JP2006045469A - Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution - Google Patents

Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution Download PDF

Info

Publication number
JP2006045469A
JP2006045469A JP2004232355A JP2004232355A JP2006045469A JP 2006045469 A JP2006045469 A JP 2006045469A JP 2004232355 A JP2004232355 A JP 2004232355A JP 2004232355 A JP2004232355 A JP 2004232355A JP 2006045469 A JP2006045469 A JP 2006045469A
Authority
JP
Japan
Prior art keywords
ammonia
halogen
reaction
aqueous solution
containing polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232355A
Other languages
Japanese (ja)
Inventor
Toshitaka Funatsukuri
俊孝 船造
Yutaka Wakayama
豊 若山
Yuriko Akaike
百合子 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama TLO Co Ltd
Original Assignee
Tama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama TLO Co Ltd filed Critical Tama TLO Co Ltd
Priority to JP2004232355A priority Critical patent/JP2006045469A/en
Publication of JP2006045469A publication Critical patent/JP2006045469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently dehalogenating a halogen-containing polymer at a low cost. <P>SOLUTION: This method for dehalogenating a halogen-containing polymer is characterized by bringing the halogen-containing polymer into contact with an ammonia-containing aqueous solution heated at 180 to 350°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アンモニア含有水溶液による含ハロゲン高分子の脱ハロゲン化方法に関するものである。   The present invention relates to a method for dehalogenating a halogen-containing polymer with an aqueous ammonia-containing solution.

ポリ塩化ビニル、ポリ塩化ビニリデン等の含塩素高分子(樹脂)は化学的・機械的特性に優れ、産業又は民需製品として幅広く用いられている。これら含塩素高分子は日本の合成樹脂製品のおおよそ10%強の生産量があり、産業廃棄物や生活廃棄物中にも多量に含まれ、廃棄されている。含塩素高分子の廃棄処理としては焼却、埋め立てなどが主であるが、埋め立てでは埋立地の不足や、いわゆる環境ホルモンと称される有害な可塑剤の溶出などの問題点が指摘されている。   Chlorinated polymers (resins) such as polyvinyl chloride and polyvinylidene chloride are excellent in chemical and mechanical properties and are widely used as industrial or consumer products. These chlorine-containing polymers have a production amount of about 10% or more of Japanese synthetic resin products, and are contained in large amounts in industrial waste and domestic waste. Incineration and landfilling are the main disposal methods for chlorine-containing polymers, but problems such as shortage of landfill and the elution of harmful plasticizers called so-called environmental hormones have been pointed out.

一方、ポリ塩化ビニルの熱分解については多くの研究が行われており、窒素雰囲気下においては分解温度が300℃前後で側鎖の脱塩素化反応が進み、350℃以上では主鎖分解が起こり、600℃以上ではナフタリン系化合物が生成することが知られている(例えば、非特許文献1参照)。したがって、焼却時には塩化水素ガスやダイオキシンなどの有害物質排出の可能性があり、燃焼ガス中に含有する塩化水素は炉材の腐食の原因となるため排ガス処理が必要となる。   On the other hand, many studies have been conducted on the thermal decomposition of polyvinyl chloride. In a nitrogen atmosphere, side chain dechlorination proceeds at a decomposition temperature of about 300 ° C., and main chain decomposition occurs at 350 ° C. or higher. It is known that a naphthalene-based compound is produced at 600 ° C. or higher (for example, see Non-Patent Document 1). Therefore, there is a possibility that harmful substances such as hydrogen chloride gas and dioxin may be discharged during incineration, and hydrogen chloride contained in the combustion gas causes corrosion of the furnace material, which requires exhaust gas treatment.

このような問題を解決するために、含塩素高分子を前処理して脱塩素化を行うことが考えられており、例えば、超臨界水あるいは超臨界水酸化処理(例えば、非特許文献1参照)、熱水処理、メカノケミカル法などがある。しかし、超臨界水処理では、臨界温度374℃以上、臨界圧22.06MPa以上の条件下でおこなわれるため、高温処理によりポリ塩化ビニルの炭素骨格鎖が切断されて低分子有機ハロゲン化合物が生成する可能性があり、また、高温高圧装置を用いるため建設コストが高く、保守が容易ではない。また、反応装置の腐食が激しくこれを抑制するために、装置内を2重構造にしたり、温度勾配をつけたりするなど、装置構造が複雑となる。また、メカノケミカル法では酸化カルシウムや炭酸カルシウム粒子と含塩素樹脂粒子との接触により脱塩素化を行うが、対象試料との接触を良好にするために試料の粉砕処理が必要である。   In order to solve such a problem, it is considered to dechlorinate by pretreating a chlorine-containing polymer. For example, supercritical water or supercritical water oxidation treatment (for example, see Non-Patent Document 1). ), Hydrothermal treatment, and mechanochemical methods. However, since supercritical water treatment is performed under conditions of a critical temperature of 374 ° C. or higher and a critical pressure of 22.06 MPa or higher, the carbon skeleton chain of polyvinyl chloride is cleaved by high-temperature treatment to generate a low molecular organic halogen compound. In addition, the construction cost is high because of the use of a high-temperature and high-pressure device, and maintenance is not easy. Also, the corrosion of the reaction apparatus is severe, and in order to suppress this, the structure of the apparatus becomes complicated, such as a double structure inside the apparatus or a temperature gradient. In the mechanochemical method, dechlorination is performed by contacting calcium oxide or calcium carbonate particles with chlorine-containing resin particles. However, the sample must be pulverized in order to achieve good contact with the target sample.

また、熱水処理では、塩化水素の形で脱塩素化が進み、水蒸気と共に凝縮して塩酸を生成するため反応器の腐食の問題がある。これを防止するため、分解生成ガスに水酸化ナトリウム、水酸化カリウム等の強アルカリ水溶液を作用させて中和する方法(例えば、非特許文献2参照)や、分解生成ガスにアンモニアを作用させて塩化アンモニウムを回収する方法(例えば、特許文献1又は2参照)等が開発されている。しかし、強アルカリを添加する場合は、添加塩基濃度が数パーセント以上とアルカリ濃度が高いため、反応器のアルカリ腐食の原因となる。また、特許文献1記載の方法は、熱分解のために350℃以上に加熱することが必要である。
特開昭52−53979号公報 特開2000−104075号公報 圓藤紀代司著、「高温高圧水中におけるポリ塩化ビニルの分解」、高分子加工、2001年、第50巻、第10号、p.434−438 申宣明、吉岡敏明、奥脇昭嗣著、「農業用ポリ塩化ビニルフィルムの高温水溶液処理における分解挙動と生成する炭素質の特性」、廃棄物学会論文誌、1998年、第9巻、第4号、p.141−148
Further, in the hydrothermal treatment, dechlorination proceeds in the form of hydrogen chloride, and it condenses with water vapor to produce hydrochloric acid, which causes a problem of corrosion of the reactor. In order to prevent this, a method in which a strong alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is allowed to act on the decomposition product gas to neutralize it (for example, see Non-Patent Document 2), or ammonia is allowed to act on the decomposition product gas. A method for recovering ammonium chloride (for example, see Patent Document 1 or 2) has been developed. However, when a strong alkali is added, the alkali concentration of the added base is as high as several percent or more, which causes alkali corrosion of the reactor. Further, the method described in Patent Document 1 requires heating to 350 ° C. or higher for thermal decomposition.
JP-A 52-53979 JP 2000-104075 A Kiyoji Saito, “Decomposition of Polyvinyl Chloride in High Temperature and High Pressure Water”, Polymer Processing, 2001, Vol. 50, No. 10, p. 434-438 Nobuaki Shin, Toshiaki Yoshioka, Shogo Okwaki, “Decomposition behavior of high-temperature aqueous solution of polyvinyl chloride film for agriculture and characteristics of generated carbon”, Journal of Waste Science, 1998, Vol. 9, No. 4, p. 141-148

本発明は、含ハロゲン高分子を低コストで効率的に脱ハロゲン化する方法を提供することを目的とする。   An object of the present invention is to provide a method for efficiently dehalogenating a halogen-containing polymer at a low cost.

