JP2006088077A - マイクロ化学チップおよびその製造方法 - Google Patents

マイクロ化学チップおよびその製造方法 Download PDF

Info

Publication number
JP2006088077A
JP2006088077A JP2004278633A JP2004278633A JP2006088077A JP 2006088077 A JP2006088077 A JP 2006088077A JP 2004278633 A JP2004278633 A JP 2004278633A JP 2004278633 A JP2004278633 A JP 2004278633A JP 2006088077 A JP2006088077 A JP 2006088077A
Authority
JP
Japan
Prior art keywords
main surface
flow path
insulating member
opening
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004278633A
Other languages
English (en)
Inventor
Itaru Ishii
格 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004278633A priority Critical patent/JP2006088077A/ja
Publication of JP2006088077A publication Critical patent/JP2006088077A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】 低コストで製造でき、不純物の混入が少なく、多種の実装形態を実現できる安定した性能のマイクロ化学チップを提供すること。
【解決手段】 内部に空洞を有する半導体基板1と、空洞から半導体基板1の主面に形成された第1の流路2と、空洞内の微小電子機械機構3と、半導体基板1主面の電極4と、半導体基板1主面に配置された絶縁部材5と、絶縁部材5に接続された金属製の外部接続部材6と、絶縁部材5内部に形成された第2の流路9と、第1の流路2の開口部7と第2の流路9の一方の開口端8との間を気密に取り囲んで接続して第1,第2の流路2,9を連通させる第1の接続材10と、外部接続部材6にが形成されている第3の流路12と、第2の流路9の他方の開口端8と第3の流路12の一方の開口部分との間を気密に取り囲んで接続して第2,第3の流路9,12を連通させる第2の接続材13とを具備する。
【選択図】 図1

Description

本発明は、半導体基板に形成された微小電子機械機構とこれに被処理流体を流す流路とを備えて成るマイクロ化学チップ、およびその製造方法に関する。
近年、化学分析の高精度化、高効率化の背景から、従来の実験室で行なっていた電位の測定、流量の測定、クロマトグラフや電気泳動に必要な試料の注入、排出、評定などを微小なサイズで実行可能にする、所謂マイクロ化学チップが提案されている。
マイクロ化学チップとして従来一般的なものは、流路が形成された半導体やガラス等から成る基板と、流路に被処理流体を流すためのマイクロポンプ等の動力源と、被処理流体に対して各種測定、分析を行なう機能部分とを備えた構成のものである。
マイクロ化学チップのうち、電位等の測定や、試料の移送等の機械的な動き等の機能を1つの半導体基板で実施可能にするものとして、所謂MEMS(Micro Electro Mechanical System:微小電子機械機構)が提案されている。
マイクロ化学チップ用のMEMSとは、例えば、一つの半導体基板の主面に、化学変化に応じて発生する気体や液体の圧力変化などを検出するための加速度計,圧力センサ,アクチュエータ等のセンサ、化学変化に応じて生じる変化を光学的に検出する際、高精度での検出等を目的とする光軸の変更のために使用される微細な鏡面体を可動式に形成したマイクロミラーデバイス、光デバイス等の機能部分にマイクロポンプ等を合わせて組み込んだ構造を有するもの等であり、非常に多岐にわたる構造を有するものである。
このMEMSが形成された半導体基板に、流路が形成されている流路基板等を接続し、流路とMEMSや機能部分が形成された部分とを連通させた構造とすることにより、MEMSが備えるマイクロポンプ等の動力で流路中を被処理流体を流すことが可能で、流路を流れて供給された被処理流体をMEMSが備える機能部分で分析、測定することが可能なマイクロ化学チップが形成される。
上記MEMSは、例えば、電極用やDNA吸着用等の微細な突起、微小反応槽,マイクロミラー,マイクロポンプ等の微細な構造体や可動体等を備えたものである。
流路基板は、シリコン等の半導体やPDMS(ポリジメチルシロキサン)、ガラス等から成る基板の一主面に溝状の流路を形成したり、一主面から他主面にかけて貫通する流路を形成した構造である。
なお、MEMSおよび流路は、外気からの異物の進入を防いで分析、測定等の化学的な処理を高精度に行なわせるために、ガラス板等から成る蓋体で覆われる。蓋体で覆われた後、外部に露出している流路の開口部分が被処理流体の供給口や排出口となり、供給口から被処理流体が供給される。
シリコン,PDMS等から成る基板に開口した供給口に対する被処理流体(生体物質等を含む試料)の供給は、外部から液体ノズルや液体吐出装置等の送液装置を用いて加圧送液し、流路を介してMEMSに被処理流体を流して化学反応、検出等を行わせる。
また、マイクロ化学チップは、一般に、外部接続用の接続パッドが半導体基板の主面等に、MEMSに電気的に接続されて形成されており、この接続パッドをプリント回路基板等の外部電気回路基板の電気回路に電気的に接続しておくことにより、分析、測定等の化学処理の結果に応じてMEMSから発信される電気信号が接続パッドから外部の電気回路に送信される。
