WO2018062308A1 - X-ray ct device, method for measuring electron density and effective atomic number, ct scanning method, and inspection method - Google Patents

X-ray ct device, method for measuring electron density and effective atomic number, ct scanning method, and inspection method Download PDF

Info

Publication number
WO2018062308A1
WO2018062308A1 PCT/JP2017/035026 JP2017035026W WO2018062308A1 WO 2018062308 A1 WO2018062308 A1 WO 2018062308A1 JP 2017035026 W JP2017035026 W JP 2017035026W WO 2018062308 A1 WO2018062308 A1 WO 2018062308A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron density
ray
atomic number
calibration
effective atomic
Prior art date
Application number
PCT/JP2017/035026
Other languages
French (fr)
Japanese (ja)
Inventor
櫻井 浩
正己 取越
尚輝 砂口
達明 金井
明恵 長尾
ソン ヒョン イ
Original Assignee
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学 filed Critical 国立大学法人群馬大学
Priority to JP2018542666A priority Critical patent/JPWO2018062308A1/en
Publication of WO2018062308A1 publication Critical patent/WO2018062308A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/087Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays using polyenergetic X-rays

Definitions

  • the present invention relates to an X-ray CT apparatus and an electron density and effective atomic number measurement method using the X-ray CT apparatus.
  • the present invention also relates to a CT inspection method for a subject using an X-ray CT apparatus, and an inspection method for inspecting the presence or absence of explosives inside an object using an X-ray CT apparatus.
  • CT diagnosis is indispensable for cancer diagnosis.
  • CT information provides information indispensable not only for diagnostic imaging but also for treatment planning that affects the quality of treatment in radiation therapy of cancer.
  • a CT image is basically composed of CT values obtained from the magnitude of subject attenuation.
  • a CT value is converted into an electron density using a CT value-electron density conversion table, and an X-ray or heavy particle beam treatment plan is made based on the information on the electron density.
  • Non-Patent Document 1 In more than 200 facilities in Japan, the numerical value of the CT value-electron density conversion table varies widely, with an average of ⁇ 6%, a deviation from the average value. Is reported to be 25% at the maximum, and the quantitativeness is not always sufficient with the current technology.
  • Non-Patent Literature 2 a method for obtaining the electron density / effective atomic number from the CT value by using the apparatus and program described in Patent Document 13 using the apparatus described in Patent Document 12 is described. Further, examples are published in academic literature (see Non-Patent Literature 2) by the same inventor.
  • JP 2016-32635 A Japanese Patent Laid-Open No. 2016-16130 JP 2015-223350 A Japanese Patent Laying-Open No. 2015-180859 JP2015-160135A JP 2015-144809 A JP 2015-144808 A Japanese Patent Laying-Open No. 2015-62657 JP2015-131028A JP 2014-140707 A JP 2014-128456 A JP 2007-271468 A JP 2009-53090 A
  • the measurement error of the electron density of the embodiment described in Non-Patent Document 2 is about 10%, and the measurement accuracy of the electron density is the conventional X There is no inventive step compared to line CT. This is because errors due to multiple factors such as background and multiple scattering in actual measurement are included.
  • the electron density can be acquired with high accuracy in applications other than patient treatment purposes, such as for identifying the material to be measured, such as luggage inspection, and for inspecting cracks, defects, etc. of the object to be measured. May be required.
  • the present invention provides an X-ray CT apparatus and an X-ray CT that can estimate the electron density and effective atomic number inside a measurement target (subject or other object) with high accuracy.
  • the present invention provides a method for measuring electron density and effective atomic number using an apparatus.
  • the present invention also provides a CT inspection method and inspection method to which the electron density and effective atomic number measurement method of the present invention is applied.
  • the X-ray CT apparatus of the present invention has an X-ray light source and is capable of irradiating an object to be measured with X-rays in a plurality of energy regions, and is measured by being irradiated from the X-ray light source of the light source part.
  • a detection unit that detects X-rays transmitted through an object and a processing unit that processes data of X-rays detected by the detection unit are provided.
  • the processing unit uses two or more types of calibration jigs composed of a single element or compound that are homogeneous and capable of calculating effective atomic numbers and electron densities, and each calibration jig is provided with a plurality of calibration jigs.
  • the absorption coefficient ⁇ (k) in each energy region k of each calibration jig is obtained from the data measured and detected in each energy region, and the absorption coefficient ⁇ (k) in each energy region k of each calibration jig. ),
  • the calibration coefficients F (k) and G (k) in the respective energy regions k are calculated based on the following mathematical formula (3).
  • Equation (3) ⁇ e represents the electron density of the calibration jig, and Z represents the effective atomic number of the calibration jig. ]
  • the processing unit obtains an absorption coefficient ⁇ (k) in each energy region k of the measurement target from data detected by measuring the measurement target in each of the plurality of energy regions, and obtains an absorption coefficient ⁇ (k) in each energy region k of the measurement target. From the absorption coefficient ⁇ (k) and the calibration coefficients F (k) and G (k) in each energy region k, the electron density ⁇ e and the effective atomic number Z of the measurement target are calculated based on the following formula (4). calculate.
  • ⁇ e represents the electron density of the measurement object
  • Z represents the effective atomic number of the measurement object.
  • the method for measuring the electron density and effective atomic number of the present invention is a method for measuring the electron density and effective atomic number of an object to be measured using an X-ray CT apparatus, which is homogeneous and calculates the effective atomic number and electron density.
  • each calibration jig is measured in a plurality of energy regions with an X-ray CT system, and each calibration is performed.
  • An absorption coefficient ⁇ (k) in each energy region k of the jig is determined.
  • calibration coefficients F (k) and G (k) in each energy region k are calculated from the absorption coefficient ⁇ (k) in each energy region k of each calibration jig based on the following formula (3). To do.
  • Equation (3) ⁇ e represents the electron density of the calibration jig, and Z represents the effective atomic number of the calibration jig. ]
  • the measurement object is measured in each of a plurality of energy regions by an X-ray CT apparatus to obtain an absorption coefficient ⁇ (k) in each energy region k of the measurement object, and the absorption coefficient in each energy region k of the measurement object.
  • ⁇ (k) and calibration coefficients F (k) and G (k) in each energy region k the electron density ⁇ e and the effective atomic number Z of the measurement target are calculated based on the following formula (4). .
  • ⁇ e represents the electron density of the measurement object
  • Z represents the effective atomic number of the measurement object.
  • the CT examination method of the present invention is a CT examination method for performing a CT examination on a human subject, and in the method for measuring electron density and effective atomic number of the present invention, the subject to be measured is the subject.
  • the electron density and effective atomic number of the subject are measured, and an electron density map inside the subject is obtained based on the measured electron density and effective atomic number of the subject.
  • the inspection method of the present invention is an inspection method for inspecting an object and detecting the presence or absence of explosives in the object, in the method for measuring electron density and effective atomic number of the present invention, with the measurement object as an object, The presence or absence of explosives is detected by measuring the electron density and effective atomic number of the object and specifying the substance inside the object based on the measured electron density and effective atomic number of the object.
  • the calibration coefficient obtained by measuring the calibration jig is used to calibrate the actual measurement value to be measured.
  • the error factor can be eliminated at the same time, and the electron density and effective atomic number of the measurement object can be calculated with high accuracy.
  • the CT examination method of the present invention since the electron density and effective atomic number of the subject to be measured can be calculated with high accuracy, a highly accurate electron density map of the human body can be obtained, and the treatment plan can be obtained. Sometimes it is possible to estimate a more accurate range calculation. Therefore, it is possible to improve the irradiation accuracy during X-ray therapy or heavy particle beam therapy.
  • the inspection method of the present invention since the effective atomic number and electron density of the object to be measured can be calculated with high accuracy, it is possible to detect the substance existing inside the measurement target with high positional accuracy. Therefore, the presence or absence of explosives can be accurately detected. Therefore, if the inspection method of the present invention is applied to baggage and cargo inspection, it becomes possible to perform inspection with high accuracy.
  • the X-ray CT apparatus of the present invention and the method for measuring electron density and effective atomic number of the present invention are applied to inspection of an object other than a subject, the effective atomic number and electron density of the object to be measured Therefore, it is possible to detect a substance (for example, dangerous substance, corrosive substance), a defect, or the like existing inside the object with high positional accuracy. Therefore, if the X-ray CT apparatus of the present invention and the method for measuring electron density and effective atomic number of the present invention are applied to the inspection of the presence or absence of product defects, it becomes possible to perform inspection with high accuracy.
  • a substance for example, dangerous substance, corrosive substance
  • the electron density of the measurement target is calculated using the calibration coefficient calculated in advance by the measurement of the calibration jig, it is compared with the conventional method such as when successive approximation is performed.
  • the conventional method such as when successive approximation is performed.
  • it is possible to greatly reduce the amount of calculation when calculating the electron density.
  • the electron density can be calculated in a short time, and there is no need to use a large computer, and the calculation can be performed by a personal computer or the like.
  • FIG. 1 is a schematic configuration diagram of an embodiment of an X-ray CT apparatus of the present invention. It is a flowchart explaining the process of calculating a calibration coefficient, an electron density, and an effective atomic number in the X-ray CT apparatus of FIG. It is a schematic block diagram of other embodiment of the X-ray CT apparatus of this invention. It is a schematic block diagram of the X-ray CT apparatus used for the measurement of an Example.
  • a to D are diagrams showing results of calculating calibration coefficients from measurement results of Examples.
  • a to C are diagrams showing the results of calculating electron density and effective atomic number in Examples.
  • An X-ray CT (Computed Tomography) apparatus of the present invention (hereinafter also abbreviated as “the apparatus of the present invention”) has an X-ray light source, and can irradiate a measurement object with X-rays in a plurality of energy regions.
  • a light source unit a detection unit that detects X-rays emitted from the X-ray light source of the light source unit and transmitted through the object to be measured, and a processing unit that processes data of X-rays detected by the detection unit.
  • the processing unit uses two or more types of calibration jigs composed of a single element or compound that are homogeneous and capable of calculating effective atomic numbers and electron densities, and each calibration jig is provided with a plurality of calibration jigs. From the data measured and detected in each energy region, the absorption coefficient in each energy region of each calibration jig is obtained, and the calibration coefficient in each energy region is obtained from the absorption coefficient in each energy region of each calibration jig.
  • the absorption coefficient in each energy region of the measurement target is obtained from the data detected by measuring the measurement target in each of the plurality of energy regions, and the absorption coefficient in each energy region of the measurement target and each energy region
  • the electron density and effective atomic number of the measurement object are calculated from the calibration coefficient in FIG.
  • the electron density and effective atomic number measurement method of the present invention (hereinafter also abbreviated as “the measurement method of the present invention”) is a method of measuring the electron density and effective atomic number of a measurement object using an X-ray CT apparatus. . And, using two or more kinds of calibration jigs composed of a single element or compound that is homogeneous and whose effective atomic number and electron density can be calculated, each calibration jig is obtained by an X-ray CT apparatus. Measure each of the energy regions to obtain the absorption coefficient in each energy region of each calibration jig, and calculate the calibration coefficient for each energy region from the absorption coefficient in each energy region of each calibration jig.
  • the CT examination method of the present invention is a CT examination method for performing a CT examination on a human subject.
  • the measurement target is the subject, and the electron density and effective atomic number of the subject are determined. Based on the measured electron density and effective atomic number of the subject, an electron density map inside the subject is obtained.
  • the inspection method of the present invention is an inspection method for inspecting an object and detecting the presence or absence of explosives in the object.
  • the electron density and effective atomic number of the object are set as the object to be measured.
  • the presence or absence of explosives is detected by identifying the substance inside the object based on the measured electron density and effective atomic number.
  • the apparatus of the present invention basically has a processing unit in the apparatus.
  • the processing unit processes data detected by the detection unit during X-ray CT measurement by a computer program.
  • the measurement unit including the light source unit and the detection unit may have a configuration in which a processing unit is built in the measurement unit, or a configuration in which a processing unit is attached outside the measurement unit.
  • the measurement method of the present invention uses an X-ray CT (Computed Tomography) apparatus.
  • X-ray CT Computed Tomography
  • the X-ray CT apparatus used by the measurement method of the present invention not only the above-described apparatus of the present invention, that is, an X-ray CT apparatus provided with a processing unit that calculates the electron density and effective atomic number of the measurement target, It is also possible to use an X-ray CT apparatus having another configuration (for example, a conventionally known X-ray CT apparatus).
  • the measurement method of the present invention includes a case where data processing such as calculation of the electron density and effective atomic number of the measurement target is performed outside the X-ray CT apparatus.
  • the data measured by the X-ray CT apparatus is stored in a storage medium, and the data stored in the storage medium is processed externally, or the data is transmitted to the external processing apparatus by wired or wireless processing. It is also possible to process data by a program on the network.
  • the X-ray CT apparatus irradiates the object to be measured with X-rays in a plurality (two or more) of energy regions and transmits the X-rays transmitted through the object to be measured in the energy regions. Detect every time. As long as this condition is satisfied, each configuration of the light source unit that emits X-rays from the X-ray light source and the detection unit that detects X-rays transmitted through the measurement object in the X-ray CT apparatus uses various configurations. It is possible.
  • Examples of the combination of the light source unit and the detection unit of the X-ray CT apparatus in the apparatus of the present invention and the measurement method of the present invention include the following configurations (A) to (C).
  • the light source unit includes at least a first X-ray light source that emits X-rays of the first energy and a second X-ray light source that emits X-rays of a second energy different from the first energy. It is the composition which has.
  • the detection unit has a detector for each X-ray light source of the light source unit.
  • As the configuration of the light source unit for example, as disclosed in FIG. 3 of Japanese Patent Laid-Open No. 10-104175, a high energy X-ray bundle is irradiated from the first X-ray light source, and the second X-ray light source is used.
  • a configuration for irradiating a low-energy X-ray beam can be employed.
  • the light source unit may have three or more X-ray light sources having different energy.
  • the X-ray light source can be configured to irradiate monochromatic X-rays or to irradiate continuous X-rays having a certain energy distribution.
  • the “first energy” and the “second energy” described above are referred to as “first energy region” and “second energy”.
  • First energy region” and “second energy”. Read as "Area”.
  • the accuracy of calculation such as the electron density can be increased when the X-ray to be irradiated is narrower in energy distribution, such as monochromatic X-ray.
  • the light source unit can change the energy of X-rays emitted from one X-ray light source by changing the acceleration voltage supplied to the X-ray light source.
  • the detection unit has a detector for one X-ray light source of the light source unit.
  • the acceleration voltage or the like supplied to one X-ray light source X-ray tube
  • the energy of X-rays irradiated from the X-ray light source is changed. Then, for example, X-ray irradiation of the first energy, X-ray irradiation of the second energy, X-ray irradiation of the third energy, etc.
  • X-ray measurement of each energy is performed.
  • the X-ray light source can be configured to irradiate monochromatic X-rays or to irradiate continuous X-rays having a certain energy distribution.
  • the X-ray light source is configured to emit a certain amount of continuous X-rays, the above-mentioned “X-ray energy” is read as “X-ray energy region”.
  • the accuracy of calculation such as the electron density can be increased when the X-ray to be irradiated has a narrow energy distribution such as a monochromatic X-ray.
  • the detection unit is configured to discriminate and detect two or more energy regions for each energy region (see, for example, Patent Document 13 above). reference).
  • a so-called photon counting CT apparatus employs this configuration.
  • the X-ray light source of the light source unit is preferably configured to irradiate continuous X-rays and has a spectral distribution over a relatively wide energy range. In this configuration, two or more energy regions can be measured simultaneously by one X-ray irradiation, so that the exposure dose can be reduced. Further, since continuous X-rays are used instead of monochromatic X-rays, no large-scale equipment is required.
  • the X-ray light source of the light source unit and the detector of the detection unit can adopt the same configuration as a conventionally known photon counting CT apparatus.
  • each of the above-described configurations (A) to (C) is a basic configuration.
  • a plurality of X-ray light sources that irradiate the same energy may be provided.
  • the X-ray irradiation directions of the plurality of X-ray light sources are made different from each other in the same manner as the configuration described in Patent Document 13 (FIGS. 2, 4 and the like). It becomes possible.
  • the X-ray irradiation directions by a plurality of X-ray light sources can be made different from each other.
  • the X-ray irradiation directions of the plurality of X-ray light sources are different from each other, it is possible to perform measurement by simultaneously irradiating X-rays from the plurality of X-ray light sources.
  • a calibration jig as a standard substance is used.
  • a substance composed of a single element or a compound that is homogeneous and can calculate the effective atomic number Z eff and the electron density ⁇ e is used.
  • a substance used as a calibration jig a substance composed of any element or compound can be used as long as the effective atomic number Z eff and the electron density ⁇ e can be calculated.
  • an error in the calculated electron density increases as the atomic number increases, it is preferable to use a substance composed of elements having an atomic number in the range of 1 to 30.
  • the theoretical values of the known effective atomic number Z eff and electron density ⁇ e for that element can be used.
  • the effective atomic number Z eff and the electron density ⁇ e can be calculated using calculation formulas described in the literature.
  • the formula for calculating the effective atomic number Z eff is, for example, Khan's The Physics of Radiation Therapy, Faiz M. Khan, John P. Gibbons (Jr.), Lippincott Wiliams & Wikins, 2014 (p.78 formula (6.4)).
  • the calculation formula of the electron density ⁇ e is described in, for example, J Med Phys. 2009 Jul-Sep; 34 (3): 176-179.
  • a substance selected from carbon, magnesium, and aluminum can be used for the calibration jig.
  • These carbon, magnesium, and aluminum are materials that have not been used as calibration jigs in the past.
  • a liquid or the like is possible as the calibration jig, it is desirable to use a substance that can maintain a solid state as stably as possible at room temperature.
  • the calibration jig has a shape that can be easily handled and measured. For example, a quadrangular prism shape, a cylindrical shape, and the like can be given.
  • the size of the calibration jig an appropriate size is selected in accordance with the type of object to be measured and the required accuracy of electron density. For example, the thickness of the portion through which X-rays are transmitted is set to be about several mm to several cm.
  • the absorption coefficient ⁇ (k) is obtained by the following equation (1) (for example, M. Torikoshi et al. al., Phys. Med. Boil, 48, 673, (2003)).
  • the absorption coefficient ⁇ is measured with monochromatic X-rays of two energies, and the electron density ⁇ e is measured using the measured value of the absorption coefficient ⁇ and the theoretical value of the atomic number Z. I was looking for. Further, for example, an effective value for the atomic number Z eff and the electron density ⁇ e are obtained by sequentially approximating the atomic number Z by entering an appropriate value. Since the measured value of the absorption coefficient ⁇ includes an error and background, it is difficult to accurately obtain the electron density ⁇ e from the measured value of the absorption coefficient ⁇ and the theoretical value of the atomic number Z. Further, if approximation is performed sequentially, the amount of calculation becomes enormous, so that the calculation takes time, and calculation processing becomes difficult with a personal computer or the like.
  • the effective atomic number Z eff and the electron density ⁇ e to be measured are obtained by a method different from the conventional method such as sequential approximation.
  • the method of the present invention will be described.
  • two or more kinds of substances composed of a single element or a compound, which are homogeneous and can calculate the effective atomic number Z eff and the electron density ⁇ e, are used for each substance.
  • the absorption coefficient ⁇ at the energy of is measured.
  • F (k) and G (k) at the energy k are obtained from the theoretical value or the calculated value.
  • equation (2) can be transformed as the following equation (4).
  • a calibration jig is used for a material composed of a single element or a compound that is homogeneous and can calculate the effective atomic number Z eff and the electron density ⁇ e.
  • Two or more kinds of calibration jigs having different elements are prepared.
  • a calibration jig is measured in advance to obtain a calibration coefficient.
  • the measurement target subject or other object
  • the measured value of the measurement target is calibrated using the obtained calibration coefficient, and the effective atomic number Z eff and the electron of the measurement target are measured. Find the density.
  • the absorption coefficient ⁇ (k) is measured at each energy k of a plurality (two or more) of energy k, and F (k) and G corresponding to each energy k are measured. (K) is obtained, and the obtained F (k) and G (k) are used as calibration coefficients for the respective energy k.
