WO2023182440A1 - Thickness-measuring method and thickness-measuring device - Google Patents

Thickness-measuring method and thickness-measuring device Download PDF

Info

Publication number
WO2023182440A1
WO2023182440A1 PCT/JP2023/011576 JP2023011576W WO2023182440A1 WO 2023182440 A1 WO2023182440 A1 WO 2023182440A1 JP 2023011576 W JP2023011576 W JP 2023011576W WO 2023182440 A1 WO2023182440 A1 WO 2023182440A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet material
thickness
measuring
measuring means
actuator
Prior art date
Application number
PCT/JP2023/011576
Other languages
French (fr)
Japanese (ja)
Inventor
成康 町田
Original Assignee
株式会社都ローラー工業
成康 町田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社都ローラー工業, 成康 町田 filed Critical 株式会社都ローラー工業
Publication of WO2023182440A1 publication Critical patent/WO2023182440A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness

Definitions

  • the present invention relates to a thickness measuring method for measuring the thickness of a resin film such as an optical film, various metal foils (hereinafter collectively referred to as "sheet materials"), or a coating film on the surface of a sheet material.
  • This invention relates to a measuring device.
  • Resin films such as PET film and TAC film, and metal foils such as copper foil and aluminum foil are used for battery collector plates and fuel cell electrodes installed in electronic devices such as smartphones and LCD TVs, and hybrid vehicles. is used.
  • the conventional measurement method estimates the thickness of the sheet material from the measured values at zigzag measurement points as shown in FIG. It could not be measured directly without extrapolation.
  • the present invention has been made in view of the above circumstances, and the problem to be solved is to estimate the thickness of the sheet material or the coating film on the surface of the sheet material in a direction perpendicular or substantially perpendicular to the conveyance direction of the sheet material. It is an object of the present invention to provide a thickness measuring method and a thickness measuring device that can directly measure thickness without relying on the thickness.
  • the thickness measuring method of the present invention is a method for measuring the thickness of a sheet material or a coating film on the surface of a sheet material, in which the measuring means for measuring the thickness of the sheet material or the coating film on the surface of the sheet material is In this method, the thickness of the sheet material or the coating film on the surface of the sheet material is measured by the measuring means while moving the sheet material in the same direction as the material transportation direction at the same speed or substantially the same speed as the transportation speed of the sheet material.
  • the thickness measuring device of the present invention is a device for measuring the thickness of a sheet material or a coating film on the surface of a sheet material, and includes a measuring means and a measuring means that moves at a speed equal to the conveying speed of the sheet material in the conveying direction of the sheet material. Alternatively, it is equipped with a first actuator that moves at approximately constant speed.
  • the thickness of the sheet material or the coating film on the surface of the sheet material is measured.
  • the thickness of the sheet material in a direction perpendicular or substantially perpendicular to the conveying direction can be directly measured without estimation.
  • FIG. 1 is a schematic diagram showing an example of a sheet material manufacturing device.
  • 2 is a side view of the sheet material manufacturing apparatus shown in FIG. 1.
  • FIG. (a) is a side view which shows an example of T-die
  • (b) is a front view which shows an example of T-die.
  • FIG. 1 is an exploded schematic diagram showing an example of a thickness measuring device.
  • (a) is an explanatory diagram of the operation of the thickness measuring device in the present application
  • (b) is an explanatory diagram of the measurement locus in the thickness measuring device in the present application.
  • FIG. 2 is a schematic diagram showing an example of a coater.
  • FIG. 6 is a schematic diagram showing another example of the coater.
  • the sheet material manufacturing apparatus shown in FIGS. 1 and 2 is a sheet material manufacturing apparatus that manufactures a resin film (sheet material S). 1 and 2, 11 is an extruder, 12 is a T-die, 13 is a cooling roll, 14 is a casting roll, 15 is a conveyance roll, 16 is a thickness measuring device, 17 is a translation unit, and 18 is a winding device. It is.
  • the configuration shown here is the main configuration of the sheet material manufacturing apparatus, and the sheet material manufacturing apparatus also includes other configurations.
  • the extruder 11 is a device that melts resin pellets and extrudes them to the T-die 12, and is mainly equipped with a melting section that melts the resin pellets and a hopper that guides the resin pellets to the melting section.
  • the T-die 12 spreads the molten resin extruded from the extruder 11 in the width direction and discharges it.
  • the T-die 12 shown in FIGS. 3(a) and 3(b) includes a resin inflow path 12a into which the molten resin that has flowed from the extruder 11 flows, and a manifold that disperses the molten resin that has flowed in from the resin inflow path 12a in the width direction. 12b, and a lip 12c for discharging the molten resin that has flowed in from the manifold 12b.
  • the molten resin in the T-die 12 is kept in a molten state by a heater (not shown).
  • the lip 12c is composed of opposing parts that are spaced apart from each other.
  • Each opposing part includes a plurality of divided parts provided along the longitudinal direction.
  • Each divided part is provided with an interval adjuster 12d for adjusting the interval between the opposing divided parts.
  • the spacing adjustment tool 12d is operated by an actuator (not shown), and the thickness of the sheet material S can be adjusted by controlling the actuator to adjust the spacing (lip spacing) between both opposing parts of the spacing adjustment tool 12d. It is set as.
  • the configuration of the T-die 12 shown here is an example, and the T-die 12 may have a configuration other than this.
  • the cooling roll 13 is a roll that rapidly cools and solidifies the molten resin supplied from the T-die 12
  • the casting roll 14 is a roll that forms the sheet material S into a sheet while uniformizing the temperature
  • the conveyance roll 15 is a roll that forms the sheet material S into a sheet shape.
  • the conveying roll and winding device 18 is a device that winds up the formed sheet material S into a roll shape. Existing cooling rolls 13, casting rolls 14, conveying rolls 15, and winding devices 18 can be used.
  • the thickness measuring device 16 is a device that measures the thickness of the sheet material S in the manufacturing process before (upstream) the winding device 18.
  • the thickness measuring device 16 shown in FIG. 4 includes a cross-direction actuator 16b provided on the upper surface side of the base 16a, a transport direction actuator 16c provided on the cross-direction actuator 16b, and a transport direction actuator 16c provided on the transport direction actuator 16c. It is equipped with measuring means 16d to 16h.
  • the base 16a is a flat platform on which the transport direction actuator 16c, the cross direction actuator 16b, etc. are mounted.
  • the cross-direction actuator 16b is attached to the upper surface of the base 16a on the rear side in the conveyance direction along a direction intersecting the conveyance direction of the sheet material S.
  • the cross-direction actuator 16b moves the conveyance direction actuator 16c in a direction intersecting the conveyance direction.
  • An existing linear guide or the like can be used for the cross-direction actuator 16b.
  • the cross-direction actuator 16b of this embodiment includes a cross-direction guide 16i provided in a direction crossing the conveyance direction, and a cross-direction slider 16j that moves along the cross-direction guide 16i.
  • a conveyance direction actuator 16c (specifically, a conveyance direction guide 16k to be described later) is attached to the cross direction slider 16j.
  • the cross-direction slider 16j is configured to be able to reciprocate along the cross-direction guide 16i by a drive source (not shown).
  • the transport direction actuator 16c moves the measuring means 16d to 16h in the transport direction.
  • An existing linear guide or the like can be used as the transport direction actuator 16c.
  • the conveyance direction actuator 16c of this embodiment includes a conveyance direction guide 16k provided along the conveyance direction, and a conveyance direction slider 16m that moves along the conveyance direction guide 16k.
  • a mounting table 16n for mounting the measuring means 16d to 16h is attached to the transport direction slider 16m.
  • the measuring means 16d to 16h measure the thickness of the sheet material S.
  • a sensor using optical interference such as a spectral interference film thickness meter
  • an infrared sensor such as an infrared film thickness measurement sensor, or an existing sensor such as a displacement sensor can be used.
  • a sensor using ⁇ -rays, X-rays, etc. can also be used.
  • the case where five measuring means 16d to 16h are used is taken as an example, but the number of measuring means 16d to 16h may be more or less than five.
  • the five measuring means 16d to 16h of this embodiment are provided at intervals in the longitudinal direction on the upper surface of the mounting table 16n which is long in the cross direction.
  • the installation interval of the measuring means 16d to 16h it can be set to, for example, about 100 mm, 150 mm, 200 mm, 250 mm, or 300 mm.
  • the measuring means 16d to 16h can be installed at wider or narrower intervals.
  • the first measuring means 16d measures the first region S1 of the sheet material S.
  • the thickness of the second region S2 of the sheet material S is determined by the second measuring means 16e, and the thickness of the third region S3 of the sheet material S is determined by the third measuring means 16f.
  • the thickness of the fourth region S4 of the sheet material S is measured by 16g, and the thickness of the fifth region S5 of the sheet material S is measured by the fifth measuring means 16h.
  • the thickness measuring device 16 can be established by itself, but in this embodiment, a lower cross-direction actuator 16p, a lower transport direction actuator 16r, and a counterweight 16s are provided as a counter unit on the lower surface side of the base 16a. There is.
  • the counter unit is a mechanism for canceling or attenuating vibrations caused by the operations of the cross direction actuator 16b, the transport direction actuator 16c, and the measuring means 16d to 16h.
  • the lower cross-direction actuator 16p corresponds to the cross-direction actuator 16b provided on the upper surface side of the base 16a, and moves along a lower cross-direction guide 16t similar to the cross-direction actuator 16b and a lower cross-direction guide 16t.
  • a slider equipped with a lower cross-direction slider 16u is used.
  • the lower cross-direction actuator 16p is provided in an orientation and position that is symmetrical with respect to the cross-direction actuator 16b.
  • the lower conveyance direction actuator 16r corresponds to the conveyance direction actuator 16c provided on the upper surface side of the base 16a, and moves along the same lower conveyance direction guide 16v and the lower conveyance direction guide 16v as the conveyance direction actuator 16c.
  • a device equipped with a lower conveyance direction slider 16w is used.
  • the lower transport direction actuator 16r is provided in an orientation and position that is symmetrical with respect to the transport direction actuator 16c.
  • the lower cross-direction actuator 16p and the lower conveyance direction actuator 16r are arranged point-symmetrically with the cross-direction actuator 16b and the conveyance direction actuator 16c, but depending on the performance of the actuators, the asymmetrical direction and It can also be provided at any position.
  • the counterweight 16s is for balancing the measuring means 16d to 16h and the mounting table 16n provided on the upper surface side of the base 16a, and is a weight having the same weight as the measuring means 16d to 16h and the mounting table 16n. is used.
  • the thickness measuring device 16 of this embodiment moves the measuring means 16d to 16h in a direction intersecting the conveying direction using the cross-direction actuator 16b, and moves the measuring means 16d to 16h using the conveying direction actuator 16c.
  • the thickness of the sheet material S is measured while moving the sheets 16d to 16h in the conveying direction.
  • the measuring means 16d to 16h can also be configured to move only in either the transport direction or a direction intersecting the transport direction.
  • the conveying speed of the measuring means 16d to 16h in the conveying direction is equal to or approximately equal to the conveying speed of the sheet material S in the conveying direction.
  • the conveying speed of the measuring means 16d to 16h in the conveying direction is set to be the same speed or approximately the same speed as the conveying speed of the sheet material S, the measurement trajectory when measuring while moving the measuring means 16d to 16h in the cross direction is , the locus is perpendicular or substantially perpendicular to the sheet material S as shown in FIG.
  • the parallel movement unit 17 is a device that adjusts the winding thickness of the sheet material S by oscillating (swinging) the formed sheet material S before the winding device 18.
  • the parallel movement unit 17 shown in FIG. 1 includes a rotating body 17a, a frame 17b attached to the rotating body 17a, and two guide rolls 17c and 17d held by the frame 17b with an interval in the vertical direction. ing.
  • a drive device including a rotating body 17a (turntable) that can be horizontally rotated by a motor is used as the rotating body 17a.
  • the rotating body 17a is rotated in forward and reverse directions by a motor.
  • the frame 17b holds the guide rolls 17c and 17d, and is attached to the rotating body 17a.
  • the frame 17b shown in FIG. 1 is an upwardly U-shaped member having a cross member fixed to the rotating body 17a and vertical members rising from both longitudinal ends of the cross member.
  • Two guide rolls 17c and 17d are provided at intervals in the vertical direction.
  • the guide rolls 17c and 17d are rolls that guide the sheet material S toward the winding device 18.
