JP2006061823A - マイクロ化学チップおよびその製造方法 - Google Patents

マイクロ化学チップおよびその製造方法 Download PDF

Info

Publication number
JP2006061823A
JP2006061823A JP2004247194A JP2004247194A JP2006061823A JP 2006061823 A JP2006061823 A JP 2006061823A JP 2004247194 A JP2004247194 A JP 2004247194A JP 2004247194 A JP2004247194 A JP 2004247194A JP 2006061823 A JP2006061823 A JP 2006061823A
Authority
JP
Japan
Prior art keywords
substrate
main surface
flow path
microchemical chip
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004247194A
Other languages
English (en)
Inventor
Katsuyuki Yoshida
克亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004247194A priority Critical patent/JP2006061823A/ja
Publication of JP2006061823A publication Critical patent/JP2006061823A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 低コストで作製できるとともに不純物の混入が少なく、多種の実装形態を採用できるものとすること。
【解決手段】 マイクロ化学チップは、空洞14から半導体基板8の主面に形成されるとともに主面に開口部3を有する被処理流体を流通させる第1の流路4と、空洞14内の微小電子機械機構6と、半導体基板8の主面に形成されて微小電子機械機構6に接続された電極7と、半導体基板8の主面に一方主面が対向するように配置された絶縁基板1と、絶縁基板1の内部に形成された、絶縁基板1の一方主面に開口部3に対向するように一方の開口端2が形成されるとともに絶縁基板1の他方主面または側面に他方の開口端9が形成されている第2の流路15と、第1の流路13の開口部12と第2の流路15の一方の開口端2との間を気密に取り囲んで接続することにより第1及び第2の流路を連通させる接続材11とを具備する。
【選択図】 図1

Description

本発明は、半導体基板に形成された微小電子機械機構と、これに被処理流体を流す流路とを備えて成るマイクロ化学チップ、およびその製造方法に関する。
近年、化学分析の高精度化、高効率化の背景から、従来の実験室で行なっていた電位の測定、流量の測定、クロマトグラフや電気泳動に必要な試料の注入、排出、評定などを微小なサイズで実行可能にする、所謂マイクロ化学チップが提案されている。
従来、マイクロ化学チップとして一般的なものは、流路が形成された半導体やガラス等から成る基板と、流路に被処理流体を流すためのマイクロポンプ等の動力源と、被処理流体に対して各種測定、分析を行なう機能部分とを備えた構成である。
マイクロ化学チップのうち、電位等の測定や試料の移送等の機械的な動き等の機能を1つの半導体基板で実施可能にするものとして、所謂MEMS(Micro Electro Mechanical System:微小電子機械機構)が提案されている。
マイクロ化学チップ用のMEMSとは、例えば、一つの半導体基板の主面に、化学変化に応じて発生する気体や液体の圧力変化などを検出するための加速度計,圧力センサ,アクチュエータ等のセンサ、化学変化に応じて生じる変化を光学的に検出する際に高精度での検出等を目的とする光軸の変更のために使用される微細な鏡面体を可動式に形成したマイクロミラーデバイス、光デバイス等の機能部分に、マイクロポンプ等を合わせて形成し組み込んだ構造を有するもの等であり、非常に多岐にわたる構造を有するものである。
このようなMEMSが形成された半導体基板に、流路が形成されている流路基板等を接続し、流路とMEMSや機能部分が形成された部分とを連通させた構造とすることにより、MEMSが備えるマイクロポンプ等の動力で流路中を被処理流体を流すことが可能となり、流路を流れて供給された被処理流体をMEMSが備える機能部分で分析、測定することが可能なマイクロ化学チップが形成される。
上記MEMSは、例えば、電極用やDNA吸着用等の微細な突起、微小反応槽、マイクロミラー、マイクロポンプ等の微細な構造体、可動体等を備えたものである。
流路基板は、シリコン等の半導体やPDMS(ポリジメチルシロキサン)、ガラス等の基板の一主面に溝状の流路を形成したり、一主面から他主面にかけて貫通するような流路を形成した構造である。
なお、MEMSおよび流路は、外気からの異物の進入を防いで分析、測定等の化学的な処理を高精度に行なわせるために、ガラス板等から成る蓋体で覆われる。蓋体で覆われた後、外部に露出している流路の開口部分が被処理流体の供給口や排出口となり、供給口から被処理流体が供給される。
シリコン、PDMS等から成る基板に開口した供給口に対する被処理流体(試料)の供給は、外部から液体ノズルや液体吐出装置等の送液装置を用いて加圧送液し、流路を介してMEMSに被処理流体を流して化学反応や検出等を行わせる。
また、マイクロ化学チップは、一般に、外部接続用の接続パッドが半導体基板の主面等に、MEMS部分と電気的に接続されて形成されており、この接続パッドをプリント回路基板等の外部電気回路基板の電気回路に電気的に接続しておくことにより、分析、測定等の化学処理の結果に応じてMEMSから発信される電気信号が接続パッドから外部の電気回路に送信される。
このMEMSを用いたマイクロ化学チップは、化学反応、分析システムを小型化し、シリコン基板やPDMS基板上に形成したもので、マイクロ流路、マイクロポンプ、マイクロリアクタ等からなる。基板の化学反応部をマイクロ化し単位体積あたりの表面積を増大させることで反応時間の大幅な削減を可能にしている。また、流量の精密な制御が可能なため高精度検出を行うことができる。
なお、これら従来のマイクロ化学チップに用いられるMEMSは、例えば、シリコン等の半導体基板の主面に、焼付け、エッチング等の所謂半導体マイクロマシニング技術を用いて電極用やDNA吸着用等の微細な突起や微小反応槽、マイクロミラー、マイクロポンプ等の微細な構造体、可動体を形成することにより製作される。