  • Equation (3) is linear with respect to Z 4 , at each energy k, two or more types of calibration are performed with Z 4 as the horizontal axis and ⁇ / ⁇ e as the vertical axis. Plot the jig value.
  • Calibration coefficients F (k) and G (k) at the energy k can be obtained from the slope of the straight line obtained by plotting and the intercept of the straight line. At this time, in order to obtain a straight line, it is necessary to plot two or more points, so two or more kinds of calibration jigs are used.
  • the absorption coefficient ⁇ (k) of the measurement target is measured at each of the plurality (two or more) of energy k. Then, using the measured value of the absorption coefficient ⁇ (k) of the measurement object at each energy k and the calibration coefficients F (k) and G (k) obtained in advance as described above, the electron density of the measurement object ⁇ e is calculated. Specifically, since Equation (4) is linear with respect to F (k) / G (k), ⁇ (k) / G (k) with F (k) / G (k) as the horizontal axis. ) Is plotted on the vertical axis, and the value of each energy k of two or more energies k is plotted.
  • the effective atomic number Z eff and the electron density ⁇ e of the measurement target can be calculated with high accuracy.
  • the CT examination method of the present invention since the electron density and effective atomic number of the subject to be measured can be calculated with high accuracy, a highly accurate electron density map of the human body can be obtained, and the treatment plan can be obtained. Sometimes it is possible to estimate a more accurate range calculation. Therefore, it is possible to improve the irradiation accuracy during X-ray therapy or heavy particle beam therapy.
  • the inspection method of the present invention since the effective atomic number and electron density of the object to be measured can be calculated with high accuracy, it is possible to detect the substance existing inside the measurement target with high positional accuracy. Therefore, the presence or absence of explosives can be accurately detected. Therefore, if the inspection method of the present invention is applied to baggage and cargo inspection, it becomes possible to perform inspection with high accuracy.
  • the apparatus of the present invention and the measurement method of the present invention are applied to the inspection of an object other than the subject, it becomes possible to calculate the effective atomic number and electron density of the object to be measured with high accuracy. It is possible to detect a substance (for example, a dangerous substance, a corrosive substance), a defect, and the like existing inside an object with high positional accuracy without being destroyed. Therefore, if the apparatus of the present invention and the measurement method of the present invention are applied to the inspection of the presence or absence of product defects, it becomes possible to perform a highly accurate inspection.
  • a substance for example, a dangerous substance, a corrosive substance
  • the actual measurement value includes factors such as background and multiple scattering. If the electron density is obtained directly from the measurement value and atomic number value as in the conventional method, factors such as background and multiple scattering cannot be sufficiently eliminated, and the accuracy of the electron density deteriorates. On the other hand, by adopting the method of the present invention and performing calibration using the calibration coefficient obtained by measuring the calibration jig, a plurality of error factors such as background and multiple scattering included in the actual measurement value are obtained. At the same time, and the electron density and effective atomic number can be calculated with high accuracy.
  • the electron density of the measurement object is calculated using the calibration coefficient calculated in advance from the measurement data of the calibration jig, so that it is compared with the conventional method such as when successive approximation is performed.
  • the conventional method such as when successive approximation is performed.
  • the frequency of the measurement of the calibration jig does not have to be performed once for each measurement target, and depends on the required accuracy, but it takes into account deterioration of the X-ray tube and fluctuations in the spectrum state. It is desirable to increase the frequency (for example, several times a day to about once every several days). For example, it can be about once a day. In this case, for example, it is conceivable to measure the calibration jig at the start of daily work.
  • the calibration jig In the measurement of the calibration jig, it is desirable to perform measurement at the same position as the position where the measurement object is measured. By measuring at the same position, the influence on the measured value of the absorption coefficient due to the distance from the light source can be eliminated.
  • the accuracy of the measurement position of the calibration jig depends on the accuracy of the required electron density. When the subject is a measurement object, for example, it may be within ⁇ 1% (about 2 mm) with respect to the affected part of the subject of about 20 cm.
  • the X-ray CT apparatus has a switching mechanism for switching between the measurement of the calibration jig and the measurement of the measurement object such as the subject. Is desirable. For example, a calibration jig is put in and out by a switching mechanism such as an arm or a slider so that the measurement of the calibration jig and the measurement of the measurement target can be switched.
  • a configuration in which switching is performed by manually moving a slider or the like, or a configuration in which switching is performed by pressing a button can be considered, but more preferably, a configuration in which switching is performed automatically by control of a computer program or the like.
  • the calibration jig is automatically installed at the measurement position, the measurement of the calibration jig is measured, and the calibration jig is used. What is necessary is just to set it as the structure controlled automatically so that accommodation of a jig
  • the configuration having a switching mechanism for switching between the calibration jig and the measurement target also includes the processing unit in the X-ray CT apparatus of the present invention including the processing unit that calculates the electron density and effective atomic number of the measurement target.
  • the present invention can also be applied to other X-ray CT apparatuses (for example, conventionally known X-ray CT apparatuses) that are not. Further, the X-ray CT apparatus can be configured such that the calibration jig can be taken out.
  • FIG. 1 shows a schematic configuration diagram of an embodiment of the X-ray CT apparatus of the present invention. This embodiment is a case where the present invention is applied to an X-ray CT apparatus having a measurement object as a subject.
  • the X-ray CT apparatus 1 shown in FIG. 1 includes two parts, an X-ray transmission intensity measurement unit 10 and an electron density and effective atomic number calibration system unit 20.
  • the X-ray transmission intensity measurement unit 10 includes a light source unit and a detection unit of the apparatus of the present invention.
  • the electron density and effective atomic number calibration system unit 20 includes a processing unit of the apparatus of the present invention.
  • the X-ray transmission intensity measurement unit 10 includes an X-ray light source 11, a slit or collimator 12, a bed apparatus 14, a slit or collimator 15, an energy discrimination X-ray intensity detector 16, and a data collection unit 17.
  • a slit or collimator 12 is disposed under the X-ray light source 11, and X-rays are irradiated downward from the X-ray light source 11.
  • An energy discriminating X-ray intensity detector 16 is disposed below a subject (patient P) 30 to be measured via a slit or collimator 15.
  • the data collection unit 17 is connected to the energy discrimination X-ray intensity detector 16 and collects data detected by the energy discrimination X-ray intensity detector 16. As shown in the lower part of FIG.
  • the couch device 14 has an XYZ ⁇ precision automatic stage, and is further provided with a switching mechanism (not shown). With the switching mechanism, as shown by the arrows in the figure, the calibration jig 13 and the subject (patient P) 30 can be switched to perform each measurement.
  • the calibration jig 13 is a substance composed of a single element or compound serving as a standard substance that is homogeneous and capable of calculating the effective atomic number and electron density, and two or more different types are prepared. Each calibration jig 13 is switched by a switching mechanism, and measurement of the calibration jig 13 is sequentially performed.
  • the electron density and effective atomic number calibration system unit 20 includes a control unit 21, a calibration unit 22, and an analysis unit 23.
  • the electron density and effective atomic number calibration system unit 20 is configured by a personal computer or the like and operates by a computer program.
  • the calibration unit 22 and the analysis unit 23 are included in the processing unit of the apparatus of the present invention.
  • the control unit 21 controls the X-ray light source 11, the slit or collimator 12, the switching mechanism between the calibration jig 13 and the subject 30, and the data collection unit 17 of the X-ray transmission intensity measurement unit 10.
  • the calibration unit 22 calculates a calibration coefficient from the data collected by the data collection unit 17 of the X-ray transmission intensity measurement unit 10.
  • the analysis unit 23 analyzes the electron density and the effective atomic number by applying the calibration coefficient calculated by the calibration unit 22.
  • FIG. 2 shows a flowchart of the process of calculating the calibration coefficient, electron density, and effective atomic number in the X-ray CT apparatus 1 of FIG.
  • step S1 calibration measurement using the calibration unit 22 is started.
  • step S ⁇ b> 2 the calibration jig 13 is installed at a corresponding portion (measurement position) of the subject 30 of the bed apparatus 14. That is, the calibration jig 13 is placed at the measurement position by the operation of the switching mechanism.
  • CT imaging of the calibration jig 13 is performed in step S3. That is, X-rays are emitted from the X-ray light source 11, X-rays transmitted through the calibration jig 13 are detected by the energy discrimination X-ray detector 16, and the detected data is collected by the data collection unit 17.
  • the calibration jig 13 is removed from the measurement position by the switching mechanism and stored in a predetermined place.
  • each calibration jig 13 is installed at the measurement position of the calibration jig 13, CT imaging of the calibration jig 13, and the calibration jig taken. The removal from 13 measurement positions is repeated.
  • step S4 an absorption coefficient is obtained. That is, the absorption coefficient ⁇ (k) is acquired in the calibration unit 22 from the data of the calibration jig 13 collected by the data collection unit 17.
  • step S5 a calibration coefficient is calculated. That is, in the calibration unit 22, the calibration coefficient F (k) is calculated from the absorption coefficient ⁇ (k) and the values (theoretical values or calculated values) of the effective atomic number Z eff and the electron density ⁇ e of each calibration jig 13. , G (k).
  • step S6 measurement of the subject 30 using the analysis unit 23 is started.
  • step S ⁇ b> 7 the subject (patient P) 30 is placed on the bed apparatus 14.
  • CT imaging of the subject 30 is performed in step S8. That is, X-rays are emitted from the X-ray light source 11, X-rays transmitted through the subject 30 are detected by the energy discrimination X-ray detector 16, and the detected data is collected by the data collection unit 17.
  • step S9 an absorption coefficient is obtained. That is, the analysis unit 23 acquires the absorption coefficient ⁇ (k) of the subject 30 from the data of the subject 30 collected by the data collecting unit 17.
  • step S10 calibration coefficients are applied. That is, the calibration coefficients F (k) and G (k) previously calculated in step S5 are applied to the absorption coefficient ⁇ (k) of the subject 30.
  • step S11 the electron density and effective atomic number are analyzed. That is, the analysis unit 22 analyzes the electron density ⁇ e and the effective atomic number Z eff of the subject 30 from the absorption coefficient ⁇ (k) of the subject 30 and the calibration coefficients F (k) and G (k).
  • step S12 it is determined whether to measure another subject 30.
  • the process returns to step S6 and the other subject 30 is measured. If the other subject 30 is not measured, the measurement is terminated.
  • the calibration coefficient is calculated from the absorption coefficient acquired by the measurement of the calibration jig 13, and the calibration coefficient is applied to the absorption coefficient acquired by the measurement of the subject 30.
  • the effective atomic number and electron density of the subject 30 are calculated. Therefore, a plurality of error factors such as background and multiple scattering included in the actual measurement value can be eliminated simultaneously, and the effective atomic number Z eff and the electron density ⁇ e of the subject 30 can be calculated with high accuracy. Become.
  • a highly accurate electron density map of the human body can be obtained, so that it is possible to estimate a more accurate range calculation at the time of treatment planning. Therefore, it is possible to improve the irradiation accuracy during X-ray therapy or heavy particle beam therapy.
  • the electron density of the subject 30 is calculated using the calibration coefficient calculated from the measurement data of the calibration jig 13 in advance, the electron density is compared with a conventional method such as when successive approximation is performed. The amount of calculation when calculating the density can be greatly reduced. As a result, the electron density can be calculated in a short time, and there is no need to use a large computer, and the calculation can be performed by a personal computer or the like.
  • FIG. 3 shows a schematic configuration diagram of another embodiment of the X-ray CT apparatus of the present invention. This embodiment is a case where the present invention is applied to an X-ray CT apparatus in which an object to be measured is an object other than a subject.
  • the X-ray CT apparatus 40 shown in FIG. 3 includes two parts, an X-ray transmission intensity measurement unit 50 and an electron density and effective atomic number calibration system unit 60.
  • the X-ray transmission intensity measurement unit 50 includes a light source unit and a detection unit of the apparatus of the present invention.
  • the electron density and effective atomic number calibration system unit 60 includes a processing unit of the apparatus of the present invention.
  • the X-ray transmission intensity measuring unit 50 includes an X-ray light source 51, an XYZ precision automatic stage 52, a slit or collimator 53, an XYZ ⁇ precision automatic stage 56, a slit or collimator 57, an energy discrimination X-ray intensity detector 58, and an XYZ precision automatic stage 59.
  • a slit or collimator 53 is disposed in front of the X-ray light source 51, and X-rays are irradiated forward from the X-ray light source 51.
  • the position of the X-ray light source 51 can be changed by an XYZ precision automatic stage 52.
  • the XYZ ⁇ precision automatic stage 56 is provided with a switching mechanism (not shown).
  • the calibration jig 54 and the measurement target (object) 55 can be switched to perform each measurement.
  • the XYZ ⁇ precision automatic stage 56 can change the position and orientation of the calibration jig 54 or the measuring object 55 installed thereon.
  • An energy discriminating X-ray intensity detector 58 is disposed in front of the calibration jig 54 or the measurement object 55 via a slit or collimator 57. The position of the energy discrimination X-ray detector 58 can be changed by an XYZ precision automatic stage 59.
  • the calibration jig 54 is a substance composed of a single element or compound serving as a standard substance that is homogeneous and capable of calculating an effective atomic number and an electron density, and two or more different kinds are prepared. Each calibration jig 54 is switched by a switching mechanism, and the measurement of the calibration jig 54 is sequentially performed.
  • the electron density and effective atomic number calibration system unit 60 includes a control unit 61, a calibration unit 62, and an analysis unit 63.
  • the electron density and effective atomic number calibration system unit 60 is configured by a personal computer or the like and operates by a computer program.
  • the calibration unit 62 and the analysis unit 63 are included in the processing unit of the apparatus of the present invention. Functions and operations of the control unit 61, the calibration unit 62, and the analysis unit 63 are almost the same as those of the control unit 21, the calibration unit 22, and the analysis unit 23 of the electron density and effective atomic number calibration system unit 20 of the X-ray CT apparatus 1 of FIG. It is the same.
  • the control unit 61 includes the X-ray light source 51, the XYZ precision automatic stage 52, the XYZ ⁇ precision automatic stage 56, the energy discrimination X-ray intensity detector 58, and the XYZ precision automatic stage 59 of the X-ray transmission intensity measurement unit 50, and calibration. Control is performed on a switching mechanism that switches between the jig 54 and the measurement target 55.
  • the calibration unit 62 calculates a calibration coefficient from the data collected by the X-ray transmission intensity measurement unit 50.
  • the analysis unit 63 analyzes the electron density and effective atomic number by applying the calibration coefficient calculated by the calibration unit 62.
  • the calibration jig 54 is measured and the calibration coefficients F (k), G are obtained by the same procedure as the flowchart shown in FIG. 2 of the X-ray CT apparatus 1 of the previous embodiment.
  • the processes of (k) calculation, measurement of the measurement target 55, and analysis of the electron density ⁇ e and effective atomic number Z eff of the measurement target 55 are performed.
  • the electron density and effective atomic number of the measurement target 55 are calculated with high accuracy by calibrating the measurement value of the measurement target 55 using the calibration coefficients F (k) and G (k) calculated using the calibration jig 54. can do.
  • the calibration coefficient is calculated from the absorption coefficient acquired by the measurement of the calibration jig 54, and the calibration coefficient is applied to the absorption coefficient acquired by the measurement of the measurement target 55.
  • the effective local number and electron density of the measurement object are calculated. Therefore, a plurality of error factors such as background and multiple scattering included in the actual measurement value can be eliminated simultaneously, and the effective atomic number Z eff and the electron density ⁇ e of the measurement target 55 can be calculated with high accuracy.
  • a substance for example, a dangerous substance, a corrosive substance
  • a defect for example, a defect, and the like existing in the measurement object 55 with non-destructiveness with high positional accuracy.
  • the electron density of the measurement object 55 is calculated using the calibration coefficient calculated in advance from the measurement data of the calibration jig 54, the electron density is compared with the conventional method such as when successive approximation is performed.
  • the amount of calculation when calculating the density can be greatly reduced.
  • the electron density can be calculated in a short time, and there is no need to use a large computer, and the calculation can be performed by a personal computer or the like.
  • the X-ray CT apparatuses 1 and 40 of the above-described embodiments are each configured to have an X-ray light source that irradiates continuous X-rays and an energy discrimination detector, as in the conventional photon counting CT apparatus. That is, the combination of the light source unit and the detection unit has the configuration (C) described above.
  • the apparatus and method of the present invention are not limited to the configuration (C), and can also be applied to the configurations (A) and (B) described above.
  • the calibration coefficient was calculated using a calibration jig, and the measurement target was analyzed by applying the calibration coefficient.
  • calibration jigs three types of carbon C, magnesium Mg, and aluminum Al were prepared. Specifically, a cylindrical calibration jig having a diameter of 5 mm made of each element was prepared. In this example, three types of calibration jigs themselves were measured.
  • FIG. 4 shows a schematic configuration diagram of the X-ray CT apparatus used for the measurement of the example.
  • An X-ray CT apparatus 70 shown in FIG. 4 has an X-ray light source 72, an XYZ precision automatic stage 73, a slit 74, an XYZ ⁇ precision automatic stage 76, an energy discrimination X-ray intensity detector 77, and an XYZ precision automatic stage on a surface plate 71. 78. Further, a CT imaging control PC (personal computer) 79 is provided outside the surface plate 71.
  • PC personal computer
  • a slit 74 is disposed in front of the X-ray light source 72, and X-rays are irradiated forward from the X-ray light source 72.
  • the X-ray light source 72 is disposed on an XYZ precision automatic stage 73, and the position can be changed by the XYZ precision automatic stage 73.
  • On the XYZ ⁇ precision automatic stage 76 a sample 75 serving as a calibration jig and a measurement object is arranged.
  • the XYZ ⁇ precision automatic stage 76 can change the position and orientation of the sample 75 disposed thereon.
  • an energy discrimination X-ray intensity detector 77 is arranged on the XYZ precision automatic stage 78 in front of the sample 55.
  • the position of the energy discrimination X-ray detector 77 can be changed by an XYZ precision automatic stage 78.
  • As the X-ray light source 72 a W anode X-ray light source was used.
  • a photon counting line detector was used as the energy discrimination X-ray intensity detector 77.
  • the surface plate 71 is 1 m long by 2 m wide.
  • the CT imaging control PC 79 includes an X-ray light source 72 and an XYZ precision automatic stage 73, an XYZ ⁇ precision automatic stage 76 for the sample 75, an energy discrimination X-ray intensity detector 77 and Each is connected to an XYZ precision automatic stage 78.
  • CT imaging was performed using each calibration jig of carbon C, magnesium Mg, and aluminum Al as a sample 75.
  • the X-ray light source 72 generated continuous X-rays in a wide energy range and irradiated the sample 75.
  • X-rays transmitted through the sample 75 were detected and discriminated into energy regions of 50 to 60 KeV, 60 to 70 keV, 70 to 80 keV, and 80 to 90 keV by the energy discrimination X-ray detector 77.
  • the absorption coefficient ⁇ (k) in each energy region k was calculated from the detected values in each energy region.
  • FIGS. 5A-5D show the results in the energy region 50-60 keV
  • FIG. 5B shows the results in the energy region 60-70 keV
  • FIG. 5C shows the results in the energy region 70-80 keV
  • FIG. 5D shows the results in the energy region 80-90 keV. Show.
  • the three points are arranged in a substantially straight line, and the approximate straight line is obtained with high accuracy.
  • CT imaging was again performed using each calibration jig (C, Mg, Al) as a sample 75 as a measurement object.
  • the X-ray light source 72 generated continuous X-rays in a wide energy range and irradiated the sample 75.
  • X-rays transmitted through the sample 75 were detected and discriminated into energy regions of 50 to 60 KeV, 60 to 70 keV, 70 to 80 keV, and 80 to 90 keV by the energy discrimination X-ray detector 77.
  • the absorption coefficient ⁇ (k) in each energy region k was calculated from the detected values in each energy region.
  • a calibration jig made of a single element is used as a measurement object as it is, but a compound or alloy having two or more of these elements or an object containing any of these elements is used. Similarly, the electron density and effective atomic number can be calculated with high accuracy as the measurement target.
  • a calibration jig made of a single element is used. However, a substance composed of a compound that is homogeneous and capable of calculating an effective atomic number and electron density is used for the calibration jig. Similarly, the electron density and effective atomic number of the measurement target can be calculated with high accuracy.
  • the present invention is not limited to the configurations of the above-described embodiments and examples, and various other configurations can be adopted within the scope of the present invention.
  • 1,40,70 X-ray CT apparatus 10,50 X-ray transmission intensity measurement unit, 11,51,72 X-ray light source, 12,15,53,57 slit or collimator, 13,54 calibration jig, 14 bed Equipment, 16, 58, 77 Energy discriminating X-ray intensity detector, 17 Data collection unit, 20, 60 Electron density and effective atomic number calibration system unit, 21, 61 control unit, 22, 62 calibration unit, 23, 63 analysis unit , 30 subject, 52, 59, 73, 78 XYZ precision automatic stage, 55 measurement object, 56, 76 XYZ ⁇ precision automatic stage, 71 surface plate, 74 slits, 75 samples, 79 CT control PC for CT imaging

