JP2022121251A - Method of decomposing harmful organic chemical compound in effluent - Google Patents

Method of decomposing harmful organic chemical compound in effluent Download PDF

Info

Publication number
JP2022121251A
JP2022121251A JP2021018507A JP2021018507A JP2022121251A JP 2022121251 A JP2022121251 A JP 2022121251A JP 2021018507 A JP2021018507 A JP 2021018507A JP 2021018507 A JP2021018507 A JP 2021018507A JP 2022121251 A JP2022121251 A JP 2022121251A
Authority
JP
Japan
Prior art keywords
peroxide
sodium hypochlorite
wastewater
organic compounds
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021018507A
Other languages
Japanese (ja)
Inventor
登壽男 阿部
Toshio Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021018507A priority Critical patent/JP2022121251A/en
Publication of JP2022121251A publication Critical patent/JP2022121251A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

To provide a simpler method of decomposing a hardly decomposable or malodorous harmful organic chemical compound contained in effluent, relative to a conventional one.SOLUTION: A covalent bond of an organic chemical compound in effluent can easily be dissociated/cut by adding a solid peroxide comprising nickel peroxide as a primary component to effluent including a harmful organic chemical compound, and by increasing an amount of oxygen dissolved in effluent and/or adding sodium hypochlorite thereto, and thereby a harmful organic chemical compound in effluent can be decomposed.SELECTED DRAWING: Figure 1

Description

本発明は、各種廃液中に含有する有害有機化合物、特に難分解性の有害有機化合物の分解方法に関する。 TECHNICAL FIELD The present invention relates to a method for decomposing harmful organic compounds contained in various waste liquids, particularly persistent harmful organic compounds.

各種廃液中に含有する有機化合物は、通常、酸化分解させることにより処理される。しかし、埋立地の地下水に含まれる1,4ジオキサンや、廃硫酸に含まれる1,2ジクロロエタン、あるいは毒性等価指数の高いダイオキシン類など難分解性有機化合物は、通常の曝気処理では分解できず、高温分解装置(特許文献1)や電気分解装置(特許文献2)などの高価な設備を必要とした。
また、常温における酸化処理においては、酸化ガスとしてオゾン含有ガスを使用し、さらに紫外線照射装置を必要とした(特許文献3)。
Organic compounds contained in various waste liquids are usually treated by oxidative decomposition. However, persistent organic compounds such as 1,4-dioxane contained in landfill groundwater, 1,2-dichloroethane contained in waste sulfuric acid, and dioxins with a high toxicity equivalence index cannot be decomposed by normal aeration treatment. Expensive equipment such as a high-temperature decomposition device (Patent Document 1) and an electrolysis device (Patent Document 2) was required.
Further, in the oxidation treatment at room temperature, an ozone-containing gas is used as the oxidizing gas, and an ultraviolet irradiation device is required (Patent Document 3).

さらに、メチルメルカプタンのような悪臭成分も、通常の曝気処理では完全に分解できず、微量でも残留すると悪臭源となるので、これを完全に分解するためには、高価な吸着剤(特許文献4)や多工程から成る設備(特許文献5)を必要とした。 Furthermore, malodorous components such as methyl mercaptan cannot be completely decomposed by normal aeration treatment, and if even trace amounts remain, they become a source of malodorous substances. ) and equipment consisting of multiple processes (Patent Document 5).

このように、廃液中に含まれる難分解性有機化合物や微量の悪臭成分を分解除去するより簡便な方法の開発が望まれていた。 Thus, it has been desired to develop a simpler method for decomposing and removing persistent organic compounds and trace amounts of malodorous components contained in the waste liquid.

特開2004-057923号公報Japanese Patent Application Laid-Open No. 2004-057923 特開2014-014754号公報JP 2014-014754 A 特開2008-126125号公報JP-A-2008-126125 特開2018-083170号公報Japanese Patent Application Laid-Open No. 2018-083170 特開2007-319842号公報Japanese Patent Application Laid-Open No. 2007-319842

本発明は、各種廃液中に含有する難分解性や悪臭成分の有害有機化合物を従来法と比べより簡便な方法で分解する方法を提供することである。 It is an object of the present invention to provide a method for decomposing organic compounds that are difficult to decompose and have malodorous components contained in various waste liquids by a simpler method than conventional methods.

本発明者は、廃液中に含まれる有害有機化合物の共有結合を解離・切断できれば、どの様な難分解性有機化合物でも分解可能となるとの考えから、有機化合物の共有結合の解離・切断方法について鋭意検討を重ねた結果、固形過酸化物として過酸化ニッケルを使用すると共に、廃液中の溶存酸素量を増加させる、及び/又は次亜塩素酸ソーダを添加させる、ことで廃液中の有機化合物の共有結合が、簡単に解離・切断できることを見出し、本発明に至ったものである。本発明者の実験によれば、過酸化ニッケルを主成分とする固形過酸化材と、廃液中の溶存酸素量の増加、又は次亜塩素酸ソーダの添加により多くの有機化合物が分解できるが、これらの組合せで分解できなかった有機化合物も、過酸化ニッケルと、廃水中の溶存酸素量の増加、及び次亜塩素酸ソーダの添加を組み合わせることにより分解することができた。 The inventors of the present invention believe that if the covalent bonds of harmful organic compounds contained in wastewater can be dissociated and cleaved, any persistent organic compounds can be decomposed. As a result of intensive studies, it was found that by using nickel peroxide as a solid peroxide and increasing the amount of dissolved oxygen in the waste liquid and/or adding sodium hypochlorite, organic compounds in the waste liquid can be eliminated. The inventors have found that the covalent bond can be easily dissociated and cleaved, leading to the present invention. According to experiments by the present inventor, many organic compounds can be decomposed by adding a solid peroxide containing nickel peroxide as a main component, increasing the amount of dissolved oxygen in the waste liquid, or adding sodium hypochlorite. Organic compounds that could not be decomposed by these combinations could also be decomposed by combining nickel peroxide, increasing the amount of dissolved oxygen in the wastewater, and adding sodium hypochlorite.

