JP4894491B2 - Radiation transmission measuring apparatus and radiation transmission measuring method - Google Patents

Radiation transmission measuring apparatus and radiation transmission measuring method Download PDF

Info

Publication number
JP4894491B2
JP4894491B2 JP2006331041A JP2006331041A JP4894491B2 JP 4894491 B2 JP4894491 B2 JP 4894491B2 JP 2006331041 A JP2006331041 A JP 2006331041A JP 2006331041 A JP2006331041 A JP 2006331041A JP 4894491 B2 JP4894491 B2 JP 4894491B2
Authority
JP
Japan
Prior art keywords
radiation
sample
reference piece
transmission
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006331041A
Other languages
Japanese (ja)
Other versions
JP2008145196A (en
Inventor
清市 松本
博行 河木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006331041A priority Critical patent/JP4894491B2/en
Publication of JP2008145196A publication Critical patent/JP2008145196A/en
Application granted granted Critical
Publication of JP4894491B2 publication Critical patent/JP4894491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、放射線透過測定法において、測定精度の向上を図るための技術に関する。   The present invention relates to a technique for improving measurement accuracy in a radiation transmission measurement method.

従来、非破壊検査法の一つとして放射線透過測定法が知られている。放射線透過測定法は、試料に放射線を照射し、この試料を透過してきた放射線の透過像を得て、試料を透過した放射線強度の空間分布から放射線の減衰量を測ることにより、試料内の或物質の分布や或物質層の厚さ(量)の測定を行うものである。   Conventionally, a radiation transmission measurement method is known as one of nondestructive inspection methods. The radiation transmission measurement method irradiates a sample with radiation, obtains a transmission image of the radiation transmitted through the sample, and measures the attenuation of radiation from the spatial distribution of the radiation intensity transmitted through the sample. It measures the distribution of substances and the thickness (quantity) of a substance layer.

例えば、特許文献1では、放射線透過測定法の一つである中性子ラジオグラフィーに関する技術が記載されている。中性子ラジオグラフィーは、燃料電池セル、コンクリート材などの水分量の測定に利用される。   For example, Patent Document 1 describes a technique related to neutron radiography, which is one of the radiation transmission measurement methods. Neutron radiography is used to measure the water content of fuel cells, concrete materials, and the like.

特許文献1に記載の放射線透過測定法では、予め、検量線作成用の基準片を用いて検量線が作成され、続いて、該検量線を用いて試料中の水分量が測定される。
詳細には、先ず、基準片へ中性子ビームが照射され、該基準片の透過中性子画像を得て、該透過中性子画像から算出される中性子の減衰量(透過率)と、中性子ビームの通り道にある前記基準片内の水分量とから、中性子の減衰量と水分量とを関係づける検量線が作成される。続いて、試料へ中性子ビームが照射され、該試料の透過中性子画像を得て、該透過中性子画像から算出される中性子の減衰量(透過率)から、作成した検量線を用いて試料中の水分量が算出される。
In the radiation transmission measuring method described in Patent Document 1, a calibration curve is created in advance using a reference piece for creating a calibration curve, and subsequently, the amount of water in the sample is measured using the calibration curve.
Specifically, first, a neutron beam is irradiated to the reference piece, a transmission neutron image of the reference piece is obtained, and the attenuation amount (transmittance) of the neutron calculated from the transmission neutron image and the path of the neutron beam A calibration curve relating the attenuation of neutrons and the amount of moisture is created from the amount of moisture in the reference piece. Subsequently, the sample is irradiated with a neutron beam, a transmission neutron image of the sample is obtained, and the moisture content in the sample is calculated from the attenuation amount (transmittance) of the neutron calculated from the transmission neutron image using the prepared calibration curve. A quantity is calculated.

上述のような放射線透過測定において、中性子ビームを発する中性子源として、原子炉内の核反応により生じる中性子や、加速器で加速した電子をターゲットに衝突させて生じる中性子を用いたもの等がある。この中でも、原子炉では、比較的視野の大きい良質の平行中性子ビームが得られることから、中性子ラジオグラフィーに適している。   In the radiation transmission measurement as described above, as a neutron source that emits a neutron beam, there are a neutron source that uses a neutron generated by a nuclear reaction in a nuclear reactor, or a neutron generated by colliding an electron accelerated by an accelerator with a target. Among these, the nuclear reactor is suitable for neutron radiography because a high-quality parallel neutron beam with a relatively large field of view can be obtained.

ところが、原子炉内から放射線透過測定で使用されるポートに飛散してくる中性子数とその強度は時間変動する。このため、中性子源より試料に照射される中性子ビームに含まれる中性子量も時間変動し、検出される中性子の減衰量に測定時による測定誤差が生じてしまう。
特に、中性子ラジオグラフィーにて燃料電池セル内の水分量等を測定する際には、数ミクロン程度の測定精度が必要となるが、上記の様な測定誤差が生じると、正確な測定結果を得ることが困難となる。
特開2005−265787号公報
However, the number of neutrons scattered from the reactor to the port used for radiation transmission measurement and their intensity vary over time. For this reason, the amount of neutron contained in the neutron beam irradiated to the sample from the neutron source also varies over time, and a measurement error due to measurement occurs in the attenuation amount of the detected neutron.
In particular, when measuring the amount of water in the fuel cell by neutron radiography, a measurement accuracy of about several microns is required, but when the above measurement error occurs, an accurate measurement result is obtained. It becomes difficult.
JP 2005-265787 A

上記に鑑み、本発明では、放射線透過測定法において、試料に照射される放射線の強度の変動を考慮して、得られた放射線透過画像の補正(画像処理)を行うことにて、より高い測定精度を備えるための技術を提案する。   In view of the above, in the present invention, in the radiation transmission measurement method, a higher measurement can be performed by correcting the obtained radiation transmission image (image processing) in consideration of fluctuations in the intensity of radiation applied to the sample. We propose a technique to provide accuracy.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、試料への放射線の照射と該試料を透過する放射線の検出とを少なくとも複数回行って、前記試料内部の測定対象物の量の変化を測定する放射線透過測定装置において、内部に収容部が形成された密閉可能な容器であって、前記収容部が空の第一基準片と、前記収容部が所定量の測定対象物と同一物質で満たされた第二基準片との、一対の基準片と、前記一対の基準片と試料とに、同時に放射線を照射する照射手段と、前記一対の基準片又は試料を透過した放射線を検出する検出手段と、該検出手段にて検出された放射線の撮像を行って透過放射線画像を得る撮像手段と、前記検出手段による検出及び前記撮像手段による撮像を、前記試料内部における測定対象物の量が異なる状態で、少なくとも複数回行って得た一組の透過放射線画像から、第一基準片、第二基準片及び試料の各々につき一組の透過放射線画像を得る画像抽出手段と、前記第一基準片の一組の透過放射線画像に基づいて算出した補正式を用いて、前記第一基準片、第二基準片及び試料の各々についての一組の透過放射線画像における、一方の透過放射線画像を他方の透過放射線画像に基づいて定量化する定量化処理手段と、前記第一基準片及び第二基準片の各定量化された一組の透過放射線画像から、測定対象物の計量基準を得る計量基準作成手段と、前記試料の定量化された一組の透過放射線画像と、前記計量基準とから、前記試料内部の測定対象物の量の変化を得る測定値算出手段とを、備えるものである。 That is, in the radiation transmission measuring apparatus according to claim 1 , the irradiation of the sample with radiation and the detection of the radiation transmitted through the sample are performed at least a plurality of times, and the change in the amount of the measurement object inside the sample is measured. A sealable container having an accommodating portion formed therein, wherein the accommodating portion is an empty first reference piece, and the accommodating portion is filled with the same substance as a predetermined amount of the measurement object. A pair of reference pieces, an irradiation means for irradiating the pair of reference pieces and the sample simultaneously, a detection means for detecting radiation transmitted through the pair of reference pieces or the sample, and the detection means An imaging unit that captures the detected radiation and obtains a transmitted radiation image, and the detection by the detection unit and the imaging by the imaging unit are performed at least a plurality of times in a state where the amount of the measurement object in the sample is different. Got An image extraction means for obtaining a set of transmitted radiation images for each of the first reference piece, the second reference piece and the sample from the set of transmitted radiation images, and calculation based on the set of transmitted radiation images of the first reference piece using the correction equation, the first reference piece, quantification quantified based in a set of transmitted radiation image about the respective second reference block and the sample, one of the transmitted radiation image on the other transmitted radiation image Quantification processing means, metric standard creation means for obtaining a metric standard of the measurement object from each of the quantified transmission radiation images of the first reference piece and the second reference piece, and quantification of the sample Measurement value calculation means for obtaining a change in the amount of the measurement object inside the sample from a set of transmission radiation images and the measurement standard is provided.

請求項2においては、前記放射線透過測定装置に、前記定量化手段にて定量化された第一基準片、第二基準片及び試料の一組の透過放射線画像の各々について正規化する正規化手段をさらに備えるものである。 The normalization means for normalizing each of the first reference piece, the second reference piece, and a set of transmitted radiation images of the sample quantified by the quantification means in the radiation transmission measuring device. Is further provided.

請求項3においては、前記基準片は、該基準片からの放射線の放出面が階段状であり、前記収容部の放射線の進行方向の厚みが不連続的に変化する、形状を有するものである。 According to a third aspect of the present invention, the reference piece has a shape in which a radiation emission surface from the reference piece has a stepped shape, and the thickness of the accommodating portion in the traveling direction of the radiation changes discontinuously. .

