JP2006087876A - Decomposition method of organochlorine compound - Google Patents

Decomposition method of organochlorine compound Download PDF

Info

Publication number
JP2006087876A
JP2006087876A JP2004308855A JP2004308855A JP2006087876A JP 2006087876 A JP2006087876 A JP 2006087876A JP 2004308855 A JP2004308855 A JP 2004308855A JP 2004308855 A JP2004308855 A JP 2004308855A JP 2006087876 A JP2006087876 A JP 2006087876A
Authority
JP
Japan
Prior art keywords
compound
hydrogen
organic chlorine
organochlorine compound
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004308855A
Other languages
Japanese (ja)
Inventor
Saburo Ishiguro
三郎 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004308855A priority Critical patent/JP2006087876A/en
Publication of JP2006087876A publication Critical patent/JP2006087876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe decomposition and detoxification art of organochlorine compound (PCB, dioxins and the like) fully automated and reducing the device and operation costs. <P>SOLUTION: Microbubbles (nanobubbles or the like) including hydrogen are added to and mixed with liquid containing organochlorine compound, especially PCB, dioxin or the like having strong toxicity, ultrasonic waves are emitted to the microbubbles to collapse them, the hydrogen in the air bubbles and chlorine of the organochlorine compound are reacted with and bonded to each other by the energy of the collapse to decompose and detoxify the organochlorinated compound under the normal temperature and pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機塩素化合物の分解方法に関し、特に難分解とされるPCB、ダイオキシンなどの有機塩素化合物を常温、常圧下で安全に分解する方法を提供する。The present invention relates to a method for decomposing organochlorine compounds, and particularly provides a method for safely decomposing organochlorine compounds such as PCB and dioxin, which are difficult to decompose, at normal temperature and normal pressure.

背景の技術Background technology

PCBの分解に関してはアルカリ触媒分解法(BCD法)、化学抽出分解法(DMI/NaOH法)t−BuOK法、触媒水素化脱塩素法、超臨界水酸化法、金属ナトリウム法、紫外線照射/微生物分解法が承認されているが、常温、常圧で分解処理出来るのは金属ナトリウム法と紫外線照射/微生物分解法だけである。しかし金属ナトリウム法では完全に脱水しなければ反応せず、紫外線照射/微生物分解法では処理に10日以上掛かるので実用的でない。  Regarding PCB decomposition, alkaline catalyst decomposition method (BCD method), chemical extraction decomposition method (DMI / NaOH method) t-BuOK method, catalytic hydrodechlorination method, supercritical water oxidation method, metallic sodium method, UV irradiation / microorganism Although decomposition methods are approved, only the sodium metal method and the ultraviolet irradiation / microbial decomposition method can be decomposed at room temperature and pressure. However, the metal sodium method is not practical because it does not react unless it is completely dehydrated, and the ultraviolet irradiation / microbial decomposition method takes 10 days or more for the treatment.

発明が解決しようとする課題Problems to be solved by the invention

ダイオキシン、PCB、はベンゼン核に塩素が結合した構造をもっており、この塩素を取ってしまうとジオキシジフェニールやビフェニールという普通の有機化合物になる。脱塩素の方法としてNaOH、t−BuOK、金属Naなどが用いられていたが、金属Na以外は高温で作用させる必要がある。超臨界は反応としては理想的であるが、高圧の危険と装置が高価になる欠点がある。また金属Na法は土壌汚染の処理では最高であるが、液状の場合先ず脱水処理の必要がありネックとなっている。
本発明では、水または溶液中の有機塩素化合物を常温常圧で安全に脱塩素処理し、無害の有機化合物に変える方法を提供する。
Dioxin and PCB have a structure in which chlorine is bonded to a benzene nucleus, and when this chlorine is removed, it becomes a normal organic compound such as dioxydiphenyl or biphenyl. As a dechlorination method, NaOH, t-BuOK, metal Na and the like have been used. However, it is necessary to act at a high temperature other than metal Na. Supercriticality is ideal as a reaction, but has the disadvantages of high pressure hazards and expensive equipment. In addition, the metal Na method is the best in the treatment of soil contamination, but in the case of a liquid, it first needs to be dehydrated and has become a bottleneck.
In the present invention, there is provided a method for safely dechlorinating an organic chlorine compound in water or a solution at normal temperature and pressure and converting it into a harmless organic compound.

