、測定位置の軌跡の一例との関係を図2に示す。   In the arithmetic unit 30, the CPU 31 stores the current value data input from the ADC 23 together with the measurement position data in the RAM 33, performs data processing based on the program stored in the ROM 32, and applies the coating sheet. The weight and / or thickness per unit area of the film is calculated, and the calculation result is stored in the RAM 33 and displayed on the display device 36. Further, a drive mechanism including a motor or the like for reciprocally driving the X-ray source 11 and the X-ray detector 12 at a constant speed in the width direction of the travel path (direction perpendicular to the travel direction of the coating sheet 10) in synchronization with each other. The scanning means 24 using is provided. The scanning unit 24 sets one end of the scanning region so that the X-rays irradiated from the X-ray source 11 protrude to a position slightly shifted outward in the width direction of the traveling path. Here, FIG. 2 shows the relationship between the traveling direction of the coated sheet, the scanning direction of the measuring instrument, and an example of the locus of the measurement position.

次に、本実施形態の測定装置を用いた測定方法および動作を簡単に説明する。   Next, a measurement method and operation using the measurement apparatus of the present embodiment will be briefly described.

本測定方法では、基材シート上に塗工膜が形成されてなる被測定塗工シートとは別に、この被測定塗工シートの基材シートと同じ材質および厚さを有する基材シートであって塗工膜が形成されていないもの(リファレンス用の未塗工シート)を用意する。そして、それぞれX線透過法を用いて測定し、各測定値を用いることにより、被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを精度良く簡単に測定するものであり、測定原理は後で詳述する。   In this measurement method, a substrate sheet having the same material and thickness as the substrate sheet of the measured coating sheet is separated from the measured coating sheet in which a coating film is formed on the substrate sheet. Prepare a coating film with no coating film (reference uncoated sheet). And each is measured using an X-ray transmission method, and by using each measured value, the weight per unit area and / or thickness of the coating film of the coating sheet to be measured is easily and accurately measured, The measurement principle will be described in detail later.

この際、X線検出器12は、X線源・X線検出器の対向間隔部にリファレンス用の未塗工シートが存在する時にX線源から照射したX線ビームがリファレンス用の未塗工シートを透過した第1の透過X線量と、X線源・X線検出器の対向間隔部に被測定塗工シートが存在する時にX線源から照射したX線ビームが被測定塗工シートを透過した第2の透過X線量を検出する。   At this time, the X-ray detector 12 is configured so that the reference X-ray beam irradiated from the X-ray source when the reference uncoated sheet is present in the opposite interval portion of the X-ray source / X-ray detector is not applied for reference. The first transmitted X-ray dose that has passed through the sheet and the X-ray beam irradiated from the X-ray source when the measured coating sheet is present at the opposing distance between the X-ray source and the X-ray detector The transmitted second transmitted X-ray dose is detected.

また、演算部30は、前記第1の透過X線量のデータおよび規定値(基材シートの吸収係数など)を用いて所定の計算式に基づいてリファレンス用の未塗工シートの単位面積当り重量および/または厚みを算出し、また、第2の透過X線量のデータおよび規定値を用いて所定の計算式に基づいて被測定塗工シートの単位面積当り重量および/または総厚を算出する。そして、被測定塗工シートの算出値とリファレンス用の未塗工シートの算出値を用いて被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを算出する。   In addition, the calculation unit 30 uses the first transmitted X-ray dose data and a specified value (such as an absorption coefficient of the base sheet) based on a predetermined calculation formula to calculate the weight per unit area of the reference uncoated sheet. And / or the thickness, and the weight per unit area and / or the total thickness of the coating sheet to be measured are calculated based on a predetermined calculation formula using the second transmitted X-ray dose data and the prescribed value. Then, the weight and / or thickness per unit area of the coating film of the coating sheet to be measured is calculated using the calculated value of the coating sheet to be measured and the calculated value of the uncoated sheet for reference.

前記規定値(基材シートの吸収係数など)は、予め実測により採取し、演算部30のパラメータ記憶部34に記憶させておく。この規定値を採取するために、予め、厚みtおよび/または密度ρが既知の試料として、被測定塗工シートの基材シートと同じ材質の基材シートからなる未塗工シート試料と、被測定塗工シートと同じ材質、構成からなる塗工シート試料とを用意しておく。そして、各試料に対して別々にX線源11からX線を照射した場合に当該試料を透過した透過X線をX線検出器12で検出した透過X線量のデータを用い、所定の計算式に基づいて演算部30で演算処理して未塗工シート試料のX線吸収係数μB および/または質量吸収係数(μ/ρ)B と塗工シート試料の全体のX線吸収係数μおよび/または質量吸収係数(μ/ρ)とを算出する。 The specified values (such as the absorption coefficient of the base sheet) are collected in advance by actual measurement and stored in the parameter storage unit 34 of the calculation unit 30. In order to collect this specified value, an uncoated sheet sample made of a base material sheet of the same material as the base material sheet of the coating sheet to be measured, as a sample having a known thickness t and / or density ρ, A coated sheet sample having the same material and configuration as the measurement coated sheet is prepared. Then, when each sample is separately irradiated with X-rays from the X-ray source 11, a predetermined calculation formula is used using transmission X-ray dose data obtained by detecting the transmitted X-rays transmitted through the sample with the X-ray detector 12. Based on the X-ray absorption coefficient μ B and / or mass absorption coefficient (μ / ρ) B of the uncoated sheet sample and the entire X-ray absorption coefficient μ and / Alternatively, the mass absorption coefficient (μ / ρ) is calculated.

次に、本例の測定装置および測定方法の測定原理を詳細に説明する。一般に、X線透過法による基本式は以下のように示される。   Next, the measurement principle of the measurement apparatus and measurement method of this example will be described in detail. In general, the basic formula by the X-ray transmission method is expressed as follows.

I=Io exp −{(μ/ρ)×ρ×t} …(1)
=Io exp −(μ/ρ)×W …(2)
=Io exp −(μ×t) …(3)
ここで、I:透過X線の強度(透過X線量)
Io :透過前X線の強度(照射X線量)
μ:測定材のX線吸収係数 [1/cm]
ρ:測定材の密度 [g/cm3 ]
(μ/ρ):測定材の質量吸収係数[cm2 /g]
t:測定材の厚み [cm]
W:測定材の単位面積当り重量 [g/cm2 ]
である。前式(2)は測定材の単位面積当り重量Wに着目したもの、前式(3)は測定材の厚みtに着目したものである。X線吸収係数μは、同一物質であっても密度ρが異なると変化する。したがって、前式(1)は、X線吸収係数μを密度ρで割った質量吸収係数(μ/ρ)を用いている。
I = Io exp − {(μ / ρ) × ρ × t} (1)
= Io exp- (μ / ρ) × W (2)
= Io exp − (μ × t) (3)
Where I: intensity of transmitted X-ray (transmitted X-ray dose)
Io: X-ray intensity before transmission (irradiation X-ray dose)
μ: X-ray absorption coefficient of measurement material [1 / cm]
ρ: Density of measurement material [g / cm 3 ]
(Μ / ρ): Mass absorption coefficient of measurement material [cm 2 / g]
t: Thickness of measurement material [cm]
W: Weight per unit area of measurement material [g / cm 2 ]
It is. The previous formula (2) focuses on the weight W per unit area of the measurement material, and the previous formula (3) focuses on the thickness t of the measurement material. The X-ray absorption coefficient μ changes when the density ρ is different even for the same substance. Therefore, the previous equation (1) uses a mass absorption coefficient (μ / ρ) obtained by dividing the X-ray absorption coefficient μ by the density ρ.