請求項4においては、内部に収容部が形成された密閉可能な容器であって、前記収容部が空の第一基準片と、前記収容部が所定量の測定対象物と同一物質で満たされた第二基準片との、一対の基準片と、放射線照射手段と、放射線検出手段と、撮像手段と、画像抽出手段と、定量化処理手段と、計量基準作成手段と、測定値算出手段とを備えた放射線透過測定装置を用いて、前記放射線照射手段にて、前記一対の基準片と試料とに、同時に放射線を照射するステップと、前記放射線検出手段にて、前記一対の基準片又は試料を透過した放射線を検出し、前記撮像手段にて、前記検出手段にて検出された放射線を撮像することを、前記試料内部における測定対象物の量が異なる状態で、少なくとも複数回行って一組の透過放射線画像を得るステップと、前記画像抽出手段にて、前記一組の透過放射線画像から、第一基準片、第二基準片及び試料の各々につき一組の透過放射線画像を得るステップと、前記定量化処理手段にて、前記第一基準片の一組の透過放射線画像に基づいて算出した補正式を用いて、前記第一基準片、第二基準片及び試料の各々についての一組の透過放射線画像における、一方の透過放射線画像を他方の透過放射線画像に基づいて定量化するステップと、前記計量基準作成手段にて、前記第一基準片及び第二基準片の各定量化された一組の透過放射線画像から、測定対象物の計量基準を得るステップと、前記測定値算出手段にて、前記試料の定量化された一組の透過放射線画像と、前記計量基準とから、前記試料内部の測定対象物の量の変化を得るステップとを、含むものである。 In Claim 4 , it is a sealable container in which the accommodating part was formed, Comprising: The said accommodating part is an empty 1st reference piece, and the said accommodating part is satisfy | filled with the same substance as the measurement target object of predetermined amount. A second reference piece, a pair of reference pieces, a radiation irradiation means, a radiation detection means, an imaging means, an image extraction means, a quantification processing means, a measurement reference creation means, a measurement value calculation means, A step of irradiating the pair of reference pieces and the sample at the same time with the radiation irradiating means, and the pair of reference pieces or samples with the radiation detecting means. A set of imaging at least a plurality of times in a state where the amount of the measurement object in the sample is different. To obtain a transmission radiation image of And a step of obtaining a set of transmitted radiation images for each of the first reference piece, the second reference piece and the sample from the set of transmitted radiation images by the image extracting means; and Te, in the first by using the calculated correction equation based on a set of transmitted radiation image one reference piece, the first reference block, a set of transmitted radiation image about the respective second reference block and the sample, A step of quantifying one transmission radiation image based on the other transmission radiation image, and a set of transmission radiation images quantified in the first reference piece and the second reference piece by the measurement reference creating means; From the step of obtaining the measurement standard of the measurement object, the measured value calculation means, the set of transmission radiation images of the sample quantified, and the measurement standard, the measurement object inside the sample Obtaining a change in quantity, Is Dressings.

請求項5においては、前記放射線透過測定装置に、正規化手段を備え、前記定量化手段にて定量化された第一基準片、第二基準片及び試料の一組の透過放射線画像の各々について正規化するステップを、さらに含むものである。 In Claim 5 , the said radiation transmission measuring apparatus is equipped with the normalization means, About each of a set of transmitted radiation images of the 1st reference piece, the 2nd reference piece, and the sample which were quantified by the said quantification means. The method further includes a step of normalizing.

請求項6においては、前記基準片は、該基準片からの放射線の放出面が階段状であり、前記収容部の放射線の進行方向の厚みが不連続的に変化する、形状を有するものである。 According to a sixth aspect of the present invention, the reference piece has a shape in which a radiation emission surface from the reference piece has a step shape, and the thickness of the accommodating portion in the traveling direction of the radiation changes discontinuously. .

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

本発明によれば、放射線透過測定において、試料に照射される放射線の強度の変動を考慮して、得られた放射線透過画像の補正(画像処理)が行われるので、より高い測定精度を備えることができる。   According to the present invention, in the radiation transmission measurement, the obtained radiation transmission image is corrected (image processing) in consideration of fluctuations in the intensity of the radiation applied to the sample, so that higher measurement accuracy is provided. Can do.

次に、発明の実施の形態を説明する。
図1は本発明の実施例1に係る放射線透過測定装置の全体的な構成を示す図、図2は基準片の斜視図、図3は第一基準片の断面図、図4は第二基準片の断面図、図5は別形態の基準片の断面図である。
図6は実施例1に係る放射線透過測定処理の流れ図、図7は定量化処理の流れ図、図8は計量基準作成処理の流れ図、図9は画像処理の流れを説明する図、図10は基準片位置と透過中性子強度の関係の一例を示す図、図11は変換式の一例を示す図である。
図12は実施例2に係る放射線透過測定処理の流れ図である。
Next, embodiments of the invention will be described.
1 is a diagram showing an overall configuration of a radiation transmission measuring apparatus according to Embodiment 1 of the present invention, FIG. 2 is a perspective view of a reference piece, FIG. 3 is a sectional view of a first reference piece, and FIG. 4 is a second reference. FIG. 5 is a sectional view of a reference piece of another embodiment.
6 is a flowchart of the radiation transmission measurement process according to the first embodiment, FIG. 7 is a flowchart of the quantification process, FIG. 8 is a flowchart of the measurement reference creation process, FIG. 9 is a diagram illustrating the flow of image processing, and FIG. FIG. 11 is a diagram showing an example of the relationship between one position and transmitted neutron intensity, and FIG. 11 is a diagram showing an example of a conversion equation.
FIG. 12 is a flowchart of the radiation transmission measurement process according to the second embodiment.

以下に示す実施例では、試料中の測定対象物の分布や量を測定する放射線透過測定法において、放射線を中性子ビーム、試料を燃料電池セル、試料中の測定対象物を、前記燃料電池セルの内部に存在する発電等によって生じた水、とする。基準片はこの系における水と中性子の減衰量との計量基準(検量線)を作成するためのものである。   In the embodiments shown below, in a radiation transmission measurement method for measuring the distribution and amount of a measurement object in a sample, the radiation is a neutron beam, the sample is a fuel cell, and the measurement object in the sample is the fuel cell. It is assumed that the water is generated by power generation that exists inside. The reference piece is used to create a measurement standard (calibration curve) between water and neutron attenuation in this system.

先ず、本発明の実施例1について説明する。   First, Example 1 of the present invention will be described.

本発明の実施例1に係る放射線透過測定装置又は放射線透過測定方法では、先ず、燃料電池セルの反応前と反応後(発電後)とのそれぞれについて、中空の第一基準片6、測定対象物を充填した第二基準片7、及び試料Tに、同時に放射線を照射して放射線透過画像を得て、前記基準片6・7を透過する放射線の減衰量から、測定対象物の物質層の厚み(量)と放射線減衰量との関係を求め、試料Tを透過する放射線の減衰量に基づいて、測定対象物の物質層の厚み(量)や分布を得るものである。
この発明によれば、放射線透過測定法において、試料に照射される放射線の強度の変動に基づく測定結果のバラツキが解消されるので、測定精度の向上を図ることができるのである。
In the radiation transmission measuring apparatus or the radiation transmission measuring method according to the first embodiment of the present invention, first, the hollow first reference piece 6 and the measurement object are respectively measured before and after reaction (after power generation) of the fuel cell. The second reference piece 7 filled with the sample T and the sample T are simultaneously irradiated with radiation to obtain a radiation transmission image, and the thickness of the material layer of the measurement object is determined from the attenuation amount of the radiation transmitted through the reference pieces 6 and 7. The relationship between (amount) and the radiation attenuation amount is obtained, and the thickness (amount) and distribution of the material layer of the measurement object are obtained based on the attenuation amount of the radiation transmitted through the sample T.
According to the present invention, in the radiation transmission measurement method, variations in measurement results based on fluctuations in the intensity of radiation applied to the sample are eliminated, so that measurement accuracy can be improved.

[放射線透過測定装置10]
本実施例に係る放射線透過測定装置10の構成について説明する。
図3に示すように、放射線透過測定装置10には、中性子源13と、被写体となる試料T並びに基準片6・7が載置されるステージ12と、中性子検出器14と、撮像手段15と、演算処理手段16とが、備えられる。
前記中性子源13と被写体との間には、コリメータ18が備えられ、中性子源13から供給される中性子束が平行ビームに整えられる。
[Radiation transmission measuring device 10]
A configuration of the radiation transmission measuring apparatus 10 according to the present embodiment will be described.
As shown in FIG. 3, the radiation transmission measuring apparatus 10 includes a neutron source 13, a stage 12 on which a sample T as a subject and a reference piece 6, 7 are placed, a neutron detector 14, an imaging unit 15, and the like. And arithmetic processing means 16 are provided.
A collimator 18 is provided between the neutron source 13 and the subject, and the neutron flux supplied from the neutron source 13 is adjusted to a parallel beam.

前記中性子源13は、被写体である試料T並びに基準片6・7に対して放射線として中性子ビームを照射するものである。中性子源13には、原子炉(図示せず)が接続されており、原子炉より中性子が送られる。この中性子源13とコリメータ18とは、被写体の表面に略垂直に中性子ビームを照射できるように配設される。   The neutron source 13 irradiates a sample T as an object and the reference pieces 6 and 7 with a neutron beam as radiation. The neutron source 13 is connected to a nuclear reactor (not shown), and neutrons are sent from the nuclear reactor. The neutron source 13 and the collimator 18 are arranged so that the surface of the subject can be irradiated with a neutron beam substantially perpendicularly.