このMEMSを用いたマイクロ化学チップは、化学反応、分析のシステムを小型化し、シリコン基板やPDMS基板上に形成した流路基板を用いたもので、マイクロ流路,マイクロポンプ,マイクロリアクタ等からなる。流路基板の化学反応部をマイクロ化し単位体積あたりの表面積を増大させることで、反応時間の大幅な削減を可能にしている。また、流量の精密な制御が可能なため高精度検出を行うことができる。
なお、これら従来のマイクロ化学チップにおいて、MEMSは、例えばシリコン等の半導体基板の主面に、焼付け、エッチング等の所謂半導体マイクロマシニング技術を用いて電極用やDNA吸着用等の微細な突起、微小反応槽,マイクロミラー,マイクロポンプ等の微細な構造体や可動体を形成することにより製作される。
また、流路部分は、シリコンやPDMS,ガラス等から成る流路基板の主面に、フォトリソグラフィーを応用した、所謂鋳型加工やスタンプ加工等の加工を施して溝状、孔状等の構造を形成することにより製作される。
特開2001−214241号公報(第4−5頁、第1図) 特開2001−108619号公報(第4−5頁、第1図)
しかしながら、上記従来のマイクロ化学チップにおいては、検出などに用いられる被処理流体は外部の液体ノズルや液体吐出装置などの装置でマイクロ化学システムに供給されており、液体である被処理流体は一度外気に曝されることが一般的であった。
このため、マイクロ化学チップの外部から被処理流体を流路に供給する際に、外部からの被処理流体中への雑菌やゴミなどの異物の混入(所謂コンタミネーション)の問題があった。
また、大型の液体供給装置を使用するため、被処理流体の流量の微小量化に制限があり、被処理流体の流量を小さく抑えることによる効率的な処理、処理速度の向上等に制約を受けるという問題があった。
また、大型の液体供給装置を別途用意する必要があるので、マイクロ化学システム装置を低コストで作製しても液体供給装置に多額のコストがかかるという問題があった。
また、シリコンやPDMSは一般的に取り扱いが難しく、例えば外部のプリント板やその他の基板や装置内部への実装を行うときに電気的接続と流体接続を行う際に簡便な方法が少ないなどの問題があった。この場合、例えば、流路の開口部分が流路基板の主面に位置し、外部接続用の接続パッドが半導体基板の側面等に位置しているような構造、つまり流路の外部接続用の部分と電気的な接続を行なう部分とが異なる平面に位置する構造等も多く、例えばチップコンデンサー等の電子部品をマイクロ化学チップに搭載する場合、一般的な表面実装の形態での接続が非常に難しい。
また、流路封止を行う際に、半導体基板等のMEMSが形成されている基板と流路基板とを一つずつ、流路とMEMSの機能部分等とを位置合わせしながら接続しなければならず、生産性が悪い、コストが高くなるなどの問題があった。
本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、低コストで製造でき、不純物の混入が少なく、多種の実装形態を実現できる安定した性能のマイクロ化学チップおよびその製造方法を提供することである。
本発明のマイクロ化学チップは、内部に空洞を有する半導体基板と、前記空洞から前記半導体基板の主面にかけて形成されるとともに前記半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記半導体基板の主面に形成されて前記微小電子機械機構に電気的に接続された電極と、前記半導体基板の主面に一主面が対向するようにして配置された絶縁部材と、前記絶縁部材の他主面に接続された金属製の外部接続部材と、前記絶縁部材の内部に形成された、前記絶縁部材の一主面に前記開口部に対向するように一方の開口端が形成されるとともに前記絶縁部材の他主面または側面に他方の開口端が形成されている第2の流路と、前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を気密に取り囲んで接続することによって前記第1および第2の流路を連通させる第1の接続材と、前記外部接続部材の一主面に前記開口部に対向するように一方の開口部分が形成されるとともに前記外部接続部材の他主面または側面に他方の開口部分が形成されている第3の流路と、前記第2の流路の前記他方の開口端と前記第3の流路の前記一方の開口部分との間を気密に取り囲んで接続することによって前記第2および第3の流路を連通させる第2の接続材とを具備していることを特徴とする。
本発明のマイクロ化学チップは好ましくは、前記第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする。
また、本発明のマイクロ化学チップは好ましくは、前記第1および第2の接続材は、横断面形状が円環状であることを特徴とする。
また、本発明のマイクロ化学チップは好ましくは、前記微小電子機械機構は、空洞内に第1の流路から湧出した被処理流体を化学的に分析するためのものであることを特徴とする。
本発明のマイクロ化学チップの製造方法は、半導体母基板に、その内部に形成された空洞と、該空洞から主面にかけて形成されるとともに該主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記主面に形成されて前記微小電子機械機構に電気的に接続された電極とを一組とした、マイクロ化学チップとなる微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
一主面に一方の開口端を有し、他主面または側面に他方の開口端が形成されている第2の流路とを一組とした絶縁部材を準備する工程と、
一主面に前記開口端に対向するように一方の開口部分が形成されるとともに、他主面または側面に他方の開口部分が形成されている第3の流路を有する金属製の外部接続部材を準備する工程と、
前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を第1の接続材によって気密に取り囲んで接続するとともに、前記第2の流路の前記他方の開口端と前記第3の流路の前記一方の開口部分との間を第2の接続材によって気密に取り囲んで接続することによって、前記第1の流路、前記第2の流路および前記第3の流路を連通させる工程と、