課題を解決するための手段Means for solving the problem

本発明者は上記課題を下記に示す様に常温、常圧で安全に分解処理する方法を提供する。
(1)有機塩素化合物を含む液体に水素ガスを含む微小気泡を混合接触させ、その混合液に超音波を照射して微小な気泡を圧壊し、その圧壊のエネルギーで気泡中の水素と有機塩素化合物中の塩素を反応結合させて、有機塩素化合物を分解することを特徴とする有機塩素化合物の分解方法。
(2)有機塩素化合物はPCB類、ダイオキシン類、又はトリクレンなどのVOC類から選ばれる一種又は二種以上である前記(1)記載の有機塩素化合物の分解方法。
(3)有機塩素化合物を含む液体にアルカリ金属イオンを含有させておくことを特徴とする前記(1)又は(2)記載の有機塩素化合物の分解方法。
(4)有機塩素化合物を含む液体にMg、Ca、Al、Zn、Fe、など塩酸と反応する金属又は金属の水酸化物を添加することを特徴とする前記(1)又は(2)記載の有機塩素化合物の分解方法。
The present inventor provides a method for safely decomposing at the normal temperature and normal pressure as described below.
(1) A microbubble containing hydrogen gas is mixed and contacted with a liquid containing an organic chlorine compound, and the mixture is irradiated with ultrasonic waves to crush the microbubble, and the hydrogen and organic chlorine in the bubble are destroyed by the energy of the crushing. A method for decomposing an organic chlorine compound, comprising reacting chlorine in the compound to decompose the organic chlorine compound.
(2) The method for decomposing an organic chlorine compound according to (1), wherein the organic chlorine compound is one or more selected from PCBs, dioxins, or VOCs such as trichlene.
(3) The method for decomposing an organochlorine compound according to (1) or (2) above, wherein an alkali metal ion is contained in a liquid containing the organochlorine compound.
(4) A metal or metal hydroxide that reacts with hydrochloric acid, such as Mg, Ca, Al, Zn, Fe, or the like, is added to a liquid containing an organic chlorine compound, as described in (1) or (2) above Decomposition method of organic chlorine compounds.