また、流路部分は、シリコンやPDMS、ガラス等の基板の主面に、フォトリソグラフィーを応用した、所謂鋳型加工やスタンプ加工等の加工を施して溝状、孔状等の構造を形成することにより製作される。
特開2001−214241号公報(第4−5頁、第1図) 特開2001−108619号公報(第4−5頁、第1図)
しかしながら、上記従来のマイクロ化学チップにおいては、検出などに用いられる被処理流体は外部の液体ノズルや液体吐出装置などの装置でマイクロ化学システムに供給されており、被処理流体である試薬は一度外気にさらされることが一般的であった。このため、マイクロ化学チップの外部から被処理流体を流路に供給する際に、外部からの被処理流体中への雑菌やゴミなどの異物の混入(所謂コンタミネーション)の問題があった。
また、大型の液体供給装置を使用するため、被処理流体の流量の微小量化に制限があり、被処理流体を小さく抑えることによる処理速度の向上等に制約を受けるという問題があった。
また、大型の液体供給装置を別途用意する必要があるので、マイクロ化学システムを低コストで作製しても液体供給装置に多額のコストがかかるという問題があった。
また、シリコンやPDMSは一般的に取り扱いが難しく、例えばプリント板やその他の基板や装置内部への実装を行うときに、電気的接続と流体の接続を行うのに簡便な方法が少ない等の問題があった。この場合、例えば、流路の開口部分が流路基板の主面に位置し、外部接続用の接続パッドが半導体基板の側面等に位置しているような構造、つまり流路の外部接続用の部分と電気的な接続を行なう部分とが異なる平面に位置するような構造等も多く、チップコンデンサー等の電子部品においては一般的である所謂表面実装の形態での接続が非常に難しい。
また、流路封止を行う際に、半導体基板等のMEMSが形成されている基板と流路基板とを一つずつ、流路とMEMSの機能部分等とを位置合わせしながら接続しなければならず、生産性が悪いためコストが高くなるなどの問題があった。
本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、低コストで作製できるとともに不純物の混入が少なく、多種の実装形態を採用できるマイクロ化学チップおよびその製造方法を提供することである。
本発明のマイクロ化学チップは、内部に空洞を有する半導体基板と、前記空洞から前記半導体基板の主面にかけて形成されるとともに前記半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記半導体基板の主面に形成されて前記微小電子機械機構に電気的に接続された電極と、前記半導体基板の主面に一方主面が対向するようにして配置された絶縁基板と、該絶縁基板の内部に形成された、前記絶縁基板の一方主面に前記開口部に対向するように一方の開口端が形成されるとともに前記絶縁基板の他方主面または側面に他方の開口端が形成されている第2の流路と、前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を気密に取り囲んで接続することによって前記第1および第2の流路を連通させる接続材と、前記絶縁基板の一方主面に形成された、前記電極に導電性接続材を介して電気的に接続された電極パッドと、前記絶縁基板の内部に形成されて前記電極パッドから前記絶縁基板の他方主面または側面に導出される配線導体とを具備していることを特徴とする。
本発明のマイクロ化学チップは好ましくは、前記第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする。
また、本発明のマイクロ化学チップは好ましくは、前記接続材は、横断面形状が円環状であることを特徴とする。
また、本発明のマイクロ化学チップは好ましくは、前記微小電子機械機構は、前記空洞内に前記第1の流路から湧出した前記被処理流体を化学的に分析するためのものであることを特徴とする。
本発明のマイクロ化学チップの製造方法は、半導体母基板に、その内部に形成された空洞と、該空洞から主面にかけて形成されるとともに該主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記主面に形成されて前記微小電子機械機構に電気的に接続された電極とを一組とした微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
絶縁母基板に、その一方主面に前記開口部に対向するように一方の開口端が形成されるとともに絶縁基板の他方主面または側面に他方の開口端が形成されている第2の流路と、前記一方主面に形成された、前記電極に導電性接続材を介して電気的に接続された電極パッドと、前記絶縁基板の内部に形成されて前記電極パッドから前記絶縁基板の他方主面または側面に導出される配線導体とを一組としたマイクロ化学チップ基板領域を多数個縦横に配列形成した多数個取りマイクロ化学チップ基板を準備する工程と、
前記絶縁母基板を、その一方主面が前記半導体基板の主面と対向するように配置して、前記第1の流路の開口部と前記第2の流路の一方の開口端との間を接続材によって気密に取り囲んで接続することによって前記第1および第2の流路を連通させるとともに、前記多数個取り微小電子機械機構基板の前記微小電子機械機構領域の前記各電極を、前記多数個取りマイクロ化学チップ基板の前記マイクロ化学チップ基板領域の前記各接続パッドに前記導電性接続材を介してそれぞれ接続する工程と、
互いに接合された前記多数個取り微小電子機械機構基板および前記多数個取りマイクロ化学チップ基板を前記微小電子機械機構領域および前記マイクロ化学チップ基板領域毎に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とする。