前記多数個取り微小電子機械機構基板における前記絶縁部材および前記外部接続部材がそれぞれ接続された微小電子機械機構領域を個々に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とする。
本発明のマイクロ化学チップによれば、内部に空洞を有する半導体基板と、空洞から半導体基板の主面にかけて形成されるとともに半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、空洞内に形成された微小電子機械機構と、半導体基板の主面に形成されて微小電子機械機構に電気的に接続された電極と、半導体基板の主面に一主面が対向するようにして配置された絶縁部材と、絶縁部材の他主面に接続された金属製の外部接続部材と、絶縁部材の内部に形成された、絶縁部材の一主面に開口部に対向するように一方の開口端が形成されるとともに絶縁部材の他主面または側面に他方の開口端が形成されている第2の流路と、第1の流路の開口部と第2の流路の一方の開口端との間を気密に取り囲んで接続することによって第1および第2の流路を連通させる第1の接続材と、外部接続部材の一主面に開口部に対向するように一方の開口部分が形成されるとともに外部接続部材の他主面または側面に他方の開口部分が形成されている第3の流路と、第2の流路の他方の開口端と第3の流路の一方の開口部分との間を気密に取り囲んで接続することにより、絶縁基板と外部との被処理流体のやりとりが容易となる。その結果、被処理流体の供給から化学反応まで一貫して密閉状態を保つことができるので、外部から異物が混入することを防ぎ、所謂コンタミネーション等の問題の発生を効果的に防止することができる。
また、マイクロ化学チップが具備するMEMSへの送液機能により、別途大型の液体供給装置を使用することなく、流路に被処理流体を流すことができ、微細な流路に見合った微量の被処理流体を準備すればよく、所望の化学処理に要するコストを低く抑えることもできる。
また、本発明のマイクロ化学チップは、被処理流体を流すための第2の流路の開口端は、機械的強度等の特性が良好で、取り扱いが容易な絶縁部材に形成されているため、金属製の外部接続材を外部へと接続する際にかかる応力や変形が直接半導体基板とMEMSにかからず、取り扱いがより簡便になる。
また、第1および第2の接続材によって、絶縁部材を外部接続材と半導体基板との中間に位置させて作製しているので、接続の際に発生する静電気などを効果的に遮断することができ、MEMSの駆動および化学反応を阻害することなくマイクロ化学チップを使用することができる。
また、外部から被処理流体を供給するに際して液体供給用装置を別途用いて流路に被処理流体を供給する場合、外部環境をクリーンにする必要が無く、供給される被処理流体の量をより微小量化でき、一般的に高価な化学検出用の被処理流体を少量で効率よく使用することができる。
本発明において好ましくは、第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることから、化学反応を効率的に行なわせることのできる大きさでかつ加工性を保てる小ささなので、絶縁部材への流路の形成がより簡便になり、被処理流体の流通量の制御に有効である。
また、本発明において好ましくは、第1および第2の接続材は、横断面形状が円環状であることから、接続の際に発生する熱応力や歪を効果的に防止することができかつ、気密性の確保を容易に行うことができる。
また、本発明において好ましくは、微小電子機械機構は、第1の流路の一つの開口端から絶縁基板および半導体基板に挟まれた内部空間に湧出した被処理流体を化学的に分析するためのものであることから、絶縁基板と半導体基板とで挟まれた狭い空間内の少量の被処理流体を効率よく化学分析することができるので、化学分析を効率的に少量の被処理流体で行うことができる。
本発明のマイクロ化学チップの製造方法によれば、上記各工程を具備することから、縦横に配列形成された多数個のマイクロ化学チップについて、それぞれの第1の流路に、絶縁部材および金属製の外部接続材の接合して第2および第3の流路を連通させることにより、互いに接合された微小電子機械機構基板および多数個取り用マイクロ化学チップ基板から成る多数個取りのマイクロ化学チップを、容易かつ確実に製造することができる。
また、多数個取り微小電子機械機構基板における絶縁部材および外部接続部材がそれぞれ接続された微小電子機械機構領域を個々に分割して個々のマイクロ化学チップを得ることにより、微小空間内に被処理流体を供給、排出するための流路を備えて成る個々のマイクロ化学チップを多数個同時に製造することができる。
この分割の際、電子機械機構領域の各微小電子機械機構は多数個取り用マイクロ化学チップ基板によりそれぞれ封止されているので、ダイシング加工等による分割で発生するシリコン等の半導体基板の切削粉が微小電子機械機構に付着するようなことはなく、分割後のマイクロ化学チップにおいて微小電子機械機構を確実に作動させることができる。
本発明のマイクロ化学チップおよびその製造方法について以下に詳細に説明する。図1は本発明のマイクロ化学チップの実施の形態の一例を示す断面図である。図1において、1は半導体基板、2は第1の流路、3は微小電子機械機構(MEMS)、4は電極、5は絶縁部材、6は外部接続部材、7は開口部、8は開口端、9は第2の流路、10は第1の接続材、11は開口部分、12は第3の流路、13は第2の接続材、14はマイクロ化学チップである。
半導体基板1と絶縁部材5とは第1の接続材10を介して接合され、絶縁部材5と外部接続材6は第2の接続材を介して接合されている。半導体基板1の内部空間内に微小電子機械機構3が第1の流路2を除いて外部と遮断されて収納されている。