  • rolls that can guide the sheet material S in a non-contact state specifically, cylindrical rolls having a plurality of air ejection holes on the outer peripheral surface, are used.
  • an air supply pipe is connected to one end side of both guide rolls 17c and 17d, and air can be supplied into the guide rolls 17c and 17d from an air supply device (not shown) to which the air supply pipe is connected. It's like this.
  • the guide rolls 17c and 17d shown here are just an example, and other rolls such as existing rolls that guide the sheet material S in a contacting state may also be used.
  • the rotating body 17a swings in forward and reverse directions while conveying the sheet material S, and when the sheet material S is wound up by the winding device 18, the thickness of the sheet material S is It is designed to minimize the occurrence of gauge bands (convex bands that appear when wound) caused by unevenness.
  • the T-die 12 and the parallel movement unit 17 are controlled based on the measurement results by the measurement means 16d to 16h.
  • the thickness measuring device 16 and the T-die 12 described here function as one device (lip interval control device), and the thickness measuring device 16 and the parallel movement unit 17 function as one device (parallel movement device).
  • the gap between the lips 12c of the T-die 12 in the portion corresponding to the third region S3 is narrowed, and the gap in the portion of the lip 12c corresponding to the third region S3 of the sheet material S discharged from the T-die 12 thereafter is narrowed.
  • the thickness can be made thinner than before.
  • the gap between the lips 12c of the T-die 12 in the portion corresponding to the third region S3. can be made wider so that the thickness of the portion corresponding to the third region S3 of the sheet material S discharged from the T-die 12 thereafter becomes thicker than before.
  • the parallel movement unit 17 when controlling the parallel movement unit 17 based on the measurement results by the measuring means 16d to 16h, for example, when the measuring means 16d detects thickness unevenness of the sheet material S, the rotation of the rotating body 17a ( Specifically, by changing the rotation speed, rotation direction, rotation angle, etc., it is possible to control the winding thickness to be uniform (to prevent gauge bands from occurring).
  • the sheet material S has uneven thickness, a gauge band will occur when it is wound up by the winding device 18, and a larger load will be applied to that part than other parts, which may cause damage to the sheet material S. be. Since damage to the sheet material S is a cause of product defects, it is desirable that the sheet material S has as little unevenness in thickness as possible.
  • the sheet material manufacturing apparatus of this embodiment can measure the thickness of the sheet material S with high precision, the lip 12c of the T-die 12 and the parallel movement unit 17 can be controlled with high precision, and as a result, the thickness of the sheet material S can be measured with high precision. A sheet material S with less unevenness can be manufactured.
  • the supplied resin pellets are heated and melted by the extruder 11 and supplied to the T-die 12, and the supplied molten resin is spread in the width direction by the T-die 12 and discharged. .
  • the molten resin discharged from the T-die 12 is cooled by a cooling roll 13 and formed into a sheet, and after its temperature is adjusted by a casting roll 14, it is conveyed forward by a conveying roll 15 while being stretched in the vertical and horizontal directions. It is wound up by the winding device 18.
  • the thickness of the sheet material S is measured by the thickness measuring device 16 during the manufacturing process of the sheet material S. Specifically, as shown in FIG. 5(b), the thickness of the first region S1 of the sheet material S is determined by the first measuring means 16d, and the thickness of the second region S2 of the sheet material S is determined by the second measuring means 16e. The thickness of the third region S3 of the sheet material S is determined by the third measuring means 16f, and the thickness of the fourth region S4 of the sheet material S is determined by the fourth measuring means 16g. At 16h, the thickness of the fifth region S5 of the sheet material S is measured.
  • the lip 12c of the T-die 12 and the translation unit 17 are controlled based on the measurement results by the thickness measuring device 16.
  • the thickness of the sheet material S is adjusted in the manufacturing process of the sheet material S, and the parallel movement unit 17, more specifically, is adjusted based on the measurement results.
  • gauge bands are less likely to occur.
  • the coater shown in FIG. 6 is a device that forms a coating film on the surface of a resin film (sheet material S), and is equipped with the thickness measuring device 30 of the present application.
  • 21 is a feeding device
  • 22 is a winding device
  • 23 is a conveyance roll
  • 24 is an impression roll
  • 25 is a container for coating liquid
  • 26 is a gravure roll
  • 27 is a blade
  • 28 is a touch roll
  • 29 is a dryer.
  • a furnace, 30 is a thickness measuring device
  • 31 is a translation unit.
  • the feeding device 21 is a device that feeds out the sheet material S wound into a roll
  • the winding device is a device that winds up the sheet material S.
  • Existing devices can be used for the feeding device 21 and the winding device 22.
  • a plurality of transport rolls 23 for transporting the sheet material S are arranged between the feeding device 21 and the winding device 22.
  • a coating means including an impression roll 24, a coating liquid container 25, a gravure roll 26, and a blade 27 is provided ahead of the feeding device 21.
  • the coating means is a means for applying a coating liquid to the surface of the sheet material S. Existing ones can be used for the impression roll 24, the coating liquid container 25, the gravure roll 26, and the blade 27.
  • the coating means shown here is an example, and the coating means may have a structure other than this.
  • an impression roll 24 and a slot die 32 can be used as the coating means.
  • An existing slot die 32 can be used. Note that the other configurations in FIG. 7 are similar to those of the coater in FIG. 6, so the same configurations are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a drying oven 29 for drying the coating liquid applied to the sheet material S to form a coating film is provided ahead of the coating means.
  • An existing drying oven 29 can be used.
  • a thickness measuring device 30 for measuring the thickness of the coating film on the surface of the sheet material S is provided in front of the drying oven 29, and a parallel movement device for swinging the sheet material S is provided in front of the thickness measuring device 30.
  • a unit 31 is provided.
  • the configurations of the thickness measurement device 30 and the translation unit 31 are similar to those of the thickness measurement device 16 and the translation unit 17 of the first embodiment, respectively.
  • the thickness measuring device 30 of this embodiment is upside down from the thickness measuring device 16 of the first embodiment so that it can measure the thickness of the coating film of the sheet material S passing under the thickness measuring device 30. ing.
  • the coating means of this embodiment is controlled by a control means (not shown). Specifically, the coating means and the parallel movement unit 31 are controlled based on the actual value obtained by measurement with the thickness measuring device 30. For example, if the thickness (actual value) of the coating film measured by the thickness measuring device 30 is uneven, the angle and interval of the impression roll 24 and the gravure roll 26, the pressing force of the blade 27, etc. are controlled.
  • the parallel movement unit 31 of this embodiment is also controlled by a control means (not shown). Specifically, the rotation (specifically, the rotation speed, rotation direction, rotation angle, etc.) of the rotating body of the parallel movement unit 31 is changed based on the actual measurement value obtained by measurement with the thickness measurement device 30, The winding thickness is controlled to be uniform (so that no gauge band occurs).
  • the sheet material S coated with the coating liquid is transported forward and passes through a drying oven 29.
  • the coating liquid applied to the surface of the sheet material S is dried in the drying oven 29 to form a coating film.
  • the sheet material S that has passed through the drying oven 29 passes below the thickness measuring device 30, and the thickness of the coating film on the surface of the sheet material S is measured by the thickness measuring device 30.
  • the thickness measuring device 30 measures the coating film on the surface of the sheet material S in a direction perpendicular or approximately perpendicular to the conveyance direction of the sheet material S, or in a direction perpendicular to or approximately perpendicular to the conveying direction of the sheet material S, or in a direction perpendicular to or approximately perpendicular to the conveyance direction of the sheet material S, or in a direction perpendicular to or approximately perpendicular to the conveyance direction of the sheet material S, or Specifically, the thickness in a direction parallel or substantially parallel to the longitudinal direction of the impression roll 24 or gravure roll 26 constituting the coating means is measured.
  • the thickness measuring device 30 (specifically, the measuring means of the thickness measuring device 30) is operated at a speed equal to the conveying speed of the sheet material S in the same direction as the conveying direction of the sheet material S. It is preferable to perform this while moving at high speed or approximately constant speed. More preferably, the thickness of the coating film is measured while moving the measuring means of the thickness measuring device 30 in a direction perpendicular or substantially perpendicular to the conveyance direction of the sheet material S.
  • both or one of the coating means and the parallel movement unit 31 is controlled based on the measured value.
  • the coating means is controlled, the thickness of the subsequently formed coating film is smoothed and the occurrence of gauge bands is suppressed.
  • the parallel movement unit 31 is controlled, the occurrence of uneven winding in the winding device 22 is reduced, and the occurrence of gauge bands is suppressed.
  • the coater of this embodiment can be expected to have effects other than suppressing the occurrence of gauge bands.
  • variations in the film thickness of the applied coating liquid lead to a decrease in the quality of the manufactured sheet material.
  • a coating liquid having a light transmitting function is applied to the surface of the sheet material in order to improve the light transmittance of the sheet material.
  • the light transmittance may be partially inhibited.
  • the coating method can be controlled with higher precision than conventional coaters, it can be expected to have the effect that variations in coating liquid film thickness are less likely to occur.
  • the coater equipped with the thickness measuring device 30 of the present application can measure the film thickness of the coating liquid on the surface of the sheet material S while conveying it, in other words, can measure the film thickness of the coating liquid in-line. A sufficient effect can be expected even in cases where in-line control of coating liquid film thickness is desired.
  • a counter unit is provided on the back side of the base 16a to cancel or attenuate vibrations generated by the operations of the cross-direction actuator 16b, the transport direction actuator 16c, and the measuring means 16d to 16h.
  • the counter unit may be provided as needed, and can be omitted if unnecessary. The same applies to the second embodiment.
  • the thickness measuring device 16 is placed below the sheet material S (on the back side), and the thickness of the sheet material S is measured from the bottom side. It is also possible to arrange it on the upper side (front side) of the sheet material S and to measure the thickness of the sheet material S from the upper side. Also in the case of the second embodiment, the measurement direction can be set depending on the position where the coating film is formed.
  • the measuring means 16d to 16h of the thickness measuring device 16 measure the sheet material S from one side. It is also possible to use one that includes a device (for example, a light emitting section) placed on the upper side and a device (for example, a light receiving section) placed on the bottom side of the sheet material S. The same applies to the second embodiment.
  • the thickness of the sheet material S is measured while moving the measuring means 16d to 16h in a direction intersecting the conveyance direction of the sheet material S.
  • the measuring means does not need to be moved in the direction intersecting the conveyance direction of the sheet material S. The same applies to the second embodiment.
  • the entire widthwise thickness of the sheet material S can be measured without moving the measuring means. Even when the width can be measured, the measuring means does not need to be moved in a direction intersecting the conveying direction of the sheet material S. The same applies to the second embodiment.
  • the sheet material S is a resin film
  • the sheet material S also includes materials other than resin films such as metal foil.
  • the T-die 12 is not used, so the measurement result of the thickness of the metal foil is not used to control the T-die 12.
  • the parallel movement unit 17, more specifically, the rotation speed, rotation direction, rotation angle, etc. of the rotating body 17a may be controlled based on the measurement result of the thickness of the metal foil. I can do it.
  • the second embodiment the same applies to the second embodiment.
  • each of the above embodiments are merely examples, and the present invention is not limited to the configurations of these embodiments.
  • the present invention can be modified, such as omitting, replacing, adding, etc., to the configuration as long as the intended purpose can be achieved.
  • the thickness measuring device 16 of the present application can be used by being mounted on various sheet material manufacturing devices, and the measurement results with the thickness measuring device 16 can be used to measure the lip distance of the T-die 12, the parallel movement unit 17, and the coating means. Can be used for control.