なお、前記測定材が、基材シート上に塗工膜が塗工された塗工シートであり、各層(基材シートと塗工膜)を区別せずに取り扱う場合には、前式(1)〜(3)中のμは基材シートと塗工膜の総厚のX線吸収係数、(μ/ρ)は基材シートと塗工膜の総厚の質量吸収係数を表わす。   In addition, when the measurement material is a coating sheet in which a coating film is coated on a base material sheet and each layer (base material sheet and coating film) is handled without distinction, the above formula (1 In () to (3), μ represents the X-ray absorption coefficient of the total thickness of the base sheet and the coating film, and (μ / ρ) represents the mass absorption coefficient of the total thickness of the base sheet and the coating film.

また、前記測定材が、基材シート上に塗工膜が塗工された塗工シートであり、単一のX線源とX線検出器を用いて塗工シートを各層(基材シートと塗工膜)に分離して取り扱う場合には、X線透過法による基本式は以下のように示される。なお、表記の都合上、EXP記号に続く指数部を括弧で括ってEXP 記号と同一行に記載する。   The measurement material is a coating sheet in which a coating film is coated on a base sheet, and each layer (base sheet and the base sheet) is coated with a single X-ray source and an X-ray detector. In the case of handling separately by coating film), the basic formula by the X-ray transmission method is shown as follows. For convenience of description, the exponent part following the EXP symbol is enclosed in parentheses and written on the same line as the EXP symbol.

I=Io EXP [−{(μ/ρ)C ×ρC ×tC +(μ/ρ)B ×ρB ×tB }]
…(4)
=Io EXP [−{(μ/ρ)C ×WC +(μ/ρ)B ×WB }]
=Io EXP [−(μ/ρ)C ×{WC +WB ×(μ/ρ)B /(μ/ρ)C }]
…(5)
=Io EXP [−(μC ×tC +μB ×tB )]
=Io EXP [−μC ×{tC +(tB ×μB /μC )}] …(6)
但し I:透過X線の強度
Io :透過前X線の強度
(μ/ρ)C :塗工材の質量吸収係数
(μ/ρ)B :基材の質量吸収係数
μC :塗工材の吸収係数
μB :基材の吸収係数
ρC :塗工材の密度
ρB :基材の密度
C :塗工材の厚み
B :基材の厚み
C :塗工材の単位面積当り重量
B :基材の単位面積当り重量
である。ここで、前式(5)は測定材の単位面積当り重量に着目したもの、前式(6)は測定材の厚みに着目したものである。
I = Io EXP [- {( μ / ρ) C × ρ C × t C + (μ / ρ) B × ρ B × t B}]
(4)
= Io EXP [-{(μ / ρ) C × W C + (μ / ρ) B × W B }]
= Io EXP [- (μ / ρ) C × {W C + W B × (μ / ρ) B / (μ / ρ) C}]
... (5)
= Io EXP [- (μ C × t C + μ B × t B)]
= Io EXP [-μ C × { t C + (t B × μ B / μ C)}] ... (6)
I: Intensity of transmitted X-ray
Io: X-ray intensity before transmission
(Μ / ρ) C : Mass absorption coefficient of coating material
(Μ / ρ) B : Mass absorption coefficient of substrate
μ C : Absorption coefficient of coating material
μ B : Absorption coefficient of substrate
ρ C : Coating material density
ρ B : Density of substrate
t C : thickness of coating material
t B : thickness of substrate
W C : Weight per unit area of coating material
W B : Weight per unit area of the substrate. Here, the previous formula (5) focuses on the weight per unit area of the measurement material, and the previous formula (6) focuses on the thickness of the measurement material.

前式(1)〜(3)は、塗工膜の吸収係数と基材の吸収係数がほぼ同じか、異なってもわずかな場合は、塗工膜の測定値の誤差は少ないが、吸収係数が互いに大きく異なる場合は、塗工シートの吸収係数を採取した近辺の領域の単位面積当り重量あるいは厚みの測定誤差は少ないが、異なる領域の単位面積当り重量あるいは厚みの測定誤差は大きくなってしまう。即ち、基材の吸収係数より塗工材の吸収係数が大きい場合には、塗工膜の厚みの測定値は実際の厚みの変化より大きく現われる。逆に、基材の吸収係数より塗工材の吸収係数が小さい場合には、塗工膜の厚みの測定値は実際の厚みの変化より小さく現われる。   In the above formulas (1) to (3), if the absorption coefficient of the coating film and the absorption coefficient of the base material are almost the same or different, there is little error in the measured value of the coating film, but the absorption coefficient Are greatly different from each other, the measurement error of the weight or thickness per unit area of the area near the sample where the absorption coefficient of the coated sheet is collected is small, but the measurement error of the weight or thickness per unit area of the different area is large. . That is, when the absorption coefficient of the coating material is larger than the absorption coefficient of the base material, the measured value of the thickness of the coating film appears larger than the actual thickness change. On the contrary, when the absorption coefficient of the coating material is smaller than the absorption coefficient of the substrate, the measured value of the thickness of the coating film appears smaller than the actual change in thickness.

そこで、前式(4)〜(6)に示したように、塗工膜と基材シートをそれぞれ分離して扱うことにより塗工膜の単位面積当り重量あるいは厚みを正確に求めることができる。但し、塗工材を基材シートから剥離して測定することは困難であるので、本実施形態では、被測定塗工シートと未塗工シート(基材シート)とを用いてそれぞれ測定し、各測定値を用いて算出するようにしている。   Therefore, as shown in the previous formulas (4) to (6), the weight or thickness per unit area of the coating film can be accurately obtained by separately handling the coating film and the base sheet. However, since it is difficult to measure by peeling the coating material from the base material sheet, in this embodiment, the measured coating sheet and the uncoated sheet (base material sheet) are respectively measured, Calculations are made using each measured value.

塗工シートを製造する際、その基材シートは一定の素材(単位面積当り重量あるいは厚みの素材)を用いて塗工するのが一般的である。このことから、基材シートを一定と見なして測定の条件を決めることで測定が可能な場合が多い。この場合には、以下に述べるように塗工シートの塗工膜を精度良く簡単に測定することが可能になる。   When manufacturing a coating sheet, it is common to apply the base material sheet using a fixed material (material of weight or thickness per unit area). For this reason, the measurement is often possible by determining the measurement conditions with the substrate sheet regarded as constant. In this case, as described below, the coating film of the coating sheet can be easily and accurately measured.

基材シートの条件が一定とすると、前式(5)は次式のようになる。   When the conditions of the base sheet are constant, the previous formula (5) is as follows.