本発明者らは、鋭意検討を重ねた結果、アンモニアは他のアルカリ化合物に比べて含ハロゲン高分子中への浸透性または透過性に優れており、脱ハロゲン化速度が大きいことを見出した。さらに本発明者らは、180℃以上350℃未満に加熱したアンモニア含有水溶液を含ハロゲン高分子に接触させることで、炭素骨格鎖の切断を伴うような激しい熱分解をすることなく含ハロゲン高分子を効率的に脱ハロゲン化できることを見い出した。本発明は、このような知見に基づきなされるに至ったものである。   As a result of intensive studies, the present inventors have found that ammonia is superior in permeability or permeability into halogen-containing polymers as compared with other alkali compounds and has a high dehalogenation rate. Furthermore, the present inventors contact the halogen-containing polymer with an ammonia-containing aqueous solution heated to 180 ° C. or more and less than 350 ° C., so that the halogen-containing polymer does not undergo severe thermal decomposition that involves breaking of the carbon skeleton chain. It was found that can be efficiently dehalogenated. The present invention has been made based on such knowledge.

すなわち、本発明は、
(1)180℃以上350℃未満に加熱したアンモニア含有水溶液を、含ハロゲン高分子に接触させることを特徴とする含ハロゲン高分子の脱ハロゲン化方法、
(2)前記アンモニア含有水溶液の濃度が0.006〜10mol/lであることを特徴とする(1)項に記載の含ハロゲン高分子の脱ハロゲン化方法、および
(3)前記含ハロゲン高分子がポリ塩化ビニル又はポリ塩化ビニリデンであることを特徴とする(1)又は(2)項に記載の含ハロゲン高分子の脱ハロゲン化方法
を提供するものである。
本発明において、含ハロゲン高分子とは、ハロゲンを含有する高分子化合物及びハロゲンを含有する樹脂組成物をいう。ここで、ハロゲン原子の含有形態は限定されるものではなく、高分子に、構成原子として結合するもの、ドープされたもの、他の添加剤として混合されたもののいずれでもよい。また、高分子は固体状でも溶融体でもよい。
That is, the present invention
(1) A method for dehalogenating a halogen-containing polymer, comprising contacting an ammonia-containing aqueous solution heated to 180 ° C. or more and less than 350 ° C. with the halogen-containing polymer,
(2) The method for dehalogenating a halogen-containing polymer as described in (1) above, wherein the concentration of the ammonia-containing aqueous solution is 0.006 to 10 mol / l, and (3) the halogen-containing polymer The present invention provides a method for dehalogenating a halogen-containing polymer as described in (1) or (2), wherein is a polyvinyl chloride or polyvinylidene chloride.
In the present invention, the halogen-containing polymer means a polymer compound containing halogen and a resin composition containing halogen. Here, the containing form of the halogen atom is not limited, and may be any of those bonded to the polymer as constituent atoms, those doped, and those mixed as other additives. The polymer may be solid or melted.

本発明の方法によれば、180℃以上350℃未満に加熱したアンモニア含有水溶液を含ハロゲン高分子に接触させることで、炭素骨格鎖の切断を伴うような激しい熱分解をすることなく含ハロゲン高分子を効率的に脱ハロゲン化することができる。該アンモニア含有水溶液は樹脂透過性に優れるため、樹脂試料の粉砕、微粒子化が不要であり、さまざまな形状の試料についても効率的に脱ハロゲン化することができる。
また、本発明によれば、低濃度のアンモニア含有水溶液を用いて効率的に脱ハロゲン化することができるので、アンモニア使用量は少量でよく、また、し尿処理、畜産廃棄物処理、下水処理、下水汚泥処理、生ゴミ処理などの各種有機廃棄物処理におけるメタン醗酵工程やその前処理工程で発生するアンモニアを使用でき、コスト的にも優れている。近年、下水処理場等から発生するアンモニアの処分について問題となっているが、このアンモニアを本発明に使用することで、このような問題についても併せて解決することができる。
According to the method of the present invention, an aqueous solution containing ammonia heated to 180 ° C. or more and less than 350 ° C. is brought into contact with the halogen-containing polymer, so that the halogen-containing high concentration can be obtained without violent thermal decomposition such as breaking the carbon skeleton chain. Molecules can be efficiently dehalogenated. Since the ammonia-containing aqueous solution is excellent in resin permeability, it is not necessary to pulverize the resin sample and make fine particles, and it is possible to efficiently dehalogenate samples having various shapes.
In addition, according to the present invention, it can be efficiently dehalogenated using a low-concentration ammonia-containing aqueous solution, so that the amount of ammonia used may be small, and human waste treatment, livestock waste treatment, sewage treatment, Ammonia generated in the methane fermentation process and its pretreatment process in various organic waste treatments such as sewage sludge treatment and garbage treatment can be used, which is excellent in terms of cost. In recent years, there has been a problem with disposal of ammonia generated from a sewage treatment plant or the like. By using this ammonia in the present invention, such a problem can also be solved.

以下、本発明について詳細に説明する。
本発明の含ハロゲン高分子の脱ハロゲン化方法は、180℃以上350℃未満に加熱したアンモニア含有水溶液を含ハロゲン高分子に接触させることを特徴とする。
従来の熱水処理法において、水酸化ナトリウム、水酸化カリウム、アンモニアなどのアルカリ剤が用いられているが、これは、含ハロゲン高分子から脱離したハロゲンガスやハロゲン化水素を中和する目的で用いられている。
本発明では、アンモニアが他のアルカリ化合物に比べて含ハロゲン高分子中への浸透性または透過性に優れており、脱ハロゲン化速度が大きいことに着目し、より低温でより効率的に脱ハロゲン化反応を起こす目的でアンモニア含有水溶液を使用する。アンモニア含有水溶液は樹脂透過性に優れるため、樹脂試料の粉砕、微粒子化が不要であり、さまざまな形状の試料についても効率的に脱ハロゲン化することができる。また、アンモニア含有水溶液は塩基性のため、脱ハロゲン化反応生成物(例えば塩酸など)の中和にも役立つ。
Hereinafter, the present invention will be described in detail.
The halogen-containing polymer dehalogenation method of the present invention is characterized in that an ammonia-containing aqueous solution heated to 180 ° C. or more and less than 350 ° C. is brought into contact with the halogen-containing polymer.
Alkaline agents such as sodium hydroxide, potassium hydroxide, and ammonia are used in conventional hydrothermal treatment methods. This is intended to neutralize halogen gas and hydrogen halide released from halogen-containing polymers. It is used in.
In the present invention, it is noted that ammonia is more permeable or permeable to halogen-containing polymers than other alkali compounds, and has a high dehalogenation rate. An ammonia-containing aqueous solution is used for the purpose of causing a chemical reaction. Since the ammonia-containing aqueous solution is excellent in resin permeability, it is not necessary to pulverize the resin sample and make fine particles, and it is possible to efficiently dehalogenate samples having various shapes. Further, since the aqueous ammonia-containing solution is basic, it is useful for neutralization of a dehalogenation reaction product (for example, hydrochloric acid).