Abstract

Provided are a thickness-measuring method and a thickness-measuring device with which it is possible to directly measure the thickness of a sheet member or a coating film on the surface of a sheet member in a direction that is orthogonal or substantially orthogonal to a transport direction of the sheet member, without relying on estimation. This thickness-measuring method includes measuring the thickness of a sheet member or a coating film on the surface of a sheet member using a measuring means while moving the measuring means at a speed that is equivalent or substantially equivalent to the transport speed of the sheet member in the same direction as the transport direction of the sheet member. This thickness-measuring device comprises a measuring means, and a first actuator for moving the measuring means at a speed that is equivalent or substantially equivalent to the transport speed of a sheet member in the transport direction of the sheet member.

Description

厚さ測定方法及び厚さ測定装置Thickness measurement method and thickness measurement device
 本発明は、光学系フィルムに代表される樹脂製フィルムや各種金属箔(以下、これらをまとめて「シート材」という)又はシート材表面の塗膜の厚さを測定する厚さ測定方法及び厚さ測定装置に関する。 The present invention relates to a thickness measuring method for measuring the thickness of a resin film such as an optical film, various metal foils (hereinafter collectively referred to as "sheet materials"), or a coating film on the surface of a sheet material. This invention relates to a measuring device.
 スマートフォンや液晶TV等の電子機器、ハイブリッド車に搭載される電池の集電極板や燃料電池の電極等には、PETフィルムやTACフィルム等の樹脂製フィルムや、銅箔やアルミ箔等の金属箔が使用されている。 Resin films such as PET film and TAC film, and metal foils such as copper foil and aluminum foil are used for battery collector plates and fuel cell electrodes installed in electronic devices such as smartphones and LCD TVs, and hybrid vehicles. is used.
 この種のシート材では厚さの均一性が求められるため、製造工程において厚さ測定が行われる。従来、シート材の厚さを測定する方法として、センサをシート材の搬送方向に交差する方向に移動させながら、シート材の厚さの測定する方法(特許文献1)が知られている。 Because this type of sheet material requires uniformity in thickness, thickness measurement is performed during the manufacturing process. Conventionally, as a method for measuring the thickness of a sheet material, a method is known in which the thickness of the sheet material is measured while moving a sensor in a direction intersecting the conveyance direction of the sheet material (Patent Document 1).
特開2014-32037号公報Japanese Patent Application Publication No. 2014-32037
 ところが、従来の測定方法は、図8に示すようなジグザグの測定点の測定値からシート材の厚さを推定する方法であり、シート材の搬送方向に直交又は略直交する方向における厚さを推定によることなく、直接測定することはできなかった。 However, the conventional measurement method estimates the thickness of the sheet material from the measured values at zigzag measurement points as shown in FIG. It could not be measured directly without extrapolation.
 本発明はかかる事情に鑑みてなされたものであり、その解決課題は、シート材又はシート材表面の塗膜のうち、当該シート材の搬送方向に直交又は略直交する方向における厚さを、推定によることなく直接測定することのできる厚さ測定方法及び厚さ測定装置を提供することにある。 The present invention has been made in view of the above circumstances, and the problem to be solved is to estimate the thickness of the sheet material or the coating film on the surface of the sheet material in a direction perpendicular or substantially perpendicular to the conveyance direction of the sheet material. It is an object of the present invention to provide a thickness measuring method and a thickness measuring device that can directly measure thickness without relying on the thickness.
 [厚さ測定方法]
 本発明の厚さ測定方法は、シート材又はシート材表面の塗膜の厚さ測定方法であって、搬送中のシート材又はシート材表面の塗膜の厚さを測定する測定手段を当該シート材の搬送方向と同方向に当該シート材の搬送速度と等速又は略等速で移動させながら、当該測定手段によって当該シート材又はシート材表面の塗膜の厚さを測定する方法である。
[Thickness measurement method]
The thickness measuring method of the present invention is a method for measuring the thickness of a sheet material or a coating film on the surface of a sheet material, in which the measuring means for measuring the thickness of the sheet material or the coating film on the surface of the sheet material is In this method, the thickness of the sheet material or the coating film on the surface of the sheet material is measured by the measuring means while moving the sheet material in the same direction as the material transportation direction at the same speed or substantially the same speed as the transportation speed of the sheet material.
 [厚さ測定装置]
 本発明の厚さ測定装置は、シート材又はシート材表面の塗膜の厚さ測定装置であって、測定手段と当該測定手段を前記シート材の搬送方向に当該シート材の搬送速度と等速又は略等速で移動させる第一アクチュエータを備えたものである。
[Thickness measuring device]
The thickness measuring device of the present invention is a device for measuring the thickness of a sheet material or a coating film on the surface of a sheet material, and includes a measuring means and a measuring means that moves at a speed equal to the conveying speed of the sheet material in the conveying direction of the sheet material. Alternatively, it is equipped with a first actuator that moves at approximately constant speed.
 本発明によれば、測定手段をシート材の搬送方向と同方向に移動させながらシート材又はシート材表面の塗膜の厚さを測定するため、シート材又はシート材表面の塗膜のうち、当該シート材の搬送方向に直交又は略直交する方向における厚さを推定によることなく直接測定することができる。 According to the present invention, in order to measure the thickness of the sheet material or the coating film on the surface of the sheet material while moving the measuring means in the same direction as the conveyance direction of the sheet material, the thickness of the sheet material or the coating film on the surface of the sheet material is measured. The thickness of the sheet material in a direction perpendicular or substantially perpendicular to the conveying direction can be directly measured without estimation.
シート材製造装置の一例を示す概要図。FIG. 1 is a schematic diagram showing an example of a sheet material manufacturing device. 図1に示すシート材製造装置の側面図。2 is a side view of the sheet material manufacturing apparatus shown in FIG. 1. FIG. (a)はTダイの一例を示す側面図、(b)はTダイの一例を示す正面図。(a) is a side view which shows an example of T-die, (b) is a front view which shows an example of T-die. 厚さ測定装置の一例を示す分解概要図。FIG. 1 is an exploded schematic diagram showing an example of a thickness measuring device. (a)は本願における厚さ測定装置の動作説明図、(b)は本願における厚さ測定装置での測定軌跡の説明図。(a) is an explanatory diagram of the operation of the thickness measuring device in the present application, and (b) is an explanatory diagram of the measurement locus in the thickness measuring device in the present application. コーターの一例を示す概要図。FIG. 2 is a schematic diagram showing an example of a coater. コーターの他例を示す概要図。FIG. 6 is a schematic diagram showing another example of the coater. 従来の厚さ測定装置での測定の軌跡の説明図。An explanatory diagram of a measurement trajectory with a conventional thickness measuring device.
 (実施形態1)
 本発明の実施形態の一例を、図面を参照して説明する。一例として図1及び図2に示すシート材製造装置は、樹脂製フィルム(シート材S)を製造するシート材製造装置である。図1及び図2において、11は押出し機、12はTダイ、13は冷却ロール、14はキャスティングロール、15は搬送ロール、16は厚さ測定装置、17は平行移動ユニット、18は巻取り装置である。ここに示す構成はシート材製造装置の主要な構成であり、シート材製造装置にはこれ以外の構成も含まれる。
(Embodiment 1)
An example of an embodiment of the present invention will be described with reference to the drawings. As an example, the sheet material manufacturing apparatus shown in FIGS. 1 and 2 is a sheet material manufacturing apparatus that manufactures a resin film (sheet material S). 1 and 2, 11 is an extruder, 12 is a T-die, 13 is a cooling roll, 14 is a casting roll, 15 is a conveyance roll, 16 is a thickness measuring device, 17 is a translation unit, and 18 is a winding device. It is. The configuration shown here is the main configuration of the sheet material manufacturing apparatus, and the sheet material manufacturing apparatus also includes other configurations.
 前記押出し機11は樹脂ペレットを溶融してTダイ12に押し出す装置であり、樹脂ペレットを溶融する溶融部と、樹脂ペレットを溶融部に誘導するホッパーを主要構成として備えている。 The extruder 11 is a device that melts resin pellets and extrudes them to the T-die 12, and is mainly equipped with a melting section that melts the resin pellets and a hopper that guides the resin pellets to the melting section.
 前記Tダイ12は、押出し機11から押し出された溶融樹脂を幅方向に広げて吐出するものである。一例として図3(a)(b)に示すTダイ12は、押出し機11から流入した溶融樹脂が流入する樹脂流入路12aと、樹脂流入路12aから流入した溶融樹脂を幅方向に分散するマニホールド12bと、マニホールド12bから流入した溶融樹脂を吐出するリップ12cを主要構成として備えている。Tダイ12内の溶融樹脂は図示しないヒータによって溶融状態が保たれるようにしてある。 The T-die 12 spreads the molten resin extruded from the extruder 11 in the width direction and discharges it. As an example, the T-die 12 shown in FIGS. 3(a) and 3(b) includes a resin inflow path 12a into which the molten resin that has flowed from the extruder 11 flows, and a manifold that disperses the molten resin that has flowed in from the resin inflow path 12a in the width direction. 12b, and a lip 12c for discharging the molten resin that has flowed in from the manifold 12b. The molten resin in the T-die 12 is kept in a molten state by a heater (not shown).
 リップ12cは間隔をあけて対向配置された対向パーツで構成されている。各対向パーツは長手方向に沿って設けられた複数の分割パーツを備えている。各分割パーツには対向する分割パーツとの間隔を調整する間隔調整具12dが設けられている。間隔調整具12dは図示しないアクチュエータで動作するようにしてあり、アクチュエータの制御によって間隔調整具12dの両対向パーツの間隔(リップ間隔)を調整することで、シート材Sの厚さを調整できるようにしてある。ここで示すTダイ12の構成は一例であり、Tダイ12はこれ以外の構成であってもよい。 The lip 12c is composed of opposing parts that are spaced apart from each other. Each opposing part includes a plurality of divided parts provided along the longitudinal direction. Each divided part is provided with an interval adjuster 12d for adjusting the interval between the opposing divided parts. The spacing adjustment tool 12d is operated by an actuator (not shown), and the thickness of the sheet material S can be adjusted by controlling the actuator to adjust the spacing (lip spacing) between both opposing parts of the spacing adjustment tool 12d. It is set as. The configuration of the T-die 12 shown here is an example, and the T-die 12 may have a configuration other than this.
 前記冷却ロール13はTダイ12から供給された溶融樹脂を急冷して固化するロール、キャスティングロール14はシート材Sの温度を均一化しながらシート状に成形するロール、搬送ロール15はシート材Sを搬送するロール、巻取り装置18は成形されたシート材Sをロール状に巻き取る装置である。冷却ロール13やキャスティングロール14、搬送ロール15、巻取り装置18には既存のものを用いることができる。 The cooling roll 13 is a roll that rapidly cools and solidifies the molten resin supplied from the T-die 12, the casting roll 14 is a roll that forms the sheet material S into a sheet while uniformizing the temperature, and the conveyance roll 15 is a roll that forms the sheet material S into a sheet shape. The conveying roll and winding device 18 is a device that winds up the formed sheet material S into a roll shape. Existing cooling rolls 13, casting rolls 14, conveying rolls 15, and winding devices 18 can be used.
 前記厚さ測定装置16は、巻取り装置18の手前(上流)で、製造過程にあるシート材Sの厚さを測定する装置である。一例として図4に示す厚さ測定装置16は、ベース16aの上面側に設けられた交差方向アクチュエータ16bと、交差方向アクチュエータ16b上に設けられた搬送方向アクチュエータ16cと、搬送方向アクチュエータ16c上に設けられた測定手段16d~16hを備えている。 The thickness measuring device 16 is a device that measures the thickness of the sheet material S in the manufacturing process before (upstream) the winding device 18. As an example, the thickness measuring device 16 shown in FIG. 4 includes a cross-direction actuator 16b provided on the upper surface side of the base 16a, a transport direction actuator 16c provided on the cross-direction actuator 16b, and a transport direction actuator 16c provided on the transport direction actuator 16c. It is equipped with measuring means 16d to 16h.
 前記ベース16aは、搬送方向アクチュエータ16cや交差方向アクチュエータ16b等を載せる平板状の台である。ベース16aの上面であって搬送方向後方側には、前記交差方向アクチュエータ16bがシート材Sの搬送方向に交差する方向に沿って取り付けられている。 The base 16a is a flat platform on which the transport direction actuator 16c, the cross direction actuator 16b, etc. are mounted. The cross-direction actuator 16b is attached to the upper surface of the base 16a on the rear side in the conveyance direction along a direction intersecting the conveyance direction of the sheet material S.