I=Io EXP [−(μ/ρ)C ×(WC +b1)] …(5a)
b1=WB ×(μ/ρ)B /(μ/ρ)C …(5b)
Ln(I/Io )=−(μ/ρ)C ×(WC +b1) …(7)
C ={−Ln(I/Io )/(μ/ρ)C }−b1 …(8)
したがって、前式(8)および補正値b1を示す式(5b)中の(μ/ρ)C 、WB 、(μ/ρ)B が判明していれば、Io 、Iを測定することにより、塗工膜の単位面積当り重量WC を精度良く求めることができる。
I = Io EXP [− (μ / ρ) C × (W C + b1)] (5a)
b1 = W B × (μ / ρ) B / (μ / ρ) C (5b)
Ln (I / Io) = − (μ / ρ) C × (W C + b1) (7)
W C = {− Ln (I / Io) / (μ / ρ) C } −b1 (8)
Therefore, if (μ / ρ) C , W B , (μ / ρ) B in the previous equation (8) and the equation (5b) indicating the correction value b1 are known, Io and I are measured. it can be determined accurately weight per unit area W C of the coating film.

上記と同様に、基材シートの条件が一定とすると、前式(6)は次式のようになる。   Similarly to the above, when the condition of the base sheet is constant, the previous formula (6) becomes the following formula.

I=Io EXP [−μC ×(tC +b2)] …(6a)
b2=tB ×μB /μC …(6b)
Ln(I/Io )=−μC ×(tC +b2) …(9)
C ={−Ln(I/Io )/μC }−b2 …(10)
したがって、前式(10)および補正値b2を示す式(6b)中のμC 、tB 、μB が判明していれば、Io 、Iを測定することにより、塗工膜の厚みtC を精度良く求めることができる。
I = Io EXP [−μ C × (t C + b2)] (6a)
b2 = t B × μ B / μ C (6b)
Ln (I / Io) = − μ C × (t C + b2) (9)
t C = {− Ln (I / Io) / μ C } −b2 (10)
Therefore, if μ C , t B and μ B in the formula (10) and the formula (6b) indicating the correction value b2 are known, the thickness t C of the coating film is measured by measuring Io and I. Can be obtained with high accuracy.

前式(8)、(10)において、Io は、X線源11とX線検出器12との間に塗工シートが走行していない(存在しない)状態、本例では、X線源11から照射されるX線が走行パスの外側にずれた位置に走査されている状態において、X線源11から対向するX線検出器12にX線が直接に照射された照射X線の値を測定し、その結果に基づいて補正された照射X線の値が使用される。これに対して、Iは、X線源11とX線検出器12との間に塗工シートが走行している(存在する)状態の時に測定された透過X線の値である。   In the previous equations (8) and (10), Io is a state in which the coating sheet is not running (does not exist) between the X-ray source 11 and the X-ray detector 12, in this example, the X-ray source 11 X-rays irradiated from the X-ray source 11 directly to the opposite X-ray detector 12 in a state where the X-rays irradiated from the X-ray source 11 are scanned at positions shifted to the outside of the travel path The value of the irradiated X-ray that is measured and corrected based on the result is used. On the other hand, I is a value of transmitted X-rays measured when the coating sheet is running (exists) between the X-ray source 11 and the X-ray detector 12.

補正値b1を示す式(5b)中のWB 、(μ/ρ)B 、(μ/ρ)C 、および、補正値b2を示す式(6b)中のtB 、μB 、μC は、規定値であり、予め、本例の測定装置を用いて実測し、図1中のパラメータ記憶部34に記憶させておき、その後の演算に際してパラメータ記憶部34から供給される。しかし、上記規定値のうちの塗工膜の(μ/ρ)C あるいはμC を求める際、一般的に基材シートから塗工膜を剥離して測定することは困難な場合が多い。 W B in the formula (5b) showing a correction value b1, (μ / ρ) B , (μ / ρ) C, and, t B in the formula (6b) showing a correction value b2, μ B, μ C is , Which is a specified value, measured in advance using the measuring apparatus of this example, stored in the parameter storage unit 34 in FIG. 1, and supplied from the parameter storage unit 34 in subsequent calculations. However, when obtaining (μ / ρ) C or μ C of the coating film out of the above specified values, it is often difficult to measure by peeling the coating film from the substrate sheet.

そこで、塗工膜の(μ/ρ)C あるいはμC を間接的に求めるために、予め、厚みtおよび/または密度ρが既知の試料として、被測定塗工シートの基材シートと同じ材質の基材シートからなる未塗工シート試料と、被測定塗工シートと同じ材質、構成からなる塗工シート試料とを用意しておく。そして、各試料に対して別々に前記X線源11からX線を照射した場合に当該試料を透過した透過X線をX線検出器12で検出した透過X線量のデータを用い、所定の計算式に基づいて演算部30で演算処理して未塗工シート試料のX線吸収係数μB および/または質量吸収係数(μ/ρ)B と塗工シート試料の全体(総厚)のX線吸収係数μおよび/または質量吸収係数(μ/ρ)とを算出し、これらの既知の値および算出値(実測値)を規定値として演算部30に記憶させる。 Therefore, in order to indirectly determine (μ / ρ) C or μ C of the coating film, the same material as the base sheet of the coating sheet to be measured is used as a sample having a known thickness t and / or density ρ in advance. An uncoated sheet sample made of the base material sheet and a coated sheet sample made of the same material and composition as the measured coated sheet are prepared. Then, when each sample is irradiated with X-rays from the X-ray source 11 separately, transmission X-ray data transmitted through the sample is detected by the X-ray detector 12 and predetermined calculation is performed. The X-ray absorption coefficient μ B and / or the mass absorption coefficient (μ / ρ) B of the uncoated sheet sample and the entire (total thickness) X-ray of the coated sheet sample are calculated by the calculation unit 30 based on the equation. The absorption coefficient μ and / or the mass absorption coefficient (μ / ρ) are calculated, and these known values and calculated values (actual measurement values) are stored in the computing unit 30 as specified values.

即ち、総厚の吸収係数μを用いて測定する場合の前式(2)、(3)と、塗工シートを各層に分けてそれぞれの吸収係数μC 、μB を用いて測定する場合の前式(5)、(6)との間には、同一の試料を測定する場合には次の関係が成立する。 That is, in the case of measuring using the absorption coefficients μ C and μ B of the previous formulas (2) and (3) when measuring using the absorption coefficient μ of the total thickness and the coated sheet divided into each layer The following relationship holds between the previous equations (5) and (6) when the same sample is measured.

前式(2)、(5)は等しくなるので、
(μ/ρ)×W=(μ/ρ)C ×WC +(μ/ρ)B ×WB
(μ/ρ)C ={(μ/ρ)×W−(μ/ρ)B ×WB }/WC …(11)
したがって、塗工シート試料の総厚の質量吸収係数(μ/ρ)、単位面積当り重量W、未塗工シート試料の質量吸収係数(μ/ρ)B 、単位面積当り重量WB 、塗工シート試料の塗工膜の単位面積当り重量WC を用いて、自動計算で塗工膜の質量吸収係数(μ/ρ)C を求めることができる。
Since the previous equations (2) and (5) are equal,
(Μ / ρ) × W = (μ / ρ) C × W C + (μ / ρ) B × W B
(Μ / ρ) C = {(μ / ρ) × W− (μ / ρ) B × W B } / W C (11)
Therefore, the mass absorption coefficient (μ / ρ) of the total thickness of the coated sheet sample, the weight W per unit area, the mass absorption coefficient (μ / ρ) B of the uncoated sheet sample, the weight W B per unit area, the coating Using the weight W C per unit area of the coating film of the sheet sample, the mass absorption coefficient (μ / ρ) C of the coating film can be obtained by automatic calculation.