Abstract

An X-ray CT device is provided with a processing unit for processing data obtained by detecting X-rays radiated from an X-ray light source of a light source unit and transmitted through a measurement object, the processing unit finding an absorption coefficient µ(k) for each energy region k of each calibration tool from data obtained by measuring two or more types of calibration tools in a plurality of energy regions, calculates calibration coefficients F(k), G(k) for the energy regions k on the basis of equation (3) from the absorption coefficient found for each calibration tool, finds an absorption coefficient µ(k) for each energy region k of a measurement object from data obtained by measuring a measurement object in each of a plurality of energy regions, and calculates the electron density ρe and the effective atomic number Z of the measurement object on the basis of equation (4) from the calibration coefficients F(k), G(k) for the energy regions k and the absorption coefficients µ(k) for the energy regions k of the measurement object.

Description

X線CT装置、電子密度及び実効原子番号の測定方法、CT検査方法、検査方法X-ray CT apparatus, electron density and effective atomic number measurement method, CT inspection method, inspection method
 本発明は、X線CT装置、並びに、X線CT装置を用いた電子密度及び実効原子番号の測定方法に関する。また、X線CT装置を用いた被検体のCT検査方法、X線CT装置を用いて物体の内部の爆発物の有無等を検査する検査方法に関する。 The present invention relates to an X-ray CT apparatus and an electron density and effective atomic number measurement method using the X-ray CT apparatus. The present invention also relates to a CT inspection method for a subject using an X-ray CT apparatus, and an inspection method for inspecting the presence or absence of explosives inside an object using an X-ray CT apparatus.
 がんの診断において、CT検査は不可欠である。
 CTの情報は、画像診断だけでなく、更にがんの放射線治療において、治療の質を左右する治療計画に必要不可欠な情報を与える。
 CTの画像は、被写体の減弱の大きさから得られるCT値が基本となって構成されている。
 X線治療計画においては、CT値-電子密度変換表を用いてCT値が電子密度に変換され、その電子密度の情報に基づいて、X線または重粒子線の治療計画が立てられる。
CT diagnosis is indispensable for cancer diagnosis.
CT information provides information indispensable not only for diagnostic imaging but also for treatment planning that affects the quality of treatment in radiation therapy of cancer.
A CT image is basically composed of CT values obtained from the magnitude of subject attenuation.
In the X-ray treatment plan, a CT value is converted into an electron density using a CT value-electron density conversion table, and an X-ray or heavy particle beam treatment plan is made based on the information on the electron density.
 重粒子線治療においては、治療計画立案にあたり、水等価な部位で±1%以下、肺等の臓器で±2%以下の精度で電子密度分布を求めるよう提案されている(IPEM81)。
 また、X線照射治療(定位放射線治療(SRT)、強度変調放射線治療(IMRT))においては、±3%の精度で電子密度を求めるよう提案されている(日本放射線技術学会、(京都)、2003年)。
 しかし、研究調査によれば(非特許文献1を参照)、日本国内の200以上の施設において、CT値-電子密度変換表の数値にばらつきが大きく、平均で±6%、平均値からのずれは最大で25%であることが報告されており、現状の技術ではその定量性は必ずしも十分ではない。
In heavy ion radiotherapy, it has been proposed to obtain an electron density distribution with an accuracy of ± 1% or less for water-equivalent sites and ± 2% or less for organs such as lungs (IPEM81).
In X-ray irradiation therapy (stereoscopic radiation therapy (SRT), intensity-modulated radiation therapy (IMRT)), it has been proposed to obtain the electron density with an accuracy of ± 3% (Japan Society for Radiological Technology, (Kyoto), 2003).
However, according to a research survey (see Non-Patent Document 1), in more than 200 facilities in Japan, the numerical value of the CT value-electron density conversion table varies widely, with an average of ± 6%, a deviation from the average value. Is reported to be 25% at the maximum, and the quantitativeness is not always sufficient with the current technology.
 CT値-電子密度変換表の数値のばらつきに対する解決法として、2種類のエネルギーのX線を用いる2色X線CT(Dual Source CT)、あるいは、X線のエネルギー情報を用いてCT画像を撮影するPhoton Counting CTが提案されている。
 そして、特許文献1~特許文献11においては、Photon Counting CTの装置構成とデータの再構成プログラムに関する技術が述べられている。
As a solution to the variation in the numerical value of the CT value-electron density conversion table, two-color X-ray CT (Dual Source CT) using X-rays of two types of energy or CT images using X-ray energy information Photon Counting CT is proposed.
Patent Documents 1 to 11 describe techniques relating to the device configuration of Photon Counting CT and a data reconstruction program.
 また、特許文献12に記載された装置を用いて、特許文献13に記載された装置及びプログラムを利用することで、CT値から電子密度・実効原子番号を求める手法が述べられている。また、同じ発明者による学術文献(非特許文献2を参照)には、実施例が掲載されている。 Also, a method for obtaining the electron density / effective atomic number from the CT value by using the apparatus and program described in Patent Document 13 using the apparatus described in Patent Document 12 is described. Further, examples are published in academic literature (see Non-Patent Literature 2) by the same inventor.
特開2016-32635号公報JP 2016-32635 A 特開2016-16130号公報Japanese Patent Laid-Open No. 2016-16130 特開2015-223350号公報JP 2015-223350 A 特開2015-180859号公報Japanese Patent Laying-Open No. 2015-180859 特開2015-160135号公報JP2015-160135A 特開2015-144809号公報JP 2015-144809 A 特開2015-144808号公報JP 2015-144808 A 特開2015-62657号公報Japanese Patent Laying-Open No. 2015-62657 特開2015-131028号公報JP2015-131028A 特開2014-140707号公報JP 2014-140707 A 特開2014-128456号公報JP 2014-128456 A 特開2007-271468号公報JP 2007-271468 A 特開2009-53090号公報JP 2009-53090 A
 しかしながら、特許文献1~特許文献11に開示された、Photon Counting CTの装置構成とデータの再構成プログラムに関する技術では、CT値から高精度に電子密度を取得する方法については解決されていない。 However, the technique relating to the device configuration and data reconstruction program of Photon Counting CT disclosed in Patent Document 1 to Patent Document 11 does not solve the method of acquiring the electron density from the CT value with high accuracy.
 また、特許文献13及び非特許文献2に開示された手法は、非特許文献2に記載された実施例の電子密度の測定誤差は10%程度であり、電子密度の測定精度に関しては従来のX線CTと比較して進歩性はない。これは、実際の測定におけるバックグラウンド、多重散乱等複数の要因に起因する誤差が含まれているためである。 Further, in the methods disclosed in Patent Document 13 and Non-Patent Document 2, the measurement error of the electron density of the embodiment described in Non-Patent Document 2 is about 10%, and the measurement accuracy of the electron density is the conventional X There is no inventive step compared to line CT. This is because errors due to multiple factors such as background and multiple scattering in actual measurement are included.
 また、患者の治療目的以外の用途、例えば、荷物検査等の測定対象の材質を識別する用途や、被測定物の亀裂や欠陥等を検査する用途においても、高精度に電子密度を取得することが必要になる場合がある。 In addition, the electron density can be acquired with high accuracy in applications other than patient treatment purposes, such as for identifying the material to be measured, such as luggage inspection, and for inspecting cracks, defects, etc. of the object to be measured. May be required.
 上述した課題に対して、本発明は、測定対象(被検体、その他の物体)の内部の電子密度及び実効原子番号を高精度で推定することができる、X線CT装置、並びに、X線CT装置を用いた電子密度及び実効原子番号の測定方法を提供するものである。また、本発明の電子密度及び実効原子番号の測定方法を適用した、CT検査方法、検査方法を提供するものである。 In response to the above-described problems, the present invention provides an X-ray CT apparatus and an X-ray CT that can estimate the electron density and effective atomic number inside a measurement target (subject or other object) with high accuracy. The present invention provides a method for measuring electron density and effective atomic number using an apparatus. The present invention also provides a CT inspection method and inspection method to which the electron density and effective atomic number measurement method of the present invention is applied.
 本発明のX線CT装置は、X線光源を有し、複数のエネルギー領域のX線を被測定物に照射することが可能な光源部と、光源部のX線光源から照射されて被測定物を透過したX線を検出する検出部と、検出部で検出したX線のデータを処理する処理部を備えている。そして、処理部は、均質であり実効原子番号と電子密度が計算可能である、単一元素又は化合物により構成された校正用治具を2種類以上使用して、各校正用治具を複数のエネルギー領域でそれぞれ測定して検出したデータから、各校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求め、各校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)から、下記数式(3)に基づいて、それぞれのエネルギー領域kにおける校正係数F(k),G(k)を算出する。 The X-ray CT apparatus of the present invention has an X-ray light source and is capable of irradiating an object to be measured with X-rays in a plurality of energy regions, and is measured by being irradiated from the X-ray light source of the light source part. A detection unit that detects X-rays transmitted through an object and a processing unit that processes data of X-rays detected by the detection unit are provided. The processing unit uses two or more types of calibration jigs composed of a single element or compound that are homogeneous and capable of calculating effective atomic numbers and electron densities, and each calibration jig is provided with a plurality of calibration jigs. The absorption coefficient μ (k) in each energy region k of each calibration jig is obtained from the data measured and detected in each energy region, and the absorption coefficient μ (k) in each energy region k of each calibration jig. ), The calibration coefficients F (k) and G (k) in the respective energy regions k are calculated based on the following mathematical formula (3).
Figure JPOXMLDOC01-appb-M000005
[数式(3)において、ρは校正用治具の電子密度を示し、Zは校正用治具の実効原子番号を示す。]
Figure JPOXMLDOC01-appb-M000005
[In Equation (3), ρ e represents the electron density of the calibration jig, and Z represents the effective atomic number of the calibration jig. ]
 さらに、処理部は、測定対象を複数のエネルギー領域でそれぞれ測定して検出したデータから、測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求め、測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)と、それぞれのエネルギー領域kにおける校正係数F(k),G(k)とから、下記数式(4)に基づいて、測定対象の電子密度ρ及び実効原子番号Zを算出する。 Furthermore, the processing unit obtains an absorption coefficient μ (k) in each energy region k of the measurement target from data detected by measuring the measurement target in each of the plurality of energy regions, and obtains an absorption coefficient μ (k) in each energy region k of the measurement target. From the absorption coefficient μ (k) and the calibration coefficients F (k) and G (k) in each energy region k, the electron density ρ e and the effective atomic number Z of the measurement target are calculated based on the following formula (4). calculate.
Figure JPOXMLDOC01-appb-M000006
[数式(4)において、ρは測定対象の電子密度を示し、Zは測定対象の実効原子番号を示す。]
Figure JPOXMLDOC01-appb-M000006
[In Formula (4), ρ e represents the electron density of the measurement object, and Z represents the effective atomic number of the measurement object. ]
 本発明の電子密度及び実効原子番号の測定方法は、X線CT装置を用いて、測定対象の電子密度及び実効原子番号を測定する方法であって、均質であり実効原子番号と電子密度が計算可能である、単一元素又は化合物により構成された校正用治具を2種類以上使用して、X線CT装置により、各校正用治具を、複数のエネルギー領域でそれぞれ測定して、各校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求める。そして、各校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)から、下記数式(3)に基づいて、それぞれのエネルギー領域kにおける校正係数F(k),G(k)を算出する。 The method for measuring the electron density and effective atomic number of the present invention is a method for measuring the electron density and effective atomic number of an object to be measured using an X-ray CT apparatus, which is homogeneous and calculates the effective atomic number and electron density. Using two or more types of calibration jigs composed of a single element or compound, each calibration jig is measured in a plurality of energy regions with an X-ray CT system, and each calibration is performed. An absorption coefficient μ (k) in each energy region k of the jig is determined. Then, calibration coefficients F (k) and G (k) in each energy region k are calculated from the absorption coefficient μ (k) in each energy region k of each calibration jig based on the following formula (3). To do.
Figure JPOXMLDOC01-appb-M000007
[数式(3)において、ρは校正用治具の電子密度を示し、Zは校正用治具の実効原子番号を示す。]
Figure JPOXMLDOC01-appb-M000007
[In Equation (3), ρ e represents the electron density of the calibration jig, and Z represents the effective atomic number of the calibration jig. ]
 さらに、X線CT装置により、測定対象を、複数のエネルギー領域でそれぞれ測定して測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求め、測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)と、それぞれのエネルギー領域kにおける校正係数F(k),G(k)とから、下記数式(4)に基づいて、測定対象の電子密度ρ及び実効原子番号Zを算出する。 Further, the measurement object is measured in each of a plurality of energy regions by an X-ray CT apparatus to obtain an absorption coefficient μ (k) in each energy region k of the measurement object, and the absorption coefficient in each energy region k of the measurement object. Based on μ (k) and calibration coefficients F (k) and G (k) in each energy region k, the electron density ρ e and the effective atomic number Z of the measurement target are calculated based on the following formula (4). .
Figure JPOXMLDOC01-appb-M000008
[数式(4)において、ρは測定対象の電子密度を示し、Zは測定対象の実効原子番号を示す。]
Figure JPOXMLDOC01-appb-M000008
[In Formula (4), ρ e represents the electron density of the measurement object, and Z represents the effective atomic number of the measurement object. ]
 本発明のCT検査方法は、人体の被検体に対してCT検査を行うCT検査方法であって、上記本発明の電子密度及び実効原子番号の測定方法において、測定対象を被検体として、被検体の電子密度及び実効原子番号を測定し、測定した被検体の電子密度及び実効原子番号に基づいて、被検体の内部の電子密度マップを得るものである。 The CT examination method of the present invention is a CT examination method for performing a CT examination on a human subject, and in the method for measuring electron density and effective atomic number of the present invention, the subject to be measured is the subject. The electron density and effective atomic number of the subject are measured, and an electron density map inside the subject is obtained based on the measured electron density and effective atomic number of the subject.
 本発明の検査方法は、物体を検査して、その物体における爆発物の有無を検知する検査方法であって、上記本発明の電子密度及び実効原子番号の測定方法において、測定対象を物体として、物体の電子密度及び実効原子番号を測定し、測定した物体の電子密度及び実効原子番号に基づいて、物体の内部の物質を特定することにより、爆発物の有無を検知するものである。 The inspection method of the present invention is an inspection method for inspecting an object and detecting the presence or absence of explosives in the object, in the method for measuring electron density and effective atomic number of the present invention, with the measurement object as an object, The presence or absence of explosives is detected by measuring the electron density and effective atomic number of the object and specifying the substance inside the object based on the measured electron density and effective atomic number of the object.
 上述の本発明によれば、校正用治具を測定して得られる校正係数を用いて、測定対象の実測値に対して校正を行うので、実測値に含まれるバックグラウンド、多重散乱等複数の誤差要因を同時に消去し、測定対象の電子密度および実効原子番号を高精度で算出することができる。 According to the present invention described above, the calibration coefficient obtained by measuring the calibration jig is used to calibrate the actual measurement value to be measured. The error factor can be eliminated at the same time, and the electron density and effective atomic number of the measurement object can be calculated with high accuracy.
 本発明のCT検査方法によれば、測定対象である被検体の電子密度および実効原子番号を高精度で算出することができるので、高い精度の人体の電子密度マップを得ることができ、治療計画時に、より高精度な飛程計算を推定することが可能となる。
 従って、X線治療や重粒子線治療の際の照射精度の向上を図ることができる。
According to the CT examination method of the present invention, since the electron density and effective atomic number of the subject to be measured can be calculated with high accuracy, a highly accurate electron density map of the human body can be obtained, and the treatment plan can be obtained. Sometimes it is possible to estimate a more accurate range calculation.
Therefore, it is possible to improve the irradiation accuracy during X-ray therapy or heavy particle beam therapy.
 本発明の検査方法によれば、測定対象である物体の実効原子番号と電子密度を高い精度で算出することができるので、測定対象の内部に存在する物質を位置精度良く検出することが可能になり、爆発物の有無を精度良く検知することができる。
 従って、本発明の検査方法を、手荷物や貨物の検査に適用すれば、高い精度の検査を行うことが可能になる。
According to the inspection method of the present invention, since the effective atomic number and electron density of the object to be measured can be calculated with high accuracy, it is possible to detect the substance existing inside the measurement target with high positional accuracy. Therefore, the presence or absence of explosives can be accurately detected.
Therefore, if the inspection method of the present invention is applied to baggage and cargo inspection, it becomes possible to perform inspection with high accuracy.
 また、本発明のX線CT装置や、本発明の電子密度及び実効原子番号の測定方法を、被検体以外の物体の検査に適用した場合には、測定対象の物体の実効原子番号と電子密度を高い精度で算出することができるので、物体の内部に存在する、物質(例えば、危険物、腐食物)や欠陥等を、位置精度良く検出することが可能になる。
 従って、本発明のX線CT装置や本発明の電子密度及び実効原子番号の測定方法を、製品の不良の有無の検査等に適用すれば、高い精度の検査を行うことが可能になる。
In addition, when the X-ray CT apparatus of the present invention and the method for measuring electron density and effective atomic number of the present invention are applied to inspection of an object other than a subject, the effective atomic number and electron density of the object to be measured Therefore, it is possible to detect a substance (for example, dangerous substance, corrosive substance), a defect, or the like existing inside the object with high positional accuracy.
Therefore, if the X-ray CT apparatus of the present invention and the method for measuring electron density and effective atomic number of the present invention are applied to the inspection of the presence or absence of product defects, it becomes possible to perform inspection with high accuracy.
 また、本発明によれば、予め校正用治具の測定によって算出した校正係数を用いて、測定対象の電子密度の算出を行うので、逐次近似を行っていた場合等の従来の手法と比較して、電子密度の算出の際の計算量を大幅に少なくすることができる。これにより、短い時間で電子密度の算出を行うことが可能になり、また大型のコンピュータを使用する必要が無くなり、パーソナルコンピュータ等でも算出を行うことが可能になる。 In addition, according to the present invention, since the electron density of the measurement target is calculated using the calibration coefficient calculated in advance by the measurement of the calibration jig, it is compared with the conventional method such as when successive approximation is performed. Thus, it is possible to greatly reduce the amount of calculation when calculating the electron density. As a result, the electron density can be calculated in a short time, and there is no need to use a large computer, and the calculation can be performed by a personal computer or the like.
本発明のX線CT装置の一実施の形態の概略構成図である。1 is a schematic configuration diagram of an embodiment of an X-ray CT apparatus of the present invention. 図1のX線CT装置における校正係数及び電子密度及び実効原子番号を算出する過程を説明するフローチャートである。It is a flowchart explaining the process of calculating a calibration coefficient, an electron density, and an effective atomic number in the X-ray CT apparatus of FIG. 本発明のX線CT装置の他の実施の形態の概略構成図である。It is a schematic block diagram of other embodiment of the X-ray CT apparatus of this invention. 実施例の測定に用いたX線CT装置の概略構成図である。It is a schematic block diagram of the X-ray CT apparatus used for the measurement of an Example. A~D 実施例の測定結果から校正係数を算出した結果を示す図である。A to D are diagrams showing results of calculating calibration coefficients from measurement results of Examples. A~C 実施例において、電子密度と実効原子番号を算出した結果を示す図である。A to C are diagrams showing the results of calculating electron density and effective atomic number in Examples.
 まず、本発明の具体的な実施の形態の説明に先立ち、本発明の概要と原理について説明する。 First, prior to the description of specific embodiments of the present invention, the outline and principle of the present invention will be described.
 本発明のX線CT(Computed Tomography)装置(以下、「本発明の装置」とも略す)は、X線光源を有し、複数のエネルギー領域のX線を被測定物に照射することが可能な光源部と、光源部のX線光源から照射されて被測定物を透過したX線を検出する検出部と、検出部で検出したX線のデータを処理する処理部を備えている。そして、処理部は、均質であり実効原子番号と電子密度が計算可能である、単一元素又は化合物により構成された校正用治具を2種類以上使用して、各校正用治具を複数のエネルギー領域でそれぞれ測定して検出したデータから、各校正用治具のそれぞれのエネルギー領域における吸収係数を求め、各校正用治具のそれぞれのエネルギー領域における吸収係数から、それぞれのエネルギー領域における校正係数を算出し、測定対象を複数のエネルギー領域でそれぞれ測定して検出したデータから、測定対象のそれぞれのエネルギー領域における吸収係数を求め、測定対象のそれぞれのエネルギー領域における吸収係数と、それぞれのエネルギー領域における校正係数とから、測定対象の電子密度及び実効原子番号を算出するものである。 An X-ray CT (Computed Tomography) apparatus of the present invention (hereinafter also abbreviated as “the apparatus of the present invention”) has an X-ray light source, and can irradiate a measurement object with X-rays in a plurality of energy regions. A light source unit, a detection unit that detects X-rays emitted from the X-ray light source of the light source unit and transmitted through the object to be measured, and a processing unit that processes data of X-rays detected by the detection unit. The processing unit uses two or more types of calibration jigs composed of a single element or compound that are homogeneous and capable of calculating effective atomic numbers and electron densities, and each calibration jig is provided with a plurality of calibration jigs. From the data measured and detected in each energy region, the absorption coefficient in each energy region of each calibration jig is obtained, and the calibration coefficient in each energy region is obtained from the absorption coefficient in each energy region of each calibration jig. The absorption coefficient in each energy region of the measurement target is obtained from the data detected by measuring the measurement target in each of the plurality of energy regions, and the absorption coefficient in each energy region of the measurement target and each energy region The electron density and effective atomic number of the measurement object are calculated from the calibration coefficient in FIG.
 本発明の電子密度及び実効原子番号の測定方法(以下、「本発明の測定方法」とも略す)は、X線CT装置を用いて、測定対象の電子密度及び実効原子番号を測定する方法である。そして、均質であり実効原子番号と電子密度が計算可能である、単一元素又は化合物により構成された校正用治具を2種類以上使用して、X線CT装置により、各校正用治具を、複数のエネルギー領域でそれぞれ測定して、各校正用治具のそれぞれのエネルギー領域における吸収係数を求め、各校正用治具のそれぞれのエネルギー領域における吸収係数から、それぞれのエネルギー領域の校正係数を算出し、X線CT装置により、測定対象を、複数のエネルギー領域でそれぞれ測定して測定対象のそれぞれのエネルギー領域における吸収係数を求め、測定対象のそれぞれのエネルギー領域における吸収係数と、それぞれのエネルギー領域における校正係数とから、測定対象の電子密度及び実効原子番号を算出する。 The electron density and effective atomic number measurement method of the present invention (hereinafter also abbreviated as “the measurement method of the present invention”) is a method of measuring the electron density and effective atomic number of a measurement object using an X-ray CT apparatus. . And, using two or more kinds of calibration jigs composed of a single element or compound that is homogeneous and whose effective atomic number and electron density can be calculated, each calibration jig is obtained by an X-ray CT apparatus. Measure each of the energy regions to obtain the absorption coefficient in each energy region of each calibration jig, and calculate the calibration coefficient for each energy region from the absorption coefficient in each energy region of each calibration jig. Calculate and measure the measurement object in each of a plurality of energy regions using an X-ray CT apparatus to obtain an absorption coefficient in each energy region of the measurement object. The absorption coefficient in each energy region of the measurement object and each energy From the calibration coefficient in the region, the electron density and effective atomic number of the measurement object are calculated.