第1の流路2、第2の流路9および第3の流路12を通って内部空間内に供給される被処理流体が微小電子機械機構3で処理され、処理に応じて生じる電気信号が電極4から外部に伝送され、処理の結果がわかる仕組みになっている。
本発明における微小電子機械機構3は、例えばバイオセンサー,DNAチップ,マイクロリアクタ,プリントヘッドなどの流体MEMSデバイス、化学センサ,ガスセンサ等の各種センサなどの機能を有するものであり、半導体微細加工技術を基本とした、所謂マイクロマシニングで作る部品であり、1素子あたり10μm〜数100μm程度の寸法を有する。
半導体基板1は、シリコン,ポリシリコン等の半導体材料を板状に加工して成り、一主面の中央部に微小電子機械機構3が形成されている。微小電子機械機構3は、シリコン,ポリシリコン等から成る半導体基板1の一主面に対してフォトリソグラフィー技術やレーザ加工などの所謂マスクレスエッチング技術、フッ酸エッチング,ドライエッチングなどのエッチング技術を用いて所望の構造を形成することにより作製される。
微小電子機械機構3は、例えば、化学処理用のものであれば、その用途に応じてエッチング加工で所定の構造に成形した後、スピンコートやディップコートなどのコーティング技術を用いて表面状態を変化させ薬品の濡れ性や化学反応性などを制御して用いられ、化学分析やDNAの同定、クロマトグラフィーなどの各種分析などを行う。
また、半導体基板1の一主面の外周部には、微小電子機械機構3と電気的に接続された電極4が形成されている。この電極4は、微小電子機械機構3で行なわれた化学処理等の処理の結果に応じて発信される電気信号を半導体基板1の外部に接続し伝える機能をなし、アルミニウムや金等の金属材料等の導電性材料で形成されている。
絶縁部材5は、半導体基板1と外部接続部材6の間の中間材として機能するとともに、第1の接続材10および第2の接続材13の形成部材としても機能する。この絶縁部材5は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス焼結体等のセラミックス材料、ポリイミド,ガラスエポキシ樹脂等の樹脂材料、セラミックスやガラス等の無機材料粉末をエポキシ樹脂等の樹脂で結合して成る複合材等により形成される。
絶縁部材5は、例えば酸化アルミニウム質焼結体から成る場合、酸化アルミニウム,ガラス粉末等の原料粉末,樹脂バインダー,溶剤等を混合して成るガラスセラミックスラリーをシート状に成形して成るガラスセラミックグリーンシート(以下、グリーンシートともいう)を作製するとともにその複数枚を積層し、焼成することにより形成される。なお、絶縁部材5は、酸化アルミニウム質焼結体で形成するものに限らず、用途や気密封止するマイクロ化学チップ14の特性等に応じて適したものを選択することが好ましい。
例えば、絶縁部材5は、第1の接続材10を介して半導体基板1と機械的に接合されるので、半導体基板1との接合の信頼性、つまり絶縁部材5と半導体基板1との間に形成される内部空間の外部に対する遮蔽性や、マイクロ化学チップとして長期間の使用に耐える長期信頼性を高くするためには、ムライト質焼結体、または例えばガラス成分の種類や添加量を調整することにより熱膨張係数を半導体基板1に近似させるようにした酸化アルミニウム−ホウ珪酸ガラス系等のガラスセラミックス焼結体等のような半導体基板1との熱膨張係数の差が小さい材料で形成することが好ましい。
また、絶縁部材5は、内部に導体層を作製し、そこに伝送される電気信号の遅延を防止する場合、ポリイミド,ガラスエポキシ樹脂等の樹脂材料、セラミックスやガラス等の無機粉末をエポキシ樹脂等の有機樹脂で結合して成る複合材、または酸化アルミニウム−ホウ珪酸ガラス系や酸化リチウム系等のガラスセラミックス焼結体等のような比誘電率の小さい材料で形成することが好ましい。
また、絶縁部材5は、被処理流体に対する保温性を高めて、微小電子機械機構3で施される処理、例えば化学反応等の処理の安定性を高める上では、エポキシ樹脂やポリイミド樹脂等の熱伝導率の低い材料で形成することが好ましい
上記のように、本発明のマイクロ化学チップは、用途等に応じて種々の材料を選択することが可能で、機械的強度等の特性が良好であるとともに取り扱いが容易な絶縁部材5を用いることができ、この絶縁部材5に、被処理流体を流すための第2の流路9の開口端8がともに形成されているため、取り扱いが容易である。
外部接続材6は、Fe−Ni−Co合金,Fe−Ni合金等の金属材料、またはそれらに金メッキを施した耐薬品性を増したものなどが用いられる。
第1の接続材10および第2の接続材13は、錫−銀合金半田,錫−銀−銅合金半田等の半田、金−錫ろう材等の低融点ろう材、銀−ゲルマニウム系等の高融点ろう材、銀,銅等の導電性粉末を樹脂で結合して成る導電性樹脂接着剤、SiO等を主成分とするガラスやパイレック(登録商標)ガラス、ナトリウム系ガラスなどにより形成されている。
また、第1および第2の接続材10,13の溶融温度が同じ場合、半導体基板1、絶縁部材5および外部接続部材6を同時に1工程で作製することができ、生産性の高いマイクロ化学チップ14の作製が可能となる。
また、半導体基板1、絶縁部材5および外部接続材6は、それぞれ第1の流路2、第2の流路9および第3の流路12が形成されており、半導体基板1と絶縁部材5が第1の接続材10で接合されており、絶縁部材5と外部接続部材6が第2の接続材13で接合されてそれぞれの流路が連通されている。連通された第1、第2および第3の流路2,9,12を通り、被処理流体が微小電子機械機構3が収納されている内部空間に供給される。これにより、化学分析を行なう試料等の被処理流体を流し、電位測定、DNAの検出,同定、クロマトグフィー、光化学反応等の化学処理等の処理の機能を有するマイクロ化学チップ14が形成される。
本発明のマイクロ化学チップ14によれば、上記の構成としたことから、主として処理等の機能を有する半導体基板1側と、被処理流体の通り道および外部接続の機能を有する外部接続部材6側との機械的な接続、接合を容易に行なうことができる。