また、前式(3)、(6)は等しくなるので、
μ×t=μC ×tC +μB ×tB
μC =(μ×t−μB ×tB )/tC …(12)
したがって、塗工シート試料の総厚の吸収係数μと厚みt、未塗工シート試料の吸収係数μB と厚みtB 、塗工シート試料の塗工膜の塗工厚みtC を用いて、自動計算により塗工膜の吸収係数μC を求めることができる。
Also, since the previous expressions (3) and (6) are equal,
μ × t = μ C × t C + μ B × t B
μ C = (μ × t−μ B × t B ) / t C (12)
Therefore, using the absorption coefficient μ and thickness t of the total thickness of the coated sheet sample, the absorption coefficient μ B and thickness t B of the uncoated sheet sample, and the coating thickness t C of the coated film of the coated sheet sample, The absorption coefficient μ C of the coating film can be obtained by automatic calculation.

即ち、上記した本例の測定方法によれば、未塗工シート試料および塗工シート試料を順次に測定し、それぞれ吸収係数を自動的に求め、塗工膜の吸収係数を自動的に計算で求め、且つ、測定条件を格納することができる。   That is, according to the measurement method of this example described above, the uncoated sheet sample and the coated sheet sample are sequentially measured, the absorption coefficient is automatically obtained, and the absorption coefficient of the coated film is automatically calculated. The measurement conditions can be obtained and stored.

次に、上記したような測定原理を用いる測定方法の第1の実施形態について、図3に示すフローチャートを参照しながら説明する。   Next, a first embodiment of a measurement method using the above-described measurement principle will be described with reference to the flowchart shown in FIG.

第1の実施形態に係る測定方法は、走行状態の連続した塗工シートに対して横方向に測定器(X線源とX線検出器)を走行(走査)させながら塗工シートの幅方向にほぼ連続的に測定するものである。   In the measurement method according to the first embodiment, the width direction of the coating sheet is measured while the measuring device (X-ray source and X-ray detector) is moved (scanned) in the lateral direction with respect to the continuous coated sheet in the running state. Measure almost continuously.

予め、厚みtおよび/または密度ρが既知の試料として、被測定塗工シートの基材シートと同じ材質の基材シートからなる未塗工シート試料と、被測定塗工シートと同じ材質、構成からなる塗工シート試料とを用意しておく。そして、互いに対向し合うように配置されたX線源11およびX線検出器21と、X線源およびX線検出器の相対位置を維持して走行パスの幅方向に往復走査を繰り返す走査手段と、前記X線検出器で検出したX線量をデータ処理し、所定の計算式に基づいて被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを算出する演算部とを有する測定装置を用いるものとする。   As a sample whose thickness t and / or density ρ is known in advance, an uncoated sheet sample composed of a base material sheet of the same material as the base sheet of the measured coated sheet, and the same material and configuration as the measured coated sheet A coated sheet sample consisting of: An X-ray source 11 and an X-ray detector 21 arranged so as to face each other, and a scanning unit that repeats reciprocating scanning in the width direction of the traveling path while maintaining the relative positions of the X-ray source and the X-ray detector. And an arithmetic unit that processes the X-ray dose detected by the X-ray detector and calculates the weight and / or thickness per unit area of the coating film of the coating sheet to be measured based on a predetermined calculation formula A measuring device shall be used.

まず、第1のステップS1では、塗工シート試料を吸収係数採取位置(X線源とX線検出器との対向間隔部)にセットし、X線が照射された場合の塗工シート試料の吸収係数μおよび/または質量吸収係数(μ/ρ)を自動的に採取し、その結果をパラメータ記憶部35に格納する。次に、基材シート(未塗工シート)試料を吸収係数採取位置にセットし、X線が照射された場合の基材シートの吸収係数μB および/または質量吸収係数(μ/ρ)B を自動的に採取し、その結果をパラメータ記憶部35に格納する。なお、吸収係数採取の過程は、塗工シート試料と未塗工シート試料の順番が反対でもよい。 First, in the first step S1, the coated sheet sample is set at the absorption coefficient collection position (opposite interval portion between the X-ray source and the X-ray detector), and the coated sheet sample is irradiated with X-rays. The absorption coefficient μ and / or the mass absorption coefficient (μ / ρ) are automatically collected, and the result is stored in the parameter storage unit 35. Next, the base sheet (uncoated sheet) sample is set at the absorption coefficient collection position, and the base sheet absorption coefficient μ B and / or mass absorption coefficient (μ / ρ) B when X-rays are irradiated Are automatically collected, and the result is stored in the parameter storage unit 35. In the absorption coefficient sampling process, the order of the coated sheet sample and the uncoated sheet sample may be reversed.

第2のステップS2では、前式(11)で示される塗工膜の質量吸収係数(μ/ρ)C および前式(5b)で示される補正値b1、および/または、前式(12)で示される塗工膜の吸収係数μC および前式(6b)で示される補正値b2を計算し、それぞれの結果をパラメータ記憶部35に記憶させる。 In the second step S2, the mass absorption coefficient (μ / ρ) C of the coating film represented by the previous formula (11) and the correction value b1 represented by the previous formula (5b) and / or the previous formula (12) Then, the absorption coefficient μ C of the coating film indicated by (2) and the correction value b2 indicated by the previous equation (6b) are calculated, and the respective results are stored in the parameter storage unit.

第3のステップS3では、被測定塗工シートの走行状態に対してX線源からX線が照射された場合に当該被測定塗工シートを透過した透過X線をX線検出器で検出した透過X線量のデータおよび規定値を用い、所定の計算式に基づいて演算部で演算処理して被測定塗工シートの単位面積当り重量Wおよび/または厚みtを算出させる。この際、まず、ステップS31で、X線源から照射されるX線が走行パスの外側にずれた位置になった状態の時に、X線検出器で検出した出力に基づいてX線源の照射X線強度Io を自動的に測定させる。次に、ステップS32で、走行状態の被測定塗工シートにX線を透過させた時のX線検出器の出力に基づいて透過X線強度Iを自動的に測定させる。次に、ステップS33で、それまでの各ステップで得られた規定値および実測値を用いて前式(8)に基づいて被測定塗工シートの単位面積当り重量WC を演算部で自動的に算出させ、および/または、前式(10)に基づいて厚みtC を演算部で自動的に算出させ、結果の記録、表示を行わせる。 In the third step S3, when X-rays are irradiated from the X-ray source with respect to the traveling state of the coating sheet to be measured, transmitted X-rays transmitted through the coating sheet to be measured are detected by the X-ray detector. Using the transmitted X-ray dose data and the specified value, the calculation unit calculates the weight W and / or thickness t per unit area of the coating sheet to be measured based on a predetermined calculation formula. At this time, first, in step S31, the X-ray source is irradiated based on the output detected by the X-ray detector when the X-ray irradiated from the X-ray source is in a position shifted to the outside of the traveling path. The X-ray intensity Io is automatically measured. Next, in step S32, the transmitted X-ray intensity I is automatically measured based on the output of the X-ray detector when X-rays are transmitted through the measured coating sheet in the running state. Next, in step S33, the weight W C per unit area of the coated sheet to be measured is automatically calculated by the calculation unit based on the previous equation (8) using the specified value and the actual measurement value obtained in each of the previous steps. And / or the thickness t C is automatically calculated by the calculation unit based on the previous equation (10), and the result is recorded and displayed.