 本発明のCT検査方法は、人体の被検体に対してCT検査を行うCT検査方法であって、本発明の測定方法において、測定対象を被検体として、被検体の電子密度及び実効原子番号を測定し、測定した被検体の電子密度及び実効原子番号に基づいて、被検体の内部の電子密度マップを得る。 The CT examination method of the present invention is a CT examination method for performing a CT examination on a human subject. In the measurement method of the present invention, the measurement target is the subject, and the electron density and effective atomic number of the subject are determined. Based on the measured electron density and effective atomic number of the subject, an electron density map inside the subject is obtained.
 本発明の検査方法は、物体を検査して、その物体における爆発物の有無を検知する検査方法であって、本発明の測定方法において、測定対象を物体として、物体の電子密度及び実効原子番号を測定し、測定した物体の電子密度及び実効原子番号に基づいて、物体の内部の物質を特定することにより、爆発物の有無を検知する。 The inspection method of the present invention is an inspection method for inspecting an object and detecting the presence or absence of explosives in the object. In the measurement method of the present invention, the electron density and effective atomic number of the object are set as the object to be measured. , And the presence or absence of explosives is detected by identifying the substance inside the object based on the measured electron density and effective atomic number.
 本発明の装置においては、基本的に、装置内に処理部を有している。処理部は、コンピュータプログラムにより、X線CT測定の際に検出部で検出されたデータの処理を行う。
 そして、例えば、光源部と検出部を含む測定部に対して、測定部内に処理部を内蔵した構成、もしくは、測定部の外に処理部が付随している構成とすることができる。
The apparatus of the present invention basically has a processing unit in the apparatus. The processing unit processes data detected by the detection unit during X-ray CT measurement by a computer program.
For example, the measurement unit including the light source unit and the detection unit may have a configuration in which a processing unit is built in the measurement unit, or a configuration in which a processing unit is attached outside the measurement unit.
 本発明の測定方法は、X線CT(Computed Tomography)装置を使用する。
 本発明の測定方法が使用するX線CT装置としては、上述の本発明の装置、即ち、測定対象の電子密度及び実効原子番号の算出を行う処理部を備えたX線CT装置だけでなく、その他の構成のX線CT装置(例えば、従来公知のX線CT装置)を使用することも可能である。
 そして、本発明の測定方法には、X線CT装置の外部で、測定対象の電子密度及び実効原子番号の算出等のデータの処理を行う場合も含まれる。例えば、X線CT装置が測定したデータを記憶媒体に記憶して、外部で記憶媒体に記憶したデータの処理を行うことや、外部の処理装置に有線又は無線によってデータを送信して処理を行うことや、データの処理をネットワーク上のプログラムによって処理を行うことも、可能である。
The measurement method of the present invention uses an X-ray CT (Computed Tomography) apparatus.
As the X-ray CT apparatus used by the measurement method of the present invention, not only the above-described apparatus of the present invention, that is, an X-ray CT apparatus provided with a processing unit that calculates the electron density and effective atomic number of the measurement target, It is also possible to use an X-ray CT apparatus having another configuration (for example, a conventionally known X-ray CT apparatus).
The measurement method of the present invention includes a case where data processing such as calculation of the electron density and effective atomic number of the measurement target is performed outside the X-ray CT apparatus. For example, the data measured by the X-ray CT apparatus is stored in a storage medium, and the data stored in the storage medium is processed externally, or the data is transmitted to the external processing apparatus by wired or wireless processing. It is also possible to process data by a program on the network.
 本発明の装置及び本発明の測定方法において、X線CT装置は、複数(2つ以上)のエネルギー領域のX線を被測定物に照射して、被測定物を透過したX線をエネルギー領域毎に検出する。この条件を満たす限り、X線CT装置における、X線光源からX線を照射する光源部と、被測定物を透過したX線を検出する検出部のそれぞれの構成は、様々な構成を使用することが可能である。 In the apparatus of the present invention and the measurement method of the present invention, the X-ray CT apparatus irradiates the object to be measured with X-rays in a plurality (two or more) of energy regions and transmits the X-rays transmitted through the object to be measured in the energy regions. Detect every time. As long as this condition is satisfied, each configuration of the light source unit that emits X-rays from the X-ray light source and the detection unit that detects X-rays transmitted through the measurement object in the X-ray CT apparatus uses various configurations. It is possible.
 本発明の装置及び本発明の測定方法における、X線CT装置の光源部と検出部の組合せとしては、例えば、以下の(A)~(C)の構成が挙げられる。 Examples of the combination of the light source unit and the detection unit of the X-ray CT apparatus in the apparatus of the present invention and the measurement method of the present invention include the following configurations (A) to (C).
(A)光源部が、第1のエネルギーのX線を照射する第1のX線光源と、第1のエネルギーとは異なる第2のエネルギーのX線を照射する第2のX線光源を少なくとも有する構成である。
 検出部は、光源部の各X線光源に対して、それぞれ検出器を有する。
 光源部の構成としては、例えば、特開平10-104175号公報の図3に開示されているように、第1のX線光源から高いエネルギーのX線束を照射し、第2のX線光源から低いエネルギーのX線束を照射する構成を採用することができる。
 また、光源部が、互いにエネルギーの異なる3つ以上のX線光源を有していてもよい。
 X線光源は、単色X線を照射する構成も、ある程度のエネルギー分布を有する連続X線を照射する構成も、いずれも可能である。X線光源を、ある程度の連続X線を照射する構成とする場合には、上述の「第1のエネルギー」及び「第2のエネルギー」を、「第1のエネルギー領域」及び「第2のエネルギー領域」と読み替える。
 なお、(A)の構成では、照射するX線が単色X線のようにエネルギー分布が狭い方が、電子密度等の算出の精度を高くすることができる。
(A) The light source unit includes at least a first X-ray light source that emits X-rays of the first energy and a second X-ray light source that emits X-rays of a second energy different from the first energy. It is the composition which has.
The detection unit has a detector for each X-ray light source of the light source unit.
As the configuration of the light source unit, for example, as disclosed in FIG. 3 of Japanese Patent Laid-Open No. 10-104175, a high energy X-ray bundle is irradiated from the first X-ray light source, and the second X-ray light source is used. A configuration for irradiating a low-energy X-ray beam can be employed.
The light source unit may have three or more X-ray light sources having different energy.
The X-ray light source can be configured to irradiate monochromatic X-rays or to irradiate continuous X-rays having a certain energy distribution. When the X-ray light source is configured to emit a certain amount of continuous X-rays, the “first energy” and the “second energy” described above are referred to as “first energy region” and “second energy”. Read as "Area".
In the configuration of (A), the accuracy of calculation such as the electron density can be increased when the X-ray to be irradiated is narrower in energy distribution, such as monochromatic X-ray.
(B)光源部が、X線光源に供給する加速電圧等の変更により、1つのX線光源から照射するX線のエネルギーを変更することが可能な構成である。
 検出部は、光源部の1つのX線光源に対して検出器を有する。
 1つのX線光源(X線管)に供給する加速電圧等を変更することにより、X線光源から照射するX線のエネルギーを変更する。そして、例えば、第1のエネルギーのX線の照射、第2のエネルギーのX線の照射、第3のエネルギーのX線の照射、という具合に、順次エネルギーの異なるX線の照射を行って、それぞれのエネルギーのX線による測定を行う。
 X線光源は、単色X線を照射する構成も、ある程度のエネルギー分布を有する連続X線を照射する構成も、いずれも可能である。X線光源を、ある程度の連続X線を照射する構成とする場合には、上述の「X線のエネルギー」を、「X線のエネルギー領域」と読み替える。
 なお、(B)の構成では、照射するX線が単色X線のようにエネルギー分布が狭い方が、電子密度等の算出の精度を高くすることができる。
(B) The light source unit can change the energy of X-rays emitted from one X-ray light source by changing the acceleration voltage supplied to the X-ray light source.
The detection unit has a detector for one X-ray light source of the light source unit.
By changing the acceleration voltage or the like supplied to one X-ray light source (X-ray tube), the energy of X-rays irradiated from the X-ray light source is changed. Then, for example, X-ray irradiation of the first energy, X-ray irradiation of the second energy, X-ray irradiation of the third energy, etc. X-ray measurement of each energy is performed.
The X-ray light source can be configured to irradiate monochromatic X-rays or to irradiate continuous X-rays having a certain energy distribution. When the X-ray light source is configured to emit a certain amount of continuous X-rays, the above-mentioned “X-ray energy” is read as “X-ray energy region”.
In the configuration of (B), the accuracy of calculation such as the electron density can be increased when the X-ray to be irradiated has a narrow energy distribution such as a monochromatic X-ray.
(C)光源部のX線光源から照射するX線のエネルギー分布のうち、検出部が2つ以上のエネルギー領域をエネルギー領域毎に弁別して検出する構成である(例えば、上記の特許文献13を参照)。
 所謂フォトンカウンティングCT装置は、この構成を採用している。
 光源部のX線光源は、連続X線を照射する構成とし、比較的広い範囲のエネルギー領域にわたるスペクトル分布を有することが望ましい。
 この構成では、1回のX線照射で2つ以上のエネルギー領域の測定を同時に行えるため、被爆線量を少なくすることができる。また、単色X線ではなく、連続X線を使用するので、大がかりな設備を必要としない。
 従って、この構成を採用した場合、病院等でも容易に設置することができる。
 光源部と検出部を(C)の構成とする場合、光源部のX線光源や、検出部の検出器は、従来公知のフォトンカウンティングCT装置と同様の構成を採用することができる。
(C) In the X-ray energy distribution irradiated from the X-ray light source of the light source unit, the detection unit is configured to discriminate and detect two or more energy regions for each energy region (see, for example, Patent Document 13 above). reference).
A so-called photon counting CT apparatus employs this configuration.
The X-ray light source of the light source unit is preferably configured to irradiate continuous X-rays and has a spectral distribution over a relatively wide energy range.
In this configuration, two or more energy regions can be measured simultaneously by one X-ray irradiation, so that the exposure dose can be reduced. Further, since continuous X-rays are used instead of monochromatic X-rays, no large-scale equipment is required.
Therefore, when this configuration is adopted, it can be easily installed in a hospital or the like.
When the light source unit and the detection unit have the configuration (C), the X-ray light source of the light source unit and the detector of the detection unit can adopt the same configuration as a conventionally known photon counting CT apparatus.
 なお、上述の(A)~(C)の各構成は、基本的な構成である。変形例として、例えば、それぞれの基本的な構成において、同一のエネルギーを照射するX線光源を複数個設けても良い。 Note that each of the above-described configurations (A) to (C) is a basic configuration. As a modification, for example, in each basic configuration, a plurality of X-ray light sources that irradiate the same energy may be provided.
 光源部を複数のX線光源で構成したときには、例えば、特許文献13に記載された構成(図2、図4等)と同様に、複数のX線光源によるX線の照射方向を互いに異ならせることも可能になる。
 例えば、上述した(A)の構成において、複数のX線光源によるX線の照射方向を互いに異ならせることができる。
 複数のX線光源によるX線の照射方向を互いに異ならせた場合には、複数のX線光源から同時にX線を照射して測定を行うことが可能である。
When the light source unit is composed of a plurality of X-ray light sources, for example, the X-ray irradiation directions of the plurality of X-ray light sources are made different from each other in the same manner as the configuration described in Patent Document 13 (FIGS. 2, 4 and the like). It becomes possible.
For example, in the configuration of (A) described above, the X-ray irradiation directions by a plurality of X-ray light sources can be made different from each other.
When the X-ray irradiation directions of the plurality of X-ray light sources are different from each other, it is possible to perform measurement by simultaneously irradiating X-rays from the plurality of X-ray light sources.
 本発明の装置及び本発明の測定方法では、標準物質となる、校正用治具を使用する。
 そして、校正用治具としては、均質であり実効原子番号Zeffと電子密度ρが計算可能である、単一元素又は化合物により構成された物質を使用する。
 校正用治具として使用する物質は、実効原子番号Zeffと電子密度ρが計算可能である限りにおいて、任意の元素又は化合物で構成された物質を使用することが可能である。
 ただし、原子番号が大きくなると、算出される電子密度の誤差が大きくなるため、原子番号が1~30の範囲の元素で構成された物質を使用することが好ましい。
In the apparatus of the present invention and the measurement method of the present invention, a calibration jig as a standard substance is used.
As the calibration jig, a substance composed of a single element or a compound that is homogeneous and can calculate the effective atomic number Z eff and the electron density ρ e is used.
As a substance used as a calibration jig, a substance composed of any element or compound can be used as long as the effective atomic number Z eff and the electron density ρ e can be calculated.
However, since an error in the calculated electron density increases as the atomic number increases, it is preferable to use a substance composed of elements having an atomic number in the range of 1 to 30.
 いくつかの元素に関しては、その元素の既知の実効原子番号Zeff及び電子密度ρの理論値を使用することができる。
 その他の元素や化合物に関しては、文献に記載されている計算式を用いて、実効原子番号Zeff及び電子密度ρを計算することができる。
 実効原子番号Zeffの計算式は、例えば、Khan’s The Physics of Radiation Therapy, Faiz M. Khan, John P. Gibbons(Jr.), Lippincott Wiliams & Wikins, 2014 (p.78の式(6.4))に記載されている。
 電子密度ρの計算式は、例えば、J Med Phys. 2009 Jul-Sep; 34(3):176-179. Doi: 10.4103/0971-6203.54853(Introduction中の最後の式)に記載されている。
 例えば、カーボン、マグネシウム、アルミニウムから選ばれる物質を、校正用治具に使用することができる。これらカーボン、マグネシウム、アルミニウムは、従来校正用治具として使用されたことがない物質である。
 また、校正用治具としては、液体等も可能ではあるが、なるべく常温で安定して固体の状態を保持することができる物質を使用することが望ましい。
For some elements, the theoretical values of the known effective atomic number Z eff and electron density ρ e for that element can be used.
For other elements and compounds, the effective atomic number Z eff and the electron density ρ e can be calculated using calculation formulas described in the literature.
The formula for calculating the effective atomic number Z eff is, for example, Khan's The Physics of Radiation Therapy, Faiz M. Khan, John P. Gibbons (Jr.), Lippincott Wiliams & Wikins, 2014 (p.78 formula (6.4)). Are listed.
The calculation formula of the electron density ρ e is described in, for example, J Med Phys. 2009 Jul-Sep; 34 (3): 176-179. Doi: 10.4103 / 0971-6203.54853 (the last formula in the introduction).
For example, a substance selected from carbon, magnesium, and aluminum can be used for the calibration jig. These carbon, magnesium, and aluminum are materials that have not been used as calibration jigs in the past.
In addition, although a liquid or the like is possible as the calibration jig, it is desirable to use a substance that can maintain a solid state as stably as possible at room temperature.
 校正用治具の形状は、取り扱いや測定が容易である形状とすることが望ましい。例えば、四角柱状や円柱状等が挙げられる。
 校正用治具の大きさについては、測定対象の物体の種類や、要求される電子密度の精度に対応して、適切な大きさを選定する。例えば、X線が透過する部分の厚さが数mm程度~数cm程度となるような大きさとする。
It is desirable that the calibration jig has a shape that can be easily handled and measured. For example, a quadrangular prism shape, a cylindrical shape, and the like can be given.
As for the size of the calibration jig, an appropriate size is selected in accordance with the type of object to be measured and the required accuracy of electron density. For example, the thickness of the portion through which X-rays are transmitted is set to be about several mm to several cm.
 続いて、本発明の原理について説明する。 Subsequently, the principle of the present invention will be described.
 2種類以上のエネルギーkのX線を照射して、被測定物のX線の吸収係数を求めるとき、吸収係数μ(k)は、次式(1)で求められる(例えば、M. Torikoshi et al., Phys. Med. Boil, 48, 673, (2003)を参照)。
Figure JPOXMLDOC01-appb-M000009
When X-ray absorption coefficient of an object to be measured is obtained by irradiating two or more kinds of X-rays of energy k, the absorption coefficient μ (k) is obtained by the following equation (1) (for example, M. Torikoshi et al. al., Phys. Med. Boil, 48, 673, (2003)).
Figure JPOXMLDOC01-appb-M000009
 従来は、例えば、上記式(1)から、2つのエネルギーの単色X線で吸収係数μを測定して、吸収係数μの測定値と、原子番号Zの理論値を用いて、電子密度ρを求めていた。また、例えば、原子番号Zとして適当な値を入れることにより、逐次的に近似を行って、実効原子番号Zeffと電子密度ρを求めていた。
 吸収係数μの測定値は、誤差やバックグラウンドを含んでいるため、吸収係数μの測定値と、原子番号Zの理論値とからでは、電子密度ρを精度良く求めることが難しい。
 また、逐次的に近似を行うと、計算量が膨大になることから、計算に時間がかかり、パソコン等では計算処理が難しくなる。
Conventionally, for example, from the above formula (1), the absorption coefficient μ is measured with monochromatic X-rays of two energies, and the electron density ρ e is measured using the measured value of the absorption coefficient μ and the theoretical value of the atomic number Z. I was looking for. Further, for example, an effective value for the atomic number Z eff and the electron density ρ e are obtained by sequentially approximating the atomic number Z by entering an appropriate value.
Since the measured value of the absorption coefficient μ includes an error and background, it is difficult to accurately obtain the electron density ρ e from the measured value of the absorption coefficient μ and the theoretical value of the atomic number Z.
Further, if approximation is performed sequentially, the amount of calculation becomes enormous, so that the calculation takes time, and calculation processing becomes difficult with a personal computer or the like.
 これに対して、本発明では、逐次的な近似等の従来の手法とは異なる手法により、測定対象の実効原子番号Zeffと電子密度ρを求める。
 以下、本発明の手法を説明する。
On the other hand, in the present invention, the effective atomic number Z eff and the electron density ρ e to be measured are obtained by a method different from the conventional method such as sequential approximation.
Hereinafter, the method of the present invention will be described.
 上記式(1)において、係数F,Gは原子番号依存性が小さいので、原子番号依存性がないと仮定する。
 式(1)は、原子番号依存性がないと仮定すると、次の式(2)のように表される。
Figure JPOXMLDOC01-appb-M000010
In the above formula (1), it is assumed that the coefficients F and G have little atomic number dependency, and therefore have no atomic number dependency.
Assuming that there is no atomic number dependency, the formula (1) is expressed as the following formula (2).
Figure JPOXMLDOC01-appb-M000010
 さらに、式(2)を変形すると、下記の式(3)となる。
Figure JPOXMLDOC01-appb-M000011
Further, when the formula (2) is modified, the following formula (3) is obtained.
Figure JPOXMLDOC01-appb-M000011
 ここで、均質で実効原子番号Zeffと電子密度ρが計算可能である、単一元素又は化合物により構成された物質を、2種類以上用いて、それぞれの物質について、複数(2つ以上)のエネルギーにおける吸収係数μを測定する。そして、式(3)がZに対して線形であることを利用すれば、あるエネルギーkにおいて、それぞれの物質の吸収係数μの測定値と原子番号Z及び電子密度ρの値(既知の理論値又は計算値)から、当該エネルギーkにおける、F(k)とG(k)が求められる。 Here, two or more kinds of substances composed of a single element or a compound, which are homogeneous and can calculate the effective atomic number Z eff and the electron density ρ e, are used for each substance. The absorption coefficient μ at the energy of is measured. Then, using the fact that the expression (3) is linear with respect to Z 4 , the measured value of the absorption coefficient μ of each substance, the value of the atomic number Z and the electron density ρ e (known value) at a certain energy k. F (k) and G (k) at the energy k are obtained from the theoretical value or the calculated value.
 さらに、式(2)は、下記の式(4)のように変形できる。
Figure JPOXMLDOC01-appb-M000012
Furthermore, the equation (2) can be transformed as the following equation (4).
Figure JPOXMLDOC01-appb-M000012
 複数(2つ以上)のエネルギーkで測定対象の吸収係数μ(k)を測定し、同じエネルギーkに対応するF(k),G(k)が予め求めてあれば、式(4)式がF(k)/G(k)に対して線形であることを利用して、測定対象の電子密度ρが求められる。 If the absorption coefficient μ (k) of the object to be measured is measured with a plurality (two or more) of energy k and F (k) and G (k) corresponding to the same energy k are obtained in advance, formula (4) Is linear with respect to F (k) / G (k), the electron density ρ e to be measured is obtained.
 本発明では、上述した原理に基づいて、前述したように、均質であり実効原子番号Zeffと電子密度ρが計算可能である、単一元素又は化合物により構成された物質を校正用治具として用い、この校正用治具を元素が異なる2種類以上用意する。
 そして、予め、校正用治具の測定を行って、校正係数を求めておく。
 その後、測定対象(被検体やその他の物体)の測定を行い、測定対象の測定値に対して、求めておいた校正係数を使用した校正を行って、測定対象の実効原子番号Zeff及び電子密度を求める。
 以下、これらの手順をさらに詳しく説明する。
In the present invention, based on the principle described above, as described above, a calibration jig is used for a material composed of a single element or a compound that is homogeneous and can calculate the effective atomic number Z eff and the electron density ρ e. Two or more kinds of calibration jigs having different elements are prepared.
Then, a calibration jig is measured in advance to obtain a calibration coefficient.
Thereafter, the measurement target (subject or other object) is measured, and the measured value of the measurement target is calibrated using the obtained calibration coefficient, and the effective atomic number Z eff and the electron of the measurement target are measured. Find the density.
Hereinafter, these procedures will be described in more detail.
 まず、それぞれの校正用治具について、複数(2つ以上)のエネルギーkのそれぞれのエネルギーkにおいて、吸収係数μ(k)を測定して、それぞれのエネルギーkに対応するF(k)及びG(k)を求め、求めたF(k)及びG(k)を各エネルギーkの校正係数とする。
 具体的には、式(3)がZに対して線形であるので、それぞれのエネルギーkにおいて、Zを横軸にして、μ/ρを縦軸にして、2種類以上の校正用治具の値をプロットする。プロットにより得られる直線の傾きと直線の切片から、当該エネルギーkにおける校正係数F(k)とG(k)を求めることができる。
 このとき、直線を得るためには、2点以上のプロットが必要であるため、2種類以上の校正用治具を使用する。
First, with respect to each calibration jig, the absorption coefficient μ (k) is measured at each energy k of a plurality (two or more) of energy k, and F (k) and G corresponding to each energy k are measured. (K) is obtained, and the obtained F (k) and G (k) are used as calibration coefficients for the respective energy k.
Specifically, since Equation (3) is linear with respect to Z 4 , at each energy k, two or more types of calibration are performed with Z 4 as the horizontal axis and μ / ρ e as the vertical axis. Plot the jig value. Calibration coefficients F (k) and G (k) at the energy k can be obtained from the slope of the straight line obtained by plotting and the intercept of the straight line.
At this time, in order to obtain a straight line, it is necessary to plot two or more points, so two or more kinds of calibration jigs are used.
 次に、複数(2つ以上)のエネルギーkのそれぞれのエネルギーkにおいて、測定対象(被検体やその他の物体)の吸収係数μ(k)を測定する。
 そして、それぞれのエネルギーkにおける、測定対象の吸収係数μ(k)の測定値と、上述のようにして予め求めた校正係数F(k),G(k)を用いて、測定対象の電子密度ρを算出する。
 具体的には、式(4)がF(k)/G(k)に対して線形であるので、F(k)/G(k)を横軸にして、μ(k)/G(k)を縦軸にして、2つ以上のエネルギーkの各エネルギーkの値をプロットする。プロットにより得られる直線の傾きからZρを求め、直線の切片からρを求める。そして、これらの値から、測定対象の電子密度ρと実効原子番号Zeffを求めることができる。
 このとき、直線を得るためには、2点以上のプロットが必要であるため、複数(2つ以上)のエネルギーkで測定及び校正係数の算出を行う。