発明の効果The invention's effect

本発明によれば次のような優れた効果を発揮する。
有機塩素化合物特に難分解性とされるPCB、ダイオキシンなどを含む液に水素の微小気泡(ナノバブル等)を発生又は注入し、その微小気泡(ナノバブル等)を超音波などで圧壊することにより、有機塩素化合物を脱塩素し無害化する。この方法は常温・常圧で反応が進行し、安全で自動化出来、設備コスト、操業コスト共安価で経済的な方法である。
According to the present invention, the following excellent effects are exhibited.
Organic chlorine compounds are generated by injecting or injecting hydrogen microbubbles (nanobubbles, etc.) into liquids containing PCBs, dioxins, etc., which are considered to be particularly degradable, and crushing the microbubbles (nanobubbles, etc.) with ultrasonic waves. Dechlorinate chlorine compounds to make them harmless. This method is an economical method in which the reaction proceeds at normal temperature and pressure, can be safely and automated, and both the equipment cost and the operation cost are low.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明の実施の形態を図面に基ずいて説明する。
図1は、本発明の有機塩素化合物脱塩素分解説明図である。本発明は超音波発振器を設置した反応容器と微小気泡(ナノバブル)発生装置から成っており、それをパイプでつなぎ、ポンプで液を循環しながら途中で水素を注入する構造である。図において、1は反応容器、2は有機塩素化合物と溶媒(水又は及び有機溶媒)及び中和剤(アルカリ、例えばNaOH)の混合物、3は超音波発振器、4は撹拌器、5は邪魔板、6は導管、7は水素、8は水素吸入口、9はポンプ、10は微小気泡(ナノバブル)発生装置、11は微小気泡噴出口、である。
以下本発明の実施の形態を図面により説明する。先ず反応容器1に処理すべき有機塩素化合物と必要により溶媒として水又は有機溶媒(例えば有機塩素化合物を溶解するIPAの様な溶媒)、若しくはその両方と中和剤としてアルカリ(NaOHなど)を加えた混合物2を撹拌器4で撹拌する。撹拌は超音波発振器3を使っても良いが、全体的に大きく撹拌する時は機械的な撹拌器4を使い、ミクロな振動や微小気泡(ナノバブル)の圧壊には超音波発振器3を使うと良い。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of dechlorination decomposition of an organic chlorine compound of the present invention. The present invention comprises a reaction vessel provided with an ultrasonic oscillator and a microbubble (nanobubble) generator, which is connected by a pipe, and hydrogen is injected halfway while circulating the liquid with a pump. In the figure, 1 is a reaction vessel, 2 is a mixture of an organic chlorine compound, a solvent (water or organic solvent) and a neutralizing agent (alkali, for example, NaOH), 3 is an ultrasonic oscillator, 4 is a stirrer, and 5 is a baffle plate , 6 is a conduit, 7 is hydrogen, 8 is a hydrogen inlet, 9 is a pump, 10 is a microbubble (nanobubble) generator, and 11 is a microbubble jet.
Embodiments of the present invention will be described below with reference to the drawings. First, an organic chlorine compound to be treated is added to the reaction vessel 1 and, if necessary, water or an organic solvent (for example, a solvent such as IPA that dissolves the organic chlorine compound), or both, and an alkali (such as NaOH) as a neutralizing agent. The resulting mixture 2 is stirred with a stirrer 4. The ultrasonic oscillator 3 may be used for agitation. However, when the agitation is greatly performed as a whole, the mechanical agitator 4 is used, and the ultrasonic oscillator 3 is used for crushing micro vibrations and microbubbles (nano bubbles). good.

反応容器1の下部には導管6が繋がれており、導管の途中で水素7の吸入口8が設置され、有機塩素化合物を含む混合液2は水素の気泡を吸い込みながらポンプ9により微小気泡(ナノバブル)発生器10に送られる。微小気泡発生器の種類は問わないが、水素気泡が10μm以下、出来れば1μm以下の微小気泡発生器が望ましい。微小気泡発生器により混合液2に含まれる水素ガス7は10μm以下の状態となり、導管を通って微小気泡噴出口11より反応容器1に戻る。反応容器1に戻った水素微小気泡を含む混合液は、超音波を受けて順次水素微笑気泡が圧壊する。最近の研究によれば、微小気泡の圧壊の際マイクロ秒という一瞬であるが、5000℃千気圧以上という高温高圧の状態が出現すると言われる。(朝日新聞2004年3月6日5面)勿論これはミクロの反応なので、全体では少し温度は上がるが、殆ど常温常圧のままで、大きい変化は認められない。(http://www.aist.go.jp/aist j/press release/pr2004/pr20040315/pr20040315.html参照)本発明は空気又は酸素のバブルを水素に置き換えて、水素バブルの圧壊をPCB、ダイオキシンの脱塩素分解に応用したものである。A conduit 6 is connected to the lower part of the reaction vessel 1, and a suction port 8 for hydrogen 7 is installed in the middle of the conduit. The mixed liquid 2 containing an organic chlorine compound is microbubbles (pumped by a pump 9 while sucking hydrogen bubbles). Nanobubble) is sent to the generator 10. The type of the microbubble generator is not limited, but a microbubble generator having a hydrogen bubble of 10 μm or less, preferably 1 μm or less is desirable. The hydrogen gas 7 contained in the mixed liquid 2 is brought to a state of 10 μm or less by the microbubble generator, and returns to the reaction vessel 1 from the microbubble outlet 11 through the conduit. The liquid mixture containing the hydrogen microbubbles returned to the reaction vessel 1 receives the ultrasonic waves, and the hydrogen smile bubbles are sequentially crushed. According to recent research, it is said that a high-temperature and high-pressure state of 5000 ° C. or more and 1000 atm or more appears in an instant of microseconds when microbubbles are collapsed. (Asahi Shimbun, March 6, 2004, page 5) Of course, this is a micro reaction, so the temperature rises a little overall, but it remains at room temperature and normal pressure, and no significant change is observed. (See http://www.aist.go.jp/aist j / press release / pr2004 / pr200440315 / pr200440315.html ) The present invention replaces air or oxygen bubbles with hydrogen and replaces the collapse of hydrogen bubbles with PCB, dioxin Applied to the dechlorination decomposition of