本発明において、アンモニア含有水溶液とは、アンモニア水溶液およびアンモニウム塩の水溶液をいう。アンモニウム塩としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、カルバミン酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等のアンモニアの弱酸塩が挙げられる。アンモニアの強酸塩は、その水溶液が酸性となるため、同濃度のアンモニア水溶液あるいは弱酸塩の水溶液と比べて脱ハロゲン効果は小さい。本発明ではアンモニア水溶液の使用が特に好ましい。   In the present invention, the ammonia-containing aqueous solution refers to an aqueous ammonia solution and an aqueous solution of an ammonium salt. Examples of the ammonium salt include weak acid salts of ammonia such as ammonium carbonate, ammonium hydrogen carbonate, ammonium carbamate, ammonium acetate, and ammonium phosphate. The strong acid salt of ammonia is acidic in its aqueous solution, so the dehalogenation effect is small compared to an aqueous ammonia solution or a weak acid salt solution of the same concentration. In the present invention, it is particularly preferable to use an aqueous ammonia solution.

本発明に用いられるアンモニア含有水溶液の濃度は、0.006〜10mol/lであることが好ましく、0.6〜6mol/lであることがより好ましい。アンモニア含有水溶液の濃度が高いほど脱ハロゲン化速度は大きくなるが、濃度が高すぎると反応装置の腐食を招く恐れがある。
本発明では低濃度のアンモニア含有水溶液で十分に効率的に脱ハロゲン化することができるので、アンモニア使用量は少量でよく、また、し尿処理、畜産廃棄物処理、下水処理、下水汚泥処理、生ゴミ処理などの各種有機廃棄物処理におけるメタン醗酵工程やその前処理工程で発生するアンモニアを使用できる。
The concentration of the aqueous ammonia-containing solution used in the present invention is preferably 0.006 to 10 mol / l, and more preferably 0.6 to 6 mol / l. The higher the concentration of the ammonia-containing aqueous solution, the higher the dehalogenation rate. However, if the concentration is too high, the reactor may be corroded.
In the present invention, it is possible to dehalogenate sufficiently efficiently with a low-concentration aqueous solution containing ammonia, so that the amount of ammonia used may be small, and human waste treatment, livestock waste treatment, sewage treatment, sewage sludge treatment, Ammonia generated in the methane fermentation process and its pretreatment process in various organic waste treatment such as garbage treatment can be used.

本発明において、アンモニア含有水溶液は180℃以上350℃未満に加熱され、好ましくは200〜250℃に加熱される。従来、窒素雰囲気下での脱ハロゲン化反応は約300℃以上で行われており、含ハロゲン高分子の炭素骨格鎖の切断を伴う激しい熱分解は350℃以上で起こる。本発明では低温で処理するため、含ハロゲン高分子の炭素骨格鎖の切断を伴う激しい熱分解は起こらない。また、本発明は、従来法よりも低温で脱ハロゲン化反応を行うため、処理温度を低下させることで処理圧力を低減することもでき、反応器の腐食を激減することができる。特に、処理温度が200℃程度の場合は、テフロン内張り反応器で十分処理できるので装置の低コスト化を実現できる。
本発明において、180℃以上350℃未満に加熱したアンモニア含有水溶液は、液体状態のみならず気体状態のものも含む。したがって、180℃以上350℃未満のアンモニア含有蒸気を含ハロゲン高分子に接触させることも本発明の範囲に含まれる。
In the present invention, the ammonia-containing aqueous solution is heated to 180 ° C. or higher and lower than 350 ° C., preferably 200 to 250 ° C. Conventionally, the dehalogenation reaction in a nitrogen atmosphere has been performed at about 300 ° C. or higher, and severe thermal decomposition accompanied by cleavage of the carbon skeleton chain of the halogen-containing polymer occurs at 350 ° C. or higher. In the present invention, since the treatment is performed at a low temperature, no severe thermal decomposition accompanied by the cleavage of the carbon skeleton chain of the halogen-containing polymer occurs. Further, since the present invention performs the dehalogenation reaction at a lower temperature than the conventional method, the processing pressure can be reduced by lowering the processing temperature, and the corrosion of the reactor can be drastically reduced. In particular, when the treatment temperature is about 200 ° C., the treatment can be sufficiently performed in a Teflon-lined reactor, so that the cost of the apparatus can be reduced.
In the present invention, the ammonia-containing aqueous solution heated to 180 ° C. or higher and lower than 350 ° C. includes not only a liquid state but also a gaseous state. Therefore, contacting the halogen-containing polymer with an ammonia-containing vapor at 180 ° C. or higher and lower than 350 ° C. is also included in the scope of the present invention.

反応装置としては、回分式反応器、半回分式反応器、又は流通式反応器のいずれを用いてもよいが、回分式又は半回分式反応器を用いることが好ましく、半回分式反応器を用いて行うことがより好ましい。半回分式反応器を用いる場合、含ハロゲン高分子試料を反応器内に入れてアンモニア含有水溶液を流通させる。なお、流通式反応器の場合、含ハロゲン高分子試料およびアンモニア含有水溶液を同時に反応器内に導入するため連続的に脱ハロゲン化反応を行うことができるが、固体試料を連続的に供給するためには、試料の大きさの均一化や粉砕などの操作が必要となる。
回分式又は半回分式反応器において、密閉された反応器内のアンモニア含有水溶液は加熱に伴って加圧されるが、さらに外部からポンプを用いて加圧してもよい。ただし、加圧上限は特に制限されないが、装置のコストを考慮すると低いほうが好ましい。
本発明に用いられるアンモニア含有水溶液は、180℃以上350℃未満に加熱し1〜50MPaに加圧されることが好ましく、200〜250℃に加熱し5〜15MPaに加圧されることがより好ましい。
As the reaction apparatus, any of a batch reactor, a semi-batch reactor, or a flow reactor may be used, but a batch or semi-batch reactor is preferably used, and a semi-batch reactor is used. It is more preferable to carry out using. When a semi-batch reactor is used, a halogen-containing polymer sample is placed in the reactor and an aqueous ammonia-containing solution is circulated. In the case of a flow reactor, a halogen-containing polymer sample and an ammonia-containing aqueous solution are simultaneously introduced into the reactor so that a dehalogenation reaction can be performed continuously. For this, operations such as uniformizing the size of the sample and pulverization are required.
In a batch or semi-batch reactor, the ammonia-containing aqueous solution in the sealed reactor is pressurized with heating, but may be further pressurized from the outside using a pump. However, the upper limit of pressurization is not particularly limited, but is preferably lower considering the cost of the apparatus.
The ammonia-containing aqueous solution used in the present invention is preferably heated to 180 to 350 ° C. and pressurized to 1 to 50 MPa, more preferably 200 to 250 ° C. and pressurized to 5 to 15 MPa. .