前記中性子検出器14は、被写体に対して中性子源13とは反対側に設けられる。中性子検出器14は、中性子ビームが被写体を通過し、透過した中性子(すなわち、主に基準片7又は試料T中の水によって減衰した減衰中性子ビーム)を検出するものである。   The neutron detector 14 is provided on the opposite side of the neutron source 13 with respect to the subject. The neutron detector 14 detects the neutron beam that has passed through the subject and passed through the subject (that is, the attenuated neutron beam attenuated mainly by water in the reference piece 7 or the sample T).

本実施例において、中性子検出器14はシンチレータであり、放射線が特定の物質に入射するとき、その放射線エネルギーが吸収されて蛍光を発する現象(シンチレーション)を利用して、放射線の計数・分析が行われる。   In this embodiment, the neutron detector 14 is a scintillator, and when radiation is incident on a specific substance, the radiation energy is absorbed and fluorescence is emitted and the radiation is counted and analyzed (scintillation). Is called.

前記中性子検出器14には、暗箱14a内に、被写体を透過してきた中性子を受けて蛍光を発する蛍光板14bが設けられる。この蛍光は、被写体を透過してきた中性子が減衰していないほど蛍光輝度が高く、また、中性子の減衰量の大きさは、中性子ビームの通り道の水の厚さに起因する。すなわち、蛍光板14bにおいて、基準片7又は試料T中の、水の厚さが小さいほど蛍光輝度が高くなり、水の厚さが大きいほど蛍光輝度が低くなる。蛍光は、前記暗箱14a内において鏡14cによって反射させられ、間接的にこの蛍光輝度を読む撮像手段15に取り込まれる。前記撮像手段15としては、蛍光輝度カメラが採用される。   The neutron detector 14 is provided with a fluorescent plate 14b that emits fluorescence in response to neutrons transmitted through the subject in a dark box 14a. The fluorescence has such a high luminance that the neutron transmitted through the subject is not attenuated, and the magnitude of the attenuation of the neutron is caused by the thickness of the water in the path of the neutron beam. That is, in the fluorescent plate 14b, the fluorescence brightness increases as the water thickness in the reference piece 7 or the sample T decreases, and the fluorescence brightness decreases as the water thickness increases. The fluorescence is reflected by the mirror 14c in the dark box 14a, and is indirectly taken into the imaging means 15 that reads the fluorescence luminance. As the imaging means 15, a fluorescent luminance camera is employed.

前記撮像手段15にて得られた透過中性子画像(透過放射線画像)では、被写体を透過してきた中性子の量(強さ)が蛍光輝度の濃淡(コントラスト)として表れる。この透過中性子画像は、撮像手段15より演算処理手段16に送られる。
なお、実施例1においては、中性子検出器14にて検出された中性子を、撮像手段15にて少なくとも複数回撮像して、一組の透過中性子画像を得る。
In the transmission neutron image (transmission radiation image) obtained by the imaging means 15, the amount (intensity) of neutrons that have passed through the subject appears as the density (contrast) of the fluorescence brightness. This transmitted neutron image is sent from the imaging means 15 to the arithmetic processing means 16.
In Example 1, the neutron detected by the neutron detector 14 is imaged at least a plurality of times by the imaging means 15 to obtain a set of transmission neutron images.

演算処理手段16では、前記一組の透過中性子画像に基づいて、画像処理を含む演算処理が行われ、試料T内部の水分量やその分布が、測定結果として出力される。
詳細には、前記演算処理手段16は、演算部、制御部、記憶部、入力部及び出力部等を備えた電子計算機であって、画像抽出手段、定量化処理手段、計量基準作成手段、測定値算出手段、及び、出力手段として機能する。
前記画像抽出手段とは、撮像手段15にて得られた一組の透過中性子画像から第一基準片6、第二基準片7及び試料Tの各々につき一組の透過放射線画像を得るためのものである。
前記定量化処理手段とは、第一基準片6の一組の透過中性子画像に基づいて算出した補正式を用いて、第一基準片6、第二基準片7及び試料Tの各々につき定量化された一組の透過中性子画像を得るためのものである。
前記計量基準作成手段とは、第一基準片6及び第二基準片7の各定量化された一組の透過中性子画像から、測定対象物の計量基準を得るためのものである。
前記測定値算出手段とは、試料Tの定量化された一組の透過放射線画像と、前記計量基準とから、前記試料T内部の測定対象物の量の変化を得るためのものである。
前記出力手段とは、算出された試料内部の測定対象物の量を、濃淡画像マップやカラー画像マップ等のピクセルデータ又はボクセルデータ、或いは、二次元又は三次元座標と測定対象物の量を示すテーブル等として、表示出力したり印字出力したりするためのものである。
なお、上記各手段の詳細な機能は後述する。
In the arithmetic processing means 16, arithmetic processing including image processing is performed based on the set of transmission neutron images, and the amount of moisture in the sample T and its distribution are output as measurement results.
Specifically, the arithmetic processing means 16 is an electronic computer including an arithmetic part, a control part, a storage part, an input part, an output part, etc., and is an image extraction means, a quantification processing means, a metric standard preparation means, a measurement It functions as value calculation means and output means.
The image extracting means is for obtaining a set of transmitted radiation images for each of the first reference piece 6, the second reference piece 7 and the sample T from the set of transmitted neutron images obtained by the imaging means 15. It is.
The quantification processing means is quantified for each of the first reference piece 6, the second reference piece 7, and the sample T using a correction formula calculated based on a set of transmission neutron images of the first reference piece 6. To obtain a set of transmitted neutron images.
The measurement standard creating means is for obtaining a measurement standard of the measurement object from a set of quantified transmission neutron images of the first reference piece 6 and the second reference piece 7.
The measurement value calculation means is for obtaining a change in the amount of the measurement object in the sample T from the set of quantified transmission radiation images of the sample T and the measurement standard.
The output means indicates the calculated amount of the measurement object inside the sample, pixel data or voxel data such as a grayscale image map or a color image map, or two-dimensional or three-dimensional coordinates and the amount of the measurement object. It is for display output or print output as a table or the like.
The detailed functions of the above means will be described later.

[基準片6・7]
続いて、前記基準片6・7について説明する。
図2〜図4に示すように、使用される二つの基準片6・7は、厳密に同形状のものであり、内部に収容部8が形成された密閉可能な中空容器である。これらの基準片6・7は、水以外の中性子の減衰に与える影響を除外するために、例えばアルミニウム等の中性子透過性の高い材料を用いて構成すると好適である。
一方の基準片である第一基準片6は、内部に形成された収容部8は、空洞とされる。他方の基準片である第二基準片7は、内部に形成された収容部8には、測定対象物と同一物質である水9(蒸留水)が充填される。
[Reference pieces 6 and 7]
Next, the reference pieces 6 and 7 will be described.
As shown in FIGS. 2 to 4, the two reference pieces 6 and 7 to be used are strictly the same shape, and are a sealable hollow container in which the accommodating portion 8 is formed. These reference pieces 6 and 7 are preferably composed of a material having high neutron permeability such as aluminum, for example, in order to exclude the influence on the attenuation of neutrons other than water.
In the first reference piece 6 which is one reference piece, the accommodating portion 8 formed inside is hollow. In the second reference piece 7 which is the other reference piece, water 9 (distilled water) which is the same substance as the object to be measured is filled in the accommodating portion 8 formed inside.

前記基準片6・7は、直方体のうち中性子ビームの入射面と反対側の面、つまり、中性子ビームが基準片6・7から外部へ出る放出面が、階段状に切り欠かれた外形状を有する。なお、中性子ビームは、基準片6・7の入射面に略垂直に入射して、該基準片6・7の内部を略直線状に進み、放出面より外部へ放出されるものとする。
本実施例においては、基準片6・7の放出面には、略上下方向に階段が形成されるが、略左右方向に階段を形成してもかまわない。
The reference pieces 6 and 7 have an outer shape in which a surface of the rectangular parallelepiped opposite to the incident surface of the neutron beam, that is, an emission surface from which the neutron beam exits from the reference pieces 6 and 7 is cut out in a stepped shape. Have. It is assumed that the neutron beam is incident on the incident surface of the reference pieces 6 and 7 substantially perpendicularly, travels in a straight line inside the reference pieces 6 and 7 and is emitted to the outside from the emission surface.
In the present embodiment, a staircase is formed in a substantially vertical direction on the emission surface of the reference pieces 6 and 7, but a staircase may be formed in a substantially horizontal direction.

前記基準片6・7は、略一定幅の壁でその外形状が形成されることによって、その内部に形成された空間である収容部8は、入射面側が略平面であって、放出面側が階段状となる。
中性子ビームの進行方向と略平行な方向を厚み方向とし、その厚さを厚さDとすると、前記収容部8には厚さDの物質層が形成される。つまり、第一基準片6の中性子ビームの通り道には、厚さDの気層が存在し、第二基準片7の中性子ビームの通り道には厚さDの測定対象物と同一物質で成る層が存在することとなる。そして、収容部8の放射面側は階段状に形成されるので、前記物質層の厚さDは、不連続的に規則的に変化する。
The reference pieces 6 and 7 are formed with walls having a substantially constant width, and the outer shape of the reference pieces 6 and 7 is such that the receiving portion 8 which is a space formed therein has a substantially flat incident surface side and a discharge surface side. It will be stepped.
When a direction substantially parallel to the traveling direction of the neutron beam is a thickness direction and the thickness is a thickness D, a material layer having a thickness D is formed in the accommodating portion 8. That is, a gas layer having a thickness D exists in the path of the neutron beam of the first reference piece 6, and a layer made of the same material as the measurement object of thickness D is provided in the path of the neutron beam of the second reference piece 7. Will exist. And since the radiation | emission surface side of the accommodating part 8 is formed in step shape, the thickness D of the said material layer changes discontinuously regularly.