Next, the absorption coefficient μ (k) of the measurement target (subject or other object) is measured at each of the plurality (two or more) of energy k.
Then, using the measured value of the absorption coefficient μ (k) of the measurement object at each energy k and the calibration coefficients F (k) and G (k) obtained in advance as described above, the electron density of the measurement object ρ e is calculated.
Specifically, since Equation (4) is linear with respect to F (k) / G (k), μ (k) / G (k) with F (k) / G (k) as the horizontal axis. ) Is plotted on the vertical axis, and the value of each energy k of two or more energies k is plotted. Z 4 ρ e is determined from the slope of the straight line obtained by plotting, and ρ e is determined from the intercept of the straight line. And from these values, the electron density ρ e and the effective atomic number Z eff of the measurement object can be obtained.
At this time, in order to obtain a straight line, it is necessary to plot two or more points, so measurement and calculation of a calibration coefficient are performed with a plurality (two or more) of energy k.
 本発明によれば、上述した手法を採用していることにより、測定対象の実効原子番号Zeffと電子密度ρを、高い精度で算出することが可能になる。 According to the present invention, by adopting the above-described method, the effective atomic number Z eff and the electron density ρ e of the measurement target can be calculated with high accuracy.
 本発明のCT検査方法によれば、測定対象である被検体の電子密度および実効原子番号を高精度で算出することができるので、高い精度の人体の電子密度マップを得ることができ、治療計画時に、より高精度な飛程計算を推定することが可能となる。
 従って、X線治療や重粒子線治療の際の照射精度の向上を図ることができる。
According to the CT examination method of the present invention, since the electron density and effective atomic number of the subject to be measured can be calculated with high accuracy, a highly accurate electron density map of the human body can be obtained, and the treatment plan can be obtained. Sometimes it is possible to estimate a more accurate range calculation.
Therefore, it is possible to improve the irradiation accuracy during X-ray therapy or heavy particle beam therapy.
 本発明の検査方法によれば、測定対象である物体の実効原子番号と電子密度を高い精度で算出することができるので、測定対象の内部に存在する物質を位置精度良く検出することが可能になり、爆発物の有無を精度良く検知することができる。
 従って、本発明の検査方法を、手荷物や貨物の検査に適用すれば、高い精度の検査を行うことが可能になる。
According to the inspection method of the present invention, since the effective atomic number and electron density of the object to be measured can be calculated with high accuracy, it is possible to detect the substance existing inside the measurement target with high positional accuracy. Therefore, the presence or absence of explosives can be accurately detected.
Therefore, if the inspection method of the present invention is applied to baggage and cargo inspection, it becomes possible to perform inspection with high accuracy.
 また、本発明の装置や本発明の測定方法を、被検体以外の物体の検査に適用した場合、測定対象の物体の実効原子番号と電子密度を高い精度で算出することが可能になるため、非破壊で、物体の内部に存在する、物質(例えば、危険物、腐食物)や欠陥等を、位置精度良く検出することが可能になる。
 従って、本発明の装置や本発明の測定方法を、製品の不良の有無の検査等に適用すれば、高い精度の検査を行うことが可能になる。
In addition, when the apparatus of the present invention and the measurement method of the present invention are applied to the inspection of an object other than the subject, it becomes possible to calculate the effective atomic number and electron density of the object to be measured with high accuracy. It is possible to detect a substance (for example, a dangerous substance, a corrosive substance), a defect, and the like existing inside an object with high positional accuracy without being destroyed.
Therefore, if the apparatus of the present invention and the measurement method of the present invention are applied to the inspection of the presence or absence of product defects, it becomes possible to perform a highly accurate inspection.
 測定対象の吸収係数μを測定した場合、実測値には、バックグラウンドや多重散乱等の要因が含まれる。
 従来のように、測定対象の測定値と原子番号の値から直接電子密度を求めると、バックグラウンドや多重散乱等の要因を十分に消去できず、電子密度の精度が悪化してしまう。
 これに対して、本発明の手法を採用して、校正用治具を測定して得られる校正係数を用いて校正を行うことにより、実測値に含まれるバックグラウンド、多重散乱等複数の誤差要因を同時に消去し、電子密度および実効原子番号を高精度で算出することができる。
When the absorption coefficient μ of the measurement target is measured, the actual measurement value includes factors such as background and multiple scattering.
If the electron density is obtained directly from the measurement value and atomic number value as in the conventional method, factors such as background and multiple scattering cannot be sufficiently eliminated, and the accuracy of the electron density deteriorates.
On the other hand, by adopting the method of the present invention and performing calibration using the calibration coefficient obtained by measuring the calibration jig, a plurality of error factors such as background and multiple scattering included in the actual measurement value are obtained. At the same time, and the electron density and effective atomic number can be calculated with high accuracy.
 また、本発明によれば、予め校正用治具の測定データから算出した校正係数を用いて、測定対象の電子密度の算出を行うので、逐次近似を行っていた場合等の従来の手法と比較して、電子密度の算出の際の計算量を大幅に少なくすることができる。これにより、短い時間で電子密度の算出を行うことが可能になり、また大型のコンピュータを使用する必要が無くなり、パーソナルコンピュータ等でも算出を行うことが可能になる。 Further, according to the present invention, the electron density of the measurement object is calculated using the calibration coefficient calculated in advance from the measurement data of the calibration jig, so that it is compared with the conventional method such as when successive approximation is performed. Thus, it is possible to greatly reduce the amount of calculation when calculating the electron density. As a result, the electron density can be calculated in a short time, and there is no need to use a large computer, and the calculation can be performed by a personal computer or the like.
 校正用治具の測定の頻度は、測定対象の1回の測定毎ではなくても良く、必要とされる精度にもよるが、X線管球の劣化やスペクトル状態のゆらぎなどを考慮して、高めの頻度(例えば、1日複数回~数日に1回程度)とすることが望ましい。
 例えば、1日1回程度とすることができる。この場合、例えば、毎日の始業時に校正用治具の測定を行うことが考えられる。
The frequency of the measurement of the calibration jig does not have to be performed once for each measurement target, and depends on the required accuracy, but it takes into account deterioration of the X-ray tube and fluctuations in the spectrum state. It is desirable to increase the frequency (for example, several times a day to about once every several days).
For example, it can be about once a day. In this case, for example, it is conceivable to measure the calibration jig at the start of daily work.
 校正用治具の測定においては、測定対象を測定する位置と、同一の位置で測定を行うことが望ましい。同一の位置で測定することにより、光源からの距離による吸収係数の測定値への影響を排除することができる。
 校正用治具の測定位置の精度は、要求される電子密度の精度にもよる。被検体を測定対象とする場合、例えば、20cm程度の被検体の患部に対して±1%(2mm程度)以内とすることが考えられる。
In the measurement of the calibration jig, it is desirable to perform measurement at the same position as the position where the measurement object is measured. By measuring at the same position, the influence on the measured value of the absorption coefficient due to the distance from the light source can be eliminated.
The accuracy of the measurement position of the calibration jig depends on the accuracy of the required electron density. When the subject is a measurement object, for example, it may be within ± 1% (about 2 mm) with respect to the affected part of the subject of about 20 cm.
 本発明の装置及び本発明の測定方法において、操作者の手や装置外の機械等により、校正用治具の測定位置への設置と測定位置からの除去を行う構成も考えられるが、この構成では、校正用治具の測定が煩雑になる。
 そこで、校正用治具の測定を容易に行うために、X線CT装置が、校正用治具の測定と被検体等の測定対象の測定とを切り替えるための、切り替え機構を有していることが望ましい。例えば、アームやスライダ等の切り替え機構によって校正用治具を出し入れして、校正用治具の測定と、測定対象の測定とを、切り替えて行うことができるようにする。
 切り替え機構は、手動でスライダ等を動かして切り替えを行う構成や、ボタンを押すことにより切り替えが行われる構成も考えられるが、より好ましくは、コンピュータプログラム等の制御により、自動的に切り替えを行う構成とする。
 例えば、前述した始業時に校正用の治具の測定を行う場合に、電源投入後、自動的に、校正用治具の測定位置への設置と、校正用治具の測定の測定と、校正用治具の収納が、順次行われるように、自動的に制御する構成とすれば良い。
 校正用治具と測定対象とを切り替える切り替え機構を有する構成は、測定対象の電子密度及び実効原子番号の算出を行う処理部を備えた本発明のX線CT装置にも、当該処理部を備えていない、その他のX線CT装置(例えば、従来公知のX線CT装置)にも、適用することが可能である。
 また、X線CT装置を、校正用治具を取り出すことが可能な構成とすることができる。
In the apparatus of the present invention and the measurement method of the present invention, a configuration in which the calibration jig is installed at the measurement position and removed from the measurement position by an operator's hand or a machine outside the apparatus is also conceivable. Then, the measurement of the calibration jig becomes complicated.
Therefore, in order to easily measure the calibration jig, the X-ray CT apparatus has a switching mechanism for switching between the measurement of the calibration jig and the measurement of the measurement object such as the subject. Is desirable. For example, a calibration jig is put in and out by a switching mechanism such as an arm or a slider so that the measurement of the calibration jig and the measurement of the measurement target can be switched.
As the switching mechanism, a configuration in which switching is performed by manually moving a slider or the like, or a configuration in which switching is performed by pressing a button can be considered, but more preferably, a configuration in which switching is performed automatically by control of a computer program or the like. And
For example, when measuring the calibration jig at the start of work described above, after the power is turned on, the calibration jig is automatically installed at the measurement position, the measurement of the calibration jig is measured, and the calibration jig is used. What is necessary is just to set it as the structure controlled automatically so that accommodation of a jig | tool is performed sequentially.
The configuration having a switching mechanism for switching between the calibration jig and the measurement target also includes the processing unit in the X-ray CT apparatus of the present invention including the processing unit that calculates the electron density and effective atomic number of the measurement target. The present invention can also be applied to other X-ray CT apparatuses (for example, conventionally known X-ray CT apparatuses) that are not.
Further, the X-ray CT apparatus can be configured such that the calibration jig can be taken out.
 続いて、本発明の具体的な実施の形態について説明する。 Subsequently, specific embodiments of the present invention will be described.
 本発明のX線CT装置の一実施の形態の概略構成図を、図1に示す。
 本実施の形態は、測定対象を被検体としたX線CT装置に適用した場合である。
FIG. 1 shows a schematic configuration diagram of an embodiment of the X-ray CT apparatus of the present invention.
This embodiment is a case where the present invention is applied to an X-ray CT apparatus having a measurement object as a subject.
 図1に示すX線CT装置1は、X線透過強度測定部10と、電子密度及び実効原子番号校正システム部20の2つの部分から構成されている。X線透過強度測定部10は、本発明の装置の光源部と検出部を含む。電子密度及び実効原子番号校正システム部20は、本発明の装置の処理部を含む。 The X-ray CT apparatus 1 shown in FIG. 1 includes two parts, an X-ray transmission intensity measurement unit 10 and an electron density and effective atomic number calibration system unit 20. The X-ray transmission intensity measurement unit 10 includes a light source unit and a detection unit of the apparatus of the present invention. The electron density and effective atomic number calibration system unit 20 includes a processing unit of the apparatus of the present invention.
 X線透過強度測定部10は、X線光源11、スリット又はコリメータ12、寝台装置14、スリット又はコリメータ15、エネルギー弁別X線強度検出器16、データ収集部17を有する。
 X線光源11の下に、スリット又はコリメータ12が配置され、X線光源11から下方にX線が照射される。
 測定対象である被検体(患者P)30の下方に、スリット又はコリメータ15を介して、エネルギー弁別X線強度検出器16が配置されている。
 データ収集部17は、エネルギー弁別X線強度検出器16に接続され、エネルギー弁別X線強度検出器16で検出したデータを収集する。
 図1の下方に示すように、寝台装置14は、XYZθ精密自動ステージを有し、さらに図示しない切り替え機構が設けられている。切り替え機構により、図中矢印で示すように、校正用治具13と、被検体(患者P)30とを切り替えて、それぞれの測定を行うことができる。
 校正用治具13は、均質であり実効原子番号と電子密度が計算可能である、標準物質となる単一元素又は化合物により構成された物質であり、異なる2種類以上用意されている。それぞれの校正用治具13を、切り替え機構で切り替えて、校正用治具13の測定が順次行われる。
The X-ray transmission intensity measurement unit 10 includes an X-ray light source 11, a slit or collimator 12, a bed apparatus 14, a slit or collimator 15, an energy discrimination X-ray intensity detector 16, and a data collection unit 17.
A slit or collimator 12 is disposed under the X-ray light source 11, and X-rays are irradiated downward from the X-ray light source 11.
An energy discriminating X-ray intensity detector 16 is disposed below a subject (patient P) 30 to be measured via a slit or collimator 15.
The data collection unit 17 is connected to the energy discrimination X-ray intensity detector 16 and collects data detected by the energy discrimination X-ray intensity detector 16.
As shown in the lower part of FIG. 1, the couch device 14 has an XYZθ precision automatic stage, and is further provided with a switching mechanism (not shown). With the switching mechanism, as shown by the arrows in the figure, the calibration jig 13 and the subject (patient P) 30 can be switched to perform each measurement.
The calibration jig 13 is a substance composed of a single element or compound serving as a standard substance that is homogeneous and capable of calculating the effective atomic number and electron density, and two or more different types are prepared. Each calibration jig 13 is switched by a switching mechanism, and measurement of the calibration jig 13 is sequentially performed.
 電子密度及び実効原子番号校正システム部20は、制御部21、校正部22、解析部23を有している。電子密度及び実効原子番号校正システム部20は、パーソナルコンピュータ等で構成され、コンピュータプログラムで動作する構成とする。校正部22及び解析部23は、本発明の装置の処理部に含まれる。
 制御部21は、X線透過強度測定部10の、X線光源11、スリット又はコリメータ12、校正用治具13と被検体30の切り替え機構、データ収集部17の制御を行う。
 校正部22は、X線透過強度測定部10のデータ収集部17で収集したデータから、校正係数の算出等を行う。
 解析部23は、校正部22で算出した校正係数を適用して、電子密度及び実効原子番号の解析を行う。
The electron density and effective atomic number calibration system unit 20 includes a control unit 21, a calibration unit 22, and an analysis unit 23. The electron density and effective atomic number calibration system unit 20 is configured by a personal computer or the like and operates by a computer program. The calibration unit 22 and the analysis unit 23 are included in the processing unit of the apparatus of the present invention.
The control unit 21 controls the X-ray light source 11, the slit or collimator 12, the switching mechanism between the calibration jig 13 and the subject 30, and the data collection unit 17 of the X-ray transmission intensity measurement unit 10.
The calibration unit 22 calculates a calibration coefficient from the data collected by the data collection unit 17 of the X-ray transmission intensity measurement unit 10.
The analysis unit 23 analyzes the electron density and the effective atomic number by applying the calibration coefficient calculated by the calibration unit 22.
 続いて、図1のX線CT装置1の動作を説明する。
 図1のX線CT装置1における校正係数及び電子密度及び実効原子番号を算出する過程のフローチャートを、図2に示す。
Next, the operation of the X-ray CT apparatus 1 in FIG. 1 will be described.
FIG. 2 shows a flowchart of the process of calculating the calibration coefficient, electron density, and effective atomic number in the X-ray CT apparatus 1 of FIG.
 図2のフローチャートに示すように、ステップS1において、校正部22を用いた校正測定を開始する。
 次に、ステップS2において、校正用治具13を、寝台装置14の被検体30の該当部(測定位置)に設置する。即ち、切り替え機構の動作により、校正用治具13を測定位置に設置する。
As shown in the flowchart of FIG. 2, in step S1, calibration measurement using the calibration unit 22 is started.
Next, in step S <b> 2, the calibration jig 13 is installed at a corresponding portion (measurement position) of the subject 30 of the bed apparatus 14. That is, the calibration jig 13 is placed at the measurement position by the operation of the switching mechanism.
 次に、ステップS3において、校正用治具13のCT撮影を行う。即ち、X線光源11からX線を照射して、校正用治具13を透過したX線をエネルギー弁別X線検出器16で検出し、検出したデータをデータ収集部17で収集する。校正用治具13のCT撮影が終了したら、切り替え機構により校正用治具13を測定位置から除去して、所定の場所に収容する。 Next, CT imaging of the calibration jig 13 is performed in step S3. That is, X-rays are emitted from the X-ray light source 11, X-rays transmitted through the calibration jig 13 are detected by the energy discrimination X-ray detector 16, and the detected data is collected by the data collection unit 17. When the CT imaging of the calibration jig 13 is completed, the calibration jig 13 is removed from the measurement position by the switching mechanism and stored in a predetermined place.
 なお、校正用治具13は2種類以上あるので、それぞれの校正用治具13について、校正用治具13の測定位置への設置、校正用治具13のCT撮影、撮影した校正用治具13の測定位置からの除去を繰り返す。 Since there are two or more types of calibration jigs 13, each calibration jig 13 is installed at the measurement position of the calibration jig 13, CT imaging of the calibration jig 13, and the calibration jig taken. The removal from 13 measurement positions is repeated.
 次に、ステップS4において、吸収係数の取得を行う。即ち、データ収集部17で収集した、校正用治具13のデータから、校正部22において、吸収係数μ(k)を取得する。 Next, in step S4, an absorption coefficient is obtained. That is, the absorption coefficient μ (k) is acquired in the calibration unit 22 from the data of the calibration jig 13 collected by the data collection unit 17.
 次に、ステップS5において、校正係数の算出を行う。即ち、校正部22において、吸収係数μ(k)と、各校正用治具13の実効原子番号Zeff及び電子密度ρの値(理論値又は計算値)とから、校正係数F(k),G(k)を算出する。 Next, in step S5, a calibration coefficient is calculated. That is, in the calibration unit 22, the calibration coefficient F (k) is calculated from the absorption coefficient μ (k) and the values (theoretical values or calculated values) of the effective atomic number Z eff and the electron density ρ e of each calibration jig 13. , G (k).
 次に、ステップS6において、解析部23を用いた被検体30の測定を開始する。
 そして、ステップS7において、被検体(患者P)30を寝台装置14に設置する。
Next, in step S6, measurement of the subject 30 using the analysis unit 23 is started.
In step S <b> 7, the subject (patient P) 30 is placed on the bed apparatus 14.
 次に、ステップS8において、被検体30のCT撮影を行う。即ち、X線光源11からX線を照射して、被検体30を透過したX線をエネルギー弁別X線検出器16で検出し、検出したデータをデータ収集部17で収集する。 Next, CT imaging of the subject 30 is performed in step S8. That is, X-rays are emitted from the X-ray light source 11, X-rays transmitted through the subject 30 are detected by the energy discrimination X-ray detector 16, and the detected data is collected by the data collection unit 17.
 次に、ステップS9において、吸収係数の取得を行う。即ち、データ収集部17で収集した、被検体30のデータから、解析部23において、被検体30の吸収係数μ(k)を取得する。 Next, in step S9, an absorption coefficient is obtained. That is, the analysis unit 23 acquires the absorption coefficient μ (k) of the subject 30 from the data of the subject 30 collected by the data collecting unit 17.
 次に、ステップS10において、校正係数の適用を行う。即ち、被検体30の吸収係数μ(k)に、予めステップS5で算出した校正係数F(k),G(k)を適用する。 Next, in step S10, calibration coefficients are applied. That is, the calibration coefficients F (k) and G (k) previously calculated in step S5 are applied to the absorption coefficient μ (k) of the subject 30.
 次に、ステップS11において、電子密度・実効原子番号の解析を行う。即ち、解析部22において、被検体30の吸収係数μ(k)と校正係数F(k),G(k)とから、被検体30の電子密度ρと実効原子番号Zeffを解析する。 Next, in step S11, the electron density and effective atomic number are analyzed. That is, the analysis unit 22 analyzes the electron density ρ e and the effective atomic number Z eff of the subject 30 from the absorption coefficient μ (k) of the subject 30 and the calibration coefficients F (k) and G (k).
 その後、ステップS12において、他の被検体30を測定するか判断する。
 他の被検体30を測定する場合には、ステップS6に戻って、他の被検体30の測定を行う。
 他の被検体30を測定しない場合には、測定を終了する。
Thereafter, in step S12, it is determined whether to measure another subject 30.
When measuring another subject 30, the process returns to step S6 and the other subject 30 is measured.
If the other subject 30 is not measured, the measurement is terminated.
 このようにして、校正用治具13を用いて算出した校正係数F(k),G(k)によって、被検体30の測定値を校正することにより、被検体30の電子密度及び実効原子番号を高い精度で算出することができる。 In this way, by calibrating the measured value of the subject 30 with the calibration coefficients F (k) and G (k) calculated using the calibration jig 13, the electron density and effective atomic number of the subject 30 are corrected. Can be calculated with high accuracy.
 上述の本実施の形態によれば、校正用治具13の測定により取得された吸収係数から校正係数を算出し、被検体30の測定により取得された吸収係数に、校正係数を適用することにより、被検体30の実効原子番号及び電子密度を算出している。そのため、実測値に含まれるバックグラウンド、多重散乱等複数の誤差要因を同時に消去することができ、被検体30の実効原子番号Zeffと電子密度ρを、高い精度で算出することが可能になる。
 これにより、高い精度の人体の電子密度マップを得ることができることから、治療計画時に、より高精度な飛程計算を推定することが可能となる。
 従って、X線治療や重粒子線治療の際の照射精度の向上を図ることができる。
According to the above-described embodiment, the calibration coefficient is calculated from the absorption coefficient acquired by the measurement of the calibration jig 13, and the calibration coefficient is applied to the absorption coefficient acquired by the measurement of the subject 30. The effective atomic number and electron density of the subject 30 are calculated. Therefore, a plurality of error factors such as background and multiple scattering included in the actual measurement value can be eliminated simultaneously, and the effective atomic number Z eff and the electron density ρ e of the subject 30 can be calculated with high accuracy. Become.
As a result, a highly accurate electron density map of the human body can be obtained, so that it is possible to estimate a more accurate range calculation at the time of treatment planning.
Therefore, it is possible to improve the irradiation accuracy during X-ray therapy or heavy particle beam therapy.
 また、予め校正用治具13の測定データから算出した校正係数を用いて、被検体30の電子密度の算出を行うので、逐次近似を行っていた場合等の従来の手法と比較して、電子密度の算出の際の計算量を大幅に少なくすることができる。これにより、短い時間で電子密度の算出を行うことが可能になり、また大型のコンピュータを使用する必要が無くなり、パーソナルコンピュータ等でも算出を行うことが可能になる。 In addition, since the electron density of the subject 30 is calculated using the calibration coefficient calculated from the measurement data of the calibration jig 13 in advance, the electron density is compared with a conventional method such as when successive approximation is performed. The amount of calculation when calculating the density can be greatly reduced. As a result, the electron density can be calculated in a short time, and there is no need to use a large computer, and the calculation can be performed by a personal computer or the like.
 本発明のX線CT装置の他の実施の形態の概略構成図を、図3に示す。
 本実施の形態は、測定対象を被検体以外の物体としたX線CT装置に適用した場合である。
FIG. 3 shows a schematic configuration diagram of another embodiment of the X-ray CT apparatus of the present invention.