本発明では、脱ハロゲン化反応が進むにつれて塩酸等の反応生成物により反応液のpHが低下していく。したがって、反応液の中和を考慮して、アンモニア含有水溶液は、含有ハロゲン量と等モル量以上のアンモニア量を使用することが好ましい。特に、回分式反応器を用いる場合には、反応器の腐食を防止するために、含有ハロゲン量と等モル量以上のアンモニア量を使用することが望ましい。   In the present invention, as the dehalogenation reaction proceeds, the pH of the reaction solution is lowered by a reaction product such as hydrochloric acid. Therefore, in consideration of neutralization of the reaction solution, the ammonia-containing aqueous solution is preferably used in an amount of ammonia equal to or greater than the amount of halogen contained. In particular, when a batch reactor is used, in order to prevent corrosion of the reactor, it is desirable to use an ammonia amount equimolar to the halogen content.

本発明が適用されるハロゲンを含有する高分子化合物としては、好ましくは含塩素高分子、含臭素高分子、含ヨウ素高分子であり、より好ましくは含塩素高分子、含臭素高分子であり、特に好ましくは含塩素高分子である。具体的には、含塩素高分子としては、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリクロロプレン等、含臭素高分子としてはポリ臭化ビニル、ポリ臭化パラキシリレン等が挙げられる。また、ポリアセチレンやポリチエノピラジン、ポリフェロセニレンシリレン等にハロゲン元素(例えばヨウ素)をドーピングした導電性高分子にも本発明を適用することができる。特に、汎用されているポリ塩化ビニル又はポリ塩化ビニリデンに本発明を好適に適用することができる。
また、本発明が適用されるハロゲンを含有する樹脂組成物としては、例えば、デカブロモジフェニルエーテル、ポリ臭化ジフェニルエーテル、ポリ臭化ナフタレン等の難燃剤を含む樹脂が挙げられる。
アンモニア含有水溶液は樹脂透過性に優れるため、樹脂試料の粉砕、微粒子化が不要である。したがって、処理される含ハロゲン高分子はいかなる形状でもよく、溶融した液状のものでもよい。
The halogen-containing polymer compound to which the present invention is applied is preferably a chlorine-containing polymer, a bromine-containing polymer, or an iodine-containing polymer, more preferably a chlorine-containing polymer or a bromine-containing polymer, Particularly preferred is a chlorine-containing polymer. Specifically, examples of the chlorine-containing polymer include polyvinyl chloride, polyvinylidene chloride, and polychloroprene, and examples of the bromine-containing polymer include polyvinyl bromide and polybromoxylylene. The present invention can also be applied to a conductive polymer obtained by doping a polyacetylene, polythienopyrazine, polyferrocenylene silylene, or the like with a halogen element (for example, iodine). In particular, the present invention can be suitably applied to commonly used polyvinyl chloride or polyvinylidene chloride.
Examples of the halogen-containing resin composition to which the present invention is applied include resins containing flame retardants such as decabromodiphenyl ether, polybrominated diphenyl ether, and polybrominated naphthalene.
Since the ammonia-containing aqueous solution is excellent in resin permeability, it is not necessary to pulverize the resin sample and make it fine particles. Therefore, the halogen-containing polymer to be treated may have any shape and may be a molten liquid.

本発明の方法の操作手順について、回分式反応器を用いる場合を例に挙げて説明する。まず、反応容器内に含ハロゲン高分子試料を設置し、反応容器の溶媒導入口からアンモニア含有水溶液を導入して反応容器を密栓する。反応容器内のアンモニア含有水溶液が180℃以上350℃未満となるように反応容器を加熱し、所定の温度条件下で脱ハロゲン化反応を行う。反応時間はアンモニア含有水溶液の温度と濃度に依存し、半回分式反応器を用いる場合はさらにアンモニア含有水溶液の流速に依存するが、5〜120分が好ましく、20〜60分がより好ましい。
所定時間経過後、開栓して常圧に戻し、反応容器の溶媒排出口から反応液を排出し、これを冷却凝縮して回収する。回収した溶液については検定され、有害物質が検出されたときは任意の方法で無害化処理される。例えば、内分泌かく乱物質が検出されたときは亜臨界水酸化処理により完全に酸化分解することができる。一方、処理後の固体残渣は反応容器の冷却後回収される。脱ハロゲン化反応後の固体残渣は主として炭素と水素からなるので、焼却して熱源とすることができ、また活性炭などの原料とすることもできる。
The operation procedure of the method of the present invention will be described by taking a case of using a batch reactor as an example. First, a halogen-containing polymer sample is placed in a reaction vessel, an aqueous ammonia-containing solution is introduced from a solvent introduction port of the reaction vessel, and the reaction vessel is sealed. The reaction vessel is heated so that the ammonia-containing aqueous solution in the reaction vessel is 180 ° C. or higher and lower than 350 ° C., and the dehalogenation reaction is performed under a predetermined temperature condition. The reaction time depends on the temperature and concentration of the ammonia-containing aqueous solution. When a semi-batch reactor is used, it further depends on the flow rate of the ammonia-containing aqueous solution, but is preferably 5 to 120 minutes, more preferably 20 to 60 minutes.
After a predetermined time has elapsed, the container is opened and returned to normal pressure, the reaction solution is discharged from the solvent outlet of the reaction vessel, and this is cooled and condensed to be recovered. The collected solution is tested, and when harmful substances are detected, they are detoxified by any method. For example, when an endocrine disrupting substance is detected, it can be completely oxidatively decomposed by subcritical water oxidation treatment. On the other hand, the solid residue after the treatment is recovered after cooling the reaction vessel. Since the solid residue after the dehalogenation reaction is mainly composed of carbon and hydrogen, it can be incinerated and used as a heat source, and can also be used as a raw material such as activated carbon.

本発明は、具体的には例えば以下の用途に用いることができる。
(1)使用済み医療器具(注射器など)の処理
本発明は180℃以上350℃未満という高温で処理され、かつ試料の粉砕が不要なため、使用済み注射器などの医療機材をそのまま洗浄や滅菌など手を加えることなく処理することができるので安全性が高い。また、気体生成物がほとんど発生しないのですべて密閉系で処理でき、廃液をすべて回収し、分析してから廃棄することができる。有害たんぱく質や病原菌などに汚染されている可能性がある場合、酸素あるいは過酸化水素などの酸化剤を添加した亜臨界水酸化処理などの工程を経ることで排水中の有機物をそのまま完全に酸化分解できる。
Specifically, the present invention can be used for the following applications, for example.
(1) Treatment of used medical devices (such as syringes) Since the present invention is treated at a high temperature of 180 ° C. or higher and lower than 350 ° C. and does not require pulverization of the sample, medical devices such as used syringes are washed and sterilized as they are. It is safe because it can be processed without any changes. In addition, since almost no gas product is generated, it can be treated entirely in a closed system, and all the waste liquid can be collected, analyzed and discarded. When there is a possibility of contamination by harmful proteins or pathogens, organic matter in the wastewater is completely oxidatively decomposed through a process such as subcritical water oxidation with an oxidizing agent such as oxygen or hydrogen peroxide. it can.