本発明の態様は以下の通りである。
(1)有害有機化合物を含む廃液中に、過酸化ニッケルを主成分とする固形過酸化物を添加すること、並びに、廃液中の溶存酸素量を増加させること及び/又は次亜塩素酸ソーダを添加すること、により廃液中の有害有機化合物を分解する方法。
(2)有害有機化合物が、難分解性有機化合物である(1)の有害有機化合物を分解する方法。
(3)有害有機化合物が、悪臭性有機化合物である(1)の有害有機化合物を分解する方法。
Aspects of the present invention are as follows.
(1) Adding a solid peroxide containing nickel peroxide as a main component to the waste liquid containing harmful organic compounds, and increasing the amount of dissolved oxygen in the waste liquid and/or adding sodium hypochlorite. A method of decomposing harmful organic compounds in a waste liquid by adding
(2) The method of decomposing a toxic organic compound of (1), wherein the toxic organic compound is a persistent organic compound.
(3) The method of decomposing the harmful organic compound of (1), wherein the harmful organic compound is a malodorous organic compound.

本発明において「過酸化ニッケル」とは、三二酸化ニッケル、又は三二酸化ニッケル及び酸化ニッケル水和物の混合物のことをいう。また、「固形過酸化物」とは、前記過酸化ニッケルに、酸化マグネシウム及びアルミナシリカを固化成形剤として添加混合し固化成形したものである。 In the present invention, "nickel peroxide" refers to nickel trioxide or a mixture of nickel trioxide and nickel oxide hydrate. Further, the "solid peroxide" is obtained by adding and mixing magnesium oxide and alumina silica as a solidifying agent to the nickel peroxide, followed by solidifying and molding.

本発明において、有害有機化合物を含む廃液中の溶存酸素を増加させるには、周知の曝気装置が使用でき、空気あるいは酸素富化気体を廃液中に曝気し、溶存酸素量を増加できるものであれば種類を問わない。 In the present invention, in order to increase the dissolved oxygen in the waste liquid containing harmful organic compounds, a well-known aerator can be used to aerate air or an oxygen-enriched gas into the waste liquid to increase the amount of dissolved oxygen. It doesn't matter what kind.

本発明における固形過酸化材は、過酸化ニッケルを酸化マグネシウム及びアルミナシリカで固化したものであるが、固化剤の添加量は、固形過酸化材の使用態様により必要とされる強度が発現できる最低限の量とすることが望ましい。また、ガラス繊維などの無機繊維材を配合すれば、固形過酸化材の強度が向上するので固化剤の使用量も少なくて済む。 The solid peroxide material in the present invention is obtained by solidifying nickel peroxide with magnesium oxide and alumina silica. It is desirable to limit the amount of Further, if an inorganic fiber material such as glass fiber is blended, the strength of the solid peroxide material is improved, so that the amount of the solidifying agent used can be reduced.

本発明において推定される有害有機化合物の共有結合の解離・切断の機構を図1の摸式図で説明する。(1)は、水中に、1,4ジオキサン、次亜塩素酸ソーダ、固形過酸化材が存在している状態を示す。図に示されるように、次亜塩素酸ソーダは固形過酸化材に接触する。(2)は、固形過酸化材に接触した次亜塩素酸ソーダが分解し、発生期の酸素を発生させ、この発生期の酸素が1,4ジオキサンの共有結合部へアタックしているところを示す。(3)は、発生期の酸素によりアタックされた1,4ジオキサンの共有結合部が解離・切断された状態を示す。 The dissociation/cleavage mechanism of the covalent bond of the harmful organic compound presumed in the present invention will be explained with reference to the schematic diagram of FIG. (1) indicates a state in which 1,4 dioxane, sodium hypochlorite, and solid peroxide are present in water. As shown, the sodium hypochlorite contacts the solid peroxide material. In (2), sodium hypochlorite in contact with the solid peroxide is decomposed to generate nascent oxygen, and this nascent oxygen attacks the covalent bond of 1,4 dioxane. show. (3) shows a state in which the covalent bond of 1,4-dioxane attacked by nascent oxygen is dissociated and cleaved.

次亜塩素酸ソーダに代えて、過酸化水素や次亜塩素酸ソーダ以外の塩素酸化物、過マンガン酸塩、クロム酸塩は、活性酸素を放出することができるが、過酸化ニッケルも還元され、還元された水酸化ニッケルを過酸化物に出来ない。一方、塩素水、塩素シアヌール酸、過硫酸塩などの酸性酸化材は、水酸化ニッケルを過酸化物に酸化出来るが、活性酸素を発生できない。 In place of sodium hypochlorite, hydrogen peroxide, chlorine oxides other than sodium hypochlorite, permanganate, and chromate can release active oxygen, but nickel peroxide is also reduced. , the reduced nickel hydroxide cannot be peroxided. On the other hand, acidic oxidants such as chlorine water, chlorocyanuric acid, and persulfates can oxidize nickel hydroxide into peroxides, but cannot generate active oxygen.

過酸化ニッケルは、固化剤を混合して成型し、充填槽に充填し、次亜塩素酸ソーダを添加した廃液と接触させることが望ましい。次亜塩素酸ソーダは、時間がたつと被酸化物質に対し塩素付加反応を起こすことがあるので、反応槽の直前で廃液に添加することが望ましい。 Nickel peroxide is preferably mixed with a solidifying agent, molded, filled in a filling tank, and brought into contact with a waste liquid to which sodium hypochlorite has been added. Since sodium hypochlorite may cause a chlorine addition reaction with the substance to be oxidized over time, it is desirable to add sodium hypochlorite to the waste liquid just before the reaction tank.

次亜塩素酸ソーダは添加後完全に分解して発生期の酸素を発生しつくすまでに若干の時間的ずれが生じるので、廃液のCODの変動に応じて次亜塩素酸ソーダの添加量を制御することが望ましい。また、CODの低下に応じて、酸素化合物溶液の添加量を段階的に減少させる『多段階添加法』による場合には、酸素化合物溶液の使用量を減少させることが出来るので有利である。 After sodium hypochlorite is added, there is a slight time lag until it completely decomposes and generates all the oxygen in the nascent stage, so the amount of sodium hypochlorite added is controlled according to the fluctuation of the COD of the waste liquid. It is desirable to Also, in the case of the "multi-stage addition method" in which the amount of oxygen compound solution added is reduced in stages according to the decrease in COD, it is advantageous because the amount of oxygen compound solution used can be reduced.