水素の微小気泡は超音波の刺激を受け膨張と収縮を繰り返して圧壊する。この時超音波を断続的に照射したり、放射線、電磁波、電界、磁界などを使用しても良い。この圧壊の時水素は大きなエネルギー(前述の様にマイクロ秒という一瞬であるが5000℃千気圧以上)を受け、付近の有機塩素化合物と反応し、塩素と結合して塩化水素となったり、有機塩素化合物を水素添加したりする。例えばPCB、ダイオキシンは脱塩素したり水素添加すると毒性は急激にさがる。このようなミクロ状態での超高温超高圧の反応であるが、時間的にもマイクロ秒という時間なので繰り返し反応させても、温度がやや上がる程度で全く反応の安全性に問題はない。  The hydrogen microbubbles are crushed by repeated expansion and contraction under ultrasonic stimulation. At this time, ultrasonic waves may be irradiated intermittently, or radiation, electromagnetic waves, electric fields, magnetic fields, etc. may be used. At the time of this collapse, hydrogen receives a large amount of energy (as described above, it is a moment of microseconds, but it is 5000 ° C. or more at 1000 atmospheres), reacts with nearby organic chlorine compounds, combines with chlorine to form hydrogen chloride, Hydrogenate chlorine compounds. For example, the toxicity of PCB and dioxin decreases rapidly when dechlorinated or hydrogenated. Although it is an ultra-high temperature and ultra-high pressure reaction in such a micro state, there is no problem in the safety of the reaction as long as the temperature rises slightly even if the reaction is repeated because of the time of microseconds.

尚排ガスは水素の残りが出る程度で、生成した塩化水素はアルカリで中和するので排ガス問題はない。また廃液は塩素の取れた有機化合物と添加した有機溶媒、中和して出来たNaClなどが混入しているので、蒸留により有機物は回収し、残りはアルカリ性なのでアルカリ中和液として使用する。本発明ではこの脱塩素や水素添加反応を自動的に継続して行うので規制値以下にすることは比較的簡単である。邪魔板5は微小気泡噴出口11から出た微小水素気泡が、圧壊せず直ぐに導管6から出ないようにする為のものである。  In addition, since the exhaust gas has a residual amount of hydrogen, the produced hydrogen chloride is neutralized with alkali, so there is no problem with exhaust gas. Further, since the waste liquid is mixed with an organic compound from which chlorine has been removed, an added organic solvent, neutralized NaCl, and the like, the organic substance is recovered by distillation, and the remainder is alkaline, so it is used as an alkali neutralizing liquid. In the present invention, this dechlorination and hydrogenation reaction are automatically and continuously carried out, so it is relatively easy to make them below the regulation value. The baffle plate 5 is for preventing the minute hydrogen bubbles coming out from the minute bubble outlet 11 from coming out of the conduit 6 immediately without being crushed.

この方法では反応の進行を知る為に塩素イオンメーターを活用すると良い。最初塩素は有機塩素化合物となっているので、塩素イオンはゼロである。しかし反応が進むとHCl、やNaCl,に変わって、塩素イオンメーターに感応してくるので、塩素イオンの数値は反応進行状況の目安となる。(実際には分析も必要)
中和の時アルカリの代わりにアルミニュウム、鉄、亜鉛、マグネシウムなどの金属又はその水酸化物で塩酸を中和しても良い。しかしこの場合生成物の溶解度に差があるので、塩素イオンメーターによる管理は適切でない。
In this method, a chlorine ion meter may be used to know the progress of the reaction. Since chlorine is an organic chlorine compound at first, the chlorine ion is zero. However, as the reaction progresses, it changes to HCl or NaCl, and is sensitive to the chlorine ion meter, so the value of chlorine ion is a measure of the progress of the reaction. (In fact, analysis is also necessary)
At the time of neutralization, the hydrochloric acid may be neutralized with a metal such as aluminum, iron, zinc, magnesium or the hydroxide thereof instead of the alkali. However, since there is a difference in the solubility of the product in this case, management with a chlorine ion meter is not appropriate.