(2)電線被覆材の無害化、資源化
電線被覆材は多量に生産され、廃棄されているが、電線被覆材には柔軟性を持たせたり難燃性を付与したりするために可塑剤や難燃剤等の各種添加剤が含まれており、廃棄時にこれら添加剤が内分泌かく乱物質(いわゆる環境ホルモン)として溶出し環境へ影響を与えるという問題がある。本発明の方法は閉鎖系処理であるので、処理後は固体残渣および廃液としてすべて回収することができ、さらに亜臨界水酸化処理を行って内分泌かく乱物質を完全に酸化分解して無害化することが可能である。固体残渣は主として炭素と水素からなるので、焼却して熱源とすることができ、また活性炭などの原料とすることもできる。なお、被覆材中に含まれる繊維などの合成樹脂、紙、ゴムなどについては分別処理する必要がなく、これらは本発明における処理温度ではほとんど分解しないか、分解速度が遅いため機械的に分類できる。
(2) Detoxification and resource recycling of wire covering materials Wire covering materials are produced and discarded in large quantities, but plasticizers are used to make wire covering materials flexible and flame retardant. And various additives such as flame retardants, and when discarded, these additives are eluted as endocrine disrupting substances (so-called environmental hormones) and have an effect on the environment. Since the method of the present invention is a closed system treatment, it can be recovered as a solid residue and waste liquid after the treatment, and further, a subcritical hydroxylation treatment is performed to completely oxidize and detoxify the endocrine disrupting substance. Is possible. Since the solid residue is mainly composed of carbon and hydrogen, it can be incinerated to be a heat source, and can also be a raw material such as activated carbon. In addition, it is not necessary to separate the synthetic resin such as fibers contained in the coating material, paper, rubber, etc., and these can hardly be decomposed at the processing temperature in the present invention or can be classified mechanically because the decomposition speed is slow. .

(3)水道管、下水配管
水道管や下水配管に用いられている硬質塩化ビニルの処理はさまざまな形状、大きさが存在するため、従来、粉砕などの微細化に要するエネルギーが大きかった。しかし、本発明によれば微細化の必要が全くないか、あるいは少なくてすむ。
(4)農業用塩化ビニル
ビニールハウスなどに使用され、毎年多量に廃棄されている農業用塩化ビニル樹脂は土壌などで汚れている。しかし、本発明によれば、洗浄工程がほとんど不要で、そのまま処理することができる。
(3) Water pipes and sewage pipes Since the processing of hard vinyl chloride used in water pipes and sewage pipes has various shapes and sizes, conventionally, energy required for miniaturization such as pulverization has been large. However, according to the present invention, there is no need for miniaturization or less.
(4) Agricultural vinyl chloride Agricultural vinyl chloride resin used in greenhouses and disposed of in large quantities every year is soiled with soil. However, according to the present invention, the cleaning step is almost unnecessary and the processing can be performed as it is.

(5)壁紙などの建材の処理
壁紙は塩化ビニル樹脂に合成のりや紙などが付着しているため、従来、その処理は困難を極めていた。しかし、本発明によれば、紙や合成樹脂等からなる積層試料について、そのまま処理することができ、しかも本発明における処理温度では、これら高分子材料はほとんど分解しないか、分解速度が遅いため機械的に分類できる。
(6)食品包装用ラップ
スーパーなどで使用されている食品包装用ラップは、ポリ塩化ビニリデンなどの含塩素高分子材料が多く使用されており、肉汁や野菜汁などが付着している。本発明によれば、洗浄工程がほとんど不要で、そのまま処理することができる。
(5) Treatment of building materials such as wallpaper Since the wallpaper is made of vinyl chloride resin with synthetic glue or paper, it has been extremely difficult to treat. However, according to the present invention, a laminated sample made of paper, synthetic resin, or the like can be processed as it is, and at the processing temperature in the present invention, these polymer materials are hardly decomposed or the decomposition rate is slow, so that the machine Can be classified.
(6) Food packaging wraps Food packaging wraps used in supermarkets and the like use a lot of chlorine-containing polymer materials such as polyvinylidene chloride, and meat juices, vegetable juices, and the like adhere to them. According to the present invention, the cleaning process is almost unnecessary, and can be processed as it is.

以下に本発明を実施例に基づいてさらに詳細に説明するが、これらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but is not limited thereto.

実施例1
反応装置に半回分式反応器を用いた。市販の粒状ポリ塩化ビニル(商品名:Vinyl
Chloride Polymer、関東化学社製、ポリ塩化ビニル100%、分子量62500)50mgを反応容器に入れ、シリンジポンプ(100DM、商品名、ISCO社製)を用いて0.6mol/lのアンモニア水溶液を流速3ml/min(標準状態)で連続的に反応器に供給した。アンモニア水溶液を反応器に供給を始めると同時に、反応器を240℃に保たれている溶融塩浴に浸した。反応器を溶融塩浴に浸した時点から反応時間の計測を開始した。熱電対を用いて反応器内の温度を測定したところ、1.5分以内に240℃に達した。反応温度240℃で所定時間反応を行った後、反応溶液を回収して脱塩素率を測定した。脱塩素率の測定は、イオンクロマトグラフ(DX−120、日本ダイオネックス製;分離カラムIon Pax AS12A、それぞれ商品名)を用いて塩素イオン濃度を測定することにより行った。
比較例として、上記のアンモニア水溶液に代えて、1mol/lの水酸化ナトリウム水溶液を導入したもの、及び蒸留水を導入したものについても同様に試験を行い、測定を行った。
Example 1
A semi-batch reactor was used as the reactor. Commercially available granular polyvinyl chloride (trade name: Vinyl
Chloride Polymer (manufactured by Kanto Chemical Co., Inc., 100% polyvinyl chloride, molecular weight 62500) is placed in a reaction vessel, and a 0.6 mol / l aqueous ammonia solution is flowed at a flow rate of 3 ml using a syringe pump (100DM, trade name, manufactured by ISCO). / Min (standard state) continuously fed to the reactor. At the same time that the aqueous ammonia solution was started to be fed to the reactor, the reactor was immersed in a molten salt bath maintained at 240 ° C. The reaction time measurement was started from the time when the reactor was immersed in the molten salt bath. When the temperature in the reactor was measured using a thermocouple, it reached 240 ° C. within 1.5 minutes. After reacting for a predetermined time at a reaction temperature of 240 ° C., the reaction solution was recovered and the dechlorination rate was measured. The measurement of the dechlorination rate was performed by measuring the chloride ion concentration using an ion chromatograph (DX-120, manufactured by Nippon Dionex; separation column Ion Pax AS12A, each trade name).
As a comparative example, in place of the aqueous ammonia solution described above, a test was conducted in the same manner with respect to a sample introduced with a 1 mol / l sodium hydroxide aqueous solution and a sample introduced with distilled water.