本発明のマイクロ化学チップは、内部に空洞を有する半導体基板と、空洞から半導体基板の主面にかけて形成されるとともに半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、空洞内に形成された微小電子機械機構と、半導体基板の主面に形成されて微小電子機械機構に電気的に接続された電極と、半導体基板の主面に一方主面が対向するようにして配置された絶縁基板と、絶縁基板の内部に形成された、絶縁基板の一方主面に開口部に対向するように一方の開口端が形成されるとともに絶縁基板の他方主面または側面に他方の開口端が形成されている第2の流路と、第1の流路の開口部と第2の流路の一方の開口端との間を気密に取り囲んで接続することによって第1および第2の流路を連通させる接続材と、絶縁基板の一方主面に形成された、電極に導電性接続材を介して電気的に接続された電極パッドと、絶縁基板の内部に形成されて電極パッドから絶縁基板の他方主面または側面に導出される配線導体とを具備していることから、絶縁基板の一方主面の第2の流路の開口端に、被処理流体の外部の供給パイプ等の供給口をロウ付け等の手段で密着させて接合させることにより、絶縁基板外部との被処理流体の接続が容易となり、被処理流体の供給から化学反応まで一貫して密閉状態を保つことができるので、外部から異物が混入することを防ぎ、所謂コンタミネーション等の問題の発生を効果的に防止することができる。
また、マイクロ化学チップが備える微小電子機械機構(MEMS)部分の送液機能により、別途大型の液体供給装置を使用することなく、流路に被処理流体を流すことができ、微細な流路に見合った微量の被処理流体(試料等)を準備すればよく、所望の化学処理に要するコストを低く抑えることもできる。
また、本発明のマイクロ化学チップは、被処理流体を流すための第2の流路の開口端および電気的な接続のための電極パッドは、ともに機械的強度等の特性が良好で取り扱いが容易な絶縁基板に形成されているため、取り扱いが容易である。また、第2の流路の開口端や電極パッドがともに絶縁基板に形成されているため、プリント配線基板等の外部電気回路基板に対する実装、特に表面実装の形態での実装が容易である。
また、液体供給用装置を別途用いて外部から流路に被処理流体を供給する際に、外部環境をクリーンにする必要が無く、供給される被処理流体の液量をより微小量化でき、その結果一般的に高価な化学検出用の被処理流体を少量で効率よく使用することができる。
本発明において好ましくは、第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることから、化学反応を効率的に行うことのできる大きさでかつ加工性を保てる小ささなので、絶縁基板中の流路形成がより容易になり、液量制御に有効である。
また、本発明において好ましくは、接続材は、横断面形状が円環状であることから、半導体基板の第1の流路の開口部と絶縁基板の第2の流路の開口端との接続部分において局部的な応力集中が起こらないため、より強固でかつ信頼性の高い第1および第2の流路の接続が可能になり、信頼性の高いマイクロ化学チップを得ることができる。
また、本発明において好ましくは、微小電子機械機構は、空洞内に第1の流路から湧出した被処理流体を化学的に分析するためのものであるため、第1の流路の開口部と、第2の流路の開口端および接続材とで囲まれた狭い空間内を流通する少量の被処理流体を効率よく化学分析することができるので、化学分析を効率的に少量の被処理流体でもって行なうことができる。
本発明のマイクロ化学チップの製造方法によれば、上記各工程を具備することから、縦横に配列形成された多数個のマイクロ化学チップについて、それぞれの電極の外部接続のための接続と、それぞれの流路の接続と、微小電子機械機構の封止とを同時に行なうことができるため、互いに接合された微小電子機械機構基板および多数個取り用マイクロ化学チップ基板から成る多数個取りのマイクロ化学チップを、容易かつ確実に製造することができる。
また、互いに接合された多数個取りマイクロ化学チップ基板および多数個取り微小電子機械機構基板を、微小電子機械機構領域およびマイクロ化学チップ基板領域毎に分割することにより、空洞部と第1の流路と第2の流路と接続材とで囲まれた微小空間内に微小電子機械機構を封止するとともに、微小空間内に被処理流体を供給し微小空間内から被処理流体を排出するための流路を備えて成る個々のマイクロ化学チップを多数個同時に製造することができる。この分割の際、微小電子機械機構領域の各微小電子機械機構は多数個取り用マイクロ化学チップ基板によりそれぞれ封止されているので、ダイシング加工等による分割で発生するシリコン等の半導体基板の切削粉が微小電子機械機構に付着するようなことはなく、分割後のマイクロ化学チップにおいて微小電子機械機構を確実に作動させることができる。
また、分割して得られたマイクロ化学チップは、絶縁基板の他方主面や側面に配線導体が導出されているので、この導出された端部に金属バンプ等の端子を取着するだけで、表面実装等により外部電子回路基板に実装することができるものとなり、実装の工程を非常に短くかつ容易なものとすることができるマイクロ化学チップとなる。
本発明のマイクロ化学チップおよびその製造方法について以下に詳細に説明する。図1は本発明のマイクロ化学チップの実施の形態の一例を示す断面図である。図1において、1は絶縁基板、2は一方の開口端、3は配線導体、4は電極パッド、5は他方の開口端、6は微小電子機械機構、7は電極、8は半導体基板、9は導電接続材、10はマイクロ化学チップ、11は接続材、12は開口部、13は第1の流路、14は空洞部、15は第2の流路である。
絶縁基板1と半導体基板8とは、絶縁基板1にある第1の流路13と半導体基板8にある第2の流路15とを接続する接続材11を介して接合されている。また、半導体基板8の内部には空洞14が存在し、空洞14内に微小電子機械機構6が形成されている。第2の流路15を通って、接続材11によって囲まれた空間に供給される被処理流体が、第1の流路13を介して空洞14内にある微小電子機械機構6で処理され、処理に応じて生じる電気信号が電極7から導電性接続材9を介して電極パッド4に伝わり、電極パッド4に電気的に接続されている配線導体3から外部に伝送され、処理の結果がわかる仕組みになっている。
本発明における微小電子機械機構6は、例えばバイオセンサー、DNAチップ、マイクロリアクタ、プリントヘッドなどの流体を用いたMEMSデバイスや化学センサ、ガスセンサ等の各種センサなどの機能を有するものであり、半導体微細加工技術を基本とした、所謂マイクロマシニングで作る部品であり、1素子あたり10μm〜数100μm程度の寸法を有する。
絶縁基板1は、微小電子機械機構6を封止するための蓋体として機能するとともに、一方の開口端2、配線導体3、電極パッド4、他方の開口端5、第2の流路15を形成するための基体として機能する。
この絶縁基板1は、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化珪素質焼結体、ガラスセラミックス焼結体等のセラミック材料や、ポリイミド、ガラスエポキシ樹脂等の樹脂材料、セラミックスやガラス等の無機粉末をエポキシ樹脂等の樹脂で結合して成る複合材等により形成される。