そして、測定を継続する期間中は、走行状態の被測定塗工シートに対する透過X線強度Iの測定を繰り返す。なお、第3のステップS3の処理過程において、X線源から照射されるX線が走行パスの外側にずれた位置になった状態の時にX線検出器で検出した出力に基づいてX線源の照射X線強度Io を自動的に測定し、前回測定された照射X線強度Ioと比較して補正されたIo を求め、前記計算式中の経時的に変化した照射X線強度を補正する第4のステップを付加するようにしてもよい。   And during the period which continues a measurement, the measurement of the transmitted X-ray intensity I with respect to the to-be-measured coating sheet of a running state is repeated. In the process of the third step S3, the X-ray source is based on the output detected by the X-ray detector when the X-ray emitted from the X-ray source is in a position shifted to the outside of the traveling path. The irradiation X-ray intensity Io is automatically measured, the corrected Io is compared with the previously measured irradiation X-ray intensity Io, and the irradiation X-ray intensity that has changed over time in the above formula is corrected. A fourth step may be added.

以上述べたような本実施形態の測定装置および測定方法を、基材上に塗工材を塗工する製造ライン中の塗工シートの搬送ラインの一部にインライン方式で適用することにより、塗工膜の厚みを精度良く簡単に測定することができる。   By applying the measuring apparatus and measuring method of the present embodiment as described above to a part of the conveying line of the coating sheet in the manufacturing line for coating the coating material on the base material in an in-line manner, It is possible to easily and accurately measure the thickness of the film.

図4は、図1の測定装置の一具体例を概略的に示す斜視図である。   FIG. 4 is a perspective view schematically showing a specific example of the measuring apparatus of FIG.

図4において、例えばO型フレーム中の左右一対のフレーム41、41の間に、上下一対のレール42,43が隙間をあけて水平に取付けられている。上下一対のレール42,43間は、帯状の細長い塗工シート10が図示矢印方向に走行する走行パスの一部となっている。   In FIG. 4, for example, a pair of upper and lower rails 42, 43 are horizontally attached between a pair of left and right frames 41, 41 in an O-shaped frame. Between the pair of upper and lower rails 42 and 43, a belt-like elongate coating sheet 10 is a part of a traveling path along which the traveling in the arrow direction shown in the drawing.

一方のレール(本例では上側のレール42)には、図1中に示したようなX線源11がレール長手方向に摺動可能に取付けられており、X線源11はレール長手方向に往復移動が可能である。ここで、X線源11は、例えばX線管カバーの内部に、X線管のX線照射口を下向きにして内蔵しており、X線管カバーの下部にはX線が通り抜ける通光孔が形成されている。上記X線源11は、X線管の陰極からの電子ビームを陽極ターゲットに照射させてX線を生成する。このX線としては、X線透過法による測定に適したエネルギーのX線を用いており、X線のエネルギー分布は連続X線であっても特定X線であってもよい。 他方のレール(本例では下側のレール43)には、図1中に示したようなX線検出器12がレール長手方向に摺動可能に取付けられており、X線検出器12はレール長手方向に往復移動が可能である。ここで、X線検出器12は、入射したX線を例えばイオンチャンバーで受けて入射したX線信号に比例した電流信号に変換するか、または、シンチレータで受けて光に変換し、例えばフォトマルチプライアやフォトダイオードによって入射したX線信号に比例した電流信号に変換する(シンチレーション検出器)。   An X-ray source 11 as shown in FIG. 1 is attached to one rail (in this example, the upper rail 42) so as to be slidable in the rail longitudinal direction. Reciprocal movement is possible. Here, the X-ray source 11 is built in, for example, an X-ray tube cover with the X-ray irradiation port of the X-ray tube facing downward, and a light passage hole through which X-rays pass through the lower portion of the X-ray tube cover. Is formed. The X-ray source 11 generates X-rays by irradiating an anode target with an electron beam from a cathode of an X-ray tube. As this X-ray, an X-ray having energy suitable for measurement by the X-ray transmission method is used, and the energy distribution of the X-ray may be continuous X-ray or specific X-ray. An X-ray detector 12 as shown in FIG. 1 is attached to the other rail (lower rail 43 in this example) so as to be slidable in the rail longitudinal direction. Reciprocal movement in the longitudinal direction is possible. Here, the X-ray detector 12 receives incident X-rays, for example, in an ion chamber and converts them into a current signal proportional to the incident X-ray signals, or receives them in a scintillator and converts them into light. It is converted into a current signal proportional to the incident X-ray signal by a priorer or a photodiode (scintillation detector).

さらに、図1中に示したようにX線源11およびX線検出器12を互いに同期して(相対位置を維持したまま)走行パスの幅方向(レール長手方向)に定速度で往復駆動させるために、モータ等を含む駆動機構を用いた走査手段(図示せず)が測定装置に内蔵されている。この走査手段は、走査領域の一端が、X線源11から照射されるX線が走行パスの幅方向外側に少しずれた位置になるように走査駆動する。また、例えばフレーム41の前面には、装置の操作部44が設けられている。   Further, as shown in FIG. 1, the X-ray source 11 and the X-ray detector 12 are driven to reciprocate at a constant speed in the width direction (rail longitudinal direction) of the travel path in synchronization with each other (while maintaining the relative position). For this purpose, scanning means (not shown) using a drive mechanism including a motor or the like is built in the measuring apparatus. This scanning means scans and drives one end of the scanning region so that the X-rays emitted from the X-ray source 11 are slightly shifted outward in the width direction of the travel path. For example, an operation unit 44 of the apparatus is provided on the front surface of the frame 41.

上記構成により、X線源11およびX線検出器12がレール長手方向のどの位置に移動しても、X線源11から照射されたX線はX線検出器12で検出される。X線検出器12で検出されたX線量は電流値に変換され、図1を参照して前述したようにA/Dコンバータ23により電流値データに変換された後に演算部30に入力される。   With the above configuration, the X-ray emitted from the X-ray source 11 is detected by the X-ray detector 12 regardless of the position of the X-ray source 11 and the X-ray detector 12 in the rail longitudinal direction. The X-ray dose detected by the X-ray detector 12 is converted into a current value, and converted into current value data by the A / D converter 23 as described above with reference to FIG.

<第2の実施形態>
第2の実施形態では、前述した第1の実施形態と比べて、停止状態の塗工シートの塗工膜の単位面積当り重量および/または厚みを測定する点が異なり、測定原理は同様である。第2の実施形態に係る測定方法は、前述した第1の実施形態に係る測定方法と比べて、第3のステップS3で停止状態の非測定工シートに対して自動的に測定する点が異なり、その他は同様である。第2の実施形態によれば、走査手段24を省略することができる、あるいは、走査手段24を省略しない場合でもその動作を停止させることができる。
<Second Embodiment>
The second embodiment is different from the first embodiment described above in that the weight and / or thickness per unit area of the coating film of the coating sheet in the stopped state is different, and the measurement principle is the same. . The measurement method according to the second embodiment is different from the measurement method according to the first embodiment described above in that the measurement is automatically performed on the non-measurement workpiece sheet that is stopped in the third step S3. Others are the same. According to the second embodiment, the scanning unit 24 can be omitted, or the operation can be stopped even when the scanning unit 24 is not omitted.