 前記交差方向アクチュエータ16bは、搬送方向アクチュエータ16cを搬送方向に交差する方向に移動させるものである。交差方向アクチュエータ16bには、既存のリニアガイド等を用いることができる。この実施形態の交差方向アクチュエータ16bは、搬送方向に交差する向きに設けられた交差方向ガイド16iと、交差方向ガイド16iに沿って移動する交差方向スライダ16jを備えている。 The cross-direction actuator 16b moves the conveyance direction actuator 16c in a direction intersecting the conveyance direction. An existing linear guide or the like can be used for the cross-direction actuator 16b. The cross-direction actuator 16b of this embodiment includes a cross-direction guide 16i provided in a direction crossing the conveyance direction, and a cross-direction slider 16j that moves along the cross-direction guide 16i.
 前記交差方向スライダ16jには、搬送方向アクチュエータ16c(具体的には、後述する搬送方向ガイド16k)が取り付けられている。交差方向スライダ16jは、図示しない駆動源によって交差方向ガイド16iに沿って往復移動できるようにしてある。 A conveyance direction actuator 16c (specifically, a conveyance direction guide 16k to be described later) is attached to the cross direction slider 16j. The cross-direction slider 16j is configured to be able to reciprocate along the cross-direction guide 16i by a drive source (not shown).
 前記搬送方向アクチュエータ16cは、測定手段16d~16hを搬送方向に移動させるものである。搬送方向アクチュエータ16cには、既存のリニアガイド等を用いることができる。この実施形態の搬送方向アクチュエータ16cは、搬送方向に沿って設けられた搬送方向ガイド16kと、搬送方向ガイド16kに沿って移動する搬送方向スライダ16mを備えている。前記搬送方向スライダ16mには、測定手段16d~16hを載置するための載置台16nが取り付けられている。 The transport direction actuator 16c moves the measuring means 16d to 16h in the transport direction. An existing linear guide or the like can be used as the transport direction actuator 16c. The conveyance direction actuator 16c of this embodiment includes a conveyance direction guide 16k provided along the conveyance direction, and a conveyance direction slider 16m that moves along the conveyance direction guide 16k. A mounting table 16n for mounting the measuring means 16d to 16h is attached to the transport direction slider 16m.
 前記測定手段16d~16hはシート材Sの厚さを測定するものである。測定手段16d~16hには、分光干渉膜厚計等の光学干渉を利用したセンサのほか、赤外線膜厚測定センサ等の赤外線センサ、変位センサ等の既存のセンサを用いることができる。シート材Sが不透明材料からなる場合、β線やX線等を利用したセンサ等を用いることもできる。 The measuring means 16d to 16h measure the thickness of the sheet material S. As the measuring means 16d to 16h, in addition to a sensor using optical interference such as a spectral interference film thickness meter, an infrared sensor such as an infrared film thickness measurement sensor, or an existing sensor such as a displacement sensor can be used. When the sheet material S is made of an opaque material, a sensor using β-rays, X-rays, etc. can also be used.
 この実施形態では、五つの測定手段16d~16hを用いる場合を一例としているが、測定手段16d~16hは五つより多くても少なくてもよい。この実施形態の五つの測定手段16d~16hは、交差方向に長い載置台16nの上面に、その長手方向に間隔をあけて設けられている。測定手段16d~16hの設置間隔に特に限定はないが、たとえば、100mm、150mm、200mm、250mm、300mm程度とすることができる。測定手段16d~16hはこれより広い間隔で設置することも、狭い間隔で設置することもできる。 In this embodiment, the case where five measuring means 16d to 16h are used is taken as an example, but the number of measuring means 16d to 16h may be more or less than five. The five measuring means 16d to 16h of this embodiment are provided at intervals in the longitudinal direction on the upper surface of the mounting table 16n which is long in the cross direction. Although there is no particular limitation on the installation interval of the measuring means 16d to 16h, it can be set to, for example, about 100 mm, 150 mm, 200 mm, 250 mm, or 300 mm. The measuring means 16d to 16h can be installed at wider or narrower intervals.
 図5(b)に示すように、この実施形態では、仮想的にシート材Sをその幅方向に五つの領域に区分けした場合に、第一の測定手段16dでシート材Sの第一領域S1の厚さが、第二の測定手段16eでシート材Sの第二領域S2の厚さが、第三の測定手段16fでシート材Sの第三領域S3の厚さが、第四の測定手段16gでシート材Sの第四領域S4の厚さが、第五の測定手段16hでシート材Sの第五領域S5の厚さが測定されるようにしてある。 As shown in FIG. 5(b), in this embodiment, when the sheet material S is virtually divided into five regions in the width direction, the first measuring means 16d measures the first region S1 of the sheet material S. The thickness of the second region S2 of the sheet material S is determined by the second measuring means 16e, and the thickness of the third region S3 of the sheet material S is determined by the third measuring means 16f. The thickness of the fourth region S4 of the sheet material S is measured by 16g, and the thickness of the fifth region S5 of the sheet material S is measured by the fifth measuring means 16h.
 前記厚さ測定装置16はこれだけでも成立するが、この実施形態では、ベース16aの下面側に、カウンターユニットとして、下部交差方向アクチュエータ16pと、下部搬送方向アクチュエータ16rと、カウンターウェイト16sが設けられている。カウンターユニットは、交差方向アクチュエータ16b、搬送方向アクチュエータ16c及び測定手段16d~16hの動作によって生じる振動を打ち消す又は減衰するための機構である。 The thickness measuring device 16 can be established by itself, but in this embodiment, a lower cross-direction actuator 16p, a lower transport direction actuator 16r, and a counterweight 16s are provided as a counter unit on the lower surface side of the base 16a. There is. The counter unit is a mechanism for canceling or attenuating vibrations caused by the operations of the cross direction actuator 16b, the transport direction actuator 16c, and the measuring means 16d to 16h.
 前記下部交差方向アクチュエータ16pはベース16aの上面側に設けられた交差方向アクチュエータ16bに相当するものであり、交差方向アクチュエータ16bと同様の下部交差方向ガイド16tと、下部交差方向ガイド16tに沿って移動する下部交差方向スライダ16uを備えたものを用いている。下部交差方向アクチュエータ16pは、交差方向アクチュエータ16bと点対称となる向き及び位置に設けられている。 The lower cross-direction actuator 16p corresponds to the cross-direction actuator 16b provided on the upper surface side of the base 16a, and moves along a lower cross-direction guide 16t similar to the cross-direction actuator 16b and a lower cross-direction guide 16t. A slider equipped with a lower cross-direction slider 16u is used. The lower cross-direction actuator 16p is provided in an orientation and position that is symmetrical with respect to the cross-direction actuator 16b.
 前記下部搬送方向アクチュエータ16rはベース16a上面側に設けられた搬送方向アクチュエータ16cに相当するものであり、搬送方向アクチュエータ16cと同様の下部搬送方向ガイド16vと、下部搬送方向ガイド16vに沿って移動する下部搬送方向スライダ16wを備えたものを用いている。下部搬送方向アクチュエータ16rは、搬送方向アクチュエータ16cと点対称になる向き及び位置に設けられている。 The lower conveyance direction actuator 16r corresponds to the conveyance direction actuator 16c provided on the upper surface side of the base 16a, and moves along the same lower conveyance direction guide 16v and the lower conveyance direction guide 16v as the conveyance direction actuator 16c. A device equipped with a lower conveyance direction slider 16w is used. The lower transport direction actuator 16r is provided in an orientation and position that is symmetrical with respect to the transport direction actuator 16c.
 この実施形態では、下部交差方向アクチュエータ16pや下部搬送方向アクチュエータ16rは、交差方向アクチュエータ16b、搬送方向アクチュエータ16cと点対称に配置する場合を一例としているが、アクチュエータの性能によっては、非対称の向き及び位置に設けることもできる。 In this embodiment, the lower cross-direction actuator 16p and the lower conveyance direction actuator 16r are arranged point-symmetrically with the cross-direction actuator 16b and the conveyance direction actuator 16c, but depending on the performance of the actuators, the asymmetrical direction and It can also be provided at any position.
 前記カウンターウェイト16sは、ベース16aの上面側に設けられた測定手段16d~16h及び載置台16nとのつり合いを取るものであり、測定手段16d~16h及び載置台16nの重さと同じ重さの重りを用いている。 The counterweight 16s is for balancing the measuring means 16d to 16h and the mounting table 16n provided on the upper surface side of the base 16a, and is a weight having the same weight as the measuring means 16d to 16h and the mounting table 16n. is used.
 図5(a)に示すように、この実施形態の厚さ測定装置16は、交差方向アクチュエータ16bによって測定手段16d~16hを搬送方向と交差する方向に移動させるとともに、搬送方向アクチュエータ16cによって測定手段16d~16hを搬送方向に移動させながら、シート材Sの厚さを測定するようにしてある。測定手段16d~16hは搬送方向及び搬送方向に交差する方向のいずれか一方にのみ移動するようにすることもできる。 As shown in FIG. 5(a), the thickness measuring device 16 of this embodiment moves the measuring means 16d to 16h in a direction intersecting the conveying direction using the cross-direction actuator 16b, and moves the measuring means 16d to 16h using the conveying direction actuator 16c. The thickness of the sheet material S is measured while moving the sheets 16d to 16h in the conveying direction. The measuring means 16d to 16h can also be configured to move only in either the transport direction or a direction intersecting the transport direction.
 測定手段16d~16hの搬送方向への搬送速度は、シート材Sの搬送方向への搬送速度と等速又は略等速とするのが好ましい。測定手段16d~16hの搬送方向への搬送速度を、シート材Sの搬送速度と等速又は略等速とした場合、測定手段16d~16hを交差方向に移動させながら測定したときの測定軌跡が、図5(b)に示すようなシート材Sに直交又は略直交する軌跡になるため、シート材Sの測定漏れの範囲を最小限に抑えることができ、高精度の測定が可能である。 It is preferable that the conveying speed of the measuring means 16d to 16h in the conveying direction is equal to or approximately equal to the conveying speed of the sheet material S in the conveying direction. When the conveying speed of the measuring means 16d to 16h in the conveying direction is set to be the same speed or approximately the same speed as the conveying speed of the sheet material S, the measurement trajectory when measuring while moving the measuring means 16d to 16h in the cross direction is , the locus is perpendicular or substantially perpendicular to the sheet material S as shown in FIG.
 前記平行移動ユニット17は、巻取り装置18の手前で、成形されたシート材Sをオシレート(揺動)してシート材Sの巻き取り厚を調整する装置である。一例として図1に示す平行移動ユニット17は、回転体17aと、回転体17aに取り付けられたフレーム17bと、フレーム17bに上下方向に間隔開けて保持された二本のガイドロール17c、17dを備えている。 The parallel movement unit 17 is a device that adjusts the winding thickness of the sheet material S by oscillating (swinging) the formed sheet material S before the winding device 18. As an example, the parallel movement unit 17 shown in FIG. 1 includes a rotating body 17a, a frame 17b attached to the rotating body 17a, and two guide rolls 17c and 17d held by the frame 17b with an interval in the vertical direction. ing.
 この実施形態では、回転体17aとして、モータによって水平回転可能な回転体17a(ターンテーブル)を備えた駆動装置を用いている。回転体17aはモータによって正逆方向に回転するようにしてある。 In this embodiment, a drive device including a rotating body 17a (turntable) that can be horizontally rotated by a motor is used as the rotating body 17a. The rotating body 17a is rotated in forward and reverse directions by a motor.
 前記フレーム17bはガイドロール17c、17dを保持するものであり、前記回転体17aに取り付けられている。一例として図1に示すフレーム17bは、回転体17aに固定された横材と横材の長手方向両端から立ち上がる縦材を備えた上向きコ字状の部材であり、対向する二枚の縦材間に二本のガイドロール17c、17dが上下方向に間隔をあけて設けられている。 The frame 17b holds the guide rolls 17c and 17d, and is attached to the rotating body 17a. As an example, the frame 17b shown in FIG. 1 is an upwardly U-shaped member having a cross member fixed to the rotating body 17a and vertical members rising from both longitudinal ends of the cross member. Two guide rolls 17c and 17d are provided at intervals in the vertical direction.
 前記ガイドロール17c、17dは、シート材Sを巻取り装置18に向けて案内するロールである。この実施形態では、ガイドロール17c、17dとして、非接触の状態でシート材Sを案内できるロール、具体的には、外周面に複数のエア噴出孔を備えた円筒状ロールを用いている。 The guide rolls 17c and 17d are rolls that guide the sheet material S toward the winding device 18. In this embodiment, as the guide rolls 17c and 17d, rolls that can guide the sheet material S in a non-contact state, specifically, cylindrical rolls having a plurality of air ejection holes on the outer peripheral surface, are used.
 図示は省略しているが、両ガイドロール17c、17dの一端側にはエア供給管が接続され、エア供給管が接続された図示しないエア供給装置からガイドロール17c、17d内にエアを供給できるようにしてある。ここに示すガイドロール17c、17dは一例であり、接触した状態でシート材Sを案内する既存のロール等、これ以外のものを用いることもできる。 Although not shown, an air supply pipe is connected to one end side of both guide rolls 17c and 17d, and air can be supplied into the guide rolls 17c and 17d from an air supply device (not shown) to which the air supply pipe is connected. It's like this. The guide rolls 17c and 17d shown here are just an example, and other rolls such as existing rolls that guide the sheet material S in a contacting state may also be used.
 この実施形態の平行移動ユニット17は、シート材Sの搬送中に回転体17aが正逆方向に首振りするようにしてあり、巻取り装置18に巻き取られた際に、シート材Sの厚さムラに起因するゲージバンド(巻き取られた際に現れる凸状の帯)の発生を極力抑えられるようにしてある。 In the parallel movement unit 17 of this embodiment, the rotating body 17a swings in forward and reverse directions while conveying the sheet material S, and when the sheet material S is wound up by the winding device 18, the thickness of the sheet material S is It is designed to minimize the occurrence of gauge bands (convex bands that appear when wound) caused by unevenness.