また、絶縁部材5を中間材として、半導体基板1および外部接続材6の中間に形成することで、実装信頼性を効果的に向上することができるので、マイクロ化学チップ14の生産性を優れたものとすることができる。この場合、例えば、半導体基板1、絶縁部材5および外部接続部材6をそれぞれ予め多数個縦横に配列しておき、これらを互いに一括して接続、接合し、マイクロ化学チップ14を多数個同時に気密封止することができ、生産性を極めて優れたものとすることができる。
第2の流路9は、グリーンシート上にプレス金型,NCパンチングやレーザ加工を用いて窪みを作製し、その後グリーンシートを積層することによって作製される。また、第2の流路9はグリーンシートの状態での断面をSEMや金属顕微鏡を用いて観察するとき、断面が矩形状に安定して作製できることを評価条件とすると、流通方向に垂直な断面における幅が0.05乃至0.5mmであることが好ましい。0.05mmよりも小さくなると、加工が困難になり、生産性の低下やコストの上昇等を招くおそれがある。また、0.5mmよりも大きくなると、第2の流路9の断面積が大きくなり化学反応の効率化に支障をきたす。そのため、微量の被処理流体で高精度の化学分析を行なうマイクロ化学チップ14としての機能が低下するおそれがある。
ここで、第2の流路9について、絶縁基板1を厚さが0.5mmの板状の酸化アルミニウム質焼結体で形成し、一方主面から他方主面にかけて断面が円形状の第2の流路9を形成したときの、加工性や化学反応性を試験した具体例を以下に示す。
グリーンシートは酸化アルミニウムと酸化ケイ素を主成分とする原料粉末を有機溶剤、樹脂バインダーとともにシート状に成形して作製し、第2の流路9はNCパンチング加工により形成した。加工性の判断基準は、グリーンシートに断面が円形状の貫通穴が作製できるかの外観検査で判断しており、マイクロスコープを用いた。貫通穴がグリーンシートの上下面間にわたり貫通しているか否か検査するとともに、貫通穴の内面の軸方向からの傾斜角度(テーパー角)が、貫通穴の縦断面において、内面がグリーンシートの上下面に対して完全に垂直である場合(テーパー角=0°)の仮想線と、実際の内面の線との間に形成される三角形状の部分の幅(三角形の底辺の長さ)と深さ(仮想線の長さ)との比率(幅:深さ)が1:3以下を○とした。
また、化学反応性は、Siの半導体基板1に作製されたMEMS3において化学反応を行う際に、必要最小な送液量に対し実際にMEMS3に供給される被処理流体量が倍以下になる場合を○、実際にMEMS3に供給される被処理流体量が倍以上になる場合を△とした。表1に上記の加工性、化学反応性の結果を示す。
Figure 2006088077
表1より、第2の流路9の流通方向に垂直な断面における幅が0.05mm未満では、加工性に不具合を生じやすくなる傾向があり、0.5mmを超えると、化学反応性に不具合が生じる傾向が見られた。
また、本発明において、微小電子機械機構3は、空洞内に第1の流路2から湧出した被処理流体を化学的に分析するためのものであることが好ましい。これにより、半導体基板1、絶縁部材5および外部接続部材6とで挟まれた狭い内部空間内の少量の被処理流体を効率よく化学分析することができる。化学的分析をする微小電子機械機構3としては、例えば、多数のピン状の突起体の露出表面に予めそれぞれ異なるDNAの標準試料を固定しておき、突起体により被処理流体中のDNAを吸着させることにより、被処理流体中のDNAの同定を行なう、所謂DNAチップの機能をなすもの、分子を捕捉する突起状の吸着体を被処理流体の流れる方向に沿って多数個配列しておき、被処理流体中の分子を吸着体に順次吸着させるクロマトグラフィ分析の機能を有するものなどが挙げられる。
次に、本発明のマイクロ化学チップ14の製造方法について図2(a)〜(d)に基づいて説明する。図2は本発明のマイクロ化学チップの製造方法の実施の形態の一例をそれぞれ工程順に示した断面図であり、図2において図1と同じ部位には同じ符号を付している。
まず、図2(a)に示すように、半導体母基板15の一主面に、微小電子機械機構3およびそれに電気的に接続された電極4が形成されて成る微小電子機械機構領域16を多数個縦横に配列形成した多数個取り微小電子機械機構基板17を準備する。
半導体母基板15は、例えば単結晶や多結晶等のシリコン基板から成る。このシリコン基板の表面に酸化シリコン層を形成する。その中に微小な振動体等の微小電子機械機構3を形成し、円形状パターン等の導体から成る電極4が形成された微小電子機械機構領域16を主面に多数個配列形成することにより、多数個取り微小電子機械機構基板17が形成される。この例では、微小電子機械機構3と電極4とは、それぞれ半導体母基板15の主面に形成された微細配線(図示せず)を介して電気的に接続されている。
次に、図2(b)に示すように、その一主面に一方の開口端8を有し、他主面または側面に他方の開口端が形成されている第2の流路9とを一組とした絶縁部材5を準備する。
絶縁部材5は、例えば、それが酸化アルミニウム質焼結体から成り、酸化アルミニウム、酸化珪素、酸化カルシウム等の原料粉末を、樹脂バインダ、有機溶剤とともに混練してスラリーを作製し、このスラリーをドクターブレード法やリップコータ法等によりシート状に成形して複数のグリーンシートを形成し、このグリーンシートの表面および必要に応じてグリーンシートに予め形成しておいた貫通孔に、タングステンの導体ペーストを印刷塗布して充填し、その後これらのグリーンシートを積層して焼成することにより形成することができる。
第2の流路9は、例えば、絶縁部材5が酸化アルミニウム質焼結体から成る場合、絶縁部材5となるグリーンシートにプレス金型やNCパンチング、レーザ加工等の穴あけ加工、打抜き加工、切削加工等の機械的加工を施して、グリーンシートに開口部や貫通孔、溝等を形成しておくことにより形成される。例えば、第1の流路9が、図2(b)に示すように絶縁部材5の一方主面から他方主面にかけて貫通するような貫通孔から成る場合、各グリーンシートにNCパンチング加工で貫通孔を形成し、この貫通孔が最上層から最下層にかけて連通するようにしてグリーンシートを積層することにより形成される。