さらに、次亜塩素酸ソーダ溶液を排水に混合した後、排水処理を行なうまでにあまり長時間を要する場合には、酸化以外の副反応、例えば被酸化物質に対する塩素付加反応を起こすことがあり、酸化反応に困難を来たす場合もあるので、排水が反応槽、又はリアクターに導入される前に添加を行なうことが望ましい。又、排水中にアミン塩類等の塩素付加反応を特に生じ易い被酸化物質が存在する場合には、苛性ソーダを酸素化合物溶液と共に、或いは、酸素化合物溶液の添加前、もしくは添加後に排水に加え、塩素付加反応を防止することが望ましい。 Furthermore, if it takes too long to treat the waste water after mixing the sodium hypochlorite solution with the waste water, side reactions other than oxidation, such as chlorine addition reaction to the oxidized substance, may occur. It is desirable to add it before the waste water is introduced into the reaction vessel or reactor, as it may cause difficulties in the oxidation reaction. In addition, when there are substances to be oxidized, such as amine salts, which are particularly susceptible to chlorine addition reaction in the waste water, caustic soda is added to the waste water together with the oxygen compound solution, or before or after the addition of the oxygen compound solution, and chlorine is added to the waste water. It is desirable to prevent addition reactions.

本発明の方法によれば、難分解性の1,4ジオキサン、1,2ジクロロエタン、あるいはダイオキシン類を比較的短時間で分解することができ、製油所で生産されるメチルメルカプタンのような悪臭成分も最短2時間で臭気指数9以下(人間の臭覚では感知不可能)に下げることができ、バイオマス発電設備で発生する窒素液の臭気成分も短時間で分解できる。 According to the method of the present invention, persistent 1,4-dioxane, 1,2-dichloroethane, or dioxins can be decomposed in a relatively short period of time. can be lowered to an odor index of 9 or less (incapable of being detected by the human sense of smell) in as little as two hours.

本発明の方法による有機化合物の共有結合の切断状況の模式図Schematic diagram of how the covalent bond of an organic compound is cleaved by the method of the present invention.

以下、本発明の実施例を記載するが、本発明はこれに限定されるものではない。 Examples of the present invention are described below, but the present invention is not limited thereto.

<固形酸化材の製造1>
硫酸及び過マンガン酸カリで予め処理して有機物を除去した長さ3~5mm程度のガラス繊維を、濃度10~25%程度の硫酸ニッケル、硝酸ニッケル、塩化ニッケルなどのニッケル塩溶液にニッケル分の10~30wt%程度加え、次いで19~25%苛性ソーダ溶液によりニッケル分を水酸化ニッケル(Ni(OH)2)とし、さらにこれをNi(OH)3とするのに十分な次亜塩素酸ソーダ溶液を30℃以下で加える。次いで、水洗ろ過して水分含有量35~45%のケーキとし、これに固化剤としてニッケル分の25~50%の酸化マグネシウムやアルミナシリカを添加・混錬し、適宜形状に成型して過酸化材とした。この成形物の大きさは処理装置の容量等に応じ適宜決定すればよく、その大きさに応じてガラス繊維の長さも決定すればよい。成形物は、1~2日放置してから40℃で乾燥させる。
<Production of solid oxidizing material 1>
Glass fiber with a length of about 3 to 5 mm, which has been pretreated with sulfuric acid and potassium permanganate to remove organic matter, is added to a nickel salt solution such as nickel sulfate, nickel nitrate, and nickel chloride at a concentration of about 10 to 25%. Add about 10 to 30 wt%, then convert the nickel content to nickel hydroxide (Ni(OH) 2 ) with a 19 to 25% caustic soda solution, and then add enough sodium hypochlorite solution to convert this to Ni(OH) 3 is added below 30°C. Next, the cake is washed with water and filtered to obtain a cake with a moisture content of 35 to 45%, to which magnesium oxide or alumina silica with a nickel content of 25 to 50% is added and kneaded, molded into an appropriate shape, and peroxided. material. The size of this molding may be appropriately determined according to the capacity of the processing apparatus, etc., and the length of the glass fiber may also be determined according to the size. Moldings are allowed to stand for 1-2 days and then dried at 40°C.

酸化ニッケル(NiO)に次亜塩素酸ソーダ(NaClO)を加えて、Ni2O3、Ni3O4の過酸化物を作る際に、酸化ニッケルに一部過酸化ニッケルを配合して次亜塩素酸ソーダ処理すると、より短時間で過酸化物に転化することができ、生成した過酸化ニッケルに酸化ニッケルを加えての次亜塩素酸ソーダ処理を繰り返すことによって、短時間に大量の過酸化ニッケルを製造することができる。
このようにして得られた過酸化ニッケル100重量部に対し、焼成マグネサイト100重量部、アルミナシリカ8重量部、水39.6重量部加えて混合・混錬後、6mmφ程度に造粒し、24時間風乾して酸化材とした。
When sodium hypochlorite (NaClO) is added to nickel oxide (NiO) to make peroxides of Ni 2 O 3 and Ni 3 O 4 , nickel peroxide is partially mixed with nickel oxide to produce hypochlorite. When treated with sodium chlorate, it can be converted to peroxide in a shorter time, and by repeating the sodium hypochlorite treatment by adding nickel oxide to the generated nickel peroxide, a large amount of peroxide can be produced in a short time. Nickel can be produced.
To 100 parts by weight of nickel peroxide thus obtained, 100 parts by weight of calcined magnesite, 8 parts by weight of alumina silica, and 39.6 parts by weight of water are added, mixed and kneaded, and then granulated to about 6 mm in diameter. It was air-dried for 24 hours to obtain an oxidizing material.