This embodiment is a case where the present invention is applied to an X-ray CT apparatus in which an object to be measured is an object other than a subject.
 図3に示すX線CT装置40は、X線透過強度測定部50と、電子密度及び実効原子番号校正システム部60の2つの部分から構成されている。X線透過強度測定部50は、本発明の装置の光源部と検出部を含む。電子密度及び実効原子番号校正システム部60は、本発明の装置の処理部を含む。 The X-ray CT apparatus 40 shown in FIG. 3 includes two parts, an X-ray transmission intensity measurement unit 50 and an electron density and effective atomic number calibration system unit 60. The X-ray transmission intensity measurement unit 50 includes a light source unit and a detection unit of the apparatus of the present invention. The electron density and effective atomic number calibration system unit 60 includes a processing unit of the apparatus of the present invention.
 X線透過強度測定部50は、X線光源51、XYZ精密自動ステージ52、スリット又はコリメータ53、XYZθ精密自動ステージ56、スリット又はコリメータ57、エネルギー弁別X線強度検出器58、XYZ精密自動ステージ59を有する。
 X線光源51の前方に、スリット又はコリメータ53が配置され、X線光源51から前方にX線が照射される。X線光源51は、XYZ精密自動ステージ52により、位置を変更することが可能になっている。
 XYZθ精密自動ステージ56には、図示しない切り替え機構が設けられている。切り替え機構により、図中矢印で示すように、校正用治具54と測定対象(物体)55とを切り替えて、それぞれの測定を行うことができる。また、XYZθ精密自動ステージ56は、その上に設置された、校正用治具54又は測定対象55の位置や向きを変更することが可能になっている。
 校正用治具54又は測定対象55の前方に、スリット又はコリメータ57を介して、エネルギー弁別X線強度検出器58が配置されている。エネルギー弁別X線検出器58は、XYZ精密自動ステージ59により、位置を変更することが可能になっている。
 校正用治具54は、均質であり実効原子番号と電子密度が計算可能である、標準物質となる単一元素又は化合物により構成された物質であり、異なる2種類以上用意されている。それぞれの校正用治具54を、切り替え機構で切り替えて、校正用治具54の測定が順次行われる。
The X-ray transmission intensity measuring unit 50 includes an X-ray light source 51, an XYZ precision automatic stage 52, a slit or collimator 53, an XYZθ precision automatic stage 56, a slit or collimator 57, an energy discrimination X-ray intensity detector 58, and an XYZ precision automatic stage 59. Have
A slit or collimator 53 is disposed in front of the X-ray light source 51, and X-rays are irradiated forward from the X-ray light source 51. The position of the X-ray light source 51 can be changed by an XYZ precision automatic stage 52.
The XYZθ precision automatic stage 56 is provided with a switching mechanism (not shown). With the switching mechanism, as shown by the arrows in the figure, the calibration jig 54 and the measurement target (object) 55 can be switched to perform each measurement. Further, the XYZθ precision automatic stage 56 can change the position and orientation of the calibration jig 54 or the measuring object 55 installed thereon.
An energy discriminating X-ray intensity detector 58 is disposed in front of the calibration jig 54 or the measurement object 55 via a slit or collimator 57. The position of the energy discrimination X-ray detector 58 can be changed by an XYZ precision automatic stage 59.
The calibration jig 54 is a substance composed of a single element or compound serving as a standard substance that is homogeneous and capable of calculating an effective atomic number and an electron density, and two or more different kinds are prepared. Each calibration jig 54 is switched by a switching mechanism, and the measurement of the calibration jig 54 is sequentially performed.
 電子密度及び実効原子番号校正システム部60は、制御部61、校正部62、解析部63を有している。電子密度及び実効原子番号校正システム部60は、パーソナルコンピュータ等で構成され、コンピュータプログラムで動作する構成とする。校正部62及び解析部63は、本発明の装置の処理部に含まれる。
 制御部61、校正部62、解析部63の機能や動作は、図1のX線CT装置1の電子密度及び実効原子番号校正システム部20の制御部21、校正部22、解析部23とほぼ同様である。
 制御部61は、X線透過強度測定部50の、X線光源51、XYZ精密自動ステージ52、XYZθ精密自動ステージ56、エネルギー弁別X線強度検出器58、XYZ精密自動ステージ59の各部や、校正用治具54と測定対象55を切り替える切り替え機構に対して、制御を行う。
 校正部62は、X線透過強度測定部50で収集したデータから、校正係数の算出等を行う。
 解析部63は、校正部62で算出した校正係数を適用して、電子密度及び実効原子番号の解析を行う。
The electron density and effective atomic number calibration system unit 60 includes a control unit 61, a calibration unit 62, and an analysis unit 63. The electron density and effective atomic number calibration system unit 60 is configured by a personal computer or the like and operates by a computer program. The calibration unit 62 and the analysis unit 63 are included in the processing unit of the apparatus of the present invention.
Functions and operations of the control unit 61, the calibration unit 62, and the analysis unit 63 are almost the same as those of the control unit 21, the calibration unit 22, and the analysis unit 23 of the electron density and effective atomic number calibration system unit 20 of the X-ray CT apparatus 1 of FIG. It is the same.
The control unit 61 includes the X-ray light source 51, the XYZ precision automatic stage 52, the XYZθ precision automatic stage 56, the energy discrimination X-ray intensity detector 58, and the XYZ precision automatic stage 59 of the X-ray transmission intensity measurement unit 50, and calibration. Control is performed on a switching mechanism that switches between the jig 54 and the measurement target 55.
The calibration unit 62 calculates a calibration coefficient from the data collected by the X-ray transmission intensity measurement unit 50.
The analysis unit 63 analyzes the electron density and effective atomic number by applying the calibration coefficient calculated by the calibration unit 62.
 そして、このX線CT装置40では、先の実施の形態のX線CT装置1の図2に示したフローチャートと同様の手順により、校正用治具54の測定、校正係数F(k),G(k)の算出、測定対象55の測定、測定対象55の電子密度ρ及び実効原子番号Zeffの解析、の各過程を行う。
 校正用治具54を用いて算出した校正係数F(k),G(k)によって、測定対象55の測定値を校正することにより、測定対象55の電子密度及び実効原子番号を高い精度で算出することができる。
In the X-ray CT apparatus 40, the calibration jig 54 is measured and the calibration coefficients F (k), G are obtained by the same procedure as the flowchart shown in FIG. 2 of the X-ray CT apparatus 1 of the previous embodiment. The processes of (k) calculation, measurement of the measurement target 55, and analysis of the electron density ρ e and effective atomic number Z eff of the measurement target 55 are performed.
The electron density and effective atomic number of the measurement target 55 are calculated with high accuracy by calibrating the measurement value of the measurement target 55 using the calibration coefficients F (k) and G (k) calculated using the calibration jig 54. can do.
 上述の本実施の形態によれば、校正用治具54の測定により取得された吸収係数から校正係数を算出し、測定対象55の測定により取得された吸収係数に、校正係数を適用することにより、測定対象の実効現地番号及び電子密度を算出している。そのため、実測値に含まれるバックグラウンド、多重散乱等複数の誤差要因を同時に消去することができ、測定対象55の実効原子番号Zeffと電子密度ρを、高い精度で算出することが可能になる。
 これにより、非破壊で、測定対象55の内部に存在する、物質(例えば、危険物、腐食物)や欠陥等を、位置精度良く検出することが可能になる。
According to the above-described embodiment, the calibration coefficient is calculated from the absorption coefficient acquired by the measurement of the calibration jig 54, and the calibration coefficient is applied to the absorption coefficient acquired by the measurement of the measurement target 55. The effective local number and electron density of the measurement object are calculated. Therefore, a plurality of error factors such as background and multiple scattering included in the actual measurement value can be eliminated simultaneously, and the effective atomic number Z eff and the electron density ρ e of the measurement target 55 can be calculated with high accuracy. Become.
Thereby, it becomes possible to detect a substance (for example, a dangerous substance, a corrosive substance), a defect, and the like existing in the measurement object 55 with non-destructiveness with high positional accuracy.
 また、予め校正用治具54の測定データから算出した校正係数を用いて、測定対象55の電子密度の算出を行うので、逐次近似を行っていた場合等の従来の手法と比較して、電子密度の算出の際の計算量を大幅に少なくすることができる。これにより、短い時間で電子密度の算出を行うことが可能になり、また大型のコンピュータを使用する必要が無くなり、パーソナルコンピュータ等でも算出を行うことが可能になる。 In addition, since the electron density of the measurement object 55 is calculated using the calibration coefficient calculated in advance from the measurement data of the calibration jig 54, the electron density is compared with the conventional method such as when successive approximation is performed. The amount of calculation when calculating the density can be greatly reduced. As a result, the electron density can be calculated in a short time, and there is no need to use a large computer, and the calculation can be performed by a personal computer or the like.
 上述の各実施の形態のX線CT装置1,40は、いずれも、従来のフォトンカウンティングCT装置と同様に、連続X線を照射するX線光源とエネルギー弁別検出器を有する構成であった。即ち、光源部と検出部の組合せが、前述した(C)の構成であった。
 本発明の装置及び方法は、(C)の構成に限定されるものではなく、前述した(A)の構成や(B)の構成にも、適用することができる。
The X-ray CT apparatuses 1 and 40 of the above-described embodiments are each configured to have an X-ray light source that irradiates continuous X-rays and an energy discrimination detector, as in the conventional photon counting CT apparatus. That is, the combination of the light source unit and the detection unit has the configuration (C) described above.
The apparatus and method of the present invention are not limited to the configuration (C), and can also be applied to the configurations (A) and (B) described above.
 本発明を(A)の構成に適用する場合には、例えば、校正用治具の測定及び測定対象の測定の際に、各X線光源からのエネルギー(もしくはエネルギー領域)が異なるX線の照射を、順次或いは同時に行う。これにより、校正係数F(k),G(k)と測定対象の電子密度を算出するために必要なデータが得られる。 When the present invention is applied to the configuration of (A), for example, when measuring a calibration jig and measuring a measurement target, X-ray irradiation with different energy (or energy region) from each X-ray light source is performed. Are performed sequentially or simultaneously. Thereby, data necessary for calculating the calibration coefficients F (k) and G (k) and the electron density of the measurement object are obtained.
 本発明を(B)の構成に適用する場合には、例えば、校正用治具の測定及び測定対象の測定の際に、X線の照射、照射するX線のエネルギー(もしくはエネルギー領域)の変更、X線の照射、を繰り返して、複数のエネルギー(もしくはエネルギー領域)のX線による測定を行う。これにより、校正係数F(k),G(k)と測定対象の電子密度を算出するために必要なデータが得られる。 When the present invention is applied to the configuration of (B), for example, when measuring a calibration jig and measuring a measurement target, X-ray irradiation and change of energy (or energy region) of the irradiated X-rays are performed. , X-ray irradiation is repeated to measure a plurality of energies (or energy regions) with X-rays. Thereby, data necessary for calculating the calibration coefficients F (k) and G (k) and the electron density of the measurement object are obtained.
 実際に、校正用治具を用いて校正係数を算出し、校正係数を適用して測定対象の解析を行った。 Actually, the calibration coefficient was calculated using a calibration jig, and the measurement target was analyzed by applying the calibration coefficient.
 校正用治具として、炭素C、マグネシウムMg、アルミニウムAlの3種類を用意した。
 具体的には、それぞれの元素単体から成る、直径5mmの円柱形の校正用治具を用意した。
 また、この実施例では、3種類の校正用治具そのものを測定対象とした。
As calibration jigs, three types of carbon C, magnesium Mg, and aluminum Al were prepared.
Specifically, a cylindrical calibration jig having a diameter of 5 mm made of each element was prepared.
In this example, three types of calibration jigs themselves were measured.
 実施例の測定に用いたX線CT装置の概略構成図を、図4に示す。
 図4に示すX線CT装置70は、定盤71上に、X線光源72、XYZ精密自動ステージ73、スリット74、XYZθ精密自動ステージ76、エネルギー弁別X線強度検出器77、XYZ精密自動ステージ78を有する。また、定盤71の外に、CT撮影用制御PC(パーソナルコンピュータ)79が設けられている。
FIG. 4 shows a schematic configuration diagram of the X-ray CT apparatus used for the measurement of the example.
An X-ray CT apparatus 70 shown in FIG. 4 has an X-ray light source 72, an XYZ precision automatic stage 73, a slit 74, an XYZθ precision automatic stage 76, an energy discrimination X-ray intensity detector 77, and an XYZ precision automatic stage on a surface plate 71. 78. Further, a CT imaging control PC (personal computer) 79 is provided outside the surface plate 71.
 X線光源72の前方にスリット74が配置され、X線光源72から前方にX線が照射される。X線光源72は、XYZ精密自動ステージ73上に配置され、XYZ精密自動ステージ73により、位置を変更することが可能になっている。
 XYZθ精密自動ステージ76に、校正用治具と測定対象を兼ねる、試料75が配置されている。XYZθ精密自動ステージ76は、その上に配置された試料75の位置や向きを変更することが可能になっている。
 試料55の前方の、XYZ精密自動ステージ78上に、エネルギー弁別X線強度検出器77が配置されている。エネルギー弁別X線検出器77は、XYZ精密自動ステージ78により、位置を変更することが可能になっている。
 そして、X線光源72として、WアノードのX線光源を使用した。また、エネルギー弁別X線強度検出器77として、フォトンカウンティングライン検出器を用いた。
 定盤71は、縦1m×横2mの広さである。
A slit 74 is disposed in front of the X-ray light source 72, and X-rays are irradiated forward from the X-ray light source 72. The X-ray light source 72 is disposed on an XYZ precision automatic stage 73, and the position can be changed by the XYZ precision automatic stage 73.
On the XYZθ precision automatic stage 76, a sample 75 serving as a calibration jig and a measurement object is arranged. The XYZθ precision automatic stage 76 can change the position and orientation of the sample 75 disposed thereon.
On the XYZ precision automatic stage 78 in front of the sample 55, an energy discrimination X-ray intensity detector 77 is arranged. The position of the energy discrimination X-ray detector 77 can be changed by an XYZ precision automatic stage 78.
As the X-ray light source 72, a W anode X-ray light source was used. A photon counting line detector was used as the energy discrimination X-ray intensity detector 77.
The surface plate 71 is 1 m long by 2 m wide.
 CT撮影用制御PC79は、図4では詳細な図示を省略しているが、X線光源72及びXYZ精密自動ステージ73、試料75用のXYZθ精密自動ステージ76、エネルギー弁別X線強度検出器77及びXYZ精密自動ステージ78とそれぞれ接続されている。 Although not shown in detail in FIG. 4, the CT imaging control PC 79 includes an X-ray light source 72 and an XYZ precision automatic stage 73, an XYZθ precision automatic stage 76 for the sample 75, an energy discrimination X-ray intensity detector 77 and Each is connected to an XYZ precision automatic stage 78.
 まず、炭素C、マグネシウムMg、アルミニウムAlの各校正用治具を試料75として、それぞれCT撮影を行った。
 X線光源72から、広い範囲のエネルギー領域に連続するスペクトルのX線を発生させて、試料75に照射した。
 そして、試料75を透過したX線を、エネルギー弁別X線検出器77において、50~60KeV、60~70keV、70~80keV、80~90keVの各エネルギー領域に弁別して検出した。そして、検出した各エネルギー領域の測定値から、それぞれのエネルギー領域kにおける吸収係数μ(k)を算出した。
First, CT imaging was performed using each calibration jig of carbon C, magnesium Mg, and aluminum Al as a sample 75.
The X-ray light source 72 generated continuous X-rays in a wide energy range and irradiated the sample 75.
Then, X-rays transmitted through the sample 75 were detected and discriminated into energy regions of 50 to 60 KeV, 60 to 70 keV, 70 to 80 keV, and 80 to 90 keV by the energy discrimination X-ray detector 77. Then, the absorption coefficient μ (k) in each energy region k was calculated from the detected values in each energy region.
 算出した吸収係数(k)と、各校正用治具(C,Mg,Al)の原子番号Z及び電子密度ρの理論値から、μ/ρとZを算出して、各エネルギー領域において、それぞれ3つの校正用治具のμ/ρとZの値をプロットして、3点の近似直線を求めた。
 それぞれのエネルギー領域の結果を、図5A~図5Dに示す。エネルギー領域50~60keVの結果を図5Aに示し、エネルギー領域60~70keVの結果を図5Bに示し、エネルギー領域70~80keVの結果を図5Cに示し、エネルギー領域80~90keVの結果を図5Dに示す。
From the calculated absorption coefficient (k), the theoretical value of the atomic number Z and the electron density ρ e of each calibration jig (C, Mg, Al), μ / ρ e and Z 4 are calculated, and each energy region , The values of μ / ρ e and Z 4 of three calibration jigs were plotted, and three approximate straight lines were obtained.
The results for each energy region are shown in FIGS. 5A-5D. FIG. 5A shows the results in the energy region 50-60 keV, FIG. 5B shows the results in the energy region 60-70 keV, FIG. 5C shows the results in the energy region 70-80 keV, and FIG. 5D shows the results in the energy region 80-90 keV. Show.
 図5A~図5Dより、いずれのエネルギー領域においても、3点がほぼ直線に並び、近似直線が精度良く得られている。近似直線を、μ/ρ=F(k)×Z+G(k)として、近似直線の傾きと切片から、各エネルギー領域kの校正係数F(k),G(k)を求めた。
 図5Aに示すエネルギー領域50~60keVでは、F(k)=2.0976×10-29、G(k)=6.0186×10-25となった。
 図5Bに示すエネルギー領域60~70keVでは、F(k)=1.3244×10-29、G(k)=5.943×10-25となった。
 図5Cに示すエネルギー領域70~80keVでは、F(k)=9.5685×10-30、G(k)=5.587×10-25となった。
 図5Dに示すエネルギー領域80~90keVでは、F(k)=6.5554×10-30、G(k)=5.4434×10-25となった。
5A to 5D, in any energy region, the three points are arranged in a substantially straight line, and the approximate straight line is obtained with high accuracy. The approximate line is μ / ρ e = F (k) × Z 4 + G (k), and the calibration coefficients F (k) and G (k) of each energy region k are obtained from the slope and intercept of the approximate line.
In the energy region 50 to 60 keV shown in FIG. 5A, F (k) = 2.0976 × 10 −29 and G (k) = 6.0186 × 10 −25 .
In the energy region 60 to 70 keV shown in FIG. 5B, F (k) = 1.244 × 10 −29 and G (k) = 5.943 × 10 −25 .
In the energy region 70 to 80 keV shown in FIG. 5C, F (k) = 9.585 × 10 −30 and G (k) = 5.587 × 10 −25 .
In the energy region 80 to 90 keV shown in FIG. 5D, F (k) = 6.5554 × 10 −30 and G (k) = 5.4434 × 10 −25 .
 次に、測定対象として、各校正用治具(C,Mg,Al)を試料75に用いて、再度CT撮影を行った。
 X線光源72から、広い範囲のエネルギー領域に連続するスペクトルのX線を発生させて、試料75に照射した。
 そして、試料75を透過したX線を、エネルギー弁別X線検出器77において、50~60KeV、60~70keV、70~80keV、80~90keVの各エネルギー領域に弁別して検出した。そして、検出した各エネルギー領域の測定値から、それぞれのエネルギー領域kにおける吸収係数μ(k)を算出した。
Next, CT imaging was again performed using each calibration jig (C, Mg, Al) as a sample 75 as a measurement object.
The X-ray light source 72 generated continuous X-rays in a wide energy range and irradiated the sample 75.
Then, X-rays transmitted through the sample 75 were detected and discriminated into energy regions of 50 to 60 KeV, 60 to 70 keV, 70 to 80 keV, and 80 to 90 keV by the energy discrimination X-ray detector 77. Then, the absorption coefficient μ (k) in each energy region k was calculated from the detected values in each energy region.
 算出した吸収係数μ(k)と、先に求めた、各エネルギー領域kの校正係数F(k),G(k)から、μ(k)/G(k)及びF(k)/G(k)を算出して、3つの試料75の各試料において、それぞれ4つのエネルギー領域のμ(k)/G(k)及びF(k)/G(k)をプロットして、4点の近似直線を求めた。
 それぞれの試料の結果を、図6A~図6Cに示す。炭素Cの結果を図6Aに示し、マグネシウムMgの結果を図6Bに示し、アルミニウムAlの結果を図6Cに示す。
From the calculated absorption coefficient μ (k) and the previously determined calibration coefficients F (k) and G (k) of each energy region k, μ (k) / G (k) and F (k) / G ( k) is calculated, and in each of the three samples 75, μ (k) / G (k) and F (k) / G (k) of four energy regions are plotted, and four points are approximated. A straight line was obtained.
The results for each sample are shown in FIGS. 6A-6C. The result of carbon C is shown in FIG. 6A, the result of magnesium Mg is shown in FIG. 6B, and the result of aluminum Al is shown in FIG. 6C.
 図6A~図6Dより、いずれの試料においても、4点がほぼ直線に並び、近似直線が精度良く得られている。近似直線を、μ(k)/G(k)=ρ{F(k)/G(k)}+ρとして、近似直線の傾きと切片から、各試料のρとρを求めた。
 図6Aに示す炭素Cの試料では、ρ=5.7328×1026、ρ=5.6629×1023となった。
 図6Bに示すマグネシウムMgの試料では、ρ=1.1265×1028、ρ=5.2196×1023となった。
 図6Cに示すアルミニウムAlの試料では、ρ=2.1417×1028、ρ=7.6542×1023となった。
6A to 6D, in any sample, four points are arranged in a substantially straight line, and an approximate straight line is obtained with high accuracy. An approximate straight line is defined as μ (k) / G (k) = ρ e Z 4 {F (k) / G (k)} + ρ e , and ρ e Z 4 and ρ of each sample are obtained from the slope and intercept of the approximate straight line. e was determined.
In the carbon C sample shown in FIG. 6A, ρ e Z 4 = 5.7328 × 10 26 and ρ e = 5.6629 × 10 23 were obtained.
In the magnesium Mg sample shown in FIG. 6B, ρ e Z 4 = 1.1265 × 10 28 and ρ e = 5.2196 × 10 23 were obtained.
In the aluminum Al sample shown in FIG. 6C, ρ e Z 4 = 2.1417 × 10 28 and ρ e = 7.6542 × 10 23 were obtained.
 そして、求めたρとρとから、実効原子番号Zeffを算出した。また、各元素の電子密度ρ及び実効原子番号Zeffの理論値と、算出した電子密度及び実効原子番号の解析結果とから、誤差の割合を求めた。各試料の結果をまとめて表1に示す。
 なお、表1において、理論値が小数点以下3桁であるため、先に示した解析結果の値も小数点以下第4桁を四捨五入して桁を合わせている。そして、誤差の割合は、有効数字2桁としている。
Then, the effective atomic number Z eff was calculated from the obtained ρ e Z 4 and ρ e . Moreover, the ratio of error was calculated | required from the theoretical value of electron density (rho) e and effective atomic number Zeff of each element, and the analysis result of the calculated electron density and effective atomic number. The results of each sample are summarized in Table 1.
In Table 1, since the theoretical value is 3 digits after the decimal point, the value of the analysis result shown above is rounded off to the fourth digit after the decimal point. The error ratio is two significant figures.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1より、相対誤差は、電子密度ρ<0.7%、実効原子番号Zeff<6.0%であり、それぞれ精度良く算出できていることがわかる。 From Table 1, it can be seen that the relative errors are electron density ρ e <0.7% and effective atomic number Z eff <6.0%, which can be calculated with high accuracy.
 なお、上述の実施例では、単一元素からなる校正用治具をそのまま測定対象として用いたが、これらの元素の2種類以上を有する化合物又は合金や、これらの元素のいずれかを含む物体を測定対象としても、同様に電子密度及び実効原子番号を精度良く算出することができる。
 また、上述の実施例では、単一元素からなる校正用治具を使用したが、均質で実効原子番号及び電子密度の計算が可能な化合物により構成された物質を校正用治具に使用しても、同様に測定対象の電子密度及び実効原子番号を精度良く算出することができる。
In the above-described embodiment, a calibration jig made of a single element is used as a measurement object as it is, but a compound or alloy having two or more of these elements or an object containing any of these elements is used. Similarly, the electron density and effective atomic number can be calculated with high accuracy as the measurement target.
In the above-described embodiment, a calibration jig made of a single element is used. However, a substance composed of a compound that is homogeneous and capable of calculating an effective atomic number and electron density is used for the calibration jig. Similarly, the electron density and effective atomic number of the measurement target can be calculated with high accuracy.
 本発明は、上述した実施の形態や実施例の構成に限定されるものではなく、本発明の範囲内であれば、その他の様々な構成を採用することが可能である。 The present invention is not limited to the configurations of the above-described embodiments and examples, and various other configurations can be adopted within the scope of the present invention.
1,40,70 X線CT装置、10,50 X線透過強度測定部、11,51,72 X線光源、12,15,53,57 スリット又はコリメータ、13,54 校正用治具、14 寝台装置、16,58,77 エネルギー弁別X線強度検出器、17 データ収集部、20,60 電子密度及び実効原子番号校正システム部、21,61 制御部、22,62 校正部、23,63 解析部、30 被検体、52,59,73,78 XYZ精密自動ステージ、55 測定対象、56,76 XYZθ精密自動ステージ、71 定盤、74 スリット、75 試料、79 CT撮影用制御PC 1,40,70 X-ray CT apparatus, 10,50 X-ray transmission intensity measurement unit, 11,51,72 X-ray light source, 12,15,53,57 slit or collimator, 13,54 calibration jig, 14 bed Equipment, 16, 58, 77 Energy discriminating X-ray intensity detector, 17 Data collection unit, 20, 60 Electron density and effective atomic number calibration system unit, 21, 61 control unit, 22, 62 calibration unit, 23, 63 analysis unit , 30 subject, 52, 59, 73, 78 XYZ precision automatic stage, 55 measurement object, 56, 76 XYZθ precision automatic stage, 71 surface plate, 74 slits, 75 samples, 79 CT control PC for CT imaging