本実施例においては、基準片6・7の、下端と第1段との間を第0ステップ、第1段と第2段の間を第1ステップ、…、第n−1段と上端との間を第nステップとし、第0ステップの収容部8は厚さD0、第1ステップの収容部8は厚さD1、…、第nステップの収容部8は厚さDnとする。このように基準片6・7では、ステップごとに収容部8の厚さDが異なり、第0ステップから第nステップに向けて不連続的且つ規則的に厚さD0・D1・…・Dnが小さくなる。つまり、下段のステップほど、収容部8の厚さDは大きく、中性子ビームが通過する物質層は厚くなり、上段のステップほど、収容部8の厚さDは小さく、中性子ビームが通過する物質層(気層又は液層)は薄くなる。 In the present embodiment, the reference pieces 6 and 7 have a 0th step between the lower end and the first stage, a first step between the first stage and the second stage,..., The (n-1) th stage and the upper end. between the n-th step, accommodating portion 8 has a thickness D 0 of the zeroth step, accommodating portion 8 of the first step has a thickness D 1, ..., accommodating portion 8 of the n-th step is the thickness D n . As described above, in the reference pieces 6 and 7, the thickness D of the accommodating portion 8 is different for each step, and the thicknesses D 0 · D 1 ··· are discontinuously and regularly from the 0th step to the nth step. D n becomes smaller. That is, as the lower step, the thickness D of the accommodating portion 8 is larger and the material layer through which the neutron beam passes becomes thicker, and as the upper step, the thickness D of the accommodating portion 8 is smaller and the material layer through which the neutron beam passes. The (gas layer or liquid layer) becomes thin.

前記基準片6・7では、収容部8毎に物質層(気層又は液層)の厚さDが不連続的にし、同一ステップのステップ幅(例えば10μm)の範囲内では厚さDは一定である。従って、検量線を作成する際に、測定誤差が少なく、また、基準片6・7に入射した中性子ビームの通り道と、水が充填された液相の厚さDとの関係を整合させることが容易である。   In the reference pieces 6 and 7, the thickness D of the material layer (gas layer or liquid layer) is discontinuous for each container 8, and the thickness D is constant within the range of the step width (for example, 10 μm) of the same step. It is. Therefore, when creating a calibration curve, the measurement error is small, and the relationship between the path of the neutron beam incident on the reference pieces 6 and 7 and the thickness D of the liquid phase filled with water can be matched. Easy.

但し、収容部8は、不連続的且つ規則的に厚さDが変化する形状に限定されず、不連続的且つ不規則的に厚さDが変化する形状であったり、連続的に厚さDが変化する形状であったりしてもかまわない。例えば、図5に示すように、基準片6・7の外形状を略楔状とし、収容部8の厚さDが下端から上端に向かって連続的に小さくなるものとすることもできる。   However, the accommodating portion 8 is not limited to a shape in which the thickness D changes discontinuously and regularly, but has a shape in which the thickness D changes discontinuously and irregularly, It may be a shape in which D changes. For example, as shown in FIG. 5, the outer shape of the reference pieces 6, 7 can be substantially wedge-shaped, and the thickness D of the accommodating portion 8 can be continuously reduced from the lower end toward the upper end.

前記基準片6・7において、収容部8の各ステップにおける厚さD0〜Dnは、予め計測されて、演算処理手段16に記録される。つまり、基準片6・7の中性子ビームの入射位置と、該入射位置に入射した中性子ビームが通過する収容部8の厚さD0〜Dnとが対応づけられて、演算処理手段16に記録される。なお、収容部8の厚さD0〜Dnは、各ステップにおける液層の厚さであり、厚さD0〜Dnの代わりに、或いは、厚さD0〜Dnとともに、水分量を、中性子ビームの入射位置と対応づけて記録することもできる。 In the reference pieces 6 and 7, the thicknesses D 0 to D n at each step of the accommodating portion 8 are measured in advance and recorded in the arithmetic processing means 16. That is, the incident position of the neutron beam of the reference pieces 6 and 7 is associated with the thicknesses D 0 to D n of the accommodating portion 8 through which the neutron beam incident on the incident position passes and recorded in the arithmetic processing means 16. Is done. The thickness D 0 to D n of the accommodating portion 8, the thickness of the liquid layer in each step, instead of the thickness D 0 to D n, or with the thickness D 0 to D n, the water content Can be recorded in correspondence with the incident position of the neutron beam.

上述のように、第二基準片7の収容部8の液層の厚さによって、中性子ビームの減衰量は変化するので、収容部8の各ステップの位置とその液層の厚さ(水分量)と、当該厚さの液層を通過した中性子ビームの中性子減衰量との関係を求め、その関係をプロットすることにて、水分量と中性子減衰量との関係を表す検量線を作成できるのである。   As described above, since the attenuation amount of the neutron beam varies depending on the thickness of the liquid layer of the accommodating portion 8 of the second reference piece 7, the position of each step of the accommodating portion 8 and the thickness of the liquid layer (water content) ) And the neutron attenuation of the neutron beam that has passed through the liquid layer of that thickness, and by plotting the relationship, a calibration curve representing the relationship between the moisture content and the neutron attenuation can be created. is there.

[放射線透過測定の手順]
続いて、図6〜図9を用いて、上記放射線透過測定装置10を用いた放射線透過測定の手順を説明する。
以下、発電が行われる前で測定対象物である水分が存在しない燃料電池セルを、「反応前の試料T」と記載し、発電が行われた後で測定対象物である水が存在する燃料電池セルを「反応後の試料T」と記載する。
[Radiation transmission measurement procedure]
Then, the procedure of the radiation transmission measurement using the said radiation transmission measuring apparatus 10 is demonstrated using FIGS.
Hereinafter, a fuel battery cell that does not contain moisture as a measurement object before power generation is referred to as “sample T before reaction”, and fuel that contains water as a measurement object after power generation is performed. The battery cell is described as “sample T after reaction”.

先ず、反応前の試料Tと、第一基準片6と第二基準片7とを、ステージ12に載置する。なお、試料Tと第一基準片6と第二基準片7とは、ステージ12の上に並列したり、ステージ12に載置された試料Tの上に第一基準片6と第二基準片7とを並べて載置したりすることができる。
そして、これらの被写体に、中性子源13から中性子ビームが照射される。被写体を透過した中性子が、中性子検出器14にて検出され、中性子量の多少が蛍光輝度の濃淡として表わされた透過中性子画像が、撮像手段15にて撮像される。前記透過中性子画像を「第一次透過画像N1」とする。
この第一次透過画像N1は、撮像手段15より演算処理手段16へ伝達され、該演算処理手段16にて保存される(S1)。
First, the sample T before reaction, the first reference piece 6 and the second reference piece 7 are placed on the stage 12. The sample T, the first reference piece 6 and the second reference piece 7 are arranged in parallel on the stage 12 or the first reference piece 6 and the second reference piece on the sample T placed on the stage 12. 7 can be placed side by side.
These subjects are irradiated with a neutron beam from the neutron source 13. Neutrons that have passed through the subject are detected by the neutron detector 14, and a transmission neutron image in which the amount of neutrons is expressed as the intensity of fluorescence brightness is captured by the imaging means 15. The transmission neutron image is referred to as “first transmission image N 1 ”.
This primary transmission image N 1 is transmitted from the imaging means 15 to the arithmetic processing means 16 and stored in the arithmetic processing means 16 (S1).

続いて、今度は、反応後の試料Tと、第一基準片6と第二基準片7とを、ステージ12に載置する。なお、反応後の試料Tと第一基準片6と第二基準片7とは、それぞれ、先ほど反応前の試料Tを測定したときと同一の配置とする。
そして、これらの被写体に、中性子源13から中性子ビームが照射される。被写体を透過した中性子が、中性子検出器14にて検出され、中性子量の多少が蛍光輝度の濃淡として表わされた透過中性子画像が、撮像手段15にて撮像される。前記透過中性子画像を「第二次透過画像N2」とする。
この第二次透過画像N2は、撮像手段15より演算処理手段16へ伝達され、該演算処理手段16にて保存される(S2)。
Subsequently, the sample T after reaction, the first reference piece 6 and the second reference piece 7 are placed on the stage 12 this time. The sample T after the reaction, the first reference piece 6 and the second reference piece 7 are arranged in the same manner as when the sample T before the reaction was measured.
These subjects are irradiated with a neutron beam from the neutron source 13. Neutrons that have passed through the subject are detected by the neutron detector 14, and a transmission neutron image in which the amount of neutrons is expressed as the intensity of fluorescence brightness is captured by the imaging means 15. The transmission neutron image is referred to as “secondary transmission image N 2 ”.
This secondary transmission image N 2 is transmitted from the imaging means 15 to the arithmetic processing means 16 and stored in the arithmetic processing means 16 (S2).