<曝気と酸化材の組合せによる廃硫酸中の1,2-ジクロロエタンの分解>
[試験1]通常廃硫酸10lに対し、毎分7lの空気を144hr吹き込み曝気した。
[試験2]酢酸入廃硫酸10lに対し、毎分7lの空気を240hr吹き込み曝気した。
本実験で使用した曝気装置は、アムスエンジニアリング社製(CATH-F)である。
各試験における廃液中の1,2-ジクロロエタンの量を測定した結果を以下に示す。表から明らかなように、曝気だけでも廃硫酸中の1,2-ジクロロエタンの量を基準値以下に低下させることができるが、本発明の方法により、過酸化ニッケルの過酸化材を組み合わせることにより、劇的に低下させることができた。
<Decomposition of 1,2-dichloroethane in waste sulfuric acid by combination of aeration and oxidant>
[Test 1] 10 liters of normal waste sulfuric acid was aerated by blowing 7 liters of air per minute for 144 hours.
[Test 2] 10 liters of waste sulfuric acid containing acetic acid was aerated by blowing 7 liters of air per minute for 240 hours.
The aeration device used in this experiment is manufactured by Ams Engineering (CATH-F).
The results of measuring the amount of 1,2-dichloroethane in the waste liquid in each test are shown below. As is clear from the table, the amount of 1,2-dichloroethane in the waste sulfuric acid can be reduced to below the reference value only by aeration, but by the method of the present invention, by combining the peroxide material of nickel peroxide, , could be dramatically reduced.

Figure 2022121251000002
Figure 2022121251000002

<曝気と過酸化材と次亜塩素酸ソーダの組合せによる浸出水中の1,4-ジオキサンの分解>
[試験1]1,4-ジオキサンを含有する地下浸出水6.0lに対し、空気3.75l/分で1時間曝気した。
[試験2]1,4-ジオキサンを含有する地下浸出水6.0lに対し過酸化ニッケルを200g添加し、空気3.75l/分で1時間曝気した。
[試験3]1,4-ジオキサンを含有する地下浸出水6.0lに対し過酸化ニッケルを200g、次亜塩素酸ソーダを300cc添加し、空気3.75l/分で1時間曝気した。
使用曝気装置(アムスエンジニアリング社製、CATH-F)
各試験における浸出水中の1,4-ジオキサンの量を測定した結果を以下に示す。表から明らかなように、曝気のみ、及び曝気と過酸化材との組合せでは1,4-ジオキサンをほとんど分解できなかったが、さらに次亜塩素酸ソーダを組合せることにより浸出水中の1,4-ジオキサンの量を劇的に低下させることができた。
<Decomposition of 1,4-dioxane in leachate by combination of aeration, peroxide and sodium hypochlorite>
[Test 1] 6.0 l of underground leachate containing 1,4-dioxane was aerated with 3.75 l/min of air for 1 hour.
[Test 2] 200 g of nickel peroxide was added to 6.0 liters of underground leachate containing 1,4-dioxane, and the mixture was aerated with air at 3.75 liters/minute for 1 hour.
[Test 3] 200 g of nickel peroxide and 300 cc of sodium hypochlorite were added to 6.0 liters of underground leachate containing 1,4-dioxane, and the mixture was aerated for 1 hour at 3.75 liters/minute of air.
Aeration device used (CATH-F, manufactured by Ams Engineering Co., Ltd.)
The results of measuring the amount of 1,4-dioxane in the leachate in each test are shown below. As is clear from the table, 1,4-dioxane could hardly be decomposed by aeration alone or by a combination of aeration and peroxide. - the amount of dioxane could be reduced dramatically.

Figure 2022121251000003
Figure 2022121251000003

<各種酸化材と過酸化ニッケルとの組み合わせによる有機化合物の酸化分解>
有機化合物として、0.25%エチルアルコール及び0.25%トリエタノールアミンを使用し、(1)次亜塩素酸ソーダ溶液、(2)過酸化ニッケル、(3)次亜塩素酸ソーダ溶液と過酸化ニッケルで処理した結果は、以下の通りであった。
(1)0.25%エチルアルコール及び0.25%トリエタノールアミンのそれぞれに過剰量の次亜塩素酸ソーダ溶液を加えたところ、2時間後、エチルアルコールは48%分解され、トリエタノールアミンは39%分解された。
(2)次亜塩素酸ソーダ溶液に代えて過酸化ニッケルを用いて同様な試験を行ったところ、2時間後には、エチルアルコール及びトリエタノールアミンの約90%が分解できたが、還元された過酸化ニッケルを再生する必要があるので、操作が煩雑であった。
(3)本発明に従い、エチルアルコール及びトリエタノールアミンのそれぞれに過剰量の次亜塩素酸ソーダ溶液を加えた後、過酸化ニッケルを投入した場合、エチルアルコールは15分後に93%、トリエタノールアミンは、45分後に96%、それぞれ分解することができた。また、過酸化ニッケルは触媒として機能するだけなので、再生する必要がなかった。
<Oxidative Decomposition of Organic Compounds by Combination of Various Oxidizing Agents and Nickel Peroxide>
Using 0.25% ethyl alcohol and 0.25% triethanolamine as organic compounds, (1) sodium hypochlorite solution, (2) nickel peroxide, (3) sodium hypochlorite solution and peroxide The results of treatment with nickel oxide were as follows.
(1) When an excess amount of sodium hypochlorite solution was added to each of 0.25% ethyl alcohol and 0.25% triethanolamine, 48% of ethyl alcohol was decomposed after 2 hours, and triethanolamine 39% decomposed.
(2) When a similar test was performed using nickel peroxide instead of the sodium hypochlorite solution, about 90% of ethyl alcohol and triethanolamine could be decomposed after 2 hours, but they were reduced. The operation was complicated because it was necessary to regenerate nickel peroxide.
(3) According to the present invention, when an excess amount of sodium hypochlorite solution is added to each of ethyl alcohol and triethanolamine, and then nickel peroxide is added, ethyl alcohol is 93% after 15 minutes, triethanolamine is could each be decomposed by 96% after 45 minutes. Also, nickel peroxide did not need to be regenerated, as it only functions as a catalyst.