絶縁基板1は、例えば、酸化アルミニウム質焼結体から成る場合、酸化アルミニウムとガラス粉末等の原料粉末をシート状に成形して成るガラスセラミックグリーンシート(以下、グリーンシートともいう)を積層し、焼成することにより形成される。なお、絶縁基板1は、酸化アルミニウム質焼結体で形成するものに限らず、用途や気密封止するマイクロ化学チップ10の特性等に応じて適したものを選択することが好ましい。
例えば、絶縁基板1は、絶縁基板1にある第1の流路13と半導体基板8にある第2の流路とを接続する接続材11を介して半導体基板8に機械的に接合されるので、半導体基板8との接合の信頼性、つまり絶縁基板1と半導体基板8との間に形成される空間の外部との遮蔽性や、マイクロ化学チップ10として長期間の使用に耐える長期信頼性を高くするためには、ムライト質焼結体、または例えばガラス成分の種類や添加量を調整することにより熱膨張係数を半導体基板8に近似させるようにした酸化アルミニウム−ホウ珪酸ガラス系等のガラスセラミックス焼結体等のような、半導体基板8との熱膨張係数の差が小さい材料で形成することが好ましい。
また、絶縁基板1は、配線導体3により伝送される電気信号の遅延を防止する場合、ポリイミド、ガラスエポキシ樹脂等の樹脂材料、セラミックスやガラス等の無機粉末をエポキシ樹脂等の樹脂で結合して成る複合材、または、酸化アルミニウム−ホウ珪酸ガラス系や酸化リチウム系等のガラスセラミックス焼結体等のような、比誘電率の小さい材料で形成することが好ましい。
また、絶縁基板1は、被処理流体に対する保温性を高めて、微小電子機械機構で施される処理、例えば化学反応等の処理の安定性を高める上では、エポキシ樹脂やポリイミド樹脂等の熱伝導率の低い材料で形成することが好ましい。
また、絶縁基板1は、微小電子機械機構6で行なわれる処理を目視で確認したり、処理のために光を照射するような場合、枠状のセラミック材料の中央部にガラス材等の透光性材料を取着したもの等の、透光性を有するものであることが好ましい。
上記のように本発明のマイクロ化学チップ10は、用途等に応じて種々の材料を選択することが可能で、機械的強度等の特性が良好であるとともに取り扱いが容易な絶縁基板1を用いることができ、絶縁基板1に被処理流体を流すための第2の流路15の開口端および電気的な接続のための電極パッド4がともに形成されているため、取り扱いが容易である。
絶縁基板1には、その一方主面(微小電子機械機構6を封止する側)から他方主面または側面にかけて配線導体3が導出されている。
また、絶縁基板1と半導体基板8とは、絶縁基板1にある第1の流路13と半導体基板8にある第2の流路とを接続する接続材11を介して互いに接合されており、それらの接合部には接続材11を密閉された側壁とした内部空間が形成される。
半導体基板8は、シリコン、ポリシリコン等の半導体材料を板状に加工して成り、内部には空洞14が存在し、空洞14内に微小電子機械機構6が形成されている。微小電子機械機構6は、シリコン、ポリシリコン等から成る半導体基板8の一主面に対してフォトリソグラフィー技術やレーザ加工などの所謂マスクレスエッチング技術、フッ酸エッチング、ドライエッチングなどのエッチング技術を用いて所望の構造を形成することにより作製される。
微小電子機械機構6は、例えば、化学処理用のものであれば、その用途に応じてエッチング加工で所定の構造に成形した後、スピンコートやディップコートなどのコーティング技術を用いて表面状態を変化させることによって薬品の濡れ性や化学反応性などを制御することができ、そして化学分析やDNAの同定、クロマトグラフィーなどの各種分析などに用いられる。
また、半導体基板8の一方の主面には、微小電子機械機構6に電気的に接続された電極パッド7が形成されている。この電極パッド7は、微小電子機械機構6で行なわれた化学処理等の処理の結果に応じて発信される電気信号を半導体基板8の外部に伝える機能をなし、アルミニウムや金等の金属材料等の導電生材料で形成されている。
上述した絶縁基板1と半導体基板8との接合は、絶縁基板1にある第1の流路13と半導体基板8にある第2の流路15とを接続する接続材11を介して接合することにより行なわれる。
また、絶縁基板1には、電極6に導電性接続材9を介して電気的に接続された電極パッド4と、絶縁基板1の内部に形成されて電極パッド4から絶縁基板1の他方主面または側面に導出される配線導体3が形成されている。配線導体3および電極パッド4は、半導体基板8(電極7)から送られてくる電気信号を、マイクロ化学チップ10の外部に伝送する導電路として機能する。
これらの配線導体3および電極パッド4は、銅、銀、金、パラジウム、タングステン、モリブデン、マンガン等の金属により形成される。この形成の手段としては、メタライズ層として被着させる手段、めっき層として被着させる手段、蒸着等の金属を薄膜層として被着させる手段等を用いることができる。例えば、タングステンのメタライズ層から成る場合、タングステンのペーストを絶縁基板1となるグリーンシートに印刷してこれをグリーンシートとともに焼成することにより形成される。
そして、絶縁基板1と半導体基板8との接合の際、半導体基板8の一主面の電極7が、電極パッド4に導電性接続材9を介して電気的に接続され、これにより半導体基板8の微小電子機械機構6、電極7、絶縁基板1の接続パッド4および配線導体3の間が電気的に接続される。
導電性接続材9および接続材11は、錫−銀合金半田、錫−銀−銅合金半田等の半田、金−錫合金ろう材等の低融点ろう材、銀−ゲルマニウム合金ろう材等の高融点ろう材、銀,銅等の導電性粉末を樹脂で結合して成る導電性樹脂接着剤等により形成されている。
そして、配線導体3のうち絶縁基板1の他方主面または側面に導出されている部分を外部の電気回路に錫−鉛合金半田等を介して接合することにより、マイクロ化学チップ10の電極7が導電性接続材9、電極パッド4および配線導体3を介して外部の電気回路に電気的に接続される。これにより、微小電子機械機構6と外部の電気回路とが電気的に接続される。
また、絶縁基板1の内部には、絶縁基板1の一方主面に開口部12に対向するように一方の開口端2が形成されるとともに、絶縁基板1の他方主面または側面に他方の開口端5が形成されている第2の流路15が形成されている。第2の流路15を通って被処理流体が接続材11に囲まれた空間に供給され、続いて第1の流路13を介して空洞14内にある微小電子機械機構6に供給される。これにより、化学分析を行なう試料等の被処理流体を流し、電位測定、DNAの検出,同定、クロマトグフィー、光化学反応等の化学処理等の処理の機能を有するマイクロ化学チップ10が形成される。