 この実施形態では、測定手段16d~16hでの測定結果に基づいて、Tダイ12や平行移動ユニット17が制御されるようにしてある。ここで説明する厚さ測定装置16及びTダイ12は一つの装置(リップ間隔制御装置)として機能し、厚さ測定装置16及び平行移動ユニット17は一つの装置(平行移動装置)として機能する。 In this embodiment, the T-die 12 and the parallel movement unit 17 are controlled based on the measurement results by the measurement means 16d to 16h. The thickness measuring device 16 and the T-die 12 described here function as one device (lip interval control device), and the thickness measuring device 16 and the parallel movement unit 17 function as one device (parallel movement device).
 たとえば、測定手段16d~16hでの測定結果に基づいてTダイ12の制御を行う場合、測定手段16fによって図5(b)の第三領域S3が他の部分に比べて厚いと測定された場合、Tダイ12のリップ12cのうち、第三領域S3に相当する部分のリップ12cの隙間を狭くし、それ以降にTダイ12から吐出されるシート材Sの第三領域S3に相当する部分の厚さがそれ以前よりも薄くなるようにすることができる。 For example, when controlling the T-die 12 based on the measurement results by the measuring means 16d to 16h, if the third region S3 in FIG. 5(b) is measured to be thicker than other parts by the measuring means 16f, , the gap between the lips 12c of the T-die 12 in the portion corresponding to the third region S3 is narrowed, and the gap in the portion of the lip 12c corresponding to the third region S3 of the sheet material S discharged from the T-die 12 thereafter is narrowed. The thickness can be made thinner than before.
 これとは反対に、測定手段16fによって第三領域S3が他の部分に比べて薄いと測定された場合、Tダイ12のリップ12cのうち、第三領域S3に相当する部分のリップ12cの隙間を広くし、それ以降にTダイ12から吐出されるシート材Sの第三領域S3に相当する部分の厚さがそれ以前よりも厚くなるようにすることができる。 On the contrary, if the measuring means 16f determines that the third region S3 is thinner than the other portions, the gap between the lips 12c of the T-die 12 in the portion corresponding to the third region S3. can be made wider so that the thickness of the portion corresponding to the third region S3 of the sheet material S discharged from the T-die 12 thereafter becomes thicker than before.
 また、測定手段16d~16hでの測定結果に基づいて平行移動ユニット17の制御を行う場合、たとえば、測定手段16dによってシート材Sの厚さムラが検出された際に、回転体17aの回転(具体的には、回転速度、回転方向、回転角度等)を変えて、巻き取り厚が均等になるように(ゲージバンドが発生しないように)制御することができる。 Further, when controlling the parallel movement unit 17 based on the measurement results by the measuring means 16d to 16h, for example, when the measuring means 16d detects thickness unevenness of the sheet material S, the rotation of the rotating body 17a ( Specifically, by changing the rotation speed, rotation direction, rotation angle, etc., it is possible to control the winding thickness to be uniform (to prevent gauge bands from occurring).
 シート材Sに厚さムラがある場合、巻取り装置18に巻き取られた際にゲージバンドが発生し、その部分に他の部分よりも大きな負荷がかかり、シート材Sにダメージを与えることがある。シート材Sへのダメージは製品不良の一因となるため、シート材Sは可能な限り厚さムラがないことが望まれる。 If the sheet material S has uneven thickness, a gauge band will occur when it is wound up by the winding device 18, and a larger load will be applied to that part than other parts, which may cause damage to the sheet material S. be. Since damage to the sheet material S is a cause of product defects, it is desirable that the sheet material S has as little unevenness in thickness as possible.
 この点、本実施形態のシート材製造装置ではシート材Sの厚さを高精度で測定できるため、Tダイ12のリップ12cや平行移動ユニット17を高精度で制御することができ、結果として厚さムラが少ないシート材Sを製造することができる。 In this regard, since the sheet material manufacturing apparatus of this embodiment can measure the thickness of the sheet material S with high precision, the lip 12c of the T-die 12 and the parallel movement unit 17 can be controlled with high precision, and as a result, the thickness of the sheet material S can be measured with high precision. A sheet material S with less unevenness can be manufactured.
 (動作)
 次に、本実施形態のシート材製造装置の動作について説明する。この実施形態のシート材製造装置では、供給された樹脂ペレットが押出し機11で加熱溶融されてTダイ12に供給され、供給された溶融樹脂がTダイ12で幅方向に広げられて吐出される。Tダイ12から吐出された溶融樹脂は冷却ロール13で冷却されてシート状に成形され、キャスティングロール14で温度調節されたのち、縦横方向に引き延ばされながら搬送ロール15で先方に搬送されて巻取り装置18に巻き取られる。
(motion)
Next, the operation of the sheet material manufacturing apparatus of this embodiment will be explained. In the sheet material manufacturing apparatus of this embodiment, the supplied resin pellets are heated and melted by the extruder 11 and supplied to the T-die 12, and the supplied molten resin is spread in the width direction by the T-die 12 and discharged. . The molten resin discharged from the T-die 12 is cooled by a cooling roll 13 and formed into a sheet, and after its temperature is adjusted by a casting roll 14, it is conveyed forward by a conveying roll 15 while being stretched in the vertical and horizontal directions. It is wound up by the winding device 18.
 この実施形態では、前記シート材Sの製造過程において、厚さ測定装置16でシート材Sの厚さが測定される。具体的には、図5(b)に示すように、第一の測定手段16dでシート材Sの第一領域S1の厚さが、第二の測定手段16eでシート材Sの第二領域S2の厚さが、第三の測定手段16fでシート材Sの第三領域S3の厚さが、第四の測定手段16gでシート材Sの第四領域S4の厚さが、第五の測定手段16hでシート材Sの第五領域S5の厚さが測定される。 In this embodiment, the thickness of the sheet material S is measured by the thickness measuring device 16 during the manufacturing process of the sheet material S. Specifically, as shown in FIG. 5(b), the thickness of the first region S1 of the sheet material S is determined by the first measuring means 16d, and the thickness of the second region S2 of the sheet material S is determined by the second measuring means 16e. The thickness of the third region S3 of the sheet material S is determined by the third measuring means 16f, and the thickness of the fourth region S4 of the sheet material S is determined by the fourth measuring means 16g. At 16h, the thickness of the fifth region S5 of the sheet material S is measured.
 この実施形態では、厚さ測定装置16での測定結果に基づいてTダイ12のリップ12c及び平行移動ユニット17が制御される。測定結果に基づいてTダイ12のリップ間隔が制御されることで、シート材Sの製造過程においてシート材Sの厚さが調整され、測定結果に基づいて平行移動ユニット17、より具体的には、平行移動ユニット17の回転体17aの回転速度、回転方向、回転角度等が制御されることで、ゲージバンドが発生しにくくなる。 In this embodiment, the lip 12c of the T-die 12 and the translation unit 17 are controlled based on the measurement results by the thickness measuring device 16. By controlling the lip interval of the T-die 12 based on the measurement results, the thickness of the sheet material S is adjusted in the manufacturing process of the sheet material S, and the parallel movement unit 17, more specifically, is adjusted based on the measurement results. By controlling the rotation speed, rotation direction, rotation angle, etc. of the rotating body 17a of the parallel movement unit 17, gauge bands are less likely to occur.
 (実施形態2)
 本発明の実施形態の他例を、図面を参照して説明する。一例として図6に示すコーターは、樹脂製フィルム(シート材S)の表面に塗膜を形成する装置であって、本願の厚さ測定装置30を実装したものである。図6において、21は繰出し装置、22は巻取り装置、23は搬送ロール、24は圧胴ロール、25は塗液用容器、26はグラビアロール、27はブレード、28はタッチロール、29は乾燥炉、30は厚さ測定装置、31は平行移動ユニットである。
(Embodiment 2)
Other examples of embodiments of the present invention will be described with reference to the drawings. As an example, the coater shown in FIG. 6 is a device that forms a coating film on the surface of a resin film (sheet material S), and is equipped with the thickness measuring device 30 of the present application. In FIG. 6, 21 is a feeding device, 22 is a winding device, 23 is a conveyance roll, 24 is an impression roll, 25 is a container for coating liquid, 26 is a gravure roll, 27 is a blade, 28 is a touch roll, and 29 is a dryer. A furnace, 30 is a thickness measuring device, and 31 is a translation unit.
 前記繰出し装置21はロール状に巻かれたシート材Sを繰り出す装置であり、巻取り装置はシート材Sを巻き取る装置である。繰出し装置21及び巻取り装置22には、既存のものを用いることができる。繰出し装置21と巻取り装置22の間には、シート材Sを搬送するための複数本の搬送ロール23が配置されている。 The feeding device 21 is a device that feeds out the sheet material S wound into a roll, and the winding device is a device that winds up the sheet material S. Existing devices can be used for the feeding device 21 and the winding device 22. A plurality of transport rolls 23 for transporting the sheet material S are arranged between the feeding device 21 and the winding device 22.
 前記繰出し装置21の先方には、圧胴ロール24、塗液用容器25、グラビアロール26、ブレード27を備えた塗工手段が設けられている。塗工手段はシート材Sの表面に塗液を塗布するための手段である。圧胴ロール24、塗液用容器25、グラビアロール26、ブレード27には既存のものを用いることができる。 A coating means including an impression roll 24, a coating liquid container 25, a gravure roll 26, and a blade 27 is provided ahead of the feeding device 21. The coating means is a means for applying a coating liquid to the surface of the sheet material S. Existing ones can be used for the impression roll 24, the coating liquid container 25, the gravure roll 26, and the blade 27.
 ここで示す塗工手段は一例であり、塗工手段はこれ以外の構成とすることもできる。たとえば、図7に示すように圧胴ロール24とスロットダイ32を塗工手段として用いることができる。スロットダイ32には既存のものを用いることができる。なお、図7のその他の構成は図6のコーターと同様であるため、同一の構成に同一符号を付し、詳細な説明は省略する。 The coating means shown here is an example, and the coating means may have a structure other than this. For example, as shown in FIG. 7, an impression roll 24 and a slot die 32 can be used as the coating means. An existing slot die 32 can be used. Note that the other configurations in FIG. 7 are similar to those of the coater in FIG. 6, so the same configurations are denoted by the same reference numerals, and detailed description thereof will be omitted.
 塗工手段の先方には、シート材Sに塗布された塗液を乾燥させて塗膜とするための乾燥炉29が設けられている。乾燥炉29には、既存のものを用いることができる。 A drying oven 29 for drying the coating liquid applied to the sheet material S to form a coating film is provided ahead of the coating means. An existing drying oven 29 can be used.
 乾燥炉29の先方には、シート材Sの表面の塗膜の厚さを測定する厚さ測定装置30が設けられ、厚さ測定装置30の先方には、シート材Sを揺動する平行移動ユニット31が設けられている。 A thickness measuring device 30 for measuring the thickness of the coating film on the surface of the sheet material S is provided in front of the drying oven 29, and a parallel movement device for swinging the sheet material S is provided in front of the thickness measuring device 30. A unit 31 is provided.
 厚さ測定装置30及び平行移動ユニット31の構成は、それぞれ、実施形態1の厚さ測定装置16及び平行移動ユニット17の構成と同様である。ただし、この実施形態の厚さ測定装置30は、その下側を通過するシート材Sの塗膜の厚さを測定できるように、実施形態1の厚さ測定装置16とは上下が逆になっている。 The configurations of the thickness measurement device 30 and the translation unit 31 are similar to those of the thickness measurement device 16 and the translation unit 17 of the first embodiment, respectively. However, the thickness measuring device 30 of this embodiment is upside down from the thickness measuring device 16 of the first embodiment so that it can measure the thickness of the coating film of the sheet material S passing under the thickness measuring device 30. ing.
 この実施形態の塗工手段は、図示しない制御手段によって制御されるようにしてある。具体的には、厚さ測定装置30での測定によって得られる実測値に基づき、塗工手段や平行移動ユニット31を制御される。たとえば、厚さ測定装置30で測定された塗膜の厚さ(実測値)にムラがある場合、圧胴ロール24やグラビアロール26の角度や間隔、ブレード27の押圧力等が制御される。 The coating means of this embodiment is controlled by a control means (not shown). Specifically, the coating means and the parallel movement unit 31 are controlled based on the actual value obtained by measurement with the thickness measuring device 30. For example, if the thickness (actual value) of the coating film measured by the thickness measuring device 30 is uneven, the angle and interval of the impression roll 24 and the gravure roll 26, the pressing force of the blade 27, etc. are controlled.
 同様に、この実施形態の平行移動ユニット31も図示しない制御手段によって制御されるようにしてある。具体的には、厚さ測定装置30での測定によって得られる実測値に基づき、平行移動ユニット31の回転体の回転(具体的には、回転速度、回転方向、回転角度等)を変えて、巻き取り厚が均等になるように(ゲージバンドが発生しないように)制御される。 Similarly, the parallel movement unit 31 of this embodiment is also controlled by a control means (not shown). Specifically, the rotation (specifically, the rotation speed, rotation direction, rotation angle, etc.) of the rotating body of the parallel movement unit 31 is changed based on the actual measurement value obtained by measurement with the thickness measurement device 30, The winding thickness is controlled to be uniform (so that no gauge band occurs).
 なお、この実施形態では、制御手段によって塗工手段と平行移動ユニット31の双方が制御される場合を一例としているが、塗工手段と平行移動ユニット31のいずれか一方のみが制御されるようにすることもできる。 In addition, in this embodiment, the case where both the coating means and the parallel movement unit 31 are controlled by the control means is taken as an example, but it is possible to control only one of the coating means and the parallel movement unit 31. You can also.
 (動作)
 図6に示すコーターでは、繰出し装置21から繰り出されたシート材Sが圧胴ロール24及びグラビアロール26の間を通過する際に、塗液用容器25内の塗液がグラビアロール26でピックアップされ、その塗液がシート材Sの表面に塗布(転写)される。