一般にPCB、ダイオキシンの処理はアルカリを使っても300〜400℃の温度にすれば、殆ど脱塩素される。しかし高温でガスが漏れたり、機械が壊れたりの事故を懸念して付近住民の不安は尽きない。本発明の方法によれば全くの常温常圧で反応が進むので、若し地震などで反応容器が壊れても、液溜めのような受けを作っておくだけで充分安全である。しかも主な設備も超音波発振器と微小気泡発生器で、常温反応のため燃料費も掛からず、自動化により人件費も少なくてすみ、コストも安くなる。  In general, PCBs and dioxins are almost dechlorinated even if an alkali is used if the temperature is set to 300 to 400 ° C. However, local residents are worried about accidents such as gas leaks or machine breakage at high temperatures. According to the method of the present invention, the reaction proceeds at a completely normal temperature and normal pressure. Therefore, even if the reaction vessel breaks due to an earthquake or the like, it is sufficiently safe just to make a receptacle like a liquid reservoir. Moreover, the main equipment is an ultrasonic oscillator and a microbubble generator, which does not incur fuel costs because it reacts at room temperature, and labor can be reduced by automation, resulting in lower costs.

有機塩素化合物の脱塩素分解説明図。Explanatory drawing of dechlorination decomposition of an organic chlorine compound.

符号の説明Explanation of symbols

1:反応容器
2:有機塩素化合物と溶媒(水又は及びIPAなど有機溶媒)及び中和剤(アルカリ、NaOHなど)の混合物
3:超音波発振器
4:撹拌器
5:邪魔板
6:導管
7:水素
8:水素吸入口
9:ポンプ
10:微小気泡(ナノバブル)発生器
11:微小気泡噴出口
12:ドレン・コック
1: Reaction vessel 2: Mixture of organic chlorine compound, solvent (organic solvent such as water or IPA) and neutralizing agent (alkali, NaOH, etc.) 3: Ultrasonic oscillator 4: Stirrer 5: Baffle plate 6: Conduit 7: Hydrogen 8: Hydrogen inlet 9: Pump 10: Microbubble generator 11: Microbubble outlet 12: Drain cock

Claims (4)

有機塩素化合物を含む液体に水素ガスを含む微小な気泡を混合接触させ、その混合液に超音波を照射して微小な気泡を圧壊し、その圧壊のエネルギーで気泡中の水素と有機塩素化合物中の塩素を反応結合させて、有機塩素化合物を分解することを特徴とする有機塩素化合物の分解方法。Mixing and contacting microbubbles containing hydrogen gas to a liquid containing an organic chlorine compound, irradiating the mixture with ultrasonic waves, crushing the microbubbles, and using the energy of the collapse, the hydrogen in the bubbles and the organochlorine compound A method for decomposing an organochlorine compound, comprising reacting chlorine in a reaction to decompose the organochlorine compound. 有機塩素化合物はPCB類、ダイオキシン類、又はトリクレンなどのVOC類から選ばれる一種又は二種以上である請求項1記載の有機塩素化合物の分解方法。2. The method for decomposing an organic chlorine compound according to claim 1, wherein the organic chlorine compound is one or more selected from PCBs, dioxins, or VOCs such as trichlene. 有機塩素化合物を含む液体にアルカリ金属イオンを含有させておくことを特徴とする請求項1又は2記載の有機塩素化合物の分解方法。3. The method for decomposing an organic chlorine compound according to claim 1, wherein an alkali metal ion is contained in the liquid containing the organic chlorine compound. 有機塩素化合物を含む液体にMg、Ca、Al、Zn、Fe、など塩酸と反応する金属又は金属の水酸化物を添加することを特徴とする請求項1又は2記載の有機塩素化合物の分解方法。3. The method for decomposing an organochlorine compound according to claim 1, wherein a metal or metal hydroxide that reacts with hydrochloric acid such as Mg, Ca, Al, Zn, Fe, or the like is added to the liquid containing the organochlorine compound. .
JP2004308855A 2004-09-27 2004-09-27 Decomposition method of organochlorine compound Pending JP2006087876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308855A JP2006087876A (en) 2004-09-27 2004-09-27 Decomposition method of organochlorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308855A JP2006087876A (en) 2004-09-27 2004-09-27 Decomposition method of organochlorine compound