本発明のマイクロ化学チップ10は、上記の構成により、主として処理等の機能を有する半導体基板8側と、被処理流体や電気信号の通り道および外部接続の機能を有する絶縁基板1側との電気的、機械的な接続,接合を容易に行なうことができ、マイクロ化学チップ10としての生産性を優れたものとすることができる。
本発明において、例えば、半導体基板8側および絶縁基板1側をそれぞれ予め多数個縦横に配列しておき、これらを互いに一括して接続,接合することも容易であり、マイクロ化学チップ10を多数個同時に気密封止することができ、生産性を極めて優れたものとすることができる。
第2の流路15は、グリーンシート上にプレス金型、NCパンチングやレーザ加工を用いて窪みを作製し、その後グリーンシートを複数積層することによって作製される。
また、第2の流路15は、流通方向に垂直な断面形状が矩形状であると、グリーンシートの状態での断面をSEMや金属顕微鏡を用いて観察する際に観察、評価が容易となることから、流通方向に垂直な断面形状が矩形状であるのがよく、さらに流通方向に垂直な断面における幅が0.05乃至0.5mmであることが好ましい。0.05mm未満の場合第2の流路15を加工形成することが困難になり、生産性の低下やコストの上昇等を招くおそれがある。0.5mmを超えると、第2の流路15の断面積が大きくなり、微小化して化学反応を効率的に行なわせることに対して支障をきたす。そのため、微量の被処理流体で高精度、高効率の化学分析を行なうマイクロ化学チップ10としての機能が低下するおそれがある。
ここで、第2の流路15について、絶縁基板1を厚さが0.5mmの板状の酸化アルミニウム質で形成し、その一方主面から他方主面にかけて、流通方向に垂直な断面の形状が円形状の流路を形成したときの、加工性や化学反応性を試験した具体例を以下に示す。
グリーンシートは、酸化アルミニウムと酸化ケイ素を主成分とする原料粉末を有機溶剤、樹脂バインダとともにシート状に成形して作製し、第2の流路15はNCパンチング加工により形成した。加工性の判断基準は、グリーンシートに円形状の穴が作製できるかの外観検査で判断しており、マイクロスコープを用いて観察し判断した。
穴が全域にわたり貫通しているか否か、また、穴の内面の垂直方向(軸方向)からの傾斜角度(所謂テーパー角)が、穴の縦断面において、穴の内面が垂直方向に完全に平行である場合(テーパー角=0°)の仮想線と、実際の内面の線との間に形成される三角形状について、三角形状の部分の{幅(三角形の上端側または下端側の底辺)}:{長さ(三角形の穴の軸方向の辺の長さ:穴の深さ)}の比率で1:3以下を○とした。
また、化学反応性は、半導体基板8であるSi基板上に作製されたMEMS6において化学反応を行う際に、必要最小な送液量に対して実際にMEMS6に供給される被処理流体の量が2倍以下になる場合を○とし、2倍を超える場合を△とした。表1に上記の加工性、化学反応性の結果を示す。
Figure 2006061823
表1より、第2の流路15の流通方向に垂直な断面における幅が0.05mm未満では、加工性に不具合を生じやすくなる傾向があり、0.5mmを超えると、化学反応性に不具合が生じる傾向が見られた。
また、本発明において、接続材11は、横断面形状が円環状であることが好ましい。これにより、半導体基板8内部の第1の流路13の開口部12と、絶縁基板1内部の第2の流路15の一方の開口端2の接続部分において、局部的な応力集中が起こらないため、より強固でかつ信頼性の高い接合が可能になり、信頼性の高いマイクロ化学チップ10を得ることができる。
また、本発明において、微小電子機械機構6は、空洞14内に第1の流路13から湧出した被処理流体を化学的に分析するためのものであることが好ましい。これにより、第1の流路13の開口部12と、第2の流路15の一方の開口端2と、接続材11とで囲まれた狭い空間内を流通する少量の被処理流体を効率よく化学分析することができるので、化学分析を効率的に少量の被処理流体で行うことができる。
化学的に分析するものとしては、例えば、多数のピン状の突起体の露出表面に予めそれぞれ異なるDNAの標準試料を被着させておき、被処理流体中のDNAが吸着する突起体により被処理流体中のDNAの同定を行なう、所謂DNAチップのような機能をなすもの、または分子を捕捉する突起状の吸着体を被処理流体の流れる方向に沿って多数個配列しておき、被処理流体中の分子を順次吸着させるクロマトグラフ分析の機能を有するものなどが挙げられる。
次に、本発明のマイクロ化学チップ10の製造方法について、図2(a)〜(d)に基づいて説明する。図2は本発明のマイクロ化学チップの製造方法の実施の形態の一例をそれぞれ工程順に示した断面図であり、図2において図1と同じ部位には同じ符号を付してある。
まず、図2(a)に示すように、半導体母基板28の一主面に、微小電子機械機構6およびそれに電気的に接続された電極パッド7が形成されて成る微小電子機械機構領域29を多数個縦横に配列形成した多数個取り微小電子機械機構基板30を準備する。
半導体母基板28は、例えば単結晶や多結晶等のシリコン基板から成る。このシリコン基板の表面に酸化シリコン層を形成する際に、その中に微小な振動体等の微小電子機械機構6を形成し、円形状パターン等の導体から成る電極パッド7が形成された微小電子機械機構領域29を多数個配列形成することにより、多数個取り微小電子機械機構基板30が形成される。この例においては、微小電子機械機構6と電極パッド7とは、それぞれ半導体母基板28の一主面に形成された微細配線(図示せず)を介して電気的に接続されている。
次に、図2(b)に示すように、絶縁母基板21に、その一方主面に一方の開口端2が形成され、絶縁基板の他方主面または側面に他方の開口端5が形成されている第2の流路15と、一方主面に形成された、電極パッド4に導電性接続材9を介して電気的に接続された電極パッド4と、絶縁基板の他方主面または側面に形成された配線導体3とを一組としたマイクロ化学チップ領域22を、多数個縦横に配列形成した多数個取りマイクロ化学チップ基板23を準備する。
絶縁母基板21は、例えば、絶縁母基板21が酸化アルミニウム質焼結体から成り、配線導体3がタングステンのメタライズ層から成る場合、酸化アルミニウム、酸化珪素、酸化カルシウム等の原料粉末を、有機溶剤、樹脂バインダとともに混練してスラリーを得て、このスラリーをドクターブレード法やリップコータ法等によりシート状に成形して複数のグリーンシートを形成し、このグリーンシートの表面および必要に応じてグリーンシートに予め形成しておいた貫通孔内に、タングステンのメタライズペーストを印刷塗布、充填し、その後、これらのグリーンシートを積層して焼成することにより形成することができる。