(motion)
In the coater shown in FIG. 6, when the sheet material S fed out from the feeding device 21 passes between the impression roll 24 and the gravure roll 26, the coating liquid in the coating liquid container 25 is picked up by the gravure roll 26. , the coating liquid is applied (transferred) onto the surface of the sheet material S.
 塗液が塗布されたシート材Sは先方に搬送され、乾燥炉29を通過する。シート材Sの表面に塗布された塗液は、乾燥炉29内で乾燥し塗膜となる。 The sheet material S coated with the coating liquid is transported forward and passes through a drying oven 29. The coating liquid applied to the surface of the sheet material S is dried in the drying oven 29 to form a coating film.
 乾燥炉29を通過したシート材Sは厚さ測定装置30の下側を通過し、当該厚さ測定装置30によってシート材Sの表面の塗膜の厚さが測定される。具体的には、厚さ測定装置30によって、シート材Sの表面の塗膜のうち、当該シート材Sの搬送方向に直交若しくは略直交する方向、又は、平行移動ユニット31若しくは塗工手段(具体的には、塗工手段を構成する圧胴ロール24やグラビアロール26)の長手方向と平行若しくは略平行な方向における厚さが測定される。 The sheet material S that has passed through the drying oven 29 passes below the thickness measuring device 30, and the thickness of the coating film on the surface of the sheet material S is measured by the thickness measuring device 30. Specifically, the thickness measuring device 30 measures the coating film on the surface of the sheet material S in a direction perpendicular or approximately perpendicular to the conveyance direction of the sheet material S, or in a direction perpendicular to or approximately perpendicular to the conveying direction of the sheet material S, or in a direction perpendicular to or approximately perpendicular to the conveyance direction of the sheet material S, or in a direction perpendicular to or approximately perpendicular to the conveyance direction of the sheet material S, or Specifically, the thickness in a direction parallel or substantially parallel to the longitudinal direction of the impression roll 24 or gravure roll 26 constituting the coating means is measured.
 塗膜の厚さの測定は、厚さ測定装置30(具体的には、厚さ測定装置30の測定手段)は、シート材Sの搬送方向と同方向に当該シート材Sの搬送速度と等速又は略等速で移動させながら行うのが好ましい。さらに好ましくは、厚さ測定装置30の測定手段を、シート材Sの搬送方向と直交又は略直交する方向に移動させながら塗膜の厚さの測定を行う。 To measure the thickness of the coating film, the thickness measuring device 30 (specifically, the measuring means of the thickness measuring device 30) is operated at a speed equal to the conveying speed of the sheet material S in the same direction as the conveying direction of the sheet material S. It is preferable to perform this while moving at high speed or approximately constant speed. More preferably, the thickness of the coating film is measured while moving the measuring means of the thickness measuring device 30 in a direction perpendicular or substantially perpendicular to the conveyance direction of the sheet material S.
 厚さ測定装置30によってシート材Sの表面の塗膜の厚さが測定されると、その測定値に基づいて、塗工手段と平行移動ユニット31の双方又はいずれか一方が制御される。塗工手段が制御される場合、その後に形成される塗膜の厚さが平滑化され、ゲージバンドの発生が抑制される。同様に、平行移動ユニット31が制御される場合、巻取り装置22での巻取りムラの発生が低減され、ゲージバンドの発生が抑制される。 When the thickness of the coating film on the surface of the sheet material S is measured by the thickness measuring device 30, both or one of the coating means and the parallel movement unit 31 is controlled based on the measured value. When the coating means is controlled, the thickness of the subsequently formed coating film is smoothed and the occurrence of gauge bands is suppressed. Similarly, when the parallel movement unit 31 is controlled, the occurrence of uneven winding in the winding device 22 is reduced, and the occurrence of gauge bands is suppressed.
 本実施形態のコーターには、ゲージバンドの発生を抑制できる以外の効果も期待できる。一般に、塗工された塗液の膜厚のバラツキは製造するシート材の品質低下につながると言われている。たとえば、光学系分野におけるシート材の製造においては、シート材の光透過性の向上を目的として光透過性機能を有する塗液をシート材の表面に塗工する。このとき、塗液の膜厚にバラツキが生じると、部分的に光の透過性が阻害されるおそれがある。 The coater of this embodiment can be expected to have effects other than suppressing the occurrence of gauge bands. Generally, it is said that variations in the film thickness of the applied coating liquid lead to a decrease in the quality of the manufactured sheet material. For example, in the production of sheet materials in the field of optical systems, a coating liquid having a light transmitting function is applied to the surface of the sheet material in order to improve the light transmittance of the sheet material. At this time, if there are variations in the film thickness of the coating liquid, there is a possibility that the light transmittance may be partially inhibited.
 このようなことが生じないよう、シート材の表面に塗布される塗膜には均一性が要求されるが、本願における厚さ測定装置30が実装されたコーターによれば、膜厚の測定精度が高く、塗工手段を従来のコーターよりも高精度で制御できるため、塗液の膜厚のバラツキが生じにくいという効果が期待できる。 To prevent this from occurring, uniformity is required for the coating film applied to the surface of the sheet material, but according to the coater in which the thickness measuring device 30 of the present application is installed, the accuracy of measuring the film thickness can be improved. Since the coating method can be controlled with higher precision than conventional coaters, it can be expected to have the effect that variations in coating liquid film thickness are less likely to occur.
 また、塗工用途によっては、シート材の一部に、極端に厚く塗液を塗布することが求められることがあり、この場合、塗液塗工の膜厚分布測定の度に製造ラインを停止して確認するのでは効率が悪いため、インラインで塗液の膜厚管理を行えることが望まれる。 In addition, depending on the coating application, it may be necessary to apply extremely thick coating liquid to a part of the sheet material, and in this case, the production line must be stopped every time the film thickness distribution of the coating liquid is measured. Since it is inefficient to check the coating liquid thickness in-line.
 この点、本願の厚さ測定装置30を実装したコーターでは、シート材Sを搬送しながらその表面の塗液の膜厚を測定できる、言い換えれば、インラインで塗液の膜厚を測定できるため、インラインで塗液の膜厚管理が望まれるケースでも十分な効果が期待できる。 In this regard, the coater equipped with the thickness measuring device 30 of the present application can measure the film thickness of the coating liquid on the surface of the sheet material S while conveying it, in other words, can measure the film thickness of the coating liquid in-line. A sufficient effect can be expected even in cases where in-line control of coating liquid film thickness is desired.
 (その他の実施形態)
 前記実施形態1では、ベース16aの裏面側に、交差方向アクチュエータ16b、搬送方向アクチュエータ16c及び測定手段16d~16hの動作によって生じる振動を打ち消すため又は減衰するカウンターユニットが設けられた場合を一例としているが、カウンターユニットは必要に応じて設ければよく、不要な場合には省略することができる。前記実施形態2の場合も同様である。
(Other embodiments)
In the first embodiment, a counter unit is provided on the back side of the base 16a to cancel or attenuate vibrations generated by the operations of the cross-direction actuator 16b, the transport direction actuator 16c, and the measuring means 16d to 16h. However, the counter unit may be provided as needed, and can be omitted if unnecessary. The same applies to the second embodiment.
 前記実施形態1では、厚さ測定装置16をシート材Sの下側(裏側)に配置し、シート材Sの厚さを下側から測定する場合を一例としているが、厚さ測定装置16をシート材Sの上側(表側)に配置し、シート材Sの厚さを上側から測定するような構成とすることもできる。前記実施形態2の場合も、塗膜の形成位置に応じて測定方向を設定することができる。 In the first embodiment, the thickness measuring device 16 is placed below the sheet material S (on the back side), and the thickness of the sheet material S is measured from the bottom side. It is also possible to arrange it on the upper side (front side) of the sheet material S and to measure the thickness of the sheet material S from the upper side. Also in the case of the second embodiment, the measurement direction can be set depending on the position where the coating film is formed.
 前記実施形態1では、厚さ測定装置16の測定手段16d~16hとして、シート材Sを片面側から測定するものを用いる場合を一例としているが、厚さ測定装置16には、シート材Sの上側に配置される装置(たとえば発光部)とシート材Sの下側に配置される装置(たとえば受光部)を備えたものを用いることもできる。前記実施形態2の場合も同様である。 In the first embodiment, as an example, the measuring means 16d to 16h of the thickness measuring device 16 measure the sheet material S from one side. It is also possible to use one that includes a device (for example, a light emitting section) placed on the upper side and a device (for example, a light receiving section) placed on the bottom side of the sheet material S. The same applies to the second embodiment.
 前記実施形態1では、測定手段16d~16hをシート材Sの搬送方向に交差する方向に移動させながらシート材Sの厚さを測定する場合を一例としているが、測定手段の数を増やすことによって、測定手段を移動させなくてもシート材Sの幅方向全体の厚さを測定できる場合には、測定手段はシート材Sの搬送方向に交差する方向に移動させなくてもよい。前記実施形態2の場合も同様である。 In the first embodiment, the thickness of the sheet material S is measured while moving the measuring means 16d to 16h in a direction intersecting the conveyance direction of the sheet material S. However, by increasing the number of measuring means, In the case where the entire thickness of the sheet material S in the width direction can be measured without moving the measuring means, the measuring means does not need to be moved in the direction intersecting the conveyance direction of the sheet material S. The same applies to the second embodiment.
 同様に、前記実施形態1の測定手段16d~16hよりも広範囲の測定が可能な一又は二以上の測定手段を用いることによって、測定手段を移動させなくてもシート材Sの幅方向全体の厚さを測定できる場合にも、測定手段はシート材Sの搬送方向に交差する方向に移動させなくてもよい。前記実施形態2の場合も同様である。 Similarly, by using one or more measuring means capable of measuring a wider range than the measuring means 16d to 16h of the first embodiment, the entire widthwise thickness of the sheet material S can be measured without moving the measuring means. Even when the width can be measured, the measuring means does not need to be moved in a direction intersecting the conveying direction of the sheet material S. The same applies to the second embodiment.
 前記実施形態1では、シート材Sが樹脂フィルムの場合を一例としているが、シート材Sには金属箔等の樹脂フィルム以外のものも含まれる。たとえば、シート材Sが金属箔の場合、Tダイ12は用いないため、金属箔の厚さの測定結果をTダイ12の制御に用いることはないが、金属箔の場合も平行移動ユニット17を用いることはあるため、この場合には、金属箔の厚さの測定結果に基づいて平行移動ユニット17、より具体的には、回転体17aの回転速度、回転方向、回転角度等を制御することができる。前記実施形態2の場合も同様である。 In the first embodiment, the case where the sheet material S is a resin film is taken as an example, but the sheet material S also includes materials other than resin films such as metal foil. For example, when the sheet material S is metal foil, the T-die 12 is not used, so the measurement result of the thickness of the metal foil is not used to control the T-die 12. In this case, the parallel movement unit 17, more specifically, the rotation speed, rotation direction, rotation angle, etc. of the rotating body 17a may be controlled based on the measurement result of the thickness of the metal foil. I can do it. The same applies to the second embodiment.
 前記各実施形態の構成は一例であり、本発明はこれら実施形態の構成に限定されるものではない。本発明は所期の目的を達成できる範囲で、構成の省略や入れ替え、追加等の変更を加えることができる。 The configurations of each of the above embodiments are merely examples, and the present invention is not limited to the configurations of these embodiments. The present invention can be modified, such as omitting, replacing, adding, etc., to the configuration as long as the intended purpose can be achieved.
 本願における厚さ測定装置16は各種シート材製造装置に実装して利用することができ、厚さ測定装置16での測定結果は、Tダイ12のリップ間隔や平行移動ユニット17、塗工手段の制御に利用することができる。 The thickness measuring device 16 of the present application can be used by being mounted on various sheet material manufacturing devices, and the measurement results with the thickness measuring device 16 can be used to measure the lip distance of the T-die 12, the parallel movement unit 17, and the coating means. Can be used for control.
 11  押出し機
 12  Tダイ
 12a 樹脂流入路
 12b マニホールド
 12c リップ
 12d 間隔調整具
 13  冷却ロール
 14  キャスティングロール
 15  搬送ロール
 16  厚さ測定装置
 16a ベース
 16b 交差方向アクチュエータ
 16c 搬送方向アクチュエータ
 16d (第一の)測定手段
 16e (第二の)測定手段
 16f (第三の)測定手段
 16g (第四の)測定手段
 16h (第五の)測定手段
 16i 交差方向ガイド
 16j 交差方向スライダ
 16k 搬送方向ガイド
 16m 搬送方向スライダ
 16n 載置台
 16p 下部交差方向アクチュエータ
 16r 下部搬送方向アクチュエータ
 16s カウンターウェイト
 16t 下部交差方向ガイド
 16u 下部交差方向スライダ
 16v 下部搬送方向ガイド
 16w 下部搬送方向スライダ
 17  平行移動ユニット
 17a 回転体
 17b フレーム
 17c ガイドロール
 17d ガイドロール
 18  巻取り装置
 21  繰出し装置
 22  巻取り装置
 23  搬送ロール
 24  圧胴ロール
 25  塗液用容器
 26  グラビアロール
 27  ブレード
 28  タッチロール
 29  乾燥炉
 30  厚さ測定装置
 31  平行移動ユニット
 32  スロットダイ
 S   シート材
 S1  第一領域
 S2  第二領域
 S3  第三領域
 S4  第四領域
 S5  第五領域
 