<メチルメルカプタン原液を用いた臭気成分の分解>
50l反応槽を用意し、槽内にメチルメルカプタン原液を9kg投入し、次いで過酸化ニッケルを主成分とする過酸化材450gを投入し、反応槽のジャケットに温水を通して加温し、反応槽内が40~45℃となるよう調節した。この状態で反応槽を7.50l/分で曝気し、30分、60分、90分、150分後に臭気、温度、DO、OPR、pHを測定した。測定結果を表3に示す。
なお、『臭気(人間)』の評価は、大:強烈なにおい、中:楽に感知できるにおい、微小:やっと感知できるにおい、無:においを感知できない を基準とした官能試験の結果である。また、『臭気指数』とは、臭気が感じられなくなるまで無臭空気で希釈したときの希釈倍数の対数に10を乗じた値で定義される。
<Decomposition of Odor Components Using Methyl Mercaptan Stock Solution>
A 50-liter reaction tank was prepared, and 9 kg of methyl mercaptan undiluted solution was charged into the tank, then 450 g of a peroxide agent containing nickel peroxide as a main component was added, and hot water was passed through the jacket of the reaction tank to heat the inside of the reaction tank. The temperature was adjusted to 40-45°C. In this state, the reactor was aerated at 7.50 l/min, and the odor, temperature, DO, OPR and pH were measured after 30, 60, 90 and 150 minutes. Table 3 shows the measurement results.
The evaluation of "odor (human)" is based on the results of sensory tests based on: large: strong odor, medium: easily perceivable odor, slight: barely perceptible odor, and none: inability to perceive odor. The "odor index" is defined as a value obtained by multiplying the logarithm of the dilution factor by 10 when diluted with odorless air until the odor is no longer perceived.

Figure 2022121251000004
Figure 2022121251000004

表3に見られるように、30分から60分の間に臭気が減少し、90分から150分の間にほぼ無臭にすることができた。人間が臭気を嗅ぐ場合、臭気発生液の容器の形状により臭気の感じ方が変わり、また、ニオイセンサーによる計測も測定部が少しずれただけでも変わるので、上記測定値にもばらつきがみられたが、ORP(酸化還元電位)が-550mv以下であれば人間による臭気が感じられなくなる。 As can be seen in Table 3, the odor was reduced between 30 and 60 minutes, and could be made almost odorless between 90 and 150 minutes. When humans sniff odors, the way they perceive odors changes depending on the shape of the odor-generating liquid container, and the measurement by the odor sensor also changes even if the measuring part shifts slightly. However, if the ORP (oxidation-reduction potential) is -550mv or less, humans will not be able to perceive the odor.

さらに臭気の強い廃液を用い、過酸化材の添加量と曝気量を変えた実験を行った。
50l反応槽を2槽用意し、各槽にメチルメルカプタン廃液を9l投入し、次いで過酸化ニッケルを主成分とする過酸化材の所定量を各槽に投入した。この状態で各槽を所定空気量で90分間曝気し、処理前後の臭気指数を測定した。測定結果を表4に示す。曝気量を減らした廃液(2)でもほぼ同様な結果となり、過酸化材の添加量と曝気量を増やした廃液(3)では、臭気成分をほぼ完全に分解することができた。
In addition, experiments were carried out by changing the addition amount of peroxide and the amount of aeration using waste liquid with a strong odor.
Two 50-liter reaction tanks were prepared, 9 liters of methyl mercaptan waste liquid was put into each tank, and then a predetermined amount of a peroxide agent containing nickel peroxide as a main component was put into each tank. In this state, each tank was aerated with a predetermined amount of air for 90 minutes, and the odor index before and after treatment was measured. Table 4 shows the measurement results. Almost the same result was obtained with the waste liquid (2) in which the amount of aeration was reduced, and the odorous components could be almost completely decomposed in the waste liquid (3) with the addition amount of peroxide and the amount of aeration increased.

Figure 2022121251000005
Figure 2022121251000005

<アミノ酸廃液の臭気成分の分解>
アミノ酸廃液900ccに対し、曝気装置を作動させ3.75l/minで曝気した。2時間後、アミノ酸独特の強烈な臭気に変化がなかったので本発明の過酸化材90g(10%)と次亜塩素酸ソーダ45cc(5%)を添加して曝気を続けた。
使用曝気装置(アムスエンジニアリング社製、CATH-F)
曝気開始18時間後には、ツンとくる臭気がなくなり、曝気開始24時間後にはかすかににおいが感じられる程度まで減少した。
<Decomposition of Odor Components in Amino Acid Waste Liquid>
The aerator was operated to aerate 900 cc of the amino acid waste liquid at a rate of 3.75 l/min. After 2 hours, there was no change in the strong odor peculiar to amino acids, so 90 g (10%) of the peroxide material of the present invention and 45 cc (5%) of sodium hypochlorite were added and aeration was continued.
Aeration device used (CATH-F, manufactured by Ams Engineering Co., Ltd.)
18 hours after the start of aeration, the pungent odor disappeared, and 24 hours after the start of aeration, the odor was reduced to a faint odor.

<アンモニア廃液の臭気成分の分解>
アンモニア廃液900ccに対し、曝気装置を作動させ3.75l/minで曝気しながら、本発明の過酸化材90g(10%)と次亜塩素酸ソーダ45cc(5%)を添加した。
使用曝気装置(アムスエンジニアリング社製、CATH-F)
曝気開始2時間後には、臭気が全く感じられなくなり、曝気開始15時間30分後に曝気を停止した。
<Decomposition of Odorous Components of Ammonia Waste Liquid>
90 g (10%) of the peroxide material of the present invention and 45 cc (5%) of sodium hypochlorite were added to 900 cc of ammonia waste liquid while operating the aerator to aerate at 3.75 l/min.
Aeration device used (CATH-F, manufactured by Ams Engineering Co., Ltd.)
Two hours after the start of aeration, no odor was felt at all, and 15 hours and 30 minutes after the start of aeration, the aeration was stopped.