電極パッド4は、例えば、配線導体3と同様の材料から成り、タングステンのペーストを絶縁母基板21となるグリーンシートのうち最表面に、配線導体3となる印刷されたタングステンペーストと接続されるようにして、かつ多数個が縦横に配列形成されるようにして、スクリーン印刷法等により印刷しておくこと等により形成される。
第2の流路15は、例えば、絶縁母基板21が酸化アルミニウム質焼結体から成る場合、絶縁母基板21となるグリーンシートにプレス金型やNCパンチング、レーザ加工等の穴あけ加工、打抜き加工、切削加工等の機械的加工を施して、グリーンシートに開口部や貫通孔、溝等を形成しておくことにより形成される。例えば、第2の流路15が図2(b)に示すような、一方主面から他方主面にかけて貫通するような貫通孔であれば、各グリーンシートにNCパンチング加工で貫通孔を形成しておき、この貫通孔が最上層から最下層にかけて連通するようにしてグリーンシートを積層することにより形成される。
なお、第2の流路15は、全長にわたって貫通孔状のものである必要はなく、絶縁母基板21を分割した後の状態で、絶縁母基板21の厚み方向の中央部等から各マイクロ化学チップ領域22の外周の側面にかけて横溝状に導かれたような形態等の他の形態(図示せず)でもよい。この場合、グリーンシートの所定部位に、レーザ加工等で細長い溝状の開口部を形成しておき、この開口部の上下を覆うように他のグリーンシートを積層することにより、絶縁母基板21の内部に溝状の第2の流路15を形成することができる。
導電性接続材9および接続材11としては、錫−銀合金半田、錫−銀(銅)−ビスマス合金半田、錫−鉛合金半田等の半田、または銀、銅、金、白金、パラジウム等の金属の粉末やこのような金属を樹脂等の粉末コア材の表面にめっき等の手段で被着した導電性フィラー粉末をエポキシ樹脂、アクリル樹脂等の樹脂で結合して成る導電性樹脂接着剤等の材料を用いることができる。
また、接続材11は、導電性を有するものでなくてもよい。例えば、エポキシ樹脂、アクリル樹脂等の樹脂や、樹脂にガラス、シリカ等の無機粉末を添加したものでもよい。
導電性接続材9および接続材11は、例えば、ともに錫−銀合金等の半田から成る場合であれば、この半田を電極パッド4上に位置決めして加熱、溶融、接合させることにより形成される。
次に、図2(c)に示すように、多数個取り微小電子機械機構基板30の微小電子機械機構基板領域29の各電極7を、多数個取りマイクロ化学チップ基板23のマイクロ化学チップ基板領域22の電極パット4に導電性接続材9を介してそれぞれ接続するとともに、半導体母基板28の一主面と絶縁母基板21の一方主面とを接続材11を介して接合する。この工程において、多数個取り微小電子機械機構基板30と多数個取りマイクロ化学チップ基板23とが機械的、電気的に接合、接続され、各微小電子機械機構領域29とマイクロ化学チップ基板領域22毎に形成された多数のマイクロ化学チップが一括して縦横に配列された状態で形成される。
このように、電極7と電極パット4とを導電性接続材9を介して接続するとともに、半導体母基板28の一主面と絶縁母基板21の一方主面とを接続材11を介して接合する工程を一つの工程で行うことを可能とし、多数個取りの状態でマイクロ化学チップを形成することを容易なものとすることができる。
また、導電性接続材9および接続材11は、同じ高さとすることが好ましい。これにより、導電性接続材9の電極7に対する接続面と、接続材11の半導体母基板28の一主面に対する接合面とが同じ高さになるため、電極7と電極パット4とを導電性接続材9を介して接続するとともに、半導体母基板28の一主面と絶縁母基板21とを接続材11を介して接合する工程を一つの工程で行うことが、より一層容易なものとなる。また、電極7と電極パット4との間の電気的接続や、半導体母基板28の一主面と絶縁母基板21との間の機械的な接合がより確実に強固なものとなる。
接続材11の高さを導電性接続材9の高さと同じとする方法としては、例えば、導電性接続材9となる錫−銀合金半田を溶融させて電極パッド4上に取着形成する際に、その上面を接続材11と同じ高さとなるようにしてセラミックス製の治具等で押さえておく等の方法を用いることができる。
ここで、電極7と電極パット4との接合は、例えば、電極パット4および接続材11が錫−銀合金半田から成る場合、電極7上に電極パット4を位置合わせして載せ、これらを約250〜300℃程度の温度のリフロー炉中で熱処理すること等により行なわれる。
また、各微小電子機械機構領域29の外周部分の半導体母基板28の一主面に対する接続材11の接合は、例えば、接続材11を半導体母基板28の一主面に押し当てておき、上述の電極7と電極パット4との導電性接続材9を介した接続と同時にリフロー炉中で熱処理することにより行なうことができる。
このように本発明のマイクロ化学チップの製造方法によれば、微小電子機械機構領域29の電極7の外部導出のための接合と、半導体母基板28(半導体基板8)と絶縁母基板21(絶縁基板1)との接合とを同時に、しかも多数個配列した状態で行なうことができるため、数時間程度を要する半田(ろう)付け等の接合の工程を1回で済ませることができ、また同時に多数個のマイクロ化学チップを配列させた状態で作製することができるので、マイクロ化学チップの生産性を非常に高めることができる。
そして、図2(d)に示すように、互いに接合された多数個取りマイクロ化学チップ基板23および微小電子機械機構領域基板30を、微小電子機械機構領域29およびマイクロ化学チップ領域22毎に分割して、絶縁基板1に半導体基板8が接合されて成る個々のマイクロ化学チップ10を得る。
なお、互いに接合された絶縁母基板21と半導体母基板28の接合体の切断は、この接合体に対して、ダイシング加工等の切断加工を施すことにより行なうことができる。本発明のマイクロ化学チップの製造方法においては、このダイシング加工等の切断加工の際に、各微小電子機械機構6は、半導体基板8と絶縁基板1とにより形成される内部空間に収納されているので、半導体基板8や絶縁基板1等の切断に伴って発生するシリコンやセラミックス等の切削粉等が微小電子機械機構6に付着することが効果的に防止され、完成したマイクロ化学チップにおいて、微小電子機械機構6を確実に正常に作動させることができる。