11 Extruder 12 T-die 12a Resin inflow path 12b Manifold 12c Lip 12d Space adjuster 13 Cooling roll 14 Casting roll 15 Conveyance roll 16 Thickness measuring device 16a Base 16b Cross direction actuator 16c Conveyance direction actuator 16d (First) measuring means 16e (Second) measuring means 16f (Third) measuring means 16g (Fourth) measuring means 16h (Fifth) measuring means 16i Cross direction guide 16j Cross direction slider 16k Conveyance direction guide 16m Conveyance direction slider 16n Mounting Placement stand 16p Lower cross direction actuator 16r Lower conveyance direction actuator 16s Counterweight 16t Lower cross direction guide 16u Lower cross direction slider 16v Lower conveyance direction guide 16w Lower conveyance direction slider 17 Parallel movement unit 17a Rotating body 17b Frame 17c Guide roll 17d Guide roll 18 Winding device 21 Feeding device 22 Winding device 23 Conveyance roll 24 Impression roll 25 Coating liquid container 26 Gravure roll 27 Blade 28 Touch roll 29 Drying oven 30 Thickness measuring device 31 Parallel movement unit 32 Slot die S Sheet material S1 No. One area S2 Second area S3 Third area S4 Fourth area S5 Fifth area

Claims (7)