なお、第1の流路9は、全長にわたって貫通孔である必要はなく、絶縁部材5の厚み方向の中央部等から各マイクロ化学チップ14の側面の方向に横溝状に形成された形態等でもよい。この場合、グリーンシートの所定部位に、レーザ加工等で細長い溝状の開口部を形成し、この開口部の上下に他のグリーンシートを積層することにより、絶縁部材5の内部に溝状の第1の流路9を形成することができる。
外部接続部材6は、例えば、Fe−Ni−Co合金,Fe−Ni合金等の金属材料からなる場合、パイプ状の金属材料を所望の長さに切り出し、熱を加えながらの引き伸ばし加工を行なったり、切削加工をしてバルク状の金属を外部接続部材6の形状に加工していく。また、耐薬品性が必要となる使用形態においては、外部接続部材6の形状とした後に、表面にNiメッキやAuメッキを施して外部接続部材6を作製する。
第1の接続材10および第2の接続材13は、錫−銀合金半田,錫−銀−ビスマス合金半田,錫−銅−ビスマス合金半田,錫−鉛合金半田等の半田、銀,銅,金,白金,パラジウム等の金属、このような金属を樹脂等の粉末コア材の表面にめっき等の手段で被着した導電性フィラー粉末をエポキシ樹脂,アクリル樹脂等の樹脂で結合して成る導電性樹脂接着剤等の材料を用いることができる。また、第1の接続材10および第2の接続材13は導電性を有するものでなくてもよい。例えば、エポキシ樹脂,アクリル樹脂等の樹脂、または樹脂にガラス,シリカ等の無機粉末を添加したものでもよい。第1の接続材10および第2の接続材13は、例えば、ともに錫−銀合金半田等の半田から成る場合、この半田を絶縁部材5上に位置決めして載置し、加熱、溶融、接合させることにより形成される。
次に、図2(c)に示すように、多数個取り微小電子機械機構基板17の微小電子機械機構基板領域16を、絶縁部材5に第1の接続材10を介してそれぞれ接続するとともに、絶縁部材5を外部接続部材6に第2の接続材13を介して接続する。この工程において、多数個取り微小電子機械機構基板17、絶縁部材5および外部接続部材6とが機械的に接続され、マイクロ化学チップ14毎に形成される内部空間内に微小電子機械機構3が収納された多数のマイクロ化学チップ14が一括して、縦横に配列された状態で形成される。
このように、半導体母基板15と絶縁部材5および外部接続部材6との間の機械的な接合を確実に強固なものとし、1度の工程で第1の接続材10および第2の接続材13による接合を行なうときは、第1の接続材10および第2の接続材13の溶融温度が同じものとしておく。
ここで、半導体母基板15と絶縁部材5および外部接続部材6との接合は、例えば、第1の接続材10および第2の接続材13が錫−銀合金半田から成る場合、半導体母機板15と絶縁部材5および外部接続部材6を位置合わせして載せ、これらを約250〜300℃程度の温度のリフロー炉中で熱処理すること等により行なわれる。
また、各微小電子機械機構領域16の開口部の半導体母基板15の一主面に対する第1の接合材10による接合は、例えば、第1の接合材10を半導体母基板15の一主面に押し当てておき、リフロー炉中で熱処理することにより行なうことができる。
このように、本発明のマイクロ化学チップ14の製造方法によれば、半導体母基板15(半導体基板1)と絶縁部材5との接合とを同時に、しかも多数個配列した状態で行なうことができるため、数時間程度を要する半田(ろう)付け等の接合の工程を1回で済ませることができ、また同時に多数個のマイクロ化学チップ14を配列させた状態で作製することができるので、マイクロ化学チップ14の生産性を非常に高めることができる。
そして、図2(d)に示すように、互いに接合された微小電子機械機構領域基板17と絶縁部材5および外部接続部材6を、微小電子機械機構領域16およびマイクロ化学チップ領域18毎に分割して、半導体基板1に絶縁部材5および外部接続部材6が接合されて成る個々のマイクロ化学チップ14を得る。この場合、半導体母基板15の切断は、この接合体に対してダイシング加工等の切断加工を施すことにより行なうことができる。
本発明のマイクロ化学チップ14の製造方法においては、ダイシング加工等の切断加工の際に、各微小電子機械機構3は半導体基板1と絶縁部材5および外部接続部材6とにより形成される内部空間に収納されているので、半導体基板1の切断に伴って発生するシリコン等の切削粉等が微小電子機械機構3に付着することは効果的に防止され、完成したマイクロ化学チップ14において、微小電子機械機構3を確実に正常に作動させることができる。
なお、この場合、連通された第1、第2および第3の流路2,9,12を経て微小電子機械機構3が収納されている内部空間に切削粉等が侵入する可能性があるが、第3の流路12の開口面積を0.3mm以下と小さくすることにより、内部空間に切削粉等が侵入する可能性を実用上支障の無い程度に抑制することができる。また、切削時に併用される洗浄用の水の流速を速くしたり、流れる方向を第3の流路12の開口部分に対して直角方向にするなどの対応を行なうことで、より確実に微小電子機械機構3を正常に作動させることができる。
このように、本発明のマイクロ化学チップ14の製造方法によれば、微小電子機械機構3が収納される内部空間の形成工程と、内部空間内に被処理流体を湧出させる連通された第1、第2および第3の流路2,9,12を開口させる工程とを一つの工程で行なうことができるので、マイクロ化学チップ14の生産性を非常に高くすることができる。
また、上記のように製造されたマイクロ化学チップ14は、すでに気密封止されているので、これを別途パッケージ内に実装するような工程を追加する必要はなく、電極4の導出された部分を外部の電気回路に半田ボール等の外部端子を介して接続するだけで、外部電気回路基板に実装して使用することができる。