<貝汚泥の臭気成分の分解>
発電プラントの冷却水通路内に発生付着するムラサキイガイ類は定期的に除去されるが、回収された貝類はすぐに強烈な臭気を発する。

これらの臭気の種類は、
アンモニア: 10~1000ppm
硫化水素: 0.05~4.0ppm
メチルメルカプタン: 0.1~8.0ppm
であった。(使用機器:ガステック社製検知管式気体測定装置GV-100S)
回収した貝を貝殻ごと10~15mmφ程度に粉砕し、3つの20l容器(A,B,C)にそれぞれ2kg投入し、精製水10lを加え、各容器に所定量の過酸化材及び次亜塩素酸ソーダを投入し、3.75l/minの風量で30分間曝気したところ、貝汚泥中の臭気成分は、アンモニアで50ppm以下、硫化水素で1.0ppm以下、メチルメルカプタンで1.0ppm以下となった。
使用曝気装置(アムスエンジニアリング社製、CATH-F)
曝気処理後の容器の一つに新規の貝汚泥を2kg添加し、さらに、3.75l/minの風量で30分間曝気した。これを容器Dとする。
容器A~Dの曝気前後の貝汚泥中の臭気成分は以下の表5の通りで、いずれも劇的に臭気が減少した。
<Decomposition of odorous components of shellfish sludge>
Although the mussels that develop and adhere to the cooling water passages of the power plant are removed periodically, the collected mussels immediately give off a strong odor.

These odor types are
Ammonia: 10-1000ppm
Hydrogen sulfide: 0.05-4.0ppm
Methyl mercaptan: 0.1-8.0 ppm
Met. (Equipment used: GV-100S detector tube type gas measuring device manufactured by Gastech)
Grind the collected shellfish to about 10 to 15 mmφ together with the shell, put 2 kg each into three 20 L containers (A, B, C), add 10 L of purified water, and add a predetermined amount of peroxide and hypochlorite to each container. Acid soda was added and aeration was performed for 30 minutes at an air volume of 3.75 l/min. The odor components in the shellfish sludge were 50 ppm or less for ammonia, 1.0 ppm or less for hydrogen sulfide, and 1.0 ppm or less for methyl mercaptan. rice field.
Aeration device used (CATH-F, manufactured by Ams Engineering Co., Ltd.)
2 kg of new shellfish sludge was added to one of the aerated containers, and further aerated for 30 minutes at an air volume of 3.75 l/min. This is container D.
The odor components in the shellfish sludge before and after the aeration of containers A to D are shown in Table 5 below, and the odor was dramatically reduced in each case.

Figure 2022121251000006
Figure 2022121251000006

<次亜塩素酸ソーダ単独と過酸化材と組み合わせとの比較>
表6に示す有機化合物に対し、次亜塩素酸ソーダ単独で添加した場合と、次亜塩素酸ソーダ及び過酸化材を組み合わせて添加した場合とについて、CODの経時的変化を調べた。
結果は表6に示される通りで、次亜塩素酸ソーダ単独の場合は2時間経過後も30%程度しか低下しなかったが、次亜塩素酸ソーダ及び過酸化材を組み合わせて添加した場合は、10~20分という短時間で90%程度低下した。
<Comparison between sodium hypochlorite alone and peroxide and combination>
To the organic compounds shown in Table 6, changes in COD over time were investigated in cases where sodium hypochlorite alone was added and in cases where sodium hypochlorite and a peroxide were added in combination.
The results are shown in Table 6. In the case of sodium hypochlorite alone, the decrease was only about 30% even after 2 hours, but when sodium hypochlorite and peroxide were added in combination, the , decreased by about 90% in a short period of 10 to 20 minutes.

Figure 2022121251000007
Figure 2022121251000007

<無機系排水>
表7に示す無機系排水に次亜塩素酸ソーダを所定量添加処理し、CODの経時的変化を測定したところ、いずれの排水も15分以内の短時間で70~100%の処理率を示した。特に、亜硝酸ソーダ排水は、CODの理論上の添加量と10分程度の短時間で、大半が100%近く処理できた。また、シアン含有排液はさらに高度の処理が可能で、低濃度から高濃度まで処理することができる。このように、無機系排水に関しては、次亜塩素酸ソーダの単独処理で十分であることが判った。
<Inorganic Wastewater>
A predetermined amount of sodium hypochlorite was added to the inorganic wastewater shown in Table 7, and the change in COD over time was measured. rice field. In particular, almost 100% of the sodium nitrite wastewater was treated with the theoretical addition amount of COD and a short period of about 10 minutes. In addition, the cyanide-containing effluent can be treated to a higher degree, and can be treated from a low concentration to a high concentration. Thus, it was found that the single treatment of sodium hypochlorite is sufficient for inorganic wastewater.

Figure 2022121251000008
Figure 2022121251000008

<アルコール系廃水>
表8に示すアルコール系排水に、次亜塩素酸ソーダ及び過酸化材の添加を組み合わせた場合のCODの経時的変化を測定したところ、いずれの廃水も10~30分以内の短時間で85~99%の処理率を示した。特に、イソプロピルアルコール含有廃水の分解率は多少条件によって変わるが、90%以上の分解が可能であるが、添加剤の消費量はCOD理論値の4倍程度を必要とした。また、エチレングリコール含有廃水は、COD理論量の2倍程度で85~90%の分解率で処理できた。このように、アルコール系廃水に関して、本発明の組み合わせ処理で十分処理できることがわかる。
<Alcohol-based waste water>
When the change in COD over time was measured when sodium hypochlorite and peroxide were added to the alcohol-based wastewater shown in Table 8, the wastewater was 85-85% in a short period of 10-30 minutes. A treatment rate of 99% was shown. In particular, although the decomposition rate of isopropyl alcohol-containing wastewater varies slightly depending on the conditions, it is possible to decompose 90% or more, but the amount of additive required is about four times the theoretical COD value. Ethylene glycol-containing wastewater could be treated with a decomposition rate of 85-90% at about twice the theoretical amount of COD. Thus, it can be seen that alcohol-based wastewater can be sufficiently treated by the combined treatment of the present invention.