前記第一次透過画像N1と、前記第二次透過画像N2とを取得した演算処理手段16では、これらの透過中性子画像が読み出されて(S3)、反応後の試料Tに存在する水分量(水の分布)を算出するための解析が開始される。 In the arithmetic processing means 16 that has acquired the first transmission image N 1 and the second transmission image N 2 , these transmission neutron images are read out (S 3) and exist in the sample T after the reaction. Analysis for calculating the amount of water (water distribution) is started.

解析処理が開始されると、まず、演算処理手段16は、第一次透過画像N1と、第二次透過画像N2とから、第一基準片6に係る部分の画像と、第二基準片7に係る部分の画像と、試料Tに係る部分の画像とを、それぞれ抽出する(S4)。
解析画像の抽出に際しては、予め演算処理手段16に設定された基準片6の形状データ及び位置データから、第一次透過画像N1に濃淡で映る基準片6の輪郭を特定し、該輪郭に包囲される部分を第一基準片6に係る部分の第一次透過画像N1として抽出することができる。第二次透過画像N2においても同様に、第一基準片6に係る部分の第二次透過画像N2を抽出することができる。
上記と同様に、第二基準片7及び試料Tについても、それぞれの部分に係る第一次透過画像N1及び第二次透過画像N2を抽出することができる。
When the analysis processing is started, first, the arithmetic processing means 16 determines the image of the portion related to the first reference piece 6 and the second reference image from the first transmission image N 1 and the second transmission image N 2. An image of a portion related to the piece 7 and an image of a portion related to the sample T are extracted (S4).
When extracting the analysis image, the contour of the reference piece 6 reflected in the first transmission image N 1 is specified from the shape data and position data of the reference piece 6 set in advance in the arithmetic processing means 16, and the contour is used as the outline. The surrounded portion can be extracted as the first transmission image N 1 of the portion related to the first reference piece 6. Similarly, in the second order transmission image N 2, it is possible to extract the second transmission image N 2 portion according to the first reference piece 6.
Similarly to the above, for the second reference piece 7 and the sample T, it is possible to extract the primary transmission image N 1 and the secondary transmission image N 2 relating to the respective portions.

次に、演算処理手段16は、第二次透過画像N2を第一次透過画像N1に基づいて定量化し、これらが撮像されたときの中性子ビームの強度差を解消するための処理を行う(S5)。 Next, the arithmetic processing means 16 quantifies the secondary transmission image N 2 based on the primary transmission image N 1 , and performs a process for eliminating the difference in neutron beam intensity when these are imaged. (S5).

図7に示すように、定量化処理において演算処理手段16は、第一基準片6の第一次透過画像N1に基づいて、基準片位置と、透過中性子強度との関係を、例えば図10に示すように、一次式(式1:y=α1x+β1)に近似する(S51)。 As shown in FIG. 7, in the quantification process, the arithmetic processing means 16 shows the relationship between the reference piece position and the transmitted neutron intensity based on the first transmission image N 1 of the first reference piece 6, for example, FIG. As shown in ( 5 ), it approximates to a linear expression (Expression 1: y = α 1 x + β 1 ) (S51).

前記「基準片位置」とは、基準片6の中性子ビームの入射面において、収容部8の厚さDが変化する或方向の一側の端部をゼロ、他側の端部を1とした場合の、該基準片6上の相対位置である。例えば、図3に示すように、基準片6において、収容部8の厚さDが最も大きい側の端部が基準片位置0、収容部8の厚さDが最も小さい側の端部が基準片位置1とされる。
また、前記透過中性子強度は、第一基準片6の前記第一次透過画像N1に濃淡として表れた蛍光輝度を、予め演算処理手段16に設定された式又はテーブル等に基づいて換算することにより、求めることができる。
The “reference piece position” is defined as zero on one side of the neutron beam incident surface of the reference piece 6 where the thickness D of the accommodating portion 8 changes, and 1 on the other side. The relative position on the reference piece 6 in this case. For example, as shown in FIG. 3, in the reference piece 6, the end on the side where the thickness D of the accommodating portion 8 is the largest is the reference piece position 0, and the end on the side where the thickness D of the accommodating portion 8 is the smallest is the reference piece. One position 1 is set.
Further, the transmitted neutron intensity is converted based on an expression or a table or the like set in advance in the arithmetic processing means 16 from the fluorescence brightness that appears as shading in the first transmission image N 1 of the first reference piece 6. Can be obtained.

続いて、演算処理手段16は、上記の処理と同様に、第一基準片6の第二次透過画像N2に基づいて、基準片位置と、透過中性子強度との関係を、例えば図10に示すように、一次式(式2:y=α2x+β2)に近似する(S52)。 Subsequently, similarly to the above-described processing, the arithmetic processing means 16 determines the relationship between the reference piece position and the transmitted neutron intensity based on the second transmission image N 2 of the first reference piece 6, for example, as shown in FIG. As shown, it approximates to a linear expression (Expression 2: y = α 2 x + β 2 ) (S52).

そして、演算処理手段16は、前記式1と式2の傾きα1とα2とを比較し(S53)、これらの差異が所定の閾値αの範囲内であるか否かを判断する(S54)。
α1とα2との差異が、所定の閾値αの範囲内であるとき(S54のNO・図10の反応後1の場合)、つまり、式1と式2の傾きがほぼ同じであるとき、演算処理手段16は、前記式1と式2の切片β1とβ2とを比較し、式2の切片を式1の切片と合わせるように、切片β2の補正式(平行移動定数)を算出する(S55)。
Then, the arithmetic processing unit 16, the equation 1 and compares the slope alpha 1 and alpha 2 Formula 2 (S53), these differences to determine whether it is within a predetermined threshold range alpha (S54 ).
When the difference between α 1 and α 2 is within the range of the predetermined threshold α (NO in S54, 1 after the reaction in FIG. 10), that is, when the slopes of Equation 1 and Equation 2 are substantially the same The arithmetic processing means 16 compares the intercepts β 1 and β 2 of the equations 1 and 2 and corrects the intercept β 2 so that the intercept of the equation 2 matches the intercept of the equation 1 (translation constant). Is calculated (S55).

一方、α1とα2との差異が、所定の閾値αを超えるとき(S54のYES・図10の反応後2の場合)、つまり、式1と式2の傾きが異なるとき、演算処理手段16は、式2を式1に合わせるように補正を行う補正式を算出する(S59)。 On the other hand, when the difference between α 1 and α 2 exceeds a predetermined threshold value α (YES in S54 and 2 after reaction in FIG. 10), that is, when the slopes of Equation 1 and Equation 2 are different, the arithmetic processing means 16 calculates a correction formula for performing correction so that Formula 2 is matched with Formula 1 (S59).

そして、演算処理手段16では、算出された補正式を用いて、第一基準片6と第二基準片7と試料Tとの各第二次透過画像N2を補正して(S56)、補正後の第二次透過画像N2aとし、これを保存する(S57)。
これまでの処理により、第一基準片6と第二基準片7と試料Tとの、それぞれの補正後の第二次透過画像N2aは、第一次透過画像N1に定量化されていることとなる。
Then, the arithmetic processing means 16 corrects each secondary transmission image N 2 of the first reference piece 6, the second reference piece 7, and the sample T using the calculated correction formula (S56), and corrects the correction. The subsequent secondary transmission image N 2a is saved and stored (S57).
By the processing so far, the corrected secondary transmission images N 2a of the first reference piece 6, the second reference piece 7, and the sample T are quantified into the primary transmission image N 1 . It will be.

図6に戻って、さらに、演算処理手段16は、第一基準片6と第二基準片7と試料Tとの各補正後の第二次透過画像N2aに対して、第一基準片6と第二基準片7と試料Tとの各第一次透過画像N1を元画像として、シェーディング補正を行い、正規化する(S6)。以下、この正規化された画像を、定量化後画像N2bとする。
この正規化に際し、補正後の第二次透過画像N2aから第一次透過画像N1を除算して中性子ビームの密度ムラ及び撮像素子内の感度ムラを低減するとともに、画像を判別し易くするための定数を加えて、補正後の第二次透過画像N2aの全体の明るさの補正を行う。
Returning to FIG. 6, the arithmetic processing means 16 further applies the first reference piece 6 to the corrected second transmission image N 2a of the first reference piece 6, the second reference piece 7, and the sample T. When the each of the first order transmission images N 1 original image and the second reference piece 7 and the sample T, performs a shading correction is normalized (S6). Hereinafter, this normalized image is referred to as a post-quantification image N 2b .
At the time of normalization, the primary transmission image N 1 is divided from the corrected secondary transmission image N 2a to reduce the density unevenness of the neutron beam and the sensitivity unevenness in the image sensor, and to make the image easy to discriminate. Therefore , the overall brightness of the corrected second transmission image N 2a is corrected.

以上までの処理で、演算処理手段16は、第一基準片6と、第二基準片7と、試料Tとのそれぞれについて、定量化後画像N2bを得ることができる。この定量化後画像N2bでは、中性子ビームに含まれる中性子量のばらつきが解消されている。
続いて、演算処理手段16は、計量基準を作成するための処理を行う(S7)。
Through the above processing, the arithmetic processing means 16 can obtain the quantified image N 2b for each of the first reference piece 6, the second reference piece 7, and the sample T. In this post-quantification image N 2b , variations in the amount of neutron contained in the neutron beam are eliminated.
Subsequently, the arithmetic processing means 16 performs a process for creating a metric reference (S7).