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨の範囲内であれば種々の変形は可能である。例えば、上述の実施の形態では、一つのマイクロ化学チップ14内に一つの微小電子機械機構3を気密封止したが、一つのマイクロ化学チップ14内に複数の微小電子機械機構3を気密封止してもよい。また、図1の例では、電極4は絶縁基板1の他方主面側に導出されているが、一部を側面に導出したり複数の部位に導出してもよい。また、この導出された部分の外部電気回路への電気的な接続は錫−銀合金半田等の半田を介して行なうものに限らず、リード端子、ピン端子、導電性接着剤や導電性クリップ等を介して行なってもよい。
本発明の電子部品封止用基板について実施の形態の一例を示す断面図である。 (a)〜(d)は、本発明のマイクロ化学チップの製造方法について実施の形態の一例をそれぞれ工程順に示した断面図である。
符号の説明
1:半導体基板
2:第1の流路
3:微小電子機械機構
4:電極
5:絶縁部材
6:外部接続部材
7:開口部
8:開口端
9:第2の流路
10:第1の接続材
11:開口部分
12:第3の流路
13:第2の接続材
14:マイクロ化学チップ
15:半導体母基板
16:微小電子機械機構領域
17:多数個取り微小電子機械機構基板
18:マイクロ化学チップ領域

Claims (5)

  1. 内部に空洞を有する半導体基板と、前記空洞から前記半導体基板の主面にかけて形成されるとともに前記半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記半導体基板の主面に形成されて前記微小電子機械機構に電気的に接続された電極と、前記半導体基板の主面に一主面が対向するようにして配置された絶縁部材と、前記絶縁部材の他主面に接続された金属製の外部接続部材と、前記絶縁部材の内部に形成された、前記絶縁部材の一主面に前記開口部に対向するように一方の開口端が形成されるとともに前記絶縁部材の他主面または側面に他方の開口端が形成されている第2の流路と、前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を気密に取り囲んで接続することによって前記第1および第2の流路を連通させる第1の接続材と、前記外部接続部材の一主面に前記開口部に対向するように一方の開口部分が形成されるとともに前記外部接続部材の他主面または側面に他方の開口部分が形成されている第3の流路と、前記第2の流路の前記他方の開口端と前記第3の流路の前記一方の開口部分との間を気密に取り囲んで接続することによって前記第2および第3の流路を連通させる第2の接続材とを具備していることを特徴とするマイクロ化学チップ。
  2. 前記第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする請求項1記載のマイクロ化学チップ。
  3. 前記第1および第2の接続材は、横断面形状が円環状であることを特徴とする請求項1または請求項2記載のマイクロ化学チップ。
  4. 前記微小電子機械機構は、前記空洞内に前記第1の流路から湧出した前記被処理流体を化学的に分析するためのものであることを特徴とする請求項1乃至請求項3のいずれかに記載のマイクロ化学チップ。
  5. 半導体母基板に、その内部に形成された空洞と、該空洞から主面にかけて形成されるとともに該主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記主面に形成されて前記微小電子機械機構に電気的に接続された電極とを一組とした、マイクロ化学チップとなる微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
    一主面に一方の開口端を有し、他主面または側面に他方の開口端が形成されている第2の流路とを一組とした絶縁部材を準備する工程と、
    一主面に前記開口端に対向するように一方の開口部分が形成されるとともに、他主面または側面に他方の開口部分が形成されている第3の流路を有する金属製の外部接続部材を準備する工程と、
    前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を第1の接続材によって気密に取り囲んで接続するとともに、前記第2の流路の前記他方の開口端と前記第3の流路の前記一方の開口部分との間を第2の接続材によって気密に取り囲んで接続することによって、前記第1の流路、前記第2の流路および前記第3の流路を連通させる工程と、
    前記多数個取り微小電子機械機構基板における前記絶縁部材および前記外部接続部材がそれぞれ接続された微小電子機械機構領域を個々に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とするマイクロ化学チップの製造方法。
JP2004278633A 2004-09-27 2004-09-27 マイクロ化学チップおよびその製造方法 Pending JP2006088077A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278633A JP2006088077A (ja) 2004-09-27 2004-09-27 マイクロ化学チップおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278633A JP2006088077A (ja) 2004-09-27 2004-09-27 マイクロ化学チップおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2006088077A true JP2006088077A (ja) 2006-04-06

Family

ID=36229553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278633A Pending JP2006088077A (ja) 2004-09-27 2004-09-27 マイクロ化学チップおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2006088077A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023418A (ja) * 2006-07-18 2008-02-07 Fuji Xerox Co Ltd マイクロ流路デバイス