これらの測定結果を図1に示す。図1は、脱塩素率の経時変化を示すグラフであり、縦軸は脱塩素率(%)を、横軸は反応時間(分)を表す。
図1から明らかなように、蒸留水と水酸化ナトリウムとを比較すると、水酸化ナトリウムはそれほど脱塩素率の向上に効果がないことがわかった。水酸化ナトリウムは、従来の熱水処理で添加剤として用いられているが、これは脱塩素率を向上させる目的ではなく、反応の進行に伴うpH低下を調整する目的で添加されていることがわかる。
これに対し、アンモニア水溶液は、水酸化ナトリウム水溶液よりも低濃度であるにもかかわらず、脱塩素率を飛躍的に向上させることがわかった。
The measurement results are shown in FIG. FIG. 1 is a graph showing the change over time in the dechlorination rate. The vertical axis represents the dechlorination rate (%), and the horizontal axis represents the reaction time (minutes).
As is clear from FIG. 1, when distilled water was compared with sodium hydroxide, it was found that sodium hydroxide was not very effective in improving the dechlorination rate. Sodium hydroxide is used as an additive in conventional hydrothermal treatment, but this is not the purpose of improving the dechlorination rate, but is added for the purpose of adjusting the pH drop accompanying the progress of the reaction. Recognize.
On the other hand, it was found that the aqueous ammonia solution drastically improves the dechlorination rate despite the lower concentration than the aqueous sodium hydroxide solution.

実施例2
実施例1で用いたアンモニア水溶液、水酸化ナトリウム水溶液、蒸留水のそれぞれについて、反応温度を変化させたこと以外は実施例1と同様にして反応を行った。反応溶液を回収して、脱塩素化速度定数を以下のようにして求めた。脱塩素化速度は、一次反応速度式で近似できると仮定できるので、反応速度は下記(1)式で表される。
−dC/dt=kC (1)
式中、Cは試料中の塩素濃度、kは反応速度定数、tは時間である。ここで、試料中の塩素濃度Cは、元素分析によって求めた初めの試料中の塩素濃度と実施例1と同様にイオンクロマトグラフを用いて測定した溶出塩素イオン濃度との差から求めた。
この(1)式を積分すると下記(2)式が導き出される。
ln(C/C0)=−kt=−Aexp(−E/RT)t (2)
式中、Cは反応時間tにおける試料中の塩素濃度、C0は初めの試料中の塩素濃度、Aは頻度因子、Eは活性化エネルギー、Rは気体定数である。
各温度において反応時間に対してC/C0を対数プロットし、(2)式より得られる直線の勾配(−k)より反応速度定数を求めた。
Example 2
Each of the aqueous ammonia solution, aqueous sodium hydroxide solution, and distilled water used in Example 1 was reacted in the same manner as in Example 1 except that the reaction temperature was changed. The reaction solution was recovered and the dechlorination rate constant was determined as follows. Since it can be assumed that the dechlorination rate can be approximated by the first-order reaction rate equation, the reaction rate is expressed by the following equation (1).
-DC / dt = kC (1)
In the formula, C is a chlorine concentration in the sample, k is a reaction rate constant, and t is time. Here, the chlorine concentration C in the sample was obtained from the difference between the chlorine concentration in the initial sample obtained by elemental analysis and the eluted chlorine ion concentration measured using an ion chromatograph in the same manner as in Example 1.
When this equation (1) is integrated, the following equation (2) is derived.
ln (C / C 0 ) = − kt = −Aexp (−E / RT) t (2)
In the formula, C is the chlorine concentration in the sample at the reaction time t, C 0 is the chlorine concentration in the first sample, A is the frequency factor, E is the activation energy, and R is the gas constant.
C / C 0 was logarithmically plotted against the reaction time at each temperature, and the reaction rate constant was determined from the linear gradient (−k) obtained from the equation (2).

これらの結果を図2に示す。図2は、各温度における脱塩素化速度定数についてのアレニウスプロットを示すグラフであり、縦軸は脱塩素化速度定数k(1/min)を、横軸は反応温度1000/T(1/K)を表す。
図2から明らかなように、0.6mol/lアンモニア水溶液についての脱塩素化速度は、無添加の蒸留水の場合の35〜40倍、1mol/l水酸化ナトリウム水溶液の場合より15〜20倍大きいことがわかった。このことから、アンモニア水溶液はどの温度範囲でも同様に脱塩素効果が大きいことがわかった。
These results are shown in FIG. FIG. 2 is a graph showing an Arrhenius plot for the dechlorination rate constant at each temperature. The vertical axis represents the dechlorination rate constant k (1 / min), and the horizontal axis represents the reaction temperature 1000 / T (1 / K). ).
As is clear from FIG. 2, the dechlorination rate for the 0.6 mol / l aqueous ammonia solution is 35 to 40 times that for distilled water without addition and 15 to 20 times that for the 1 mol / l sodium hydroxide aqueous solution. I found it big. From this, it was found that the aqueous ammonia solution has a similar dechlorination effect in any temperature range.

実施例3
反応装置に回分式反応器を用いた。室温の反応容器(内容積3.6ml)に、試料30mgを入れ、所定濃度のアンモニア水溶液2mlを入れた。反応容器を密栓し、220℃に保たれている溶融塩浴に浸した。反応器を溶融塩浴に浸した時点から反応時間の計測を開始した。熱電対を用いて反応器内の温度を測定したところ、1.5分以内に220℃に達した。反応温度220℃で反応を行った後、反応容器を浴から取り出し、水で急冷した。反応容器から内容物を取り出し、蒸留水でろ過し、ろ液中の塩素イオン濃度を実施例1と同様にイオンクロマトグラフを用いて脱塩素率を測定した。
Example 3
A batch reactor was used as the reactor. A 30 mg sample was placed in a room temperature reaction vessel (internal volume 3.6 ml), and 2 ml of an aqueous ammonia solution having a predetermined concentration was placed. The reaction vessel was sealed and immersed in a molten salt bath maintained at 220 ° C. The reaction time measurement was started from the time when the reactor was immersed in the molten salt bath. When the temperature inside the reactor was measured using a thermocouple, it reached 220 ° C. within 1.5 minutes. After carrying out the reaction at a reaction temperature of 220 ° C., the reaction vessel was taken out of the bath and quenched with water. The contents were taken out from the reaction vessel, filtered with distilled water, and the chlorine ion concentration in the filtrate was measured for the dechlorination rate using an ion chromatograph in the same manner as in Example 1.

これらの測定結果を図3に示す。図3は、脱塩素率の経時変化を示すグラフであり、縦軸は脱塩素率(%)を、横軸は反応時間(分)を表す。
図3から明らかなように、アンモニア濃度が濃いほど脱塩素率が向上することがわかった。これらについて脱塩素化速度定数を計算したところ、脱塩素化速度はアンモニア水溶液中のアンモニア濃度のおよそ0.5乗に比例して増大することがわかった。
なお、アンモニア水溶液に代えて蒸留水を用いて同様に反応を行ったところ、この温度では、本実施例で測定した時間内には脱塩素化反応はほとんど起こらなかった。
The measurement results are shown in FIG. FIG. 3 is a graph showing the change over time in the dechlorination rate. The vertical axis represents the dechlorination rate (%), and the horizontal axis represents the reaction time (minutes).
As apparent from FIG. 3, it was found that the dechlorination rate was improved as the ammonia concentration was increased. When dechlorination rate constants were calculated for these, it was found that the dechlorination rate increased in proportion to approximately 0.5th power of the ammonia concentration in the aqueous ammonia solution.
In addition, when it reacted similarly using distilled water instead of ammonia aqueous solution, at this temperature, the dechlorination reaction hardly occurred within the time measured in the present Example.