本実施形態のX線透過法を用いた測定装置は、ポリエステルフィルム等の合成樹脂フィルム、紙、非鉄金属箔等のベースに、セラミック材、磁気を帯びた磁性体やフィラー、チタン、鉛等の粉体が塗布された帯状の各種の塗工シートを測定することが可能である。具体例として、塗工膜として酸化鉄が用いられている磁気カード用の塗工シートとか、リチュームイオン電池の陽極用の塗工シート(例えばアルミ基板にコバルト酸リチュームが塗工されている)とか、リチュームイオン電池の負極用の塗工シート(例えば銅基板にカーボンが塗工されている)を測定することが可能である。   The measuring apparatus using the X-ray transmission method of the present embodiment is made of a synthetic resin film such as a polyester film, a base such as paper or non-ferrous metal foil, a ceramic material, a magnetic material or filler with magnetism, titanium, lead, etc. Various strip-shaped coated sheets coated with powder can be measured. Specific examples include a coating sheet for a magnetic card using iron oxide as a coating film, or a coating sheet for an anode of a lithium ion battery (for example, cobalt acid lithium is coated on an aluminum substrate). It is possible to measure a coating sheet for a negative electrode of a lithium ion battery (for example, carbon is coated on a copper substrate).

[実施例1] セラミックコンデンサは、PETフィルムを基材として、セラミック材(BaTiO2 等)を必要な厚みに塗工し、焼成を行い、コンデンサ用の誘電体として作成される。このセラミック材を塗工する過程で塗工膜の単位面積当り重量および/または厚さを測定する場合に、本発明の測定装置を用いる。 [Example 1] A ceramic capacitor is formed as a dielectric for a capacitor by applying a ceramic material (BaTiO 2 or the like) to a required thickness using a PET film as a base material and firing it. When measuring the weight and / or thickness per unit area of the coating film in the process of applying the ceramic material, the measuring apparatus of the present invention is used.

通常、基材(PETフィルム)は、20〜50μm程度の厚さを有し、塗工膜(セラミック材)は2〜50μm程度の厚さを有する。数μmの塗工されたセラミックを基材から剥がして取り扱うことは困難であり、基材に塗工された試料と基材のPETフィルムは容易に準備が可能である。本実測例では、
基材シートは、厚さ38μmのPETフィルム、吸収係数μB =0.002 μm-1
塗工シート(塗工試料)の塗工材(塗工膜)は10μmであり、
塗工シート(塗工試料)の総厚は48μm、総厚の吸収係数μ=0.02 μm-1
とする。
Usually, the base material (PET film) has a thickness of about 20 to 50 μm, and the coating film (ceramic material) has a thickness of about 2 to 50 μm. It is difficult to peel and handle the coated ceramic of several μm from the substrate, and the sample coated on the substrate and the PET film of the substrate can be easily prepared. In this actual measurement example,
The base sheet is a PET film with a thickness of 38 μm, an absorption coefficient μ B = 0.002 μm −1
The coating material (coating film) of the coating sheet (coating sample) is 10 μm,
The total thickness of the coated sheet (coated sample) is 48 μm, the absorption coefficient of the total thickness μ = 0.02 μm -1
And

これらの値および前式(10)、(6b)に基づき、塗工材の吸収係数μC および補正値b2を求めると、以下のようになる。 Based on these values and the previous equations (10) and (6b), the absorption coefficient μ C of the coating material and the correction value b2 are obtained as follows.

μC =(0.02*48−0.002 *38)/10=0.0884μm-1
b2=0.002 *38/0.0884=0.86
μ C = (0.02 * 48−0.002 * 38) /10=0.0884 μm −1
b2 = 0.002 * 38 / 0.0884 = 0.86

本発明の第1の実施形態に係る塗工シートの測定装置の基本構成を示す側面図。The side view which shows the basic composition of the measuring apparatus of the coating sheet which concerns on the 1st Embodiment of this invention. 図1の測定装置において塗工シートの走行方向と測定器の走査方向と測定位置の軌跡の一例との関係を示す平面図。The top view which shows the relationship between the running direction of a coating sheet in the measuring apparatus of FIG. 1, the scanning direction of a measuring device, and an example of the locus of a measurement position. 図1の測定装置を用いた測定方法の一例を示すフローチャート。The flowchart which shows an example of the measuring method using the measuring apparatus of FIG. 図1の測定装置の一具体例を概略的に示す斜視図。FIG. 2 is a perspective view schematically showing a specific example of the measuring apparatus of FIG. 1.

符号の説明Explanation of symbols

10…塗工シート、10a…塗工シートの塗工膜、10b…塗工シートの基材シート、11…X線源、12…X線検出器、13…コリメータ、23…A/Dコンバータ、24…走査手段、30…演算部、31…CPU、32…プログラム記憶部用ROM、33…データメモリ用RAM、34…パラメータ記憶部、35…パラメータ設定部、36…表示部。 DESCRIPTION OF SYMBOLS 10 ... Coating sheet, 10a ... Coating film of coating sheet, 10b ... Base sheet of coating sheet, 11 ... X-ray source, 12 ... X-ray detector, 13 ... Collimator, 23 ... A / D converter, 24... Scanning means, 30... Arithmetic unit, 31... CPU, 32... ROM for program storage unit, 33 ... RAM for data memory, 34.

Claims (7)