  1.  シート材又はシート材表面の塗膜の厚さ測定方法において、
     搬送中のシート材又はシート材表面の塗膜の厚さを測定する測定手段を当該シート材の搬送方向と同方向に当該シート材の搬送速度と等速又は略等速で移動させながら、当該測定手段によって当該シート材又はシート材表面の塗膜の厚さを測定する、
     ことを特徴とする厚さ測定方法。
    In the method for measuring the thickness of a sheet material or a coating film on the surface of a sheet material,
    While moving the measuring means for measuring the thickness of the sheet material being conveyed or the coating film on the surface of the sheet material in the same direction as the conveyance direction of the sheet material at the same speed or approximately the same speed as the conveyance speed of the sheet material, Measuring the thickness of the sheet material or the coating film on the surface of the sheet material by a measuring means,
    A thickness measuring method characterized by:
  2.  請求項1記載の厚さ測定方法において、
     測定手段をシート材の搬送方向と交差する方向に移動させながら当該シート材又はシート材表面の塗膜の厚さを測定する、
     ことを特徴とする厚さ測定方法。
    The thickness measuring method according to claim 1,
    measuring the thickness of the sheet material or the coating film on the surface of the sheet material while moving the measuring means in a direction intersecting the conveying direction of the sheet material;
    A thickness measuring method characterized by:
  3.  請求項1記載の厚さ測定方法において、
     測定手段をシート材の搬送方向と直交又は略直交する方向に移動させながら当該シート材又はシート材表面の塗膜の厚さを測定する、
     ことを特徴とする厚さ測定方法。
    The thickness measuring method according to claim 1,
    Measuring the thickness of the sheet material or the coating film on the surface of the sheet material while moving the measuring means in a direction perpendicular or substantially perpendicular to the conveying direction of the sheet material,
    A thickness measuring method characterized by:
  4.  シート材又はシート材表面の塗膜の厚さ測定装置において、
     測定手段と当該測定手段を前記シート材の搬送方向に当該シート材の搬送速度と等速又は略等速で移動させる第一アクチュエータを備えた、
     ことを特徴とする厚さ測定装置。
    In a device for measuring the thickness of a sheet material or a coating film on the surface of a sheet material,
    comprising a measuring means and a first actuator that moves the measuring means in the conveying direction of the sheet material at the same speed or substantially the same speed as the conveying speed of the sheet material;
    A thickness measuring device characterized by:
  5.  請求項4記載の厚さ測定装置において、
     第一アクチュエータをシート材の搬送方向と交差する方向に移動させる第二アクチュエータを備えた、
     ことを特徴とする厚さ測定装置。
    The thickness measuring device according to claim 4,
    comprising a second actuator that moves the first actuator in a direction intersecting the conveying direction of the sheet material;
    A thickness measuring device characterized by:
  6.  請求項4記載の厚さ測定装置において、
     第一アクチュエータをシート材の搬送方向と直交又は略直交する方向に移動させる第二アクチュエータを備えた、
     ことを特徴とする厚さ測定装置。
    The thickness measuring device according to claim 4,
    comprising a second actuator that moves the first actuator in a direction perpendicular or substantially perpendicular to the conveying direction of the sheet material;
    A thickness measuring device characterized by:
  7.  請求項4から請求項6のいずれか1項に記載の厚さ測定装置において、
     ベースを備え、
     前記ベースの一面側に、測定手段、第一アクチュエータ及び第二アクチュエータが設けられ、
     前記ベースの他面側に、前記測定手段、第一アクチュエータ及び第二アクチュエータによる振動を相殺又は減衰するカウンターユニットが設けられた、
     ことを特徴とする厚さ測定装置。
    The thickness measuring device according to any one of claims 4 to 6,
    Equipped with a base,
    A measuring means, a first actuator, and a second actuator are provided on one side of the base,
    A counter unit that offsets or damps vibrations caused by the measuring means, the first actuator, and the second actuator is provided on the other side of the base.
    A thickness measuring device characterized by:
PCT/JP2023/011576 2022-03-24 2023-03-23 Thickness-measuring method and thickness-measuring device WO2023182440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022048626A JP7252584B1 (en) 2022-03-24 2022-03-24 Thickness measuring method and thickness measuring device
JP2022-048626 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182440A1 true WO2023182440A1 (en) 2023-09-28

Family

ID=85780252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011576 WO2023182440A1 (en) 2022-03-24 2023-03-23 Thickness-measuring method and thickness-measuring device

Country Status (2)

Country Link
JP (2) JP7252584B1 (en)
WO (1) WO2023182440A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090892A (en) * 2004-09-24 2006-04-06 Futec Inc Apparatus and method for measuring coated sheet, using x-ray transmission method
JP2021036223A (en) * 2019-08-23 2021-03-04 東レエンジニアリング株式会社 Thickness measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090892A (en) * 2004-09-24 2006-04-06 Futec Inc Apparatus and method for measuring coated sheet, using x-ray transmission method
JP2021036223A (en) * 2019-08-23 2021-03-04 東レエンジニアリング株式会社 Thickness measurement device

Also Published As

Publication number Publication date
JP2023141992A (en) 2023-10-05
JP2023143795A (en) 2023-10-06
JP7252584B1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
JP4989909B2 (en) Electrode plate coating width control system and control method
TWI446974B (en) And a conveyor device for coating the substrate on both sides
JP5293498B2 (en) Web conveying apparatus and method and battery manufacturing method
JP6917329B2 (en) Coating device
KR20150082104A (en) Coating apparatus
JP4974580B2 (en) Die system coating apparatus and coating method
WO2023182440A1 (en) Thickness-measuring method and thickness-measuring device
JP2016007599A (en) Double-side coating device
JP7377499B2 (en) Sheet material manufacturing method, coating film forming method, sheet material manufacturing device, and coater
KR20170068578A (en) Method and device for coating a metal strip
JP6742856B2 (en) Coating equipment
JP7178600B2 (en) Film structure manufacturing method and manufacturing apparatus
JP6843390B2 (en) Coating device
JP6808505B2 (en) Coating equipment and coating method
JP4506103B2 (en) Manufacturing method and manufacturing apparatus for ceramic green sheet
US6495196B1 (en) Process and apparatus for profile control of direct coaters
JP5765762B2 (en) Coating device
JP3812075B2 (en) Application system
US20050006820A1 (en) Method and apparatus for cooling a sheet-shaped or web-shaped substrate through variation in absorption and/or reflection of heat radiating from the substrate
JPH1157564A (en) Smoothing device
JPH11138083A (en) Die coating method and its device
JP2002126606A (en) Adhesive coating applicator
JP2005028663A (en) Control system and method for controlling thickness of molded product
JP2003047900A (en) Coating apparatus
KR20230150095A (en) Controlling Apparatus for Secondary Battery Producing and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775034

Country of ref document: EP

Kind code of ref document: A1