Figure 2022121251000009
Figure 2022121251000009

<フェノール系排水>
表9に示すフェノール系排水に次亜塩素酸ソーダと過酸化材の添加、及び空気曝気を組み合わせた場合のCOD及びフェノール濃度の経時的変化を測定した。フェノール系廃水の場合はCOD処理とフェノール処理が必要で、目的に応じて処理を行う必要がある。フェノールの分解は、CODの理論量以上の添加剤でほぼ100%の分解が可能であり、CODの場合は、CODの理論量の添加剤で90%の分解率であるが、それ以上添加すると分解率は急減に低下する。
<Phenolic Wastewater>
Changes over time in COD and phenol concentrations were measured when adding sodium hypochlorite and a peroxide agent to the phenol-based wastewater shown in Table 9, and in combination with air aeration. In the case of phenolic wastewater, COD treatment and phenol treatment are required, and it is necessary to carry out treatment according to the purpose. Phenol can be decomposed almost 100% with more than the theoretical amount of additive for COD. The decomposition rate drops sharply.

Figure 2022121251000010
Figure 2022121251000010

<アルデヒド系排水>
表10に示すアルデヒド系排水に次亜塩素酸ソーダ及び過酸化材の添加を組み合わせた場合のCODの経時的変化を測定したところ、CODの理論量から2倍程度の添加剤の添加で、95%程度のCOD処理が可能であった。
<Aldehyde wastewater>
When the change in COD over time was measured when sodium hypochlorite and peroxide were added to the aldehyde-based wastewater shown in Table 10, the addition of about twice the theoretical amount of COD resulted in 95 % COD treatment was possible.

Figure 2022121251000011
Figure 2022121251000011

<有機酸系排水>
表11に示す有機酸系排水に次亜塩素酸ソーダ及び過酸化材の添加を組み合わせた場合のCODの経時的変化を測定したところ、クエン酸ナトリウムやステアリン酸ナトリウムに関しては、COD理論量程度の添加剤の添加で、90%以上のCOD処理が可能であったが、酢酸化合物については、CODの理論量の5~10倍程度の添加剤が必要である。
<Organic acid wastewater>
When the change in COD over time was measured when adding sodium hypochlorite and peroxide to the organic acid wastewater shown in Table 11, it was found that sodium citrate and sodium stearate were about the theoretical amount of COD. With the addition of additives, 90% or more COD treatment was possible, but for acetic acid compounds, the amount of additives required is about 5 to 10 times the theoretical amount of COD.

Figure 2022121251000012
Figure 2022121251000012

<アミン系排水>
表12に示すアミン系排水に次亜塩素酸及び過酸化材の添加を組み合わせた場合のCODの経時的変化を測定した。アミン系化合物はアルカリ性で添加剤と反応させることにより、70~90%CODを分解することができるので、本実験では、すべてアルカリ性で行った。
トリエタノールアミン含有排水は、COD理論量2~4倍の添加剤を使用し、15分間の反応時間で約70%の分解率であった。脂肪酸2級アミン含有排水の場合は、反応時間を30分間とし、COD理論量の添加剤を使用して、80%以上分解することができた。
<Amine wastewater>
Changes in COD over time were measured when hypochlorous acid and peroxide were added to the amine wastewater shown in Table 12. Since the amine compound is alkaline and can decompose 70 to 90% COD by reacting with the additive, this experiment was carried out in an alkaline environment.
The triethanolamine-containing waste water had a decomposition rate of about 70% in a reaction time of 15 minutes using 2 to 4 times the theoretical COD amount of the additive. In the case of fatty acid secondary amine-containing waste water, the reaction time was set to 30 minutes, and COD theoretical amount of additive was used, and 80% or more was decomposed.

Figure 2022121251000013
Figure 2022121251000013

<その他の有機排水>
表13に示すその他の有機排水に次亜塩素酸ソーダ及び過酸化材の添加を組み合わせた場合のCODの経時的変化を測定した。本実験における有機物の分解率は、50~90%であった。その他の実験でも、一般的に50~90%の分解率であったが、実施例11~17のように、排水の主成分の内容がわかっている排水の処理結果を見ると、有機物の分子量が大きな排水のCODの分解率は低く、分子量の小さなものほど分解率は高くなる傾向がみられる。
<Other organic wastewater>
Changes in COD over time were measured when sodium hypochlorite and peroxide were added to other organic waste water shown in Table 13. The decomposition rate of organic matter in this experiment was 50 to 90%. In other experiments, the decomposition rate was generally 50-90%. The decomposition rate of COD in wastewater with a large molecular weight is low, and there is a tendency for the decomposition rate to increase as the molecular weight decreases.

Figure 2022121251000014
Figure 2022121251000014

<各種工場排水>
表14は、廃水中の成分が複雑で不明な物について業種別にまとめたものであり、これらの有機排水に次亜塩素酸ソーダ及び過酸化材の添加を組み合わせた場合のCODの経時的変化を測定した。
イオン交換樹脂排水は、有機物の精製工程のイオン交換樹脂の再生排水である、CODの分解率は69.6%とあまり高くはないが、COD27ppmは、排出基準をクリアしている。
無電解用メッキ排水は、廃水中の銅を還元して回収した後に曝気処理を行ったものである。
カプセル製造排水、糖衣錠製造排水、製薬工場排水は、会社は異なるものの、いずれも医薬品の製造工程より排出される排水である。これらの排水の処理ではCOD分解率が80~90%と良い結果が得られている。
生活排水では、一次処理した排水と二次処理(生物処理)した排水の処理結果を示す。生物処理を行った排水は処理前のCODも低く、処理後のCODも非常に低くなり、この程度のCOD廃水の処理が経済的と考えられる。さらに生活排水の一部として、し尿の三次処理として本発明の方法を採用したところ、CODだけでなく脱色効果もよいという結果であった。
食品関係の廃水も、生物処理後であれば、CODの処理率も70%以上となるが、二次処理として本発明の処理を行うとあまり効果はよくなかった。
<Various factory wastewater>
Table 14 summarizes wastewater with complex and unknown components by industry. It was measured.
The ion-exchange resin wastewater is recycled wastewater from the ion-exchange resin in the organic matter refining process. Although the COD decomposition rate is not very high at 69.6%, COD27ppm clears the discharge standard.
Wastewater for electroless plating is obtained by reducing and recovering copper in the wastewater and then subjecting it to an aeration treatment.
Capsule manufacturing wastewater, sugar-coated tablet manufacturing wastewater, and pharmaceutical factory wastewater are all wastewater discharged from pharmaceutical manufacturing processes, although they are produced by different companies. Good results of COD decomposition rate of 80 to 90% have been obtained in the treatment of these wastewaters.
For domestic wastewater, the results of primary treatment and secondary treatment (biological treatment) are shown. Wastewater that has been subjected to biological treatment has a low COD before treatment and a very low COD after treatment. Furthermore, when the method of the present invention was adopted as a tertiary treatment of night soil as part of domestic wastewater, the result was that not only the COD but also the decolorization effect was good.
Food-related wastewater also has a COD treatment rate of 70% or more after biological treatment.