実施例4
他のアンモニウム塩の水溶液として、弱酸塩である炭酸アンモニウム水溶液(炭酸水素アンモニウムとカルバミン酸アンモニウムの混合物、NH3として30%、関東化学製)0.1mol/l又は強酸塩である塩化アンモニウム水溶液(関東化学製、99%)0.1mol/lを用い、反応温度を250℃としたこと以外は、実施例3と同様にして、アンモニア水溶液と蒸留水について反応を行い、脱塩素率を測定した。
これらの測定結果を図4に示す。図4は、脱塩素率の経時変化を示すグラフであり、縦軸は脱塩素率(%)を、横軸は反応時間(分)を表す。
図4から明らかなように、強酸塩の塩化アンモニウム水溶液も脱ハロゲン効果を示したが、弱酸塩の炭酸アンモニウム水溶液の方が脱塩素効果が高い。
Example 4
As an aqueous solution of another ammonium salt, an ammonium carbonate aqueous solution that is a weak acid salt (a mixture of ammonium hydrogen carbonate and ammonium carbamate, 30% as NH 3 , manufactured by Kanto Chemical) 0.1 mol / l or an ammonium chloride aqueous solution that is a strong acid salt ( Kanto Chemical Co., Ltd., 99%) 0.1 mol / l was used, and the reaction temperature was 250 ° C., except that the reaction was carried out with an aqueous ammonia solution and distilled water, and the dechlorination rate was measured. .
The measurement results are shown in FIG. FIG. 4 is a graph showing the change over time in the dechlorination rate. The vertical axis represents the dechlorination rate (%), and the horizontal axis represents the reaction time (minutes).
As is clear from FIG. 4, the strong acid salt ammonium chloride aqueous solution also showed a dehalogenation effect, but the weak acid salt ammonium carbonate aqueous solution had a higher dechlorination effect.

実施例5
ビニールホースは、軟質塩化ビニル材の代表製品として使用されており、主成分としてポリ塩化ビニルが用いられ、また、やわらかくするために可塑剤などの添加物が多く含有されている。
試料として市販のビニールホース(商品名:パワード、(株)三洋化成社製)を用い、反応温度及び圧力を220℃・2.3MPa、240℃・3.3MPa、260℃・4.7MPaとしたこと以外は実施例3と同様にして、アンモニア水溶液と蒸留水について反応を行い、所定時間経過後、反応溶液を回収して脱塩素濃度を測定した。
Example 5
The vinyl hose is used as a representative product of a soft polyvinyl chloride material, polyvinyl chloride is used as a main component, and a lot of additives such as a plasticizer are contained in order to soften the vinyl hose.
A commercially available vinyl hose (trade name: Powered, manufactured by Sanyo Kasei Co., Ltd.) was used as a sample, and the reaction temperature and pressure were 220 ° C./2.3 MPa, 240 ° C./3.3 MPa, 260 ° C./4.7 MPa. Except for this, the reaction was carried out with respect to the aqueous ammonia solution and distilled water in the same manner as in Example 3. After a predetermined time had elapsed, the reaction solution was recovered and the dechlorination concentration was measured.

これらの測定結果を図5に示す。図5は、脱塩素濃度の経時変化を示すグラフであり、縦軸は脱塩素濃度(ppm)を、横軸は反応時間(分)を表す。
図5から明らかなように、軟質塩化ビニル材の脱塩素化についても、どの温度でもアンモニアの添加が脱塩素に有効であることがわかった。
The measurement results are shown in FIG. FIG. 5 is a graph showing the change over time in the dechlorination concentration. The vertical axis represents the dechlorination concentration (ppm), and the horizontal axis represents the reaction time (minutes).
As is clear from FIG. 5, it was found that addition of ammonia is effective for dechlorination at any temperature for dechlorination of a soft vinyl chloride material.

実施例6
試料として、硬質塩化ビニルを主成分とする市販の塩化ビニルパイプ(商品名:ヒシパイプ、(株)三菱樹脂社製)を用い、反応温度及び圧力を230℃・2.8MPa、250℃・4.0MPaとし、反応時間を10分及び40分としたこと以外は実施例3と同様にして、アンモニア水溶液と蒸留水について反応を行い、脱塩素率を測定した。結果を表1に示す。
Example 6
As a sample, a commercially available vinyl chloride pipe (trade name: Hishi Pipe, manufactured by Mitsubishi Plastics Co., Ltd.) containing hard vinyl chloride as a main component was used, and the reaction temperature and pressure were 230 ° C./2.8 MPa, 250 ° C./4. The reaction was carried out with respect to the aqueous ammonia solution and distilled water in the same manner as in Example 3 except that the reaction time was 10 MPa and 40 minutes, and the dechlorination rate was measured. The results are shown in Table 1.

Figure 2006045469
Figure 2006045469

表1から明らかなように、硬質塩化ビニルの脱塩素化についても、どの温度でもアンモニアの添加が脱塩素に有効であることがわかった。   As is clear from Table 1, also for the dechlorination of hard vinyl chloride, it was found that addition of ammonia was effective for dechlorination at any temperature.

実施例7
試料として、ポリ塩化ビニリデン製の市販の食品包装用ラップフィルム(商品名:NEWクレラップ、呉羽化学工業株式会社製)を用い、反応温度及び圧力を200℃・1.6MPa、220℃・2.3MPaとし、反応時間を5、10、20分としたこと以外は実施例3と同様にして、アンモニア水溶液と蒸留水について反応を行い、脱塩素率を測定した。結果を表2及び図6に示す。
Example 7
As a sample, a commercially available wrapping film for food packaging made of polyvinylidene chloride (trade name: NEW Kurewrap, manufactured by Kureha Chemical Industry Co., Ltd.) was used, and the reaction temperature and pressure were 200 ° C./1.6 MPa, 220 ° C./2.3 MPa. In the same manner as in Example 3 except that the reaction time was set to 5, 10, and 20 minutes, the aqueous ammonia solution and distilled water were reacted to measure the dechlorination rate. The results are shown in Table 2 and FIG.

Figure 2006045469
Figure 2006045469

図6は、表2の結果をプロットした脱塩素率の経時変化を示すグラフであり、縦軸は脱塩素率(%)を、横軸は反応時間(分)を表す。
図6から明らかなように、ポリ塩化ビニリデン材(食品包装用ラップフィルム)の脱塩素化についても、どの温度でもアンモニアの添加が脱塩素に有効であることがわかった。
FIG. 6 is a graph showing the change over time in the dechlorination rate in which the results of Table 2 are plotted. The vertical axis represents the dechlorination rate (%), and the horizontal axis represents the reaction time (minutes).
As is clear from FIG. 6, it was found that addition of ammonia was effective for dechlorination at any temperature for dechlorination of polyvinylidene chloride material (wrapping film for food packaging).