また、切削時に併用される洗浄用の水の流速を速くしたり、流れる方向を流路の開口端に対して直角方向にするなどの対応を行なうことで、より確実に微小電子機械機構6を正常に作動させることができる。
このように、本発明のマイクロ化学チップ10の製造方法によれば、微小電子機械機構6が収納される内部空間の形成と、その微小電子機械機構6に電気的に接続された電極7を、表面実装が可能な形態で外部導出する導電路に接続することと、内部空間内に被処理流体を湧出させる流路を開口させる工程とを、一つの工程で行なうことができるので、マイクロ化学チップ10の生産性を非常に高いものとすることができる。
また、このようにして製造されたマイクロ化学チップ10は、すでに気密封止されているとともに、その電極7が配線導体3を介して外部に導出された状態であるので、これを別途パッケージ内に実装するような工程を追加する必要はなく、配線導体3の導出された部分を外部の電気回路に半田ボール等の外部端子を介して接続するだけで、外部電気回路基板に実装して使用することができる。
また、上記のようにして製造されたマイクロ化学チップ10は、被処理流体の流出入口である第2の流路15の開口端2が絶縁基板1側にあるので、絶縁基板1に金属製のパイプなどを第2の流路15と連通するようにして取着するだけで簡易に外部との接続を行うことができる。またこの場合、配線導体3および第2の流路5の他方の開口端は、絶縁基体1の他方主面または側面に導出されているので、外部電気回路に表面実装の形態で接続することができ、高密度に実装することや、外部電気回路基板を効果的に小型化することができる。
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨の範囲内であれば種々の変更は可能である。例えば、上述の実施の形態の例では一つのマイクロ化学チップ内に一つの微小電子機械機構を気密封止したが、一つのマイクロ化学チップ内に複数の微小電子機械機構を気密封止してもよい。また、図1の例では、配線導体3は絶縁基板1の他方主面側に導出されているが、一部を側面に導出したり、複数の部位に導出したりしてもよい。また、この導出された部分の外部電気回路への電気的な接続は錫−銀合金半田等の半田を介して行なうものに限らず、リード端子、ピン端子、導電性接着剤や導電性クリップ等を介して行なってもよい。
本発明のマイクロ化学チップの実施の形態の一例を示す断面図である。 (a)〜(d)は、本発明のマイクロ化学チップの製造方法の実施の形態の一例を示し、それぞれ工程順に示した断面図である。
符号の説明
1:絶縁基板
2:一方の開口端
3:配線導体
4:電極パッド
5:他方の開口端
6:微小電子機械機構
7:電極
8:半導体基板
9:導電接続材
10:マイクロ化学チップ
11:接続材
12:開口部
13:第1の流路
14:空洞
15:第2の流路
21:絶縁母基板
22:マイクロ化学チップ領域
23:多数個取りマイクロ化学チップ基板
28:半導体母基板
29:微小電子機械機構領域
30:多数個取り微小電子機械機構基板

Claims (5)

  1. 内部に空洞を有する半導体基板と、前記空洞から前記半導体基板の主面にかけて形成されるとともに前記半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記半導体基板の主面に形成されて前記微小電子機械機構に電気的に接続された電極と、前記半導体基板の主面に一方主面が対向するようにして配置された絶縁基板と、該絶縁基板の内部に形成された、前記絶縁基板の一方主面に前記開口部に対向するように一方の開口端が形成されるとともに前記絶縁基板の他方主面または側面に他方の開口端が形成されている第2の流路と、前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を気密に取り囲んで接続することによって前記第1および第2の流路を連通させる接続材と、前記絶縁基板の一方主面に形成された、前記電極に導電性接続材を介して電気的に接続された電極パッドと、前記絶縁基板の内部に形成されて前記電極パッドから前記絶縁基板の他方主面または側面に導出される配線導体とを具備していることを特徴とするマイクロ化学チップ。
  2. 前記第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする請求項1記載のマイクロ化学チップ。
  3. 前記接続材は、横断面形状が円環状であることを特徴とする請求項1または請求項2記載のマイクロ化学チップ。
  4. 前記微小電子機械機構は、前記空洞内に前記第1の流路から湧出した前記被処理流体を化学的に分析するためのものであることを特徴とする請求項1乃至請求項3のいずれかに記載のマイクロ化学チップ。
  5. 半導体母基板に、その内部に形成された空洞と、該空洞から主面にかけて形成されるとともに該主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記主面に形成されて前記微小電子機械機構に電気的に接続された電極とを一組とした微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
    絶縁母基板に、その一方主面に前記開口部に対向するように一方の開口端が形成されるとともに絶縁基板の他方主面または側面に他方の開口端が形成されている第2の流路と、前記一方主面に形成された、前記電極に導電性接続材を介して電気的に接続された電極パッドと、前記絶縁基板の内部に形成されて前記電極パッドから前記絶縁基板の他方主面または側面に導出される配線導体とを一組としたマイクロ化学チップ基板領域を多数個縦横に配列形成した多数個取りマイクロ化学チップ基板を準備する工程と、
    前記絶縁母基板を、その一方主面が前記半導体基板の主面と対向するように配置して、前記第1の流路の開口部と前記第2の流路の一方の開口端との間を接続材によって気密に取り囲んで接続することによって前記第1および第2の流路を連通させるとともに、前記多数個取り微小電子機械機構基板の前記微小電子機械機構領域の前記各電極を、前記多数個取りマイクロ化学チップ基板の前記マイクロ化学チップ基板領域の前記各接続パッドに前記導電性接続材を介してそれぞれ接続する工程と、
    互いに接合された前記多数個取り微小電子機械機構基板および前記多数個取りマイクロ化学チップ基板を前記微小電子機械機構領域および前記マイクロ化学チップ基板領域毎に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とするマイクロ化学チップの製造方法。