US8349273B2 (en) 2007-10-12 2013-01-08 Fuji Xerox Co., Ltd. Microreactor device
US8585278B2 (en) 2009-03-16 2013-11-19 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
US8721992B2 (en) 2007-03-27 2014-05-13 Fuji Xerox Co., Ltd Micro fluidic device
CN111492471A (zh) * 2017-12-20 2020-08-04 株式会社村田制作所 半导体装置及其制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023418A (ja) * 2006-07-18 2008-02-07 Fuji Xerox Co Ltd マイクロ流路デバイス
US8418719B2 (en) 2006-07-18 2013-04-16 Fuji Xerox Co., Ltd. Microchannel device
US8721992B2 (en) 2007-03-27 2014-05-13 Fuji Xerox Co., Ltd Micro fluidic device
US8349273B2 (en) 2007-10-12 2013-01-08 Fuji Xerox Co., Ltd. Microreactor device
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
US8585278B2 (en) 2009-03-16 2013-11-19 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
CN111492471A (zh) * 2017-12-20 2020-08-04 株式会社村田制作所 半导体装置及其制造方法
CN111492471B (zh) * 2017-12-20 2023-08-01 株式会社村田制作所 半导体装置及其制造方法

Similar Documents

Publication Publication Date Title
US6821819B1 (en) Method of packaging and assembling micro-fluidic device
US6443179B1 (en) Packaging of electro-microfluidic devices
JP3599329B2 (ja) バイオチップ
US6365378B1 (en) Method for producing DNA chip
US9625336B2 (en) Pressure sensor and method for producing a pressure sensor
JP4683872B2 (ja) マイクロ化学チップおよびその製造方法
US8282358B2 (en) Fluidic device
EP1716925B1 (en) Dispenser and method for producing DNA chip
JP2004523124A (ja) ガラス系材料からなるフラット基板を構造化する方法
CN101875481A (zh) 一种基于低温共烧陶瓷的mems封装方法
JP2006090910A (ja) マイクロ化学チップおよびその製造方法
US8414785B2 (en) Methods for fabrication of microfluidic systems on printed circuit boards
JP2006088077A (ja) マイクロ化学チップおよびその製造方法
TWI355487B (en) Ceramic micro well plate and forming method thereo
JP2008051788A (ja) 流体マニフォールド
JP5473235B2 (ja) 微小構造体装置および微小構造体装置の製造方法
NL1031465C2 (nl) Werkwijze voor het opbouwen van een inrichting met fluïdische en elektrische functies.
JP2006061823A (ja) マイクロ化学チップおよびその製造方法
Bergkvist et al. Miniaturized flowthrough microdispenser with piezoceramic tripod actuation
US11433393B2 (en) Microfluidic flow cell comprising an integrated electrode, and method for manufacturing same
TW202206814A (zh) 生物晶片結構及其製備方法
US20140034824A1 (en) Method for producing a converter module and corresponding converter module
JP2009109349A (ja) フローセンサ
JP4095005B2 (ja) Dnaチップの製造方法
CN114054104A (zh) 生物芯片结构及其制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Effective date: 20090722

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A02