実施例8
試料として、難燃剤として利用されているデカブロモジフェニルエーテル(和光純薬工業製、純度98%)の粉末50mgを用い、反応温度を260℃及び340℃とし、反応時間を5、10、20分としたこと以外は実施例3と同様にして、アンモニア水溶液と蒸留水について反応を行い、脱臭素率を測定した。
これらの測定結果を図7に示す。図7は、脱臭素率の経時変化を示すグラフであり、縦軸は脱臭素率(%)を、横軸は反応時間(分)を表す。
図7から明らかなように、アンモニア水溶液が脱臭素にも非常に効果があることがわかった。
Example 8
As a sample, 50 mg of powder of decabromodiphenyl ether (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%) used as a flame retardant was used, the reaction temperature was 260 ° C. and 340 ° C., and the reaction time was 5, 10, 20 minutes. Except that, the reaction was performed with respect to the aqueous ammonia solution and distilled water in the same manner as in Example 3, and the debromination rate was measured.
The measurement results are shown in FIG. FIG. 7 is a graph showing the change over time in the debromination rate, with the vertical axis representing the debromination rate (%) and the horizontal axis representing the reaction time (minutes).
As is apparent from FIG. 7, it was found that the aqueous ammonia solution was very effective for debromination.

図1は、脱塩素率の経時変化を示すグラフである(実施例1)。FIG. 1 is a graph showing the change over time in the dechlorination rate (Example 1). 図2は、各温度における脱塩素化速度定数についてのアレニウスプロットを示すグラフである(実施例2)。FIG. 2 is a graph showing an Arrhenius plot for the dechlorination rate constant at each temperature (Example 2). 図3は、脱塩素率の経時変化を示すグラフである(実施例3)。FIG. 3 is a graph showing the change over time in the dechlorination rate (Example 3). 図4は、脱塩素率の経時変化を示すグラフである(実施例4)。FIG. 4 is a graph showing the change over time in the dechlorination rate (Example 4). 図5は、脱塩素濃度の経時変化を示すグラフである(実施例5)。FIG. 5 is a graph showing the change over time in the dechlorination concentration (Example 5). 図6は、脱塩素率の経時変化を示すグラフである(実施例7)。FIG. 6 is a graph showing the change over time in the dechlorination rate (Example 7). 図7は、脱臭素率の経時変化を示すグラフである(実施例8)。FIG. 7 is a graph showing the change over time in the debromination rate (Example 8).

Claims (3)

180℃以上350℃未満に加熱したアンモニア含有水溶液を、含ハロゲン高分子に接触させることを特徴とする含ハロゲン高分子の脱ハロゲン化方法。   A method for dehalogenating a halogen-containing polymer, comprising contacting an ammonia-containing aqueous solution heated to 180 ° C. or more and less than 350 ° C. with the halogen-containing polymer. 前記アンモニア含有水溶液の濃度が0.006〜10mol/lであることを特徴とする請求項1に記載の含ハロゲン高分子の脱ハロゲン化方法。   The method for dehalogenating a halogen-containing polymer according to claim 1, wherein the concentration of the ammonia-containing aqueous solution is 0.006 to 10 mol / l. 前記含ハロゲン高分子がポリ塩化ビニル又はポリ塩化ビニリデンであることを特徴とする請求項1又は2に記載の含ハロゲン高分子の脱ハロゲン化方法。
The method for dehalogenating a halogen-containing polymer according to claim 1 or 2, wherein the halogen-containing polymer is polyvinyl chloride or polyvinylidene chloride.
JP2004232355A 2004-08-09 2004-08-09 Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution Pending JP2006045469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232355A JP2006045469A (en) 2004-08-09 2004-08-09 Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232355A JP2006045469A (en) 2004-08-09 2004-08-09 Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution

Publications (1)

Publication Number Publication Date
JP2006045469A true JP2006045469A (en) 2006-02-16

Family

ID=36024430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232355A Pending JP2006045469A (en) 2004-08-09 2004-08-09 Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution

Country Status (1)

Country Link
JP (1) JP2006045469A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008047564A1 (en) * 2006-09-29 2010-02-25 日本電気株式会社 Semiconductor device manufacturing method and semiconductor device
JP2011213962A (en) * 2010-04-02 2011-10-27 San Life Kk Method and apparatus for recovering decomposition oil of waste plastic
JP2015054963A (en) * 2013-09-13 2015-03-23 学校法人 中央大学 Dehalogenation method of halogen-containing compound
CN104893147A (en) * 2015-05-27 2015-09-09 福建工程学院 Method for safely dechlorinating waste polyvinyl chloride and preparing high-purity ammonia chloride
CN114540070A (en) * 2022-02-08 2022-05-27 中国石油大学(华东) Method and process for dechlorinating coal tar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008047564A1 (en) * 2006-09-29 2010-02-25 日本電気株式会社 Semiconductor device manufacturing method and semiconductor device
JP2011213962A (en) * 2010-04-02 2011-10-27 San Life Kk Method and apparatus for recovering decomposition oil of waste plastic
JP2015054963A (en) * 2013-09-13 2015-03-23 学校法人 中央大学 Dehalogenation method of halogen-containing compound
CN104893147A (en) * 2015-05-27 2015-09-09 福建工程学院 Method for safely dechlorinating waste polyvinyl chloride and preparing high-purity ammonia chloride
CN114540070A (en) * 2022-02-08 2022-05-27 中国石油大学(华东) Method and process for dechlorinating coal tar

Similar Documents

Publication Publication Date Title
Wang et al. Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge
EP3140012B1 (en) Remediation of contaminated soils
Yamasaki et al. Hydrothermal decomposition of polychlorinated biphenyls
EP0675748B1 (en) Process for the chemical decomposition of halogenated organic compounds
JP2006045469A (en) Method for dehalogenating halogen-containing polymer with ammonia-containing aqueous solution
Xiao et al. Thermal phase transition and rapid degradation of forever chemicals (PFAS) in spent media using induction heating
JP4788946B2 (en) Hydrothermal decomposition of fluorinated organic compounds
CA2128013A1 (en) Method of hydrodehalogenating halogenated organic compounds in aqueous environmental sources
JP2021155478A (en) Decomposition method of fluorine atom-containing polymer and decomposition apparatus of fluorine atom-containing polymer
Endo et al. Hydrothermal alkaline defluorination rate of perfluorocarboxylic acids (PFCAs)
JP6711977B2 (en) Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer
US8692049B2 (en) Process and apparatus for the annihilation of harmful waste containing polychlorinated hydrocarbons
KR20220040108A (en) Method and System for Treating Wastes
JP7182829B1 (en) Method for decomposing and carbonizing organochlorine compounds, and apparatus for decomposing and carbonizing the same
JP4565259B2 (en) Detoxification method of waste plastic mixture containing chlorine-containing resin
JP7258319B1 (en) Method for decomposing fluorine atom-containing polymer, and apparatus for decomposing fluorine atom-containing polymer
JP6470899B2 (en) Method for dehalogenation of halogen-containing compounds
JP2005255933A (en) Method for treating chlorine-containing polymer
JP2604309B2 (en) Method for dechlorination of polyvinyl chloride resin
Wilsey et al. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants
Sasi Thermal Stability and Decomposition of Per-and Polyfluoroalkyl Substances (PFAS) Using Granular Activated Carbon and Other Porous Materials
KR100798410B1 (en) A method of eliminating chlorine element in waste insulating oil
WO2007086667A1 (en) Method for processing waste insulating oil which contains polychlorinated biphenyls using electron-beam
Challa Sasi Thermal Stability And Decomposition Of Per-And Polyfluoroalkyl Substances (PFAS) Using Granular Activated Carbon And Other Porous Materials
JP2022121251A (en) Method of decomposing harmful organic chemical compound in effluent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216