図8に示すように、計量基準作成処理において演算処理手段16は、第二基準片7に係る定量化後画像N2bから第一基準片6に係る定量化後画像N2bを除算し、一般的なシェーディング補正で正規化する(S71)。これにより、第二基準片7内部の水により減衰した中性子強度(中性子減衰量)の多少が、濃淡により表された計量基準画像N3を得ることができる。 As shown in FIG. 8, in the measurement reference creation process, the arithmetic processing means 16 divides the quantified image N 2b related to the first reference piece 6 from the quantified image N 2b related to the second reference piece 7, Normalization is performed with a typical shading correction (S71). As a result, a metric reference image N 3 in which the degree of neutron intensity (neutron attenuation) attenuated by the water inside the second reference piece 7 is represented by shading can be obtained.

さらに、演算処理手段16は、前記計量基準画像N3にて示される中性子減衰量と、予め設定された第二基準片7の収容部8の各ステップの位置とその水分量(または、液層の厚さD0〜Dn)とから、中性子減衰量と水分量との関係を定める変換式(例えば、図11)を作成する(S72)。
このようにして、演算処理手段16にて、照射される中性子ビームの時間変動や、基準片6・7の外枠等や、中性子ビームが透過する大気中の水分量といった、基準片内部の水以外の中性子減衰要因が除去された変換式を作成することができる。
Further, the arithmetic processing means 16 is configured to detect the neutron attenuation amount indicated by the measurement reference image N 3 , the position of each step of the accommodating portion 8 of the second reference piece 7 set in advance and the amount of moisture (or liquid layer). since the thickness D 0 to D n) and a transformation equation defining the relationship between the neutron attenuation and water content (for example, to create a Figure 11) (S72).
In this way, in the processing means 16, the water inside the reference piece such as the time variation of the irradiated neutron beam, the outer frame of the reference pieces 6 and 7, the amount of moisture in the atmosphere through which the neutron beam passes, etc. It is possible to create a conversion formula from which neutron attenuation factors other than are removed.

続いて、演算処理手段16は、上記変換式(計量基準)を用いて、試料T内部の水分量を算出する処理を行う(S8)。
まず、演算処理手段16は、試料Tに係る部分の定量化後画像N2bに濃淡で表された中性子減衰量を、上述の作成した変換式に当てはめることによって、試料Tの水分量(水分量の分布)を算出する。
そして、演算処理手段16は、算出された試料Tの水分量を、濃淡画像マップやカラー画像マップ等のピクセルデータ又はボクセルデータ、或いは、二次元又は三次元座標と水分量を示すテーブル等として、出力する(S9)。
Subsequently, the arithmetic processing means 16 performs a process of calculating the moisture content inside the sample T using the above conversion formula (measurement standard) (S8).
First, the arithmetic processing means 16 applies the neutron attenuation amount represented by the density in the post-quantification image N 2b of the portion related to the sample T to the above-described conversion equation, thereby obtaining the moisture content (moisture content) of the sample T. Distribution).
Then, the arithmetic processing means 16 uses the calculated moisture content of the sample T as pixel data or voxel data such as a grayscale image map or a color image map, or a table indicating two-dimensional or three-dimensional coordinates and the moisture content. Output (S9).

上述の放射線透過測定の手順によれば、試料Tの構成材料や、中性子ビームが透過する大気中の水分量といった、試料T内部に反応により生じた水以外の中性子減衰要因に加え、試料Tに照射される中性子ビームの強度や密度の変動による測定誤差が排除された測定結果を得ることができるので、測定精度の向上を図ることができる。   According to the procedure of the radiation transmission measurement described above, in addition to the neutron attenuation factors other than water generated by the reaction inside the sample T, such as the constituent material of the sample T and the amount of moisture in the atmosphere through which the neutron beam passes, Since measurement results in which measurement errors due to variations in the intensity and density of the irradiated neutron beam are eliminated can be obtained, the measurement accuracy can be improved.

本発明の実施例2に係る放射線透過測定装置10について説明する。
上記実施例1では、燃料電池セルの内部に存在する発電等によって生じた水を測定するため、中性子検出器14にて検出された中性子を、撮像手段15にて少なくとも複数回撮像して、一組の透過中性子画像を得て、この一組の透過中性子画像に基づいて、試料内部の測定対象物の量を算出している。しかし、必ずしも、複数回撮像して複数の透過中性子画像を得ることに限定されず、試料によっては、一の透過中性子画像に基づいて、測定対象物の量を算出することも可能である。そこで、実施例2においては、一の透過中性子画像に基づいて、測定対象物の量を算出する構成の放射線透過測定装置10及び放射線透過測定方法について説明する。
A radiation transmission measuring apparatus 10 according to Example 2 of the present invention will be described.
In the first embodiment, in order to measure water generated by power generation and the like existing inside the fuel battery cell, the neutron detected by the neutron detector 14 is imaged at least a plurality of times by the imaging means 15, and A set of transmitted neutron images is obtained, and the amount of the measurement object inside the sample is calculated based on the set of transmitted neutron images. However, it is not necessarily limited to obtaining a plurality of transmission neutron images by imaging a plurality of times, and depending on the sample, the amount of the measurement object can be calculated based on one transmission neutron image. In the second embodiment, a radiation transmission measuring apparatus 10 and a radiation transmission measuring method configured to calculate the amount of the measurement object based on one transmission neutron image will be described.

放射線透過測定装置10の演算処理手段16以外の構成は、上記実施例1に記載の放射線透過測定装置10と同一であるので、詳細な説明を省略する。   Since the configuration of the radiation transmission measuring apparatus 10 other than the arithmetic processing means 16 is the same as that of the radiation transmission measuring apparatus 10 described in the first embodiment, detailed description thereof is omitted.

放射線透過測定装置10に具備される演算処理手段16は、演算部、制御部、記憶部、入力部及び出力部等を備えた電子計算機であって、画像抽出手段と、計量基準作成手段と、測定値算出手段と、出力手段として機能する。
前記画像抽出手段とは、透過放射線画像から第一基準片、第二基準片及び試料の各々の透過放射線画像を抽出して得るためのものである。
前記計量基準作成手段とは、前記第一基準片及び前記第二基準片の各透過放射線画像から、測定対象物の計量基準を得るためのものである。
前記測定値算出手段とは、前記試料の透過放射線画像と前記計量基準とから、前記試料内部の測定対象物の量を得るためのものである。
前記出力手段とは、算出された試料内部の測定対象物の量を、濃淡画像マップやカラー画像マップ等のピクセルデータ又はボクセルデータ、或いは、二次元又は三次元座標と測定対象物の量を示すテーブル等として、表示出力したり印字出力したりするためのものである。
The arithmetic processing means 16 included in the radiation transmission measuring apparatus 10 is an electronic computer including a calculation unit, a control unit, a storage unit, an input unit, an output unit, and the like, and includes an image extraction unit, a measurement standard creation unit, It functions as a measurement value calculation means and an output means.
The image extracting means is for extracting and obtaining transmitted radiation images of the first reference piece, the second reference piece, and the sample from the transmitted radiation image.
The measurement reference creation means is for obtaining a measurement reference of the measurement object from the transmitted radiation images of the first reference piece and the second reference piece.
The measurement value calculation means is for obtaining the amount of the measurement object inside the sample from the transmitted radiation image of the sample and the measurement standard.
The output means indicates the calculated amount of the measurement object inside the sample, pixel data or voxel data such as a grayscale image map or a color image map, or two-dimensional or three-dimensional coordinates and the amount of the measurement object. It is for display output or print output as a table or the like.

次に、上記構成の放射線透過測定装置10における、放射線透過測定の処理の流れを説明する。
なお、本実施例に係る放射線透過測定方法は、試料Tに水分以外の放射線減衰要因が無い場合や、試料Tの水分分布の概要を得るような場合に適用させると、好適である。
Next, the flow of processing for radiation transmission measurement in the radiation transmission measuring apparatus 10 having the above configuration will be described.
The radiation transmission measurement method according to the present embodiment is preferably applied when the sample T has no radiation attenuation factor other than moisture or when an outline of the moisture distribution of the sample T is obtained.

先ず、反応前の試料Tと、第一基準片6と第二基準片7とを、ステージ12に載置する。なお、試料Tと第一基準片6と第二基準片7とは、ステージ12の上に並列したり、ステージ12に載置された試料Tの上に第一基準片6と第二基準片7とを並べて載置したりすることができる。
そして、これらの被写体に、中性子源13から中性子ビームが照射される。被写体を透過した中性子が、中性子検出器14にて検出され、中性子量の多少が蛍光輝度の濃淡として表わされた透過中性子画像が、撮像手段15にて撮像される。前記透過中性子画像を「透過画像N5」とする。
この透過画像N5は、撮像手段15より演算処理手段16へ伝達され、該演算処理手段16にて保存される(S81)。
First, the sample T before reaction, the first reference piece 6 and the second reference piece 7 are placed on the stage 12. The sample T, the first reference piece 6 and the second reference piece 7 are arranged in parallel on the stage 12 or the first reference piece 6 and the second reference piece on the sample T placed on the stage 12. 7 can be placed side by side.
These subjects are irradiated with a neutron beam from the neutron source 13. Neutrons that have passed through the subject are detected by the neutron detector 14, and a transmission neutron image in which the amount of neutrons is expressed as the intensity of fluorescence brightness is captured by the imaging means 15. The transmission neutron image is referred to as “transmission image N 5 ”.
This transmitted image N 5 is transmitted from the imaging means 15 to the arithmetic processing means 16 and stored in the arithmetic processing means 16 (S81).