Publications (1)

Publication Number Publication Date
JP2006087876A true JP2006087876A (en) 2006-04-06

Family

ID=36229374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308855A Pending JP2006087876A (en) 2004-09-27 2004-09-27 Decomposition method of organochlorine compound

Country Status (1)

Country Link
JP (1) JP2006087876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129976A (en) * 2007-11-20 2009-06-11 Shibaura Mechatronics Corp Resist film peeling device and peeling method
JPWO2009090791A1 (en) * 2008-01-17 2011-05-26 Mtアクアポリマー株式会社 Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt
JPWO2009087994A1 (en) * 2008-01-07 2011-05-26 財団法人名古屋産業科学研究所 Aromatic halide dehalogenation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129976A (en) * 2007-11-20 2009-06-11 Shibaura Mechatronics Corp Resist film peeling device and peeling method
JPWO2009087994A1 (en) * 2008-01-07 2011-05-26 財団法人名古屋産業科学研究所 Aromatic halide dehalogenation method
JPWO2009090791A1 (en) * 2008-01-17 2011-05-26 Mtアクアポリマー株式会社 Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt

Similar Documents

Publication Publication Date Title
EP1731198A1 (en) Method and apparatus for dehalogenating organic halide through electrolysis
CN109095734A (en) Fenton oxidation sludge decrement process associated with ultrasonic wave-iron-reducing bacterium
JP2006142278A (en) Method for detoxifying instrument containing organic halogen compound
JP2006087876A (en) Decomposition method of organochlorine compound
KR101131074B1 (en) Method for Treatment of Discharged Ozone by Using Alkali Reductive Solution
JP3969114B2 (en) Organic halogen compound decomposition method and decomposition apparatus.
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP2000051850A (en) System for decomposing chlorine-containing substance such as pcb and trichloroethylene by far-infrared light, anion, and metal ion at ordinary temperature
JP2007105061A (en) Microwave simultaneous use type decomposing method and decomposing system of organic halogen compound
JP2007105063A (en) Method of decomposing organic halogen compound and microwave built-in type decomposition system
CN103058190A (en) Harmlessness treatment method for freon
JP4396826B2 (en) Organic halogen compound decomposition treatment method and loop decomposition system
JP2002192175A (en) Method and apparatus for decomposing organic matter
Imasaka et al. Dry dechlorination of polychlorinated biphenyls in contaminated soil by using nano-sized composite of metallic Ca/CaO and its mechanism
JP4182033B2 (en) Energy-saving decomposition method of organic halogen compounds
JP2010259681A (en) Method and apparatus for detoxification treatment of pcb-containing oil
JP2006045469A (en) Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution
JP2004276001A (en) Method for completely dechlorinating organic chlorine compound such as trichloroethylene or tetrachloroethylene in/on ground by generating hydrogen by chemical reaction by using raney nichel as reduction catalyst
JP4398764B2 (en) Method for dehalogenation of halogenated organics
JP4395643B2 (en) Degradation processing equipment
JP2003238964A (en) Method for decomposition treatment of flame-retardant
JP2005103519A (en) Method and apparatus for decomposing pollutant
JP2005161040A (en) Method for detoxifying toxic halogen compound
JP2001079305A (en) Treatment of pcb-containing oil and treating device therefor
JP2004167232A (en) Method for decomposing hardly decomposable halogenated organic compound