Claims (10)

  1.  X線光源を有し、複数のエネルギー領域のX線を被測定物に照射することが可能な光源部と、
     前記光源部の前記X線光源から照射されて前記被測定物を透過したX線を検出する検出部と、
     前記検出部で検出したX線のデータを処理する処理部を備え、
     前記処理部は、均質であり実効原子番号と電子密度が計算可能である、単一元素又は化合物により構成された校正用治具を2種類以上使用して、各前記校正用治具を前記複数のエネルギー領域でそれぞれ測定して検出したデータから、各前記校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求め、各前記校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)から、下記数式(3)に基づいて、それぞれのエネルギー領域kにおける校正係数F(k),G(k)を算出し、
    Figure JPOXMLDOC01-appb-I000001
    [数式(3)において、ρは前記校正用治具の電子密度を示し、Zは前記校正用治具の実効原子番号を示す。]
     さらに、前記処理部は、測定対象を前記複数のエネルギー領域でそれぞれ測定して検出したデータから、前記測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求め、前記測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)と、それぞれのエネルギー領域kにおける前記校正係数F(k),G(k)とから、下記数式(4)に基づいて、前記測定対象の電子密度ρ及び実効原子番号Zを算出する
    Figure JPOXMLDOC01-appb-I000002
    [数式(4)において、ρは前記測定対象の電子密度を示し、Zは前記測定対象の実効原子番号を示す。]
     X線CT装置。
    A light source unit having an X-ray light source and capable of irradiating an object to be measured with X-rays in a plurality of energy regions;
    A detection unit for detecting X-rays irradiated from the X-ray light source of the light source unit and transmitted through the object to be measured;
    A processing unit for processing X-ray data detected by the detection unit;
    The processing unit uses two or more kinds of calibration jigs made of a single element or compound that are homogeneous and capable of calculating effective atomic number and electron density, and each of the calibration jigs is a plurality of the calibration jigs. An absorption coefficient μ (k) in each energy region k of each calibration jig is obtained from data detected and detected in each energy region, and an absorption coefficient in each energy region k of each calibration jig. From μ (k), calibration coefficients F (k) and G (k) in each energy region k are calculated based on the following formula (3).
    Figure JPOXMLDOC01-appb-I000001
    [In Formula (3), ρ e represents the electron density of the calibration jig, and Z represents the effective atomic number of the calibration jig. ]
    Further, the processing unit obtains an absorption coefficient μ (k) in each energy region k of the measurement object from data obtained by measuring and detecting the measurement object in each of the plurality of energy regions. From the absorption coefficient μ (k) in the energy region k and the calibration coefficients F (k) and G (k) in each energy region k, the electron density ρ e of the measurement object is calculated based on the following equation (4). And calculate the effective atomic number Z
    Figure JPOXMLDOC01-appb-I000002
    [In Formula (4), ρ e represents the electron density of the measurement object, and Z represents the effective atomic number of the measurement object. ]
    X-ray CT system.
  2.  前記校正用治具と前記測定対象を切り替える、切り替え機構を有する請求項1に記載のX線CT装置。 The X-ray CT apparatus according to claim 1, further comprising a switching mechanism that switches between the calibration jig and the measurement target.
  3.  前記切り替え機構は、前記校正用治具と前記測定対象を自動的に切り替えるように制御される請求項2に記載のX線CT装置。 The X-ray CT apparatus according to claim 2, wherein the switching mechanism is controlled to automatically switch the calibration jig and the measurement object.
  4.  前記光源部の前記X線光源は、前記複数のエネルギー領域にわたるスペクトルを有する連続X線を照射する構成であり、前記検出部は、X線を特定のエネルギー領域ごとに弁別して検出する構成である、請求項1~請求項3のいずれか1項に記載のX線CT装置。 The X-ray light source of the light source unit is configured to irradiate continuous X-rays having a spectrum over the plurality of energy regions, and the detection unit is configured to discriminate and detect X-rays for each specific energy region. The X-ray CT apparatus according to any one of claims 1 to 3.
  5.  X線CT装置を用いて、測定対象の電子密度及び実効原子番号を測定する方法であって、
     均質であり実効原子番号と電子密度が計算可能である、単一元素又は化合物により構成された校正用治具を2種類以上使用して、前記X線CT装置により、各前記校正用治具を、複数のエネルギー領域でそれぞれ測定して、各前記校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求め、
     各前記校正用治具のそれぞれのエネルギー領域kにおける吸収係数μ(k)から、下記数式(3)に基づいて、それぞれのエネルギー領域kにおける校正係数F(k),G(k)を算出し、
    Figure JPOXMLDOC01-appb-I000003
    [数式(3)において、ρは前記校正用治具の電子密度を示し、Zは前記校正用治具の実効原子番号を示す。]
     前記X線CT装置により、測定対象を、前記複数のエネルギー領域でそれぞれ測定して、前記測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)を求め、
     前記測定対象のそれぞれのエネルギー領域kにおける吸収係数μ(k)と、それぞれのエネルギー領域kにおける前記校正係数F(k),G(k)とから、下記数式(4)に基づいて、前記測定対象の電子密度ρ及び実効原子番号Zを算出する
    Figure JPOXMLDOC01-appb-I000004
    [数式(4)において、ρは前記測定対象の電子密度を示し、Zは前記測定対象の実効原子番号を示す。]
     電子密度及び実効原子番号の測定方法。
    A method for measuring an electron density and an effective atomic number of a measurement object using an X-ray CT apparatus,
    Using two or more kinds of calibration jigs composed of a single element or compound that is homogeneous and whose effective atomic number and electron density can be calculated, each of the calibration jigs is obtained by the X-ray CT apparatus. , Respectively measuring in a plurality of energy regions, to determine the absorption coefficient μ (k) in each energy region k of each calibration jig,
    Based on the following equation (3), calibration coefficients F (k) and G (k) in each energy region k are calculated from the absorption coefficient μ (k) in each energy region k of each calibration jig. ,
    Figure JPOXMLDOC01-appb-I000003
    [In Formula (3), ρ e represents the electron density of the calibration jig, and Z represents the effective atomic number of the calibration jig. ]
    With the X-ray CT apparatus, the measurement object is measured in each of the plurality of energy regions, and the absorption coefficient μ (k) in each energy region k of the measurement object is obtained.
    From the absorption coefficient μ (k) in each energy region k of the measurement object and the calibration coefficients F (k) and G (k) in each energy region k, the measurement is performed based on the following equation (4). Calculate the target electron density ρ e and effective atomic number Z
    Figure JPOXMLDOC01-appb-I000004
    [In Formula (4), ρ e represents the electron density of the measurement object, and Z represents the effective atomic number of the measurement object. ]
    Measuring method of electron density and effective atomic number.
  6.  前記X線CT装置が、X線光源から前記複数のエネルギー領域にわたるスペクトルを有する連続X線を被測定物に照射し、前記被測定物を透過したX線を特定のエネルギー領域ごとに弁別して検出する構成である、請求項5に記載の電子密度及び実効原子番号の測定方法。 The X-ray CT apparatus irradiates an object to be measured with continuous X-rays having a spectrum extending over the plurality of energy regions from an X-ray light source, and discriminates and detects X-rays transmitted through the object to be measured for each specific energy region. The method for measuring electron density and effective atomic number according to claim 5, wherein
  7.  前記X線CT装置が、前記校正用治具を取り出すことが可能な構成である、請求項5又は請求項6に記載の電子密度及び実効原子番号の測定方法。 The method for measuring an electron density and an effective atomic number according to claim 5 or 6, wherein the X-ray CT apparatus is configured to be able to take out the calibration jig.
  8.  前記校正用治具に、カーボン、マグネシウム、アルミニウムから選ばれる物質を使用する請求項5~請求項7のいずれか1項に記載の電子密度及び実効原子番号の測定方法。 The method for measuring electron density and effective atomic number according to any one of claims 5 to 7, wherein a substance selected from carbon, magnesium, and aluminum is used for the calibration jig.
  9.  人体の被検体に対してCT検査を行うCT検査方法であって、
     請求項5~請求項8のいずれか1項に記載の電子密度及び実効原子番号の測定方法において、前記測定対象を前記被検体として、前記被検体の前記電子密度及び前記実効原子番号を測定し、
     測定した前記被検体の前記電子密度及び前記実効原子番号に基づいて、前記被検体の内部の電子密度マップを得る
     CT検査方法。
    A CT examination method for conducting a CT examination on a human subject,
    9. The method of measuring electron density and effective atomic number according to claim 5, wherein the measurement object is the object, and the electron density and effective atomic number of the object are measured. ,
    A CT examination method for obtaining an electron density map inside the subject based on the measured electron density and effective atomic number of the subject.
  10.  物体を検査して、前記物体における爆発物の有無を検知する検査方法であって、
     請求項5~請求項8のいずれか1項に記載の電子密度及び実効原子番号の測定方法において、前記測定対象を前記物体として、前記物体の前記電子密度及び前記実効原子番号を測定し、
     測定した前記物体の前記電子密度及び前記実効原子番号に基づいて、前記物体の内部の物質を特定することにより、前記爆発物の有無を検知する
     検査方法。
    An inspection method for inspecting an object and detecting the presence or absence of explosives in the object,
    The method of measuring electron density and effective atomic number according to any one of claims 5 to 8, wherein the measurement object is the object, the electron density and effective atomic number of the object are measured,
    An inspection method for detecting the presence or absence of the explosive by identifying a substance inside the object based on the measured electron density and effective atomic number of the object.
PCT/JP2017/035026 2016-09-28 2017-09-27 X-ray ct device, method for measuring electron density and effective atomic number, ct scanning method, and inspection method WO2018062308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542666A JPWO2018062308A1 (en) 2016-09-28 2017-09-27 X-ray CT apparatus, measurement method of electron density and effective atomic number, CT inspection method, inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190218 2016-09-28
JP2016-190218 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018062308A1 true WO2018062308A1 (en) 2018-04-05