基材シート上に塗工膜が形成されてなる被測定塗工シートの塗工膜の単位面積当り重量および/または厚みをX線透過法を用いて測定する塗工シートの測定装置であって、
互いに対向し合うように配置されたX線源およびX線検出器と、
前記基材シート上に前記塗工膜が形成されていない状態の未塗工シートが前記X線源およびX線検出器の対向間隔部に存在する時に前記X線源から照射したX線ビームが前記未塗工シートを透過した透過X線を前記X線検出器で検出した第1の透過X線量のデータと、前記X線源およびX線検出器の対向間隔部に前記被測定塗工シートが存在する時に前記X線源から照射したX線ビームが前記被測定塗工シートを透過した透過X線を前記X線検出器で検出した第2の透過X線量のデータと、規定値とを用い、所定の計算式に基づいて前記未塗工シートの単位面積当り重量および/または厚みと、前記被測定塗工シートの単位面積当り重量および/または総厚みを算出し、前記各算出値を用いて前記被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを算出する演算部とを具備することを特徴とするX線透過法を用いた塗工シートの測定装置。
A coating sheet measuring apparatus for measuring a weight and / or thickness per unit area of a coating film of a coating sheet to be measured in which a coating film is formed on a base sheet using an X-ray transmission method. ,
An X-ray source and an X-ray detector arranged to face each other;
An X-ray beam irradiated from the X-ray source when an uncoated sheet in a state where the coating film is not formed on the base sheet is present in the facing interval portion of the X-ray source and the X-ray detector. Data of the first transmitted X-ray dose obtained by detecting the transmitted X-rays transmitted through the uncoated sheet with the X-ray detector, and the measured coated sheet at the opposing interval portions of the X-ray source and the X-ray detector When the X-ray beam emitted from the X-ray source is transmitted through the measured coating sheet, the X-ray detector detects the second transmitted X-ray dose data and the specified value. Use the weight per unit area and / or thickness of the uncoated sheet and the weight per unit area and / or the total thickness of the coated sheet to be measured based on a predetermined calculation formula, Using the weight per unit area of the coating film of the coating sheet to be measured And / or coated sheet measuring apparatus using the X-ray transmission method which is characterized by comprising an arithmetic unit for calculating the thickness.
前記X線源およびX線検出器は、被測定塗工シートの走行パスの両側で走行パスを挟んで対向し合うように配置されており、前記X線源およびX線検出器の相対位置を維持し、前記X線源およびX線検出器を前記走行パスの幅方向に走査させ、かつ、前記走行パスの幅方向に往復走査させる走査手段
をさらに具備し、前記演算部は、前記被測定塗工シートの走行状態において塗工膜の単位面積当り重量および/または厚みを繰り返し測定することを特徴とする請求項1記載のX線透過法を用いた塗工シートの測定装置。
The X-ray source and the X-ray detector are arranged so as to face each other across the traveling path on both sides of the traveling path of the coating sheet to be measured, and the relative positions of the X-ray source and the X-ray detector are determined. Scanning means for maintaining and scanning the X-ray source and the X-ray detector in the width direction of the traveling path and reciprocatingly scanning in the width direction of the traveling path. The apparatus for measuring a coated sheet using an X-ray transmission method according to claim 1, wherein the weight and / or thickness per unit area of the coated film is repeatedly measured in the running state of the coated sheet.
前記走査手段は、前記X線源およびX線検出器を前記走行パスの外側にずれた位置まで走査させるものであり、
前記演算部は、前記X線源の照射位置が前記走行パスの外側にずれた位置に走査された状態で前記X線源から照射したX線ビームを直接に前記X線検出器で受けて検出した照射X線量を用いて前記第2の透過X線量の経時変化を補正するようにデータ処理することを特徴とする請求項2記載のX線透過法を用いた塗工シートの測定装置。
The scanning means scans the X-ray source and the X-ray detector to a position shifted to the outside of the traveling path,
The arithmetic unit receives and detects the X-ray beam emitted from the X-ray source directly with the X-ray detector in a state where the irradiation position of the X-ray source is scanned to a position shifted to the outside of the traveling path. The apparatus for measuring a coated sheet using the X-ray transmission method according to claim 2, wherein data processing is performed so as to correct a change with time of the second transmitted X-ray dose using the irradiated X-ray dose.
前記演算部は、前記被測定塗工シートの塗工膜の厚みtC を以下の計算式に基づいて算出することを特徴とする請求項1乃至3のいずれか1つに記載のX線透過法を用いた塗工シートの測定装置。
C ={−Ln(I/Io )/μC }−b
b=tB ×μB /μC
但し I;透過X線強度
I0 ;照射X線強度
μC ;塗工シートの塗工膜の吸収係数
B ;未塗工シート(基材)の厚み
μB ;未塗工シート(基材)の吸収係数
The X-ray transmission according to any one of claims 1 to 3, wherein the calculation unit calculates a thickness t C of the coating film of the coating sheet to be measured based on the following calculation formula. Coating sheet measuring device using the method.
t C = {− Ln (I / Io) / μ C } −b
b = t B × μ B / μ C
However, I: Transmission X-ray intensity I0: Irradiation X-ray intensity μ C ; Absorption coefficient of coated film of coated sheet t B : Uncoated sheet (base material) thickness μ B ; Uncoated sheet (base material) Absorption coefficient
前記演算部は、前記被測定塗工シートの塗工膜の単位面積当り重量WC を以下の計算式に基づいて算出することを特徴とする請求項1乃至3のいずれか1つに記載のX線透過法を用いた塗工シートの測定装置。
C ={−Ln(I/Io )/(μ/ρ)C }−b
b=WB ×(μ/ρ)B /(μ/ρ)C
但し I;透過X線強度
I0 ;照射X線強度
(μ/ρ)C ;塗工シートの塗工膜の質量吸収係数
B ;未塗工シート(基材)の単位面積当り重量
(μ/ρ)B ;未塗工シート(基材)の質量吸収係数
The arithmetic unit, according the any one of claims 1 to 3, characterized in that calculated on the basis of the weight per unit area W C following calculation formula of the coating film of the measured coated sheet An apparatus for measuring a coated sheet using an X-ray transmission method.
W C = {− Ln (I / Io) / (μ / ρ) C } −b
b = W B × (μ / ρ) B / (μ / ρ) C
However I; transmitted X-ray intensity I0; X-ray intensity (μ / ρ) C; mass absorption coefficient of the coating sheet of the coating film W B; weight per unit area of the uncoated sheet (base material) (mu / ρ) B : Mass absorption coefficient of uncoated sheet (base material)
互いに対向し合うように配置されたX線源およびX線検出器と、
前記X線検出器で検出したX線量のデータを用い、所定の計算式に基づいて演算を行う演算部とを有する測定装置を用いて、基材シート上に塗工膜が形成されてなる被測定塗工シートの前記塗工膜の単位面積当り重量および/または厚みを測定する際、
予め、厚みtおよび/または密度ρが既知の試料として、前記被測定塗工シートの基材シートと同じ材質の基材シートからなる未塗工シート試料と、前記被測定塗工シートと同じ材質、構成からなる塗工シート試料とを用意し、前記各試料に対して別々に前記X線源からX線を照射した場合に当該試料を透過した透過X線を前記X線検出器で検出した透過X線量のデータを用い、所定の計算式に基づいて前記演算部で演算処理して前記未塗工シート試料のX線吸収係数μB および/または質量吸収係数(μ/ρ)B と前記塗工シート試料の全体のX線吸収係数μおよび/または質量吸収係数(μ/ρ)とを算出し、これらの既知の値および算出値を規定値として前記演算部に記憶させる第1のステップと、
前記第1のステップで算出された前記未塗工シート試料のX線吸収係数μB および/または質量吸収係数(μ/ρ)B と、前記塗工シート試料の全体のX線吸収係数μおよび/または質量吸収係数(μ/ρ)と、前記塗工シート試料の塗工膜の厚みtC および/または単位面積当り重量WC を用い、所定の計算式に基づいて前記演算部で演算処理して前記塗工シート試料の塗工膜のX線吸収係数μC および前記厚みtC の補正値、および/または、前記塗工シート試料の塗工膜の質量吸収係数(μ/ρ)C および前記単位面積当り重量WC の補正値を算出させ、前記演算部に記憶させる第2のステップと、
前記被測定塗工シートに対して前記X線源からX線が照射された場合に当該被測定塗工シートを透過した透過X線を前記X線検出器で検出した透過X線量のデータおよび前記演算部の記憶データを用い、所定の計算式に基づいて前記演算部で演算処理して前記被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを算出させる第3のステップと、
を具備することを特徴とするX線透過法を用いた塗工シートの測定方法。
An X-ray source and an X-ray detector arranged to face each other;
Using a measurement apparatus having a calculation unit that performs calculation based on a predetermined calculation formula using data of the X-ray dose detected by the X-ray detector, a coating film formed on a substrate sheet When measuring the weight and / or thickness per unit area of the coating film of the measurement coating sheet,
As a sample whose thickness t and / or density ρ is known in advance, an uncoated sheet sample made of a base material sheet made of the same material as the base sheet of the measured coated sheet, and the same material as the measured coated sheet And a coated sheet sample having a configuration, and when each sample was irradiated with X-rays from the X-ray source separately, transmitted X-rays transmitted through the sample were detected by the X-ray detector. Using the data of the transmitted X-ray dose, the calculation unit calculates the X-ray absorption coefficient μ B and / or the mass absorption coefficient (μ / ρ) B of the uncoated sheet sample based on a predetermined calculation formula and The first step of calculating the X-ray absorption coefficient μ and / or the mass absorption coefficient (μ / ρ) of the entire coated sheet sample and storing these known values and calculated values as specified values in the calculation unit When,
The X-ray absorption coefficient μ B and / or the mass absorption coefficient (μ / ρ) B of the uncoated sheet sample calculated in the first step, the X-ray absorption coefficient μ of the whole coated sheet sample, and Using the mass absorption coefficient (μ / ρ) and the coating film thickness t C and / or the weight W C per unit area of the coating sheet sample, calculation processing is performed in the calculation unit based on a predetermined calculation formula The X-ray absorption coefficient μ C of the coated film of the coated sheet sample and the correction value of the thickness t C and / or the mass absorption coefficient (μ / ρ) C of the coated film of the coated sheet sample And a second step of calculating a correction value of the weight W C per unit area and storing the correction value in the calculation unit;
Data of transmitted X-ray dose detected by the X-ray detector when transmitted X-rays transmitted through the measured coating sheet when the measured coated sheet is irradiated with X-rays from the X-ray source and A third step of calculating the weight and / or thickness per unit area of the coating film of the coating sheet to be measured by using the storage data of the calculation unit and performing calculation processing in the calculation unit based on a predetermined calculation formula; ,
The measuring method of the coating sheet using the X-ray transmission method characterized by comprising.
前記測定装置として、前記X線源およびX線検出器の相対位置を維持し、基材シート上に塗工膜が形成されてなる被測定塗工シートの走行パスの幅方向に往復走査させる走査手段をさらに具備し、
前記第3のステップでは、前記被測定塗工シートの走行状態に対して前記X線源からX線を照射し、前記被測定塗工シートの塗工膜の単位面積当り重量および/または厚みを繰り返し測定する
ことを特徴とする請求項6記載のX線透過法を用いた塗工シートの測定方法。
As the measuring device, a scanning operation is performed in which the relative positions of the X-ray source and the X-ray detector are maintained, and the coating sheet to be measured is formed on the base sheet and reciprocally scanned in the width direction of the traveling path. Further comprising means,
In the third step, the running state of the measured coating sheet is irradiated with X-rays from the X-ray source, and the weight and / or thickness per unit area of the coating film of the measured coating sheet is determined. It measures repeatedly. The measuring method of the coating sheet using the X-ray transmission method of Claim 6 characterized by the above-mentioned.
JP2004277864A 2004-09-24 2004-09-24 Apparatus and method for measuring coated sheet, using x-ray transmission method Withdrawn JP2006090892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277864A JP2006090892A (en) 2004-09-24 2004-09-24 Apparatus and method for measuring coated sheet, using x-ray transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277864A JP2006090892A (en) 2004-09-24 2004-09-24 Apparatus and method for measuring coated sheet, using x-ray transmission method