Figure 2022121251000015
Figure 2022121251000015

<染色廃水>
染色廃水に次亜塩素酸ソーダ及び過酸化材の添加を組み合わせ、5分間処理した場合のCODを測定し、廃水の色を観察した結果を表15に示す。
<Dyeing wastewater>
Table 15 shows the results of observing the color of the wastewater by measuring the COD when the dyeing wastewater was combined with the addition of sodium hypochlorite and peroxide and treated for 5 minutes.

Figure 2022121251000016
Figure 2022121251000016

<次亜塩素酸ソーダ>
本実験の目的は、本発明の実施のため過剰に加えた添加剤としての次亜塩素酸ソーダや、排水の脱色や殺菌のために添加された次亜塩素酸ソーダの分解である。
被処理排水中には、過酸化物を添加して処理した結果を表16に示す。次亜塩素酸ソーダは、短時間に効率よく分解された。
<Sodium hypochlorite>
The purpose of this experiment is to decompose sodium hypochlorite as an additive added excessively for carrying out the present invention and sodium hypochlorite added for decolorizing and sterilizing waste water.
Table 16 shows the results of treatment by adding peroxide to the waste water to be treated. Sodium hypochlorite was efficiently decomposed in a short time.

Figure 2022121251000017
Figure 2022121251000017

Claims (3)

有害有機化合物を含む廃水中に、過酸化ニッケルを主成分とする固形過酸化物を添加すること、並びに、廃水中の溶存酸素量を増加させること及び/又は次亜塩素酸ソーダを添加すること、により廃水中の有害有機化合物を分解する方法。 Adding a solid peroxide containing nickel peroxide as a main component to wastewater containing harmful organic compounds, and increasing the amount of dissolved oxygen in the wastewater and/or adding sodium hypochlorite. A method of decomposing harmful organic compounds in waste water by . 有害有機化合物が、難分解性有機化合物である請求項1記載の有害有機化合物を分解する方法。 2. The method for decomposing harmful organic compounds according to claim 1, wherein the harmful organic compounds are persistent organic compounds. 有害有機化合物が、悪臭性有機化合物である請求項3記載の有害有機化合物を分解する方法。
4. The method for decomposing harmful organic compounds according to claim 3, wherein the harmful organic compounds are malodorous organic compounds.
JP2021018507A 2021-02-08 2021-02-08 Method of decomposing harmful organic chemical compound in effluent Pending JP2022121251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021018507A JP2022121251A (en) 2021-02-08 2021-02-08 Method of decomposing harmful organic chemical compound in effluent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018507A JP2022121251A (en) 2021-02-08 2021-02-08 Method of decomposing harmful organic chemical compound in effluent

Publications (1)

Publication Number Publication Date
JP2022121251A true JP2022121251A (en) 2022-08-19

Family

ID=82849695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018507A Pending JP2022121251A (en) 2021-02-08 2021-02-08 Method of decomposing harmful organic chemical compound in effluent

Country Status (1)

Country Link
JP (1) JP2022121251A (en)

Similar Documents

Publication Publication Date Title
Zhu et al. Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater
Aplin et al. Comparison of three advanced oxidation processes for degradation of textile dyes
Neyens et al. A review of classic Fenton’s peroxidation as an advanced oxidation technique
US5445741A (en) Process for treating waste water
CN104355443B (en) A kind for the treatment of process of the waste water containing unsymmetrical dimethyl hydrazine
Borghei et al. Comparison of furfural degradation by different photooxidation methods
Yang et al. Ammonia removal in bubble column by ozonation in the presence of bromide
JPH08500050A (en) Method and apparatus for the decomposition of free and complex cyanide, AOX, mineral oil, complexing agents, COD, nitrite, chromate, and metal separation in wastewater
Monteagudo et al. Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters
JP2008043898A (en) Water treatment system and water treatment method
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
CN106365366B (en) The preprocess method of one kind 2,4-D acid synthesis technology waste water
JP5259311B2 (en) Water treatment method and water treatment system used therefor
Dougherty et al. Studies on the removal of actinomycete musty tastes and odors in water supplies
JP2022121251A (en) Method of decomposing harmful organic chemical compound in effluent
JPH1119664A (en) Decomposition of hardly biologically decomposable organic matter and removing method of phosphorus by zirconium oxide/ferric salt/hydrogen peroxide/ ultraviolet rays system
EP4208412A1 (en) Wastewater ozone treatment
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
Ruffino et al. The role of boundary conditions in the bromide-enhanced ozonation process for ammonia nitrogen removal and nitrate minimization
CN109368936B (en) Method for treating copper etching waste liquid
Ruffino et al. Experimental study on the abatement of ammonia and organic carbon with ozone
JP2003047980A (en) Wastewater treatment method and its apparatus
JP2001286876A (en) Method and device for treating waste water containing hardly decomposable chemical substance
KR100495764B1 (en) Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
JP2552998B2 (en) Purification treatment sludge separation water treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20241004