Family

ID=61763394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035026 WO2018062308A1 (en) 2016-09-28 2017-09-27 X-ray ct device, method for measuring electron density and effective atomic number, ct scanning method, and inspection method

Country Status (2)

Country Link
JP (1) JPWO2018062308A1 (en)
WO (1) WO2018062308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146383A (en) * 2019-03-15 2020-09-17 住友重機械工業株式会社 X-ray ct apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347328A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Radiographic apparatus
JP2005501684A (en) * 2001-09-03 2005-01-20 シーメンス アクチエンゲゼルシヤフト Method for obtaining density and atomic number distribution in X-ray imaging inspection
JP2009042134A (en) * 2007-08-10 2009-02-26 Ihi Corp Inspection device for discriminating high-speed material, and method therefor
JP2011217805A (en) * 2010-04-05 2011-11-04 Sumitomo Heavy Ind Ltd Method of determining effective atomic number and electron density, program for implementing the method, computer-readable recording medium with the program recorded thereon and ct scanner
US20150030225A1 (en) * 2013-07-26 2015-01-29 Tsinghua University X-ray dual-energy ct reconstruction method
JP2016007546A (en) * 2014-06-25 2016-01-18 清華大學 Ct image calibration method, ct image calibration device and ct system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501684A (en) * 2001-09-03 2005-01-20 シーメンス アクチエンゲゼルシヤフト Method for obtaining density and atomic number distribution in X-ray imaging inspection
JP2004347328A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Radiographic apparatus
JP2009042134A (en) * 2007-08-10 2009-02-26 Ihi Corp Inspection device for discriminating high-speed material, and method therefor
JP2011217805A (en) * 2010-04-05 2011-11-04 Sumitomo Heavy Ind Ltd Method of determining effective atomic number and electron density, program for implementing the method, computer-readable recording medium with the program recorded thereon and ct scanner
US20150030225A1 (en) * 2013-07-26 2015-01-29 Tsinghua University X-ray dual-energy ct reconstruction method
JP2016007546A (en) * 2014-06-25 2016-01-18 清華大學 Ct image calibration method, ct image calibration device and ct system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKASHIMA TAKUYA ET AL.: "Atomic number distinguished-type X-ray CT", PRESENTATION PROCEEDINGS OF IMAGE SENSING SYMPOSIUM, 6 June 2007 (2007-06-06) *
OHNO YUNIKO: "Feasibility study for material identification using dual-energy x-ray CT", THE 9TH APPLIED ACCELARATOR, PROCEEDINGS OF THE RELATED TECHNOLOGY RESEARCH SYMPOSIUM, June 2007 (2007-06-01), pages 53 - 54 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146383A (en) * 2019-03-15 2020-09-17 住友重機械工業株式会社 X-ray ct apparatus
JP7272833B2 (en) 2019-03-15 2023-05-12 住友重機械工業株式会社 X-ray CT apparatus, image reconstruction apparatus, and image reconstruction method

Also Published As

Publication number Publication date
JPWO2018062308A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
KR102252847B1 (en) X-ray device, X-ray inspection method, data processing device, data processing method, and computer program
KR102075828B1 (en) X-ray unit, data processing unit and data processing method
Geraki et al. Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study
US7158611B2 (en) Method for determining density distributions and atomic number distributions during radiographic examination methods
EP2377467A1 (en) System and method for determining the composition of an object
EP1718958B1 (en) Device and method for mapping the distribution of an x-ray fluorescence marker
JP2011024773A (en) X-ray component measuring apparatus
CN111867473A (en) X-ray imaging method for an object using multi-energy decomposition
JP5780931B2 (en) Radiation tomography apparatus, dose calculation method and program
JP4725350B2 (en) Transmission X-ray measurement method
Mousa et al. A new simple method to measure the X-ray linear attenuation coefficients of materials using micro-digital radiography machine
Vaiente et al. Fricke gel dosimeter with improved sensitivity for low‐dose‐level measurements
EP1676126A1 (en) Fan-beam coherent-scatter computed tomography
US7050530B2 (en) Method and apparatus for the spatially-resolved determination of the element concentrations in objects to be examined
WO2018062308A1 (en) X-ray ct device, method for measuring electron density and effective atomic number, ct scanning method, and inspection method
US20080139914A1 (en) Characterising Body Tissue
US20170023498A1 (en) Method and apparatus for performing multi-energy (including dual energy) computed tomography (ct) imaging
Coffey et al. Comparing 10 kVp and 15% rules in extremity radiography
US9664801B2 (en) Method and device for determining the x-ray radiation attenuation caused by the object to be examined
Ahmed et al. Material identification approach based on the counting technique and beam hardening correction under industrial X-ray computed tomography: a simulation study
RU2400141C2 (en) Method of bone mineral density analysis
CA2051735C (en) Method and apparatus for low dose estimates of bone minerals in vivo gamma ray backscatter
JP5030056B2 (en) Nondestructive inspection method and apparatus
Patterson et al. Nondestructive investigations of a copper-and argon-doped sputtered beryllium capsule using X-rays in three dimensions
US20070064869A1 (en) Laminography apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856257

Country of ref document: EP

Kind code of ref document: A1