Publications (1)

Publication Number Publication Date
JP2006090892A true JP2006090892A (en) 2006-04-06

Family

ID=36232021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277864A Withdrawn JP2006090892A (en) 2004-09-24 2004-09-24 Apparatus and method for measuring coated sheet, using x-ray transmission method

Country Status (1)

Country Link
JP (1) JP2006090892A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101116158B1 (en) * 2009-03-23 2012-03-07 원광대학교산학협력단 System and method for measuring thickness of film
CN114166157A (en) * 2021-12-08 2022-03-11 国能锅炉压力容器检验有限公司 Method for intelligently quantifying oxide skin in pipe according to ray intensity curve
JP7252584B1 (en) 2022-03-24 2023-04-05 株式会社都ローラー工業 Thickness measuring method and thickness measuring device
WO2024044968A1 (en) * 2022-08-30 2024-03-07 宁德时代新能源科技股份有限公司 Measurement method and apparatus for electrode sheet
WO2024045682A1 (en) * 2022-09-02 2024-03-07 宁德时代新能源科技股份有限公司 Surface density measurement method, surface density measurement system and computer device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101116158B1 (en) * 2009-03-23 2012-03-07 원광대학교산학협력단 System and method for measuring thickness of film
CN114166157A (en) * 2021-12-08 2022-03-11 国能锅炉压力容器检验有限公司 Method for intelligently quantifying oxide skin in pipe according to ray intensity curve
CN114166157B (en) * 2021-12-08 2023-10-20 国能锅炉压力容器检验有限公司 Intelligent quantitative method for oxide skin in tube according to ray intensity curve
JP7252584B1 (en) 2022-03-24 2023-04-05 株式会社都ローラー工業 Thickness measuring method and thickness measuring device
WO2023182440A1 (en) * 2022-03-24 2023-09-28 株式会社都ローラー工業 Thickness-measuring method and thickness-measuring device
JP2023141992A (en) * 2022-03-24 2023-10-05 株式会社都ローラー工業 Thickness measuring method and thickness measuring device
WO2024044968A1 (en) * 2022-08-30 2024-03-07 宁德时代新能源科技股份有限公司 Measurement method and apparatus for electrode sheet
WO2024045682A1 (en) * 2022-09-02 2024-03-07 宁德时代新能源科技股份有限公司 Surface density measurement method, surface density measurement system and computer device

Similar Documents

Publication Publication Date Title
CN106404811B (en) X-ray transmission inspection apparatus and X-ray transmission inspection method
JP5463422B2 (en) Online detection method of chrome-free coating film thickness on strip steel surface
CN117214206B (en) Surface density full detection method and system
CN114720324B (en) Method, device and system for detecting net coating amount of lithium battery pole piece
JP2008268076A (en) Non-destructive discrimination method, and device
JP2006090892A (en) Apparatus and method for measuring coated sheet, using x-ray transmission method
US6404847B1 (en) Continuously scanning X-ray analyzer having improved readiness and accuracy
JP2006275605A (en) Apparatus and method for measuring thickness of sheet
US5255302A (en) Foil-thickness measuring device
JP2006064580A (en) Measuring device and measuring method of double-layer film sheet using x-ray inspection method
JP2007051978A (en) Measuring device and method of coated sheet using x-ray inspection
JP5408432B2 (en) Radiation detection apparatus and radiation detection method using this apparatus
JP2006275750A (en) Sheet thickness measuring apparatus
JPS6341185B2 (en)
JP4894491B2 (en) Radiation transmission measuring apparatus and radiation transmission measuring method
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
JPS61210932A (en) Method and instrument for fluorescent x-ray analysis of laminated body
JPH10282020A (en) Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor
JP2006112956A (en) Device and method of measuring sheet using x-ray transmission method
JP2000155101A (en) Method and apparatus for quantifying element
JP4464543B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
WO2018062308A1 (en) X-ray ct device, method for measuring electron density and effective atomic number, ct scanning method, and inspection method
JPH0515206B2 (en)
JP2003329430A (en) Method for measuring thickness of work

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070910