前記透過画像N5を取得した演算処理手段16では、この透過中性子画像が読み出されて(S82)、反応後の試料Tに存在する水分量(水の分布)を算出するための解析が開始される。 In the arithmetic processing means 16 that has acquired the transmission image N 5 , the transmission neutron image is read (S 82), and an analysis for calculating the amount of water (water distribution) present in the sample T after the reaction is started. Is done.

解析処理が開始されると、まず、演算処理手段16は、透過画像N5から、第一基準片6に係る部分の画像と、第二基準片7に係る部分の画像と、試料Tに係る部分の画像とを、それぞれ抽出する(S83)。
解析画像の抽出に際しては、予め演算処理手段16に設定された基準片6の形状データ及び位置データから、透過画像N5に濃淡で映る基準片6の輪郭を特定し、該輪郭に包囲される部分を第一基準片6に係る部分の解析画像として抽出することができる。第二基準片7及び試料Tについても同様に抽出することができる。
When the analysis process is started, first, the arithmetic processing unit 16, a transmission image N 5, an image of a portion of the first reference piece 6, an image of a portion of the second reference piece 7, according to the sample T The partial images are extracted (S83).
At the time of extraction of the analysis image, the contour of the reference piece 6 reflected in the transmission image N 5 is specified from the shape data and position data of the reference piece 6 set in advance in the arithmetic processing means 16, and is surrounded by the outline. The part can be extracted as an analysis image of the part related to the first reference piece 6. The second reference piece 7 and the sample T can be similarly extracted.

次に、演算処理手段16は、計量基準を作成する(S84)。
演算処理手段16は、先ず、第二基準片7に係る透過画像N5から第一基準片6に係る透過画像N5を除算し、一般的なシェーディング補正で正規化する。これにより、第二基準片7内部の水により減衰した中性子強度(中性子減衰量)の多少が、濃淡により表された計量基準画像N6を得ることができる。
Next, the arithmetic processing means 16 creates a measurement standard (S84).
First, the arithmetic processing means 16 divides the transmission image N 5 related to the first reference piece 6 from the transmission image N 5 related to the second reference piece 7 and normalizes it by general shading correction. Thereby, the metric reference image N 6 in which the neutron intensity (neutron attenuation amount) attenuated by the water inside the second reference piece 7 is represented by shading can be obtained.

さらに、演算処理手段16は、前記計量基準画像N6にて示される中性子減衰量と、予め設定された第二基準片7の収容部8の各ステップの位置とその水分量(または、液層の厚さD0〜Dn)とから、中性子減衰量と水分量との関係を定める変換式(例えば、図11)を作成する。
このようにして、演算処理手段16にて、照射される中性子ビームの時間変動や、基準片6・7の外枠等や、中性子ビームが透過する大気中の水分量といった、基準片内部の水以外の中性子減衰要因が除去された変換式を作成することができる。
Further, the arithmetic processing means 16 is configured to calculate the neutron attenuation shown by the measurement reference image N 6 , the position of each step of the accommodating portion 8 of the second reference piece 7 set in advance and the amount of water (or liquid layer). From the thickness D 0 to D n ), a conversion formula (for example, FIG. 11) that defines the relationship between the neutron attenuation amount and the moisture amount is created.
In this way, in the processing means 16, the water inside the reference piece such as the time variation of the irradiated neutron beam, the outer frame of the reference pieces 6 and 7, the amount of moisture in the atmosphere through which the neutron beam passes, etc. It is possible to create a conversion formula from which neutron attenuation factors other than are removed.

続いて、演算処理手段16は、上記変換式(計量基準)を用いて、試料T内部の水分量を算出する処理を行う(S85)。
演算処理手段16は、試料Tに係る部分の透過画像N5に濃淡で表された中性子減衰量を、上述の作成した変換式に当てはめることによって、試料Tの水分量(水分量の分布)を算出する。
そして、演算処理手段16は、算出された試料Tの水分量を、濃淡画像マップやカラー画像マップ等のピクセルデータ又はボクセルデータ、或いは、二次元又は三次元座標と水分量を示すテーブル等として、出力する(S86)。
Subsequently, the arithmetic processing means 16 performs a process of calculating the moisture content inside the sample T using the above conversion formula (measurement standard) (S85).
The arithmetic processing means 16 applies the neutron attenuation represented by the shading in the transmission image N 5 of the portion related to the sample T to the above-described conversion equation, thereby calculating the moisture content (moisture content distribution) of the sample T. calculate.
Then, the arithmetic processing means 16 uses the calculated moisture content of the sample T as pixel data or voxel data such as a grayscale image map or a color image map, or a table indicating two-dimensional or three-dimensional coordinates and the moisture content. Output (S86).

上記のように、測定対象となる水分量を算出するための基準片6・7と試料Tとに同時に放射線を照射し、同一画像に表れる情報を用いて、計量基準の作成と、該計量基準を用いた測定値の算出とが行われる、つまり、試料に照射される放射線の強度の変動を考慮して、得られた放射線透過画像の補正(画像処理)が行われるので、より高い測定精度を備えることができる。   As described above, radiation is simultaneously applied to the reference pieces 6 and 7 for calculating the amount of moisture to be measured and the sample T, and using the information appearing in the same image, the creation of the measurement reference and the measurement reference The measurement value is calculated using, that is, correction of the obtained radiographic image (image processing) is performed in consideration of fluctuations in the intensity of radiation irradiated to the sample, so that higher measurement accuracy is achieved. Can be provided.

本発明の基準片は、試料の放射線透過測定一般に利用できる。試料は例えばFC自動車等の燃料電池セル等が挙げられる。   The reference piece of the present invention can be generally used for measuring the radiation transmission of a sample. Examples of the sample include fuel battery cells such as FC automobiles.

本発明の実施例1に係る放射線透過測定装置の全体的な構成を示す図。The figure which shows the whole structure of the radiation transmission measuring apparatus which concerns on Example 1 of this invention. 基準片の斜視図。The perspective view of a reference | standard piece. 第一基準片の断面図。Sectional drawing of a 1st reference | standard piece. 第二基準片の断面図。Sectional drawing of a 2nd reference | standard piece. 別形態の基準片の断面図。Sectional drawing of the reference | standard piece of another form. 実施例1に係る放射線透過測定処理の流れ図。3 is a flowchart of a radiation transmission measurement process according to the first embodiment. 定量化処理の流れ図。The flowchart of a quantification process. 計量基準作成処理の流れ図。The flowchart of a measurement reference | standard preparation process. 画像処理の流れを説明する図。The figure explaining the flow of image processing. 基準片位置と透過中性子強度の関係の一例を示す図。The figure which shows an example of the relationship between a reference | standard piece position and transmitted neutron intensity | strength. 変換式の一例を示す図。The figure which shows an example of a conversion type | formula. 実施例2に係る放射線透過測定処理の流れ図。9 is a flowchart of radiation transmission measurement processing according to the second embodiment.

T 試料
6 第一基準片
7 第二基準片
8 収容部
9 水
10 放射線透過測定装置
12 ステージ
13 中性子源
14 中性子検出器
15 撮像手段
16 演算処理手段
18 コリメータ

T sample 6 first reference piece 7 second reference piece 8 container 9 water 10 radiation transmission measuring device 12 stage 13 neutron source 14 neutron detector 15 imaging means 16 arithmetic processing means 18 collimator

Claims (6)