JP2004247194A 2004-08-26 2004-08-26 マイクロ化学チップおよびその製造方法 Pending JP2006061823A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247194A JP2006061823A (ja) 2004-08-26 2004-08-26 マイクロ化学チップおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247194A JP2006061823A (ja) 2004-08-26 2004-08-26 マイクロ化学チップおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2006061823A true JP2006061823A (ja) 2006-03-09

Family

ID=36108746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247194A Pending JP2006061823A (ja) 2004-08-26 2004-08-26 マイクロ化学チップおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2006061823A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003386A (ja) * 2005-06-24 2007-01-11 Ngk Spark Plug Co Ltd マイクロチップ搭載用基体、マイクロチップ搭載装置、板状部材間電気及び流路接続構造
JP2008083043A (ja) * 2006-08-31 2008-04-10 Kyocera Corp 流路デバイス
KR101435521B1 (ko) 2008-01-23 2014-08-29 삼성전자 주식회사 바이오칩

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003386A (ja) * 2005-06-24 2007-01-11 Ngk Spark Plug Co Ltd マイクロチップ搭載用基体、マイクロチップ搭載装置、板状部材間電気及び流路接続構造
JP4757548B2 (ja) * 2005-06-24 2011-08-24 日本特殊陶業株式会社 マイクロチップ搭載装置
JP2008083043A (ja) * 2006-08-31 2008-04-10 Kyocera Corp 流路デバイス
US8282358B2 (en) 2006-08-31 2012-10-09 Kyocera Corporation Fluidic device
KR101435521B1 (ko) 2008-01-23 2014-08-29 삼성전자 주식회사 바이오칩

Similar Documents

Publication Publication Date Title
US6548895B1 (en) Packaging of electro-microfluidic devices
US6443179B1 (en) Packaging of electro-microfluidic devices
US20090261691A1 (en) Microelectromechanical device and method for manufacturing the same
US20050205951A1 (en) Flip chip bonded micro-electromechanical system (MEMS) device
US20100059244A1 (en) Microstructure Apparatus and Method for Manufacturing Microstructure Apparatus
US9625336B2 (en) Pressure sensor and method for producing a pressure sensor
JP4683872B2 (ja) マイクロ化学チップおよびその製造方法
US8021906B2 (en) Hermetic sealing and electrical contacting of a microelectromechanical structure, and microsystem (MEMS) produced therewith
JP2004523124A (ja) ガラス系材料からなるフラット基板を構造化する方法
US8282358B2 (en) Fluidic device
JP2006337110A (ja) ガスセンサ
JP2013128113A (ja) 半導体の気密封止パッケージ構造及びその製造方法
JP2006090910A (ja) マイクロ化学チップおよびその製造方法
CN107993985A (zh) 电子部件搭载用基板、电子装置以及电子模块
WO2021004165A1 (zh) 基于倒装焊芯片的压力传感器芯体、芯体制造及封装方法和压力传感器
JP2006088077A (ja) マイクロ化学チップおよびその製造方法
JP2006061823A (ja) マイクロ化学チップおよびその製造方法
JP5473235B2 (ja) 微小構造体装置および微小構造体装置の製造方法
NL1031465C2 (nl) Werkwijze voor het opbouwen van een inrichting met fluïdische en elektrische functies.
US11433393B2 (en) Microfluidic flow cell comprising an integrated electrode, and method for manufacturing same
US20140034824A1 (en) Method for producing a converter module and corresponding converter module
JP6108734B2 (ja) 電子部品素子収納用パッケージ
JP2009109349A (ja) フローセンサ
JP4963437B2 (ja) 流路体、配線基板、流路形成配線基板、流路形成方法、流路体の製造方法、ならびに流路体キット
JP7145037B2 (ja) 電子素子実装用基板、電子装置、および電子モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124