試料への放射線の照射と該試料を透過する放射線の検出とを少なくとも複数回行って、前記試料内部の測定対象物の量の変化を測定する放射線透過測定装置において、In the radiation transmission measuring apparatus for measuring the change in the amount of the measurement object inside the sample by performing irradiation of the sample with radiation and detecting the radiation transmitted through the sample at least several times,
内部に収容部が形成された密閉可能な容器であって、前記収容部が空の第一基準片と、前記収容部が所定量の測定対象物と同一物質で満たされた第二基準片との、一対の基準片と、An airtight container having a housing portion formed therein, wherein the housing portion is an empty first reference piece, and the housing portion is filled with a predetermined amount of the same substance as the measurement object. A pair of reference pieces,
前記一対の基準片と試料とに、同時に放射線を照射する照射手段と、An irradiation means for simultaneously irradiating the pair of reference pieces and the sample with radiation;
前記一対の基準片又は試料を透過した放射線を検出する検出手段と、Detection means for detecting radiation transmitted through the pair of reference pieces or sample;
該検出手段にて検出された放射線の撮像を行って透過放射線画像を得る撮像手段と、An imaging means for obtaining a transmitted radiation image by imaging radiation detected by the detection means;
前記検出手段による検出及び前記撮像手段による撮像を、前記試料内部における測定対象物の量が異なる状態で、少なくとも複数回行って得た一組の透過放射線画像から、第一基準片、第二基準片及び試料の各々につき一組の透過放射線画像を得る画像抽出手段と、From a set of transmitted radiation images obtained by performing the detection by the detection unit and the imaging by the imaging unit at least a plurality of times in a state where the amount of the measurement object in the sample is different, the first reference piece and the second reference piece Image extraction means for obtaining a set of transmitted radiation images for each piece and sample;
前記第一基準片の一組の透過放射線画像に基づいて算出した補正式を用いて、前記第一基準片、第二基準片及び試料の各々についての一組の透過放射線画像における、一方の透過放射線画像を他方の透過放射線画像に基づいて定量化する定量化処理手段と、One transmission in a set of transmission radiation images for each of the first reference piece, the second reference piece and the sample using a correction formula calculated based on the set of transmission radiation images of the first reference piece. Quantification processing means for quantifying the radiographic image based on the other transmitted radiographic image;
前記第一基準片及び第二基準片の各定量化された一組の透過放射線画像から、測定対象物の計量基準を得る計量基準作成手段と、A measurement standard creating means for obtaining a measurement standard of the measurement object from each of the quantified sets of transmission radiation images of the first reference piece and the second reference piece;
前記試料の定量化された一組の透過放射線画像と、前記計量基準とから、前記試料内部の測定対象物の量の変化を得る測定値算出手段とを、A measurement value calculating means for obtaining a change in the amount of the measurement object inside the sample from the set of quantified transmission radiation images of the sample and the measurement standard;
備えることを特徴とする放射線透過測定装置。A radiation transmission measuring apparatus comprising:
前記放射線透過測定装置に、In the radiation transmission measuring device,
前記定量化手段にて定量化された第一基準片、第二基準片及び試料の一組の透過放射線画像の各々について正規化する正規化手段を、Normalizing means for normalizing each of a set of transmitted radiation images of the first reference piece, the second reference piece and the sample quantified by the quantifying means;
さらに備えることを特徴とする、請求項1に記載の放射線透過測定装置。The radiation transmission measuring device according to claim 1, further comprising:
前記基準片は、該基準片からの放射線の放出面が階段状であり、前記収容部の放射線の進行方向の厚みが不連続的に変化する、形状を有することを特徴とする、The reference piece has a shape in which the radiation emission surface from the reference piece has a stepped shape, and the thickness of the accommodating portion in the traveling direction of the radiation changes discontinuously,
請求項1または請求項2に記載の放射線透過測定装置。The radiation transmission measuring apparatus according to claim 1 or 2.
内部に収容部が形成された密閉可能な容器であって、前記収容部が空の第一基準片と、前記収容部が所定量の測定対象物と同一物質で満たされた第二基準片との、一対の基準片と、放射線照射手段と、放射線検出手段と、撮像手段と、画像抽出手段と、定量化処理手段と、計量基準作成手段と、測定値算出手段とを備えた放射線透過測定装置を用いて、An airtight container having a housing portion formed therein, wherein the housing portion is an empty first reference piece, and the housing portion is filled with a predetermined amount of the same substance as the measurement object. Radiation transmission measurement comprising a pair of reference pieces, radiation irradiation means, radiation detection means, imaging means, image extraction means, quantification processing means, measurement reference creation means, and measurement value calculation means Using the device,
前記放射線照射手段にて、前記一対の基準片と試料とに、同時に放射線を照射するステップと、A step of irradiating the pair of reference pieces and the sample simultaneously with the radiation irradiation means; and
前記放射線検出手段にて、前記一対の基準片又は試料を透過した放射線を検出し、前記撮像手段にて、前記検出手段にて検出された放射線を撮像することを、前記試料内部における測定対象物の量が異なる状態で、少なくとも複数回行って一組の透過放射線画像を得るステップと、An object to be measured in the sample is to detect the radiation transmitted through the pair of reference pieces or the sample by the radiation detection unit and to image the radiation detected by the detection unit by the imaging unit. Performing a set of transmitted radiation images at least multiple times with different amounts of
前記画像抽出手段にて、前記一組の透過放射線画像から、第一基準片、第二基準片及び試料の各々につき一組の透過放射線画像を得るステップと、Obtaining a set of transmitted radiation images for each of the first reference piece, the second reference piece and the sample from the set of transmitted radiation images by the image extraction means;
前記定量化処理手段にて、前記第一基準片の一組の透過放射線画像に基づいて算出した補正式を用いて、前記第一基準片、第二基準片及び試料の各々についての一組の透過放射線画像における、一方の透過放射線画像を他方の透過放射線画像に基づいて定量化するステップと、In the quantification processing means, using a correction formula calculated based on a set of transmission radiation images of the first reference piece, a set of each of the first reference piece, the second reference piece, and the sample Quantifying one transmitted radiation image based on the other transmitted radiation image in the transmitted radiation image;
前記計量基準作成手段にて、前記第一基準片及び第二基準片の各定量化された一組の透過放射線画像から、測定対象物の計量基準を得るステップと、Obtaining a measurement reference of a measurement object from a set of transmitted radiation images of each of the first reference piece and the second reference piece by the measurement reference creating means;
前記測定値算出手段にて、前記試料の定量化された一組の透過放射線画像と、前記計量基準とから、前記試料内部の測定対象物の量の変化を得るステップとを、In the measurement value calculation means, obtaining a change in the amount of the measurement object inside the sample from the quantified set of transmission radiation images of the sample and the measurement standard,
含むことを特徴とする放射線透過測定方法。A radiation transmission measurement method comprising:
前記放射線透過測定装置に、正規化手段を備え、The radiation transmission measuring device comprises a normalizing means,
前記定量化手段にて定量化された第一基準片、第二基準片及び試料の一組の透過放射線画像の各々について正規化するステップを、Normalizing each of a set of transmitted radiation images of the first reference piece, the second reference piece and the sample quantified by the quantification means;
さらに含むことを特徴とする、請求項4に記載の放射線透過測定方法。The radiation transmission measuring method according to claim 4, further comprising:
前記基準片は、該基準片からの放射線の放出面が階段状であり、前記収容部の放射線の進行方向の厚みが不連続的に変化する、形状を有することを特徴とする、The reference piece has a shape in which the radiation emission surface from the reference piece has a stepped shape, and the thickness of the accommodating portion in the traveling direction of the radiation changes discontinuously,
請求項4または請求項5に記載の放射線透過測定方法。The radiation transmission measuring method according to claim 4 or 5.
JP2006331041A 2006-12-07 2006-12-07 Radiation transmission measuring apparatus and radiation transmission measuring method Expired - Fee Related JP4894491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331041A JP4894491B2 (en) 2006-12-07 2006-12-07 Radiation transmission measuring apparatus and radiation transmission measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331041A JP4894491B2 (en) 2006-12-07 2006-12-07 Radiation transmission measuring apparatus and radiation transmission measuring method

Publications (2)

Publication Number Publication Date
JP2008145196A JP2008145196A (en) 2008-06-26
JP4894491B2 true JP4894491B2 (en) 2012-03-14

Family

ID=39605549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331041A Expired - Fee Related JP4894491B2 (en) 2006-12-07 2006-12-07 Radiation transmission measuring apparatus and radiation transmission measuring method

Country Status (1)

Country Link
JP (1) JP4894491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306456B2 (en) * 2014-07-10 2018-04-04 国立大学法人北海道大学 Diagnostic device and diagnostic method
CN112903731B (en) * 2019-12-02 2022-09-13 中国科学院物理研究所 Method and device for neutron intensity correlated imaging
CN112945989B (en) * 2019-12-11 2023-05-16 中国科学院大连化学物理研究所 Neutron imaging characterization device of fuel cell and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105442A (en) * 1982-12-07 1984-06-18 工業技術院長 Analysis of blood vessel image
JP2004144652A (en) * 2002-10-25 2004-05-20 Fuji Photo Film Co Ltd Specimen measuring apparatus
JP2005265787A (en) * 2004-03-22 2005-09-29 Toyota Motor Corp Working curve preparation jig

Also Published As

Publication number Publication date
JP2008145196A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
DK1970731T3 (en) Method for calibrating a dual-energy computed tomography system and image reconstruction method
RU2372610C1 (en) Method and device for radiation monitoring liquid objects
JP5486620B2 (en) Bone mineral quantitative analysis method, bone mineral quantitative analysis system, and recording medium
US10521936B2 (en) Device and method for image reconstruction at different X-ray energies, and device and method for X-ray three-dimensional measurement
JP2008268076A (en) Non-destructive discrimination method, and device
Craft et al. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel
JP4894491B2 (en) Radiation transmission measuring apparatus and radiation transmission measuring method
JP2007218845A (en) Transmission x-ray measuring method
AU2011203239B2 (en) Mineral particle material resolving X-ray imaging
RU2011117532A (en) METHOD AND DEVICE FOR MEASURING MOISTURE CONTENT IN BIOLOGICAL MATERIAL
JP5648891B2 (en) Radiation measurement method and radiation measurement apparatus
US10175382B2 (en) Identification of materials
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
KR102001217B1 (en) Method of calibrating an x-ray detector
Koshti Modeling the x-ray process and x-ray flaw size parameter for POD studies
JP6472434B2 (en) X-ray analyzer and computer program
US20080121792A1 (en) Image quality evaluation/calculation method, apparatus and program
CN114594113A (en) Single-source double-ray imaging detection method and device
JP2007232506A (en) Water amount measuring instrument
WO2024005006A1 (en) Thickness measurement method, x-ray analysis device, information processing device, and computer program
JP2008064541A (en) Method and device for measuring radioactivity of radioactive waste
Gu et al. CT number in wood physical properties prediction based on computed tomography technology
CN110108728A (en) Radiation inspecting apparatus and radiological examin methods
Stepanov et al. Application of gamma-ray imager for non-destructive testing
JP2019168360A (en) Inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R151 Written notification of patent or utility model registration

Ref document number: 4894491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees