JP2006083227A - Exterior molded article made of long fiber reinforced polyamide resin - Google Patents
Exterior molded article made of long fiber reinforced polyamide resin Download PDFInfo
- Publication number
- JP2006083227A JP2006083227A JP2004267155A JP2004267155A JP2006083227A JP 2006083227 A JP2006083227 A JP 2006083227A JP 2004267155 A JP2004267155 A JP 2004267155A JP 2004267155 A JP2004267155 A JP 2004267155A JP 2006083227 A JP2006083227 A JP 2006083227A
- Authority
- JP
- Japan
- Prior art keywords
- polyamide resin
- molded body
- resin
- fiber reinforced
- exterior
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Body Structure For Vehicles (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、耐衝撃性等の機械的性質や流動性に優れた長繊維強化ポリアミド樹脂の射出成形体に関するものであって、さらに、射出成形時の繊維配向によって生じる成形体の異方性、特に最大線膨張係数、線膨張係数の異方性、最大吸湿寸法変化率を低減した、長繊維強化ポリアミド樹脂製外装成形体、特に自動車用外装成形体に関するものである。 The present invention relates to an injection molded article of long fiber reinforced polyamide resin excellent in mechanical properties such as impact resistance and fluidity, and further, anisotropy of the molded article caused by fiber orientation during injection molding, In particular, the present invention relates to a long fiber reinforced polyamide resin exterior molded article, particularly an automobile exterior molded article, in which the maximum linear expansion coefficient, the anisotropy of the linear expansion coefficient, and the maximum moisture absorption dimensional change rate are reduced.
ポリアミド樹脂は、耐熱性、靱性、耐オイル性、耐ガソリン性、耐摩擦性、成形性等の優れた特性を利用して、自動車分野や電気電子分野をはじめ多くの分野で使用されている樹脂である。特に、自動車分野ではその耐熱性、耐油性を活かしてエンジン周辺部の部品を代表とした多くの使用実績がある。従来、自動車用外装部品には金属性の構造部品に金属製の外装パネルを取り付ける構造が用いられていた。しかしながら、近年は自動車の燃費向上、走行性能向上等を目的として、各種自動車部品の軽量化が求められる傾向にあり、外装パネルや、それを支える構造体においても樹脂が用いられるようになってきた。
例えば特許文献1には自動車用パネルをさらに軽量化する目的で、連続繊維からなる織物基材を補強繊維とするFRPからなる自動車用パネルが開示されているが、設計の自由度や生産効率の点で満足できるものではなかった。
また、特許文献2には、アウターパネルがポリフェニレンエーテル/ポリアミドアロイからなり、インナーパネルが長繊維強化ポリアミド/ポリオレフィンアロイからなるテールゲートが、軽量化やモジュール化の観点から提案されているが、ポリアミドによる吸湿寸法変化のため、建て付け不具合や波打ち外観不良が問題になっている。吸湿寸法変化の問題を解決する目的で、ポリカーボネート/ポリブチレンテレフタレートアロイ等も提案されているが、インナーパネルが長繊維強化ポリプロピレンのため、接着構造が必要であり、また、インナーパネルの繊維配向による線膨張の異方性がアウターパネルに影響を及ぼすが、線膨張の大きさや異方性に関する記載はない。
Polyamide resin is a resin that is used in many fields including the automotive and electrical / electronic fields by utilizing its excellent properties such as heat resistance, toughness, oil resistance, gasoline resistance, friction resistance, and moldability. It is. In particular, in the automobile field, there have been many uses, such as parts around the engine, utilizing the heat resistance and oil resistance. Conventionally, a structure in which a metal exterior panel is attached to a metallic structural component has been used for an automotive exterior component. However, in recent years, there has been a tendency to reduce the weight of various automobile parts for the purpose of improving the fuel efficiency and running performance of automobiles, and resin has come to be used in exterior panels and structures that support them. .
For example, Patent Document 1 discloses an automotive panel made of FRP in which a woven fabric base made of continuous fibers is used as a reinforcing fiber for the purpose of further reducing the weight of the automotive panel. We were not satisfied with point.
Patent Document 2 proposes a tailgate whose outer panel is made of polyphenylene ether / polyamide alloy and whose inner panel is made of long fiber reinforced polyamide / polyolefin alloy from the viewpoint of weight reduction and modularization. Due to the change in the moisture absorption dimension due to erection, there are problems in building and undulating appearance. Polycarbonate / polybutylene terephthalate alloy and the like have been proposed for the purpose of solving the problem of moisture absorption dimensional change, but the inner panel is a long fiber reinforced polypropylene, so an adhesive structure is required, and it depends on the fiber orientation of the inner panel. Although the anisotropy of linear expansion affects the outer panel, there is no description regarding the magnitude or anisotropy of linear expansion.
特許文献3には、車両用外装部品として、射出成形時の流動方向の線膨張係数と流動方向に対して直角方向の線膨張係数との平均値が6×10-5K-1の炭素繊維強化ポリアミドが開示されているが、その異方性に関しての記載はない。異方性が大きい場合、温度変化による変形具合が方向によって異なるため、外観品質に影響を与えたり、応力集中部が発生することによる部材の破断やクラックの発生が懸念されるため好ましくない。さらに、吸湿による寸法変化や吸湿寸法変化の異方性が大きいと、建て付け不具合や、波打ち外観不良が問題になってくるため好ましくない。
また、特許文献4には、繊維状強化材を3〜70重量%含有する繊維強化熱可塑性樹脂材料を射出成形して得られる、(体積)/(表面積)<2mmとなるような熱可塑性樹脂成形体において、繊維状強化材を含んだ溶融樹脂の流れ方向(MD)と、流れと直角方向(TD)の23℃〜100℃における線膨張係数が、0.6<(TD方向の線膨張係数)/(MD方向の線膨張係数)<2.5であることが開示されている。しかしながら、自動車用外装構造体として異方性が小さくなることは必要でるが、その絶対値が大きいままであると建て付け性や、周辺部品への影響、さらには線膨張による塗装不良や塗装割れによる外観品質の低下を招く恐れがある。さらに、成形体内に断面積の小さい狭流路が存在すると、強化繊維の配向がきつくなり異方性が大きくなり、狭流路の流路長によっては成形体内全体に悪影響を及ぼす恐れがあるが、成形体の形状に関する記載はない。また、ポリアミド樹脂の吸湿寸法変化に関する記載はない。
In Patent Document 3, as an exterior part for a vehicle, a carbon fiber having an average value of a linear expansion coefficient in the flow direction at the time of injection molding and a linear expansion coefficient in a direction perpendicular to the flow direction is 6 × 10 −5 K −1 . Although reinforced polyamide is disclosed, there is no description regarding its anisotropy. If the anisotropy is large, the degree of deformation due to temperature change differs depending on the direction, which is not preferable because it may affect the appearance quality or cause the member to break or crack due to the occurrence of a stress concentration portion. Further, if the dimensional change due to moisture absorption or the anisotropy of the moisture absorption dimensional change is large, it is not preferable because a problem in building and a wavy appearance defect become problems.
Patent Document 4 discloses a thermoplastic resin obtained by injection molding a fiber reinforced thermoplastic resin material containing 3 to 70% by weight of a fibrous reinforcing material, such that (volume) / (surface area) <2 mm. In the molded product, the linear expansion coefficient at 23 ° C. to 100 ° C. in the flow direction (MD) of the molten resin containing the fibrous reinforcement and the direction perpendicular to the flow (TD) is 0.6 <(linear expansion in the TD direction). Coefficient) / (linear expansion coefficient in the MD direction) <2.5. However, it is necessary for the exterior structure of automobiles to have a small anisotropy. However, if the absolute value remains large, the buildability, the influence on peripheral parts, and coating defects and cracks due to linear expansion are also required. There is a risk of deteriorating the appearance quality. Furthermore, if a narrow channel with a small cross-sectional area exists in the molded body, the orientation of the reinforcing fibers becomes tight and the anisotropy increases, and depending on the channel length of the narrow channel, the entire molded body may be adversely affected. There is no description regarding the shape of the molded body. Moreover, there is no description regarding the hygroscopic dimensional change of the polyamide resin.
本発明が解決しようとする課題は、曲げ弾性率、曲げ強さ等の機械的強度、耐薬品性、耐熱性に優れ、軽量化され、製品設計の自由度が高く、充填時の繊維配向による成形体の最大線膨張係数、線膨張係数の異方性、最大吸湿寸法変化率を低減した長繊維強化自動車用外装成形体を提供することにある。 The problems to be solved by the present invention are excellent in mechanical strength such as bending elastic modulus and bending strength, chemical resistance and heat resistance, light weight, high degree of freedom in product design, and fiber orientation at the time of filling. An object of the present invention is to provide a long fiber reinforced automotive exterior molded body in which the maximum linear expansion coefficient, the anisotropy of the linear expansion coefficient, and the maximum moisture absorption dimensional change rate are reduced.
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、成形時の金型キャビティ内における樹脂流路を特定することで、長繊維強化自動車用外装成形体の繊維配向による最大線膨張係数、線膨張係数の異方性、最大吸湿寸法変化率が小さくなることを見いだし、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have identified the resin flow path in the mold cavity during molding, and the maximum is due to the fiber orientation of the long fiber reinforced automotive exterior molded body. The inventors have found that the coefficient of linear expansion, the anisotropy of the coefficient of linear expansion, and the maximum rate of change in moisture absorption dimension are reduced, and the present invention has been completed.
すなわち、本発明の要旨は、(1)成形体中に分散する強化繊維の、含有率が30重量%〜90重量%であって、重量平均繊維長が1.5mm〜10mmであり、成形体の最大投影面積が20000mm2 以上であり、成形時に断面積100mm2 以下の狭流路の流路長が150mm以下であり、かつ、次の諸性質を備えることを特徴とする長繊維強化ポリアミド樹脂製外装成形体
1)肉厚2mm以上の成形体部分の、最大線膨張係数が5×10-5K-1以下であり、かつ、最大線膨張係数/最小線膨張係数の比が1.8以下である
2)肉厚2mm以上の成形体部分の、最大吸湿寸法変化率が0.3%以下である、
(2)上記ポリアミド樹脂が、23℃、98%硫酸中、濃度1%で測定した相対粘度が1.5〜2.5のポリアミド6である長繊維強化ポリアミド樹脂製外装成形体、(3)上記ポリアミド樹脂が、23℃、96%硫酸中、濃度1%で測定した相対粘度が1.5〜2.5の芳香族ポリアミドである長繊維強化ポリアミド樹脂製外装成形体、(4)上記ポリアミド樹脂が、芳香族ジアミンと脂肪族ジカルボン酸との重縮合反応によって得られるポリアミドを主成分とする芳香族ポリアミド樹脂である長繊維強化ポリアミド樹脂製外装成形体、(5)成形材料として、長繊維強化ポリアミド樹脂(A)にリサイクル樹脂(B)を配合した混合物を使用し、その組成比が、該混合物の重量基準で
(A):30重量%〜100重量%、
(B):0重量%〜70重量%
の範囲内である長繊維強化ポリアミド樹脂製外装成形体、(6)上記強化繊維が特定径のガラス繊維である、又は、(7)上記長繊維強化成形体が射出成形されたものである、長繊維強化ポリアミド樹脂製外装成形体を提供するものであり、(8)上記長繊維強化成形体が自動車用外装パネル又はその構造体である自動車用外装成形体を提供するものである。
That is, the gist of the present invention is as follows: (1) The content of the reinforcing fiber dispersed in the molded body is 30% by weight to 90% by weight, and the weight average fiber length is 1.5 mm to 10 mm. The long-fiber-reinforced polyamide resin is characterized in that the maximum projected area is 20000 mm 2 or more, the flow path length of a narrow channel having a cross-sectional area of 100 mm 2 or less is 150 mm or less at the time of molding, and has the following properties: Made-to-mold molded body 1) The maximum linear expansion coefficient of a molded body portion having a thickness of 2 mm or more is 5 × 10 −5 K −1 or less, and the ratio of the maximum linear expansion coefficient / minimum linear expansion coefficient is 1.8. 2) The maximum moisture absorption dimensional change rate of the molded part having a thickness of 2 mm or more is 0.3% or less.
(2) A long fiber reinforced polyamide resin exterior molded body, wherein the polyamide resin is polyamide 6 having a relative viscosity of 1.5 to 2.5 measured at 23 ° C. and 98% sulfuric acid at a concentration of 1%, (3) A long fiber reinforced polyamide resin exterior molded body in which the polyamide resin is an aromatic polyamide having a relative viscosity of 1.5 to 2.5 measured at 23 ° C. in 96% sulfuric acid at a concentration of 1%; (4) the polyamide A long fiber reinforced polyamide resin exterior molded body in which the resin is an aromatic polyamide resin whose main component is a polyamide obtained by a polycondensation reaction of an aromatic diamine and an aliphatic dicarboxylic acid, and (5) a long fiber as a molding material Using a mixture of the reinforced polyamide resin (A) and the recycled resin (B), the composition ratio is (A): 30% by weight to 100% by weight based on the weight of the mixture,
(B): 0% to 70% by weight
(6) The reinforcing fiber is a glass fiber having a specific diameter, or (7) the long fiber reinforced molded body is injection-molded. A long fiber reinforced polyamide resin exterior molded body is provided, and (8) an automotive exterior panel in which the long fiber reinforced molded body is an automotive exterior panel or a structure thereof is provided.
また、本発明の別の要旨は、(9)上記長繊維強化外装成形体の表面に積層された、少なくとも1層の非強化樹脂層を有し、断面が2層以上の多層構造を取る、(10)上記非強化樹脂層が、該長繊維強化ポリアミド樹脂と同種の樹脂、又は該樹脂を主成分とするアロイである、又は、(11)積層に際し、文字、エンブレムやマーク等の加飾部が、該長繊維強化外装成形体と、該非強化樹脂層との間に封入された意匠部一体型の、長繊維強化自動車用外装成形体を提供することにある。 In addition, another gist of the present invention is (9) having at least one non-reinforced resin layer laminated on the surface of the long fiber reinforced exterior molded body, and having a multilayer structure having a cross section of two or more layers. (10) The non-reinforcing resin layer is the same type of resin as the long fiber reinforced polyamide resin, or an alloy containing the resin as a main component, or (11) decoration of characters, emblems, marks, and the like during lamination An object is to provide a long-fiber reinforced automotive exterior molded body having an integrated design portion encapsulated between the long-fiber reinforced exterior molded body and the non-reinforced resin layer.
本発明の長繊維強化ポリアミド樹脂製外装成形体には、強化繊維の含有率が30重量%〜90重量%で、かつ、強化繊維が1.5mm〜10mmの重量平均繊維長で分散している長繊維強化樹脂が使用されており、成形時の金型キャビティにおける断面積100mm2 以下の狭流路の流路長が150mm以下の形状となっているので、最大線膨張係数、線膨張係数の異方性及び最大吸湿寸法変化率の低減による寸法安定性に優れ、曲げ弾性率、曲げ強さ等の機械的強度、耐薬品性、耐熱性に優れ、軽量化され、製品設計の自由度が高い自動車用ポリアミド外装成形体に適した大型成形体を製造することができる。 In the outer fiber reinforced polyamide resin exterior molded article of the present invention, the content of reinforcing fibers is 30% to 90% by weight, and the reinforcing fibers are dispersed with a weight average fiber length of 1.5 mm to 10 mm. A long fiber reinforced resin is used, and the length of the narrow channel with a cross-sectional area of 100 mm 2 or less in the mold cavity at the time of molding is 150 mm or less. Excellent dimensional stability due to reduction of anisotropy and maximum moisture absorption dimensional change rate, excellent mechanical strength such as flexural modulus, flexural strength, chemical resistance, heat resistance, weight reduction, freedom of product design A large molded article suitable for a high-grade automobile exterior molded article can be manufactured.
以下、本発明を詳細に説明する。
本発明の長繊維強化ポリアミド樹脂製外装成形体(以下、「本発明成形体」と略称する。)は、最大線膨張係数、線膨張係数の異方性や最大吸湿寸法変化率の影響が顕著になる大型成形体に適しており、その成形体の最大投影面積は20000mm2 より大きい成形体である。繊維強化樹脂を用い成形した場合、一般に肉厚の表面層は樹脂の流動方向に繊維が配向し、中心層は流動方向と直角方向に配向すると言われている。強化繊維が短繊維の場合、成形時における繊維の運動(回転)自由度が上がるため、表面層は壁面からの剪断力を受け流動方向に配向するものの、中心層付近はランダム方向に配向している場合が多い。強化繊維が長繊維の場合、その繊維長の影響により強化繊維の運動(回転)自由度は少なくなり、表面層は流動方向に、中心層はその直角方向にと明確な配向を持ちやすいと言える。
本発明成形体の他の一つの特徴は、成形時に狭流路の断面積とその流路長さの関係にあり、100mm2 以下の断面積をもつ狭流路の流路長が150mm以下であり、より好ましくは80mm2 以下の断面積を持つ狭流路の流路長が100mm以下であることが望ましい。もし、成形時に100mm2 以下の断面積をもつ狭流路の流路長が150mmを超える場合は、強化繊維の配向方向が溶融樹脂の充填方向に配向するものが多くなり、充填方向への線膨張係数を低減させる効果、収縮を低減させる効果は大きくなるが、その直角方向への効果が少なくなり、よって異方性が大きくなってしまう。異方性が大きいと、外装部品として求められている建て付け性や、周辺部品との勘合やギャップ量への影響、さらには線膨張による塗装不良や塗装割れによる外観品質の低下を招く恐れがある。同じように吸湿による寸法変化率が大きくなり建て付け不具合や、波打ち外観不良が問題になってくるため好ましくない。
Hereinafter, the present invention will be described in detail.
The long fiber reinforced polyamide resin exterior molded body of the present invention (hereinafter abbreviated as “the molded body of the present invention”) is significantly affected by the maximum linear expansion coefficient, the anisotropy of the linear expansion coefficient, and the maximum rate of change in the hygroscopic dimension. The maximum projected area of the molded body is larger than 20000 mm 2 . In the case of molding using a fiber reinforced resin, it is generally said that the thick surface layer has the fibers oriented in the resin flow direction and the center layer oriented in the direction perpendicular to the flow direction. When the reinforcing fiber is a short fiber, the freedom of movement (rotation) of the fiber during molding increases, so the surface layer is oriented in the flow direction under shearing force from the wall surface, but the center layer is oriented in the random direction. There are many cases. When the reinforcing fiber is a long fiber, the freedom of movement (rotation) of the reinforcing fiber is reduced due to the effect of the fiber length, and it can be said that the surface layer tends to have a clear orientation in the flow direction and the center layer in the perpendicular direction. .
Another feature of the molded body of the present invention is the relationship between the cross-sectional area of the narrow channel and the channel length at the time of molding, and the channel length of the narrow channel having a cross-sectional area of 100 mm 2 or less is 150 mm or less. More preferably, the length of the narrow channel having a cross-sectional area of 80 mm 2 or less is desirably 100 mm or less. If the channel length of a narrow channel having a cross-sectional area of 100 mm 2 or less during molding exceeds 150 mm, the orientation direction of the reinforcing fibers is often oriented in the filling direction of the molten resin, and the line in the filling direction Although the effect of reducing the expansion coefficient and the effect of reducing the shrinkage are increased, the effect in the perpendicular direction is reduced, and thus the anisotropy is increased. If the anisotropy is large, there is a risk that it may lead to deterioration in appearance quality due to poor installation due to linear expansion or coating cracks, as well as the ease of installation required for exterior parts, effects on peripheral parts and gaps. is there. Similarly, the rate of dimensional change due to moisture absorption is increased, resulting in problems such as building defects and wavy appearance defects.
さらに、本発明成形体の他の特徴は、成形体中に分散する強化繊維について、強化繊維の含有率が30重量%〜90重量%であり、かつ、強化繊維の長さが1.5mm〜10mmの重量平均繊維長で分散していることにあり、しかも、成形体が次の諸性質を備えることにある。
1)肉厚2mm以上の成形体部分の、最大線膨張係数が5×10-5K-1以下であり、かつ、最大線膨張係数/最小線膨張係数の比が1.8以下であること。
この性質の具備は、肉厚2mm以上の成形体部分の任意の位置(多数箇所)において、23℃〜80℃の温度域における線膨張係数を測定し、それらの測定値の最大値(最大線膨張係数)及び最小値(最小線膨張係数)を確認し、両者の比(最大線膨張係数/最小線膨張係数の比)を算出することによって、容易に判定できる。
2)肉厚2mm以上の成形体部分の、最大吸湿寸法変化率が0.3%以下であること。
この性質の具備は、温度23℃、相対湿度50%における飽和吸水時の吸水処理によって生じる、成形体表面の寸法変化を、肉厚2mm以上の成形体部分の任意の位置(多数箇所)において測定し、それらの測定値からそれぞれ下式の吸湿寸法変化率を算出し、
吸湿寸法変化率=[(吸水後寸法−吸水前寸法)/吸水前寸法]×100
それらの算出値の最大値(最大吸湿寸法変化率)を確認することによって、容易に判定できる。
しかして、上記強化繊維の含有率が30重量%未満の場合、又は、重量平均繊維長が1.5mm未満の場合は、曲げ弾性率・曲げ強度をはじめとした機械的強度や寸法安定性が低下するので好ましくない。また、上記強化繊維の含有率が90重量%を超える場合、又は、重量平均繊維長が10mmを超える場合は、成形性が低下するので好ましくない。
また、上記最大線膨張係数が5×10-5K-1より大きい場合及び最大線膨張係数/最小線膨張係数の比が1.8より大きい場合は、温度変化に対する成形体全体の変形量が大きくなり、外装部品として求められている建て付け性や、周辺部品との勘合やギャップ量への影響、変形による割れの発生、外観のゆがみ、塗装割れ、さらには成形体塗装時の線膨張による塗装不良や塗装割れによる外観品質の低下を招く恐れがあるので好ましくない。さらに、上記最大吸湿寸法変化率の最大値が0.3%より大きい場合は、吸水による寸法変化で建て付け不具合や、周辺部品との勘合やギャップ量への影響、波打ち外観不良が問題になるので好ましくない。
Furthermore, the other feature of the molded body of the present invention is that the reinforcing fiber content in the molded body is 30% by weight to 90% by weight, and the length of the reinforcing fiber is 1.5 mm to It exists in being disperse | distributed with the weight average fiber length of 10 mm, and also in a molded object having the following various properties.
1) The maximum linear expansion coefficient of the molded part having a thickness of 2 mm or more is 5 × 10 −5 K −1 or less, and the ratio of the maximum linear expansion coefficient / minimum linear expansion coefficient is 1.8 or less. .
This property is obtained by measuring a linear expansion coefficient in a temperature range of 23 ° C. to 80 ° C. at an arbitrary position (multiple locations) of a molded body portion having a wall thickness of 2 mm or more, and measuring the maximum value (maximum line). It can be easily determined by checking the expansion coefficient) and the minimum value (minimum linear expansion coefficient) and calculating the ratio between them (maximum linear expansion coefficient / minimum linear expansion coefficient ratio).
2) The maximum moisture absorption dimensional change rate of a molded body portion having a thickness of 2 mm or more is 0.3% or less.
This property is measured by measuring the dimensional change of the surface of the molded body caused by water absorption during saturated water absorption at a temperature of 23 ° C. and a relative humidity of 50% at any position (multiple locations) of the molded body part with a thickness of 2 mm or more. And calculate the moisture absorption dimensional change rate of the following formula from those measured values,
Hygroscopic dimensional change rate = [(dimension after water absorption−dimension before water absorption) / dimension before water absorption] × 100
It can be easily determined by checking the maximum value (maximum moisture absorption dimensional change rate) of those calculated values.
Thus, when the content of the reinforcing fiber is less than 30% by weight, or when the weight average fiber length is less than 1.5 mm, mechanical strength and dimensional stability including bending elastic modulus and bending strength are obtained. Since it falls, it is not preferable. Moreover, when the content rate of the said reinforced fiber exceeds 90 weight% or a weight average fiber length exceeds 10 mm, since a moldability falls, it is unpreferable.
When the maximum linear expansion coefficient is greater than 5 × 10 −5 K −1 and when the ratio of the maximum linear expansion coefficient / minimum linear expansion coefficient is greater than 1.8, the deformation amount of the entire molded body with respect to the temperature change is Due to the large size required for building parts, effects on peripheral parts and effects on gaps, cracking due to deformation, distortion of appearance, coating cracks, and linear expansion during coating of molded products This is not preferable because the appearance quality may be deteriorated due to poor coating or cracking. Furthermore, when the maximum value of the maximum moisture absorption dimensional change rate is larger than 0.3%, the dimensional change caused by water absorption causes problems in installation, influence on peripheral parts, influence on gap amount, and undulating appearance defect. Therefore, it is not preferable.
本発明成形体を構成する強化繊維は、重量平均繊維長が1.5mm〜10mm、より優れた機械的強度と寸法安定性の前部構造体とするには、好ましくは2mm〜7mmの長繊維で、該成形体中に分散させ得るものであれば特に制限はない。通常、樹脂の補強用に使用される、ガラス繊維、炭素繊維、金属繊維、合成繊維等を使用することが可能であるが、ガラス繊維や炭素繊維が実用的である。炭素繊維の直径は、5μm〜15μmであることが好ましい。また、強化繊維は、ポリアミド樹脂との界面密着性を向上させるために、収束剤又は表面処理剤(例えば、エポキシ系化合物、アクリル系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物)で表面処理したものを用いるのが好ましい。 The reinforcing fiber constituting the molded body of the present invention has a weight average fiber length of 1.5 mm to 10 mm, and preferably a long fiber of 2 mm to 7 mm for a front structure having better mechanical strength and dimensional stability. As long as it can be dispersed in the molded body, there is no particular limitation. Usually, glass fiber, carbon fiber, metal fiber, synthetic fiber and the like used for resin reinforcement can be used, but glass fiber and carbon fiber are practical. The diameter of the carbon fiber is preferably 5 μm to 15 μm. In addition, the reinforcing fiber has a sizing agent or a surface treatment agent (for example, an epoxy compound, an acrylic compound, an isocyanate compound, a silane compound, a titanate compound, etc.) in order to improve the interfacial adhesion with the polyamide resin. It is preferable to use a surface-treated compound.
本発明成形体を構成する強化繊維がガラス繊維の場合は、直径10μm〜20μmであることが、ガラス繊維の折損や物性バランスをより一層高める点から好ましい。
実際に使用するガラス繊維は、Aガラス、Cガラス、Eガラス等のガラス組成からなり、特に、Eガラス(無アルカリガラス)がポリアミド樹脂の熱安定性に悪影響を及ぼさない点で好ましい。ガラス繊維の製造法は、例えば次のような方法による。先ず、溶解したガラスをマーブルと称する所定の大きさのガラス玉に成形し、それをプッシングと称する採糸炉にて加熱軟化せしめ、該炉テーブルの多数のノズルから流下させ、この素地を高速度で延伸しながら、その途中に設けた集束剤塗布装置にて浸漬で集束剤を付着させて集束し、乾燥して回転ドラムで巻き取る。この時のノズル径寸法と引き取り速度および引き取り雰囲気温度等を調節してガラス繊維の平均直径を所定の寸法にする。
When the reinforcing fibers constituting the molded article of the present invention are glass fibers, the diameter is preferably 10 μm to 20 μm from the viewpoint of further improving the breakage of the glass fibers and the balance of physical properties.
The glass fiber actually used has a glass composition such as A glass, C glass, or E glass, and E glass (non-alkali glass) is particularly preferable because it does not adversely affect the thermal stability of the polyamide resin. The manufacturing method of glass fiber is based on the following method, for example. First, melted glass is formed into a glass ball of a predetermined size called marble, heated and softened in a yarn-taking furnace called pushing, and allowed to flow down from a number of nozzles of the furnace table. While stretching, the sizing agent is attached by immersing with a sizing agent coating apparatus provided in the middle of the squeezing agent to squeeze it, and it is dried and wound on a rotating drum. At this time, the average diameter of the glass fiber is set to a predetermined dimension by adjusting the nozzle diameter, the take-up speed, the take-up atmosphere temperature, and the like.
本発明成形体を構成する強化繊維が炭素繊維の場合は、直径5μm〜15μmであることが、炭素繊維の折損や物性バランスをより一層高める点から好ましい。
実際に使用する炭素繊維は、一般にアクリル繊維、石油又は炭素系特殊ピッチ、セルロース繊維、リグニン等を原料として焼成によって製造されたものであり、耐炎質、炭素質、黒鉛質等の種々のタイプのものがあるが、特定のものに制限されるものではない。
When the reinforcing fibers constituting the molded article of the present invention are carbon fibers, the diameter is preferably 5 μm to 15 μm from the viewpoint of further improving the breakage of the carbon fibers and the balance of physical properties.
The carbon fiber actually used is generally produced by firing using acrylic fiber, petroleum or carbon-based special pitch, cellulose fiber, lignin, etc. as a raw material, and various types of flame resistant, carbonaceous, graphite, etc. There is something, but it is not limited to a specific thing.
本発明成形体を構成するポリアミド樹脂としては、ω−アミノ酸若しくはそのラクタムの重(縮)合、及び/又は、ジアミンとジカルボン酸の重縮合によって得られる、種々の重合体及び共重合体を用いることができる。具体的には、α−ピロリドン、α−ピペリドン、ε−カプロラクタム、アミノカプロン酸、エナントラクタム、7−アミノヘプタン酸、8−アミノオクタン酸、9−アミノノナン酸、11−アミノウンデカン酸、12−アミノドデカン酸等の重合体、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メタキシリレンジアミン等のジアミンと、テレフタル酸、イソフタル酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等のジカルボン酸とを重縮合せしめて得られる重合体又はこれらの共重合体があり、例えば、ポリアミド4、ポリアミド6、ポリアミド7、ポリアミド8、ポリアミド11、ポリアミド12、ポリアミド6−6、ポリアミド6−9、ポリアミド6−10、ポリアミド6−11、ポリアミド6−12、ポリアミド6T、共重合ポリアミド6/6−6、共重合ポリアミド6/12、共重合ポリアミド6/6T、共重合ポリアミド6I/6T等が挙げられる。好ましくは、ポリアミド6、ポリアミド6−6及び共重合ポリアミド6/6−6等が挙げられ、特に好ましくは、ポリアミド6である。また、芳香族ジアミンと脂肪族ジカルボン酸との重縮合反応より得られるポリアミドを主成分とする芳香族ポリアミド樹脂も好ましい。芳香族ジアミンとしてはパラキシリレンジアミンやメタキシリレンジアミン等が挙げられ、パラキシリレンジアミンとメタキシリレンジアミンとの混合ジアミンを用いることが好ましい。本発明の外装成形体材料に長繊維強化ポリアミド樹脂を選定した理由は、ポリエステル等他の長繊維強化熱可塑性樹脂に比較し、長繊維強化ポリアミド樹脂が機械的強度、耐油性、耐薬品性、耐熱性、耐久性、成形性に優れた材料であり、特に高温時の衝撃強度、疲労特性、クリープ特性に優れているからである。 As the polyamide resin constituting the molded article of the present invention, various polymers and copolymers obtained by polycondensation of ω-amino acids or lactams thereof and / or polycondensation of diamine and dicarboxylic acid are used. be able to. Specifically, α-pyrrolidone, α-piperidone, ε-caprolactam, aminocaproic acid, enantolactam, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, 12-aminododecane Polymers such as acids, diamines such as hexamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, metaxylylenediamine, terephthalic acid, isophthalic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, There are polymers obtained by polycondensation with dicarboxylic acids such as undecanedioic acid and dodecanedioic acid, or copolymers thereof, such as polyamide 4, polyamide 6, polyamide 7, polyamide 8, polyamide 11, polyamide 12, Polyamide 6-6, polyamide 6 9, polyamide 6-10, polyamide 6-11, polyamide 6-12, polyamide 6T, copolymer polyamide 6 / 6-6, copolymer polyamide 6/12, copolymer polyamide 6 / 6T, copolymer polyamide 6I / 6T, etc. Is mentioned. Preferred examples include polyamide 6, polyamide 6-6, and copolymerized polyamide 6 / 6-6. Particularly preferred is polyamide 6. An aromatic polyamide resin mainly composed of a polyamide obtained from a polycondensation reaction between an aromatic diamine and an aliphatic dicarboxylic acid is also preferable. Examples of the aromatic diamine include paraxylylenediamine and metaxylylenediamine, and it is preferable to use a mixed diamine of paraxylylenediamine and metaxylylenediamine. The reason why the long fiber reinforced polyamide resin is selected as the exterior molded body material of the present invention is that the long fiber reinforced polyamide resin has mechanical strength, oil resistance, chemical resistance, compared to other long fiber reinforced thermoplastic resins such as polyester. This is because the material is excellent in heat resistance, durability, and moldability, and is particularly excellent in impact strength, fatigue characteristics, and creep characteristics at high temperatures.
また、本発明成形体を構成するポリアミド樹脂は、ある範囲内の重合度、すなわち特定の範囲内の相対粘度を有するものが好ましい。好ましい相対粘度は、ポリアミド6では23℃、98%硫酸中、濃度1%で、芳香族ポリアミドでは23℃、96%硫酸中、濃度1%で測定した値で1.5〜2.5であり、より好ましくは1.7〜2.4である。相対粘度が1.5未満では機械的強度が低く、2.5を超えると流動性が低下し、成形時に長繊維の折損が大きくなり、機械的強度の低下が発生するので好ましくない。 The polyamide resin constituting the molded article of the present invention preferably has a degree of polymerization within a certain range, that is, a relative viscosity within a specific range. The preferred relative viscosity is 1.5 to 2.5 as measured by polyamide 6 at 23 ° C. and 98% sulfuric acid at a concentration of 1%, and aromatic polyamide at 23 ° C. and 96% sulfuric acid at a concentration of 1%. More preferably, it is 1.7-2.4. When the relative viscosity is less than 1.5, the mechanical strength is low, and when it exceeds 2.5, the fluidity is lowered, the breakage of the long fiber is increased at the time of molding, and the mechanical strength is lowered.
本発明成形体は、成形材料として長繊維強化ポリアミド樹脂(A)、又は必要に応じ(A)に後記のリサイクル樹脂(B)を配合した混合物を用いて成形される。その方法は、ポリアミド樹脂について一般に用いられている成形法、すなわち射出成形、射出圧縮成形、中空成形、押出成形、シート成形、熱成形、回転成形、積層成形、プレス成形等の各種成形法をあげることができるが、成形品外観や設計の自由度、製造工程削減の点から射出成形法で成形することが特に好ましい。長繊維強化ポリアミド樹脂(A)を成形する際、通常、成形機のシリンダー中での溶融・混練時、金型充填時に強化繊維が破砕され、繊維の長さが短くなる危険性があるが、本発明成形体中に分散する強化繊維の重量平均繊維長を1.5mm〜10mmの範囲内に保持するには、ペレットの長さ、成形機のシリンダー内壁の形状やスクリュー形状、成形条件(例えば、成形時の樹脂温度、射出速度)、前記狭流路の点を含め金型形状等の調整が有効である。また、ボスやリブ構造等を設けて、高剛性、高強度な車体前部構造体を得ることもできる。さらに、リブやボスに加圧ガスを注入することもできる。また、剛性強度をさらに向上させるため金型内に可動部分を設け、可動部の移動による容量拡大部分に加圧ガスを注入することで中空とし、断面剛性の高い断面形状とすることも可能であるし、形成された中空部に発泡体や低融点金属等を充填、補強し、さらに剛性強度を向上させることも可能である。
また、本発明成形体の成形材料である、長繊維強化ポリアミド樹脂(A)等には、必要に応じて、他の成分を添加できる。他の成分としては、例えば、安定剤、難燃剤、耐侯性改良剤、発泡剤、滑剤、流動性改良剤、耐衝撃性改良剤、帯電防止剤、染料、顔料、分散剤、無機強化剤、離型剤、酸化防止剤、耐候性改良剤、アルカリ石鹸、金属石鹸、ハイドロタルサイト、可塑剤、造核剤、ドリッピング防止剤等が挙げられる。耐衝撃改良材としては、ポリエチレンやポリプロピレン等のポリオレフィン樹脂、α−オレフィン系ラバー、スチレン系ラバー、アクリル系ラバー、シリコン系ラバー、MBSやコアーシェルポリマー等が挙げられる。無機強化剤の具体例としては、長繊維以外のガラス繊維、炭素繊維、アラミド繊維、マイカ、タルク、ワラストナイト、チタン酸カリウム、炭酸カルシウム、シリカ等が挙げられる。
The molded product of the present invention is molded using a long fiber reinforced polyamide resin (A) as a molding material, or a mixture in which the recycled resin (B) described later is blended with (A) as necessary. The methods include molding methods generally used for polyamide resins, that is, various molding methods such as injection molding, injection compression molding, hollow molding, extrusion molding, sheet molding, thermoforming, rotational molding, laminate molding, press molding, and the like. However, it is particularly preferable to mold by an injection molding method from the viewpoint of the appearance of the molded product, the degree of freedom in design, and the reduction of the manufacturing process. When molding the long fiber reinforced polyamide resin (A), there is a risk that the reinforcing fiber is usually crushed at the time of melting and kneading in the cylinder of the molding machine and filling the mold, and the length of the fiber is shortened. In order to maintain the weight average fiber length of the reinforcing fibers dispersed in the molded product of the present invention within the range of 1.5 mm to 10 mm, the length of the pellet, the shape of the cylinder inner wall of the molding machine, the screw shape, molding conditions (for example, It is effective to adjust the mold shape and the like including the point of the narrow flow path, the resin temperature at the time of molding, the injection speed). In addition, a vehicle body front structure having high rigidity and high strength can be obtained by providing a boss, a rib structure, or the like. Furthermore, pressurized gas can be injected into the ribs and bosses. It is also possible to provide a movable part in the mold in order to further improve the rigidity and to make it hollow by injecting pressurized gas into the capacity expansion part due to the movement of the movable part, and to have a sectional shape with high sectional rigidity. In addition, it is possible to fill and reinforce the formed hollow portion with a foam, a low melting point metal or the like, and to further improve the rigidity strength.
Moreover, other components can be added to the long fiber reinforced polyamide resin (A) or the like, which is a molding material of the molded article of the present invention, as necessary. Other components include, for example, stabilizers, flame retardants, weather resistance improvers, foaming agents, lubricants, fluidity improvers, impact resistance improvers, antistatic agents, dyes, pigments, dispersants, inorganic reinforcing agents, Examples include mold release agents, antioxidants, weather resistance improvers, alkali soaps, metal soaps, hydrotalcites, plasticizers, nucleating agents, and anti-dripping agents. Examples of the impact resistance improving material include polyolefin resins such as polyethylene and polypropylene, α-olefin rubber, styrene rubber, acrylic rubber, silicon rubber, MBS, and core-shell polymer. Specific examples of the inorganic reinforcing agent include glass fibers other than long fibers, carbon fibers, aramid fibers, mica, talc, wollastonite, potassium titanate, calcium carbonate, silica and the like.
本発明成形体の成形材料である長繊維強化ポリアミド樹脂(A)の製法は、引き抜き法が好ましい。引き抜き法は、基本的には連続した強化用繊維束を引きながら樹脂を含浸するものであり、樹脂のエマルジョン、サスペンジョンあるいは溶液を入れた含浸浴の中を繊維を通し含浸する方法、樹脂の粉末を繊維に吹きつけるか粉末を入れた槽の中を繊維を通し繊維に樹脂粉末を付着させたのち樹脂を溶融し含浸する方法、クロスヘッドの中を繊維を通しながら押出機等からクロスヘッドに溶融樹脂を供給し含浸する方法等が知られており、いずれも利用できる。成形材料として特に好ましいのは、クロスヘッドの中を繊維を通しながら、押出機等からクロスヘッドに溶融ポリアミドを供給し、含浸、冷却後、長さ3.0〜50mm、好ましくは長さ4.0〜30mmのペレット状にカットしたものである。このようにして得られた、ペレット中の強化繊維は、ペレットとほぼ平行になっているので、強化繊維の長さ≒ペレットの長さになっている。ペレットの長さが3.0mm未満では強化繊維の長さも短くなり、補強効果が小さく、逆に、ペレットの長さが50mmを超えると嵩密度が大きくなり、成形加工時にホッパー内でブリッジが発生したり、スクリューへの食い込みが悪くなり、安定した成形ができないことがある。 The method for producing the long fiber reinforced polyamide resin (A), which is a molding material of the molded article of the present invention, is preferably a drawing method. The drawing method is basically a method of impregnating a resin while drawing a continuous reinforcing fiber bundle, a method of impregnating a resin through an impregnation bath containing a resin emulsion, suspension or solution, and a resin powder. A method in which the fiber is passed through the fiber or the fiber is passed through the tank and the resin powder is adhered to the fiber, and then the resin is melted and impregnated. From the extruder to the crosshead while passing the fiber through the crosshead. Methods for supplying and impregnating molten resin are known, and any of them can be used. Particularly preferred as the molding material is a length of 3.0 to 50 mm, preferably 4 mm, after the molten polyamide is supplied to the crosshead from an extruder or the like while passing the fibers through the crosshead, impregnated and cooled. It is cut into a pellet of 0 to 30 mm. The reinforcing fibers in the pellets thus obtained are almost parallel to the pellets, so that the length of the reinforcing fibers is equal to the length of the pellets. If the length of the pellet is less than 3.0 mm, the length of the reinforcing fiber is also shortened and the reinforcing effect is small. Conversely, if the length of the pellet exceeds 50 mm, the bulk density increases, and a bridge is generated in the hopper during the molding process. Or bite into the screw, and stable molding may not be possible.
本発明成形体の成形材料として長繊維強化ポリアミド樹脂(A)にリサイクル樹脂(B)を配合した混合物を使用する場合、その組成比が、該混合物の重量基準で
(A): 30重量%〜100重量%、
(B): 0重量%〜70重量%
の範囲内であるのが好ましい。長繊維強化ポリアミド樹脂(A)が30重量%未満では機械的強度、寸法安定性、外観等の低下が大きくなるので好ましくない。また、長繊維強化ポリアミド樹脂(A)とリサイクル樹脂(B)の形状と大きさは、成形工程における分級防止のため、できるだけ近似していることが好ましい。
When using the mixture which mix | blended the recycled resin (B) with the long fiber reinforced polyamide resin (A) as a molding material of this invention molded object, the composition ratio is based on the weight of this mixture. (A): 30 weight%- 100% by weight,
(B): 0% to 70% by weight
It is preferable to be within the range. If the long fiber reinforced polyamide resin (A) is less than 30% by weight, the mechanical strength, dimensional stability, appearance and the like are greatly deteriorated. Moreover, it is preferable that the shape and size of the long fiber reinforced polyamide resin (A) and the recycled resin (B) are as close as possible to prevent classification in the molding process.
本発明成形体の成形材料として、長繊維強化ポリアミド樹脂(A)に配合される、リサイクル樹脂(B)は、特に制限はなく、相溶性の点ではポリアミド樹脂のリサイクル品でもよいが、ポリプロピレン、ポリエチレン、ポリスチレン及びアクリルニトリル・スチレン・ブタジエン共重合体からなる群から選ばれた少なくとも1種の熱可塑性樹脂のリサイクル品であると、流動性に優れ、大型成形体用の成形材料として好適に使用できる。また、必要に応じて、相溶性改良剤を配合してもよい。 As the molding material of the molded article of the present invention, the recycled resin (B) blended in the long fiber reinforced polyamide resin (A) is not particularly limited, and may be a recycled product of polyamide resin in terms of compatibility. When recycled from at least one thermoplastic resin selected from the group consisting of polyethylene, polystyrene, and acrylonitrile / styrene / butadiene copolymers, it has excellent fluidity and is suitable for use as a molding material for large molded articles. it can. Moreover, you may mix | blend a compatibility improvement agent as needed.
このリサイクル樹脂(B)としては、成形時のパージ樹脂、スプルー、ランナー、成形時、二次加工時、組立て工程時等の工程内で発生した不良品、目的の用途に使用後回収された成形品等、種々の段階からのリサイクル品が挙げられる。もちろん、成形品の形状には制限はなく、具体的には、自動車、電気・電子・OA機器等の外板や機構部品その他の成形品を粉砕したリサイクル品も使用できる。しかし、溶剤、油脂類等の付着物の多い成形品は、機械的強度、熱安定性、外観低下の原因となるので好ましくない。 This recycled resin (B) includes purge resin, sprue, runner during molding, defective products generated during the molding, secondary processing, assembly process, etc., and molding recovered after use for the intended use. Recycled products from various stages such as products. Needless to say, the shape of the molded product is not limited, and specifically, a recycled product obtained by pulverizing a molded product such as an outer plate of an automobile, an electric / electronic / OA device, a mechanical part, or the like can be used. However, molded articles with many deposits such as solvents and fats and oils are not preferable because they cause mechanical strength, thermal stability and appearance deterioration.
また、リサイクル樹脂(B)の、長繊維強化ポリアミド樹脂(A)との配合方法は、特に限定するものではなく、公知の各種混合機器、例えば、ヘンシェルミキサー、リボンブレンダー、V型ブレンダー、押出機、バンバリーミキサー、ラボプラストミル(ブラベンダー)、ニーダー等を用いることができる。 The blending method of the recycled resin (B) with the long fiber reinforced polyamide resin (A) is not particularly limited, and various known mixing devices such as a Henschel mixer, a ribbon blender, a V-type blender, and an extruder. , Banbury mixer, Laboplast mill (Brabender), kneader, etc. can be used.
本発明成形体を自動車用外装成形体とするには、ボンネット、ルーフ、フード、フロントパネル、キャノピー、トランクリッド、ドアパネル、ピラー及びそれらに類似の自動車用外装パネル又はその構造体であることが要求される寸法精度の点で好ましい。
本発明において、長繊維強化ポリアミド樹脂製外装成形体は、その外表面に積層された、少なくとも1層の非強化樹脂の層を有し、かつ、該積層面に垂直な断面における、長繊維強化層/非強化樹脂層の層厚比が1.0以上であることが好ましく、より好ましくは1.2以上である。長繊維強化層/非強化樹脂層の層厚比が1.0未満では、長繊維強化成形体の成形時、及び/又は温度環境変化によって、長繊維強化層と非強化樹脂層の線膨張差による反りが発生する恐れがあるので好ましくない。また、上記積層に使用する非強化樹脂は、特に制限はないが、該長繊維強化ポリアミド樹脂と同種の樹脂、又は該樹脂を主成分とするアロイであることが密着性の点で好ましい。また、上記積層に際し、文字、エンブレム及び/又はマークを含む加飾部を、該長繊維強化成形体と、該非強化樹脂層との間に封入することもできる。そのような成形体は、外観特性及び意匠性、意匠の耐久性に優れた自動車用外装成形体として有用である。
In order to make the molded body of the present invention into an automotive exterior molded body, it is required to be a bonnet, roof, hood, front panel, canopy, trunk lid, door panel, pillar, and similar automotive exterior panels or structures thereof. This is preferable in terms of the dimensional accuracy.
In the present invention, a long fiber reinforced polyamide resin exterior molded body has at least one non-reinforced resin layer laminated on the outer surface thereof, and has a long fiber reinforcement in a cross section perpendicular to the laminated surface. The layer thickness ratio of the layer / non-reinforced resin layer is preferably 1.0 or more, and more preferably 1.2 or more. When the layer thickness ratio of the long fiber reinforced layer / non-reinforced resin layer is less than 1.0, a difference in linear expansion between the long fiber reinforced layer and the non-reinforced resin layer is caused by molding of the long fiber reinforced molded body and / or due to temperature environment change. This is not preferable because there is a risk of warping. The non-reinforced resin used for the lamination is not particularly limited, but is preferably the same type of resin as the long fiber reinforced polyamide resin or an alloy containing the resin as a main component in terms of adhesion. Moreover, in the case of the said lamination | stacking, the decoration part containing a character, an emblem, and / or a mark can also be enclosed between this long fiber reinforced molded object and this non-reinforced resin layer. Such a molded body is useful as an automotive exterior molded body having excellent appearance characteristics, design properties, and design durability.
本発明において、長繊維強化ポリアミド樹脂製外装成形体の外表面に積層された、少なくとも1層の非強化樹脂の層を形成する方法としては、熱可塑性樹脂について一般に用いられている加工方法、すなわち射出成形と同時に少なくとも1層の非強化樹脂の層、例えば非強化樹脂フィルムやシートを積層する方法、転写成形、2色成形、2重成形や、熱板溶着、振動溶着、レーザー溶着等の溶着法をあげることができるが、成形品外観や設計の自由度、製造工程削減の点から射出成形と同時に該フィルムやシートを積層する方法が特に好ましい。 In the present invention, as a method of forming at least one non-reinforced resin layer laminated on the outer surface of a long fiber reinforced polyamide resin exterior molded body, a processing method generally used for thermoplastic resins, Simultaneously with injection molding, at least one non-reinforced resin layer, for example, a method of laminating non-reinforced resin film or sheet, transfer molding, two-color molding, double molding, hot plate welding, vibration welding, laser welding, etc. A method of laminating the film or sheet at the same time as injection molding is particularly preferable from the viewpoint of the appearance of the molded product, the degree of freedom in design, and the reduction of the manufacturing process.
本発明において、射出成形と同時に該フィルムやシートを積層する場合、溶融射出充填時の樹脂組成物との熱融着を促進し、積層一体化をより確実にする目的で、該フィルム又はシートに、プライマーコートを施すこともできる。プライマーコートに使用する樹脂としては、成形体を構成するポリアミド樹脂より溶融粘度が高く、該フィルム又はシートとよく接着するものが選ばれる。例えば、該ポリアミド樹脂と同種でより高分子量の樹脂又はこれを主体とするもの、熱や紫外線により硬化する樹脂等がある。 In the present invention, when the film or sheet is laminated simultaneously with the injection molding, the film or sheet is added to the film or sheet for the purpose of accelerating heat fusion with the resin composition at the time of melt injection filling and making the lamination integration more reliable. A primer coat can also be applied. As the resin used for the primer coating, a resin having a melt viscosity higher than that of the polyamide resin constituting the molded body and adhering well to the film or sheet is selected. For example, there are resins having the same kind and higher molecular weight as the polyamide resin or those mainly composed of this resin, and resins curable by heat or ultraviolet rays.
本発明成形体は、所望により、片面にハードコート、防曇、帯電防止、反射防止及び熱線遮断からなる群から選ばれた少なくとも一種の機能性層を施すことや、塗装や転写等による表面加飾を施すことができる。機能性層を形成するには、従来公知の種々の方法が用いられる。ハードコート層の形成には、所望によりプライマー層を設けた上に、エポキシ系、アクリル系、アミノ樹脂系、ポリシロキサン系、コロイダルシリカ系等のハードコート剤を塗布し、熱又は紫外線等の手段により硬化する方法を用いることができる。防曇層の形成には、通常水溶性又は親水性樹脂と界面活性剤を必須成分として含有する防曇塗料を塗布し、硬化する方法を用いることができる。そのほか、帯電防止層、反射防止層、熱線遮断層等も、これらの機能を与える塗料を塗布し、硬化するか、又はこれらの機能を有する薄膜層を真空蒸着法等の方法により、形成することにができる。また、これらの機能性層を複合層として、二種以上の機能を同時に備えたものとしてもよい。さらに、これらの機能性層の他に又は該機能性層に、予め美装用塗装処理を施して意匠性を持たせる等の方法により、意匠性付与層を形成することも可能である。 The molded product of the present invention may be provided with at least one functional layer selected from the group consisting of hard coating, anti-fogging, antistatic, antireflection, and heat ray blocking on one side, or by surface addition by painting or transfer, as desired. Can be decorated. Various conventionally known methods are used to form the functional layer. For the formation of the hard coat layer, a primer layer is provided if desired, and a hard coat agent such as epoxy, acrylic, amino resin, polysiloxane, or colloidal silica is applied, and means such as heat or ultraviolet rays A curing method can be used. For the formation of the antifogging layer, a method of applying an antifogging coating usually containing a water-soluble or hydrophilic resin and a surfactant as essential components and curing can be used. In addition, the antistatic layer, the antireflection layer, the heat ray blocking layer, etc. may be applied with a coating material that provides these functions and cured, or a thin film layer having these functions may be formed by a method such as vacuum deposition. I can do it. Further, these functional layers may be combined to have two or more functions at the same time. Furthermore, it is also possible to form a designability-imparting layer by a method such as applying a cosmetic coating treatment to the functional layer in advance or imparting design properties to the functional layer.
以下、図面を参照し好ましい実施例によって、本発明を詳しく説明するが、本発明はこれらの範囲内に限定されるものではない。以下の例中、%は、別途指定のない限り、重量%である。 Hereinafter, the present invention will be described in detail by way of preferred embodiments with reference to the drawings, but the present invention is not limited to these ranges. In the following examples,% is% by weight unless otherwise specified.
[評価]
評価1.繊維含有率、重量平均繊維長
成形された長繊維強化ポリアミド樹脂製外装成形体の任意の位置から無作為に試験片を切り出し、500℃の電気炉内で熱可塑性樹脂成分のみ燃焼させた後、残存する繊維の重量と長さを測定し、燃焼前の試験片の重量に対する比率を含有率とし、繊維長の重量平均値を重量平均繊維長とした。
評価2.相対粘度(ηrel )
成形された長繊維強化ポリアミド樹脂製外装成形体の任意の位置から無作為に切り出し、23℃、98%硫酸中、濃度1%で測定した相対粘度で表示した。芳香族ポリアミドの場合は、23℃、96%硫酸中、濃度1%で測定した相対粘度で表示した。
評価3.機械的性質
成形された長繊維強化ポリアミド樹脂製外装成形体の肉厚2mm以上の任意の位置から無作為に80mm×10mmの短冊状試験片を切り出し、曲げ弾性率、曲げ強度はISO 178に従って、ノッチ付きシャルピー衝撃強度はISO 179に従って測定した。なお、測定は試験片の数n=10にて実施した。
評価4.線膨張係数
成形された長繊維強化ポリアミド樹脂製外装成形体の肉厚2mm以上の任意の位置から無作為に30mm×10mmの短冊状試験片を切り出し、23℃〜80℃の温度域における線膨張係数を測定した。なお、測定は試験片の数n=10にて実施し、且つ各試験片ごとに直交する2方向について実施し、最大線膨張係数を最小線膨張係数で除して比を算出した。この比が小さいほど、異方性が低減されたと評価する。
評価5.最大吸湿寸法変化率
成形された長繊維強化ポリアミド樹脂製外装成形体を、温度23℃、相対湿度50%の飽和吸水状態まで吸水処理し、図1〜4に図示したように、該成形体の肉厚2mm以上の成形体部分の表面の任意の位置に描いた、少なくとも5個の正方形(一辺の長さは、25〜50mm程度)の四隅の位置を示すマーキングを用いて、吸水前・後の縦・横寸法を測定し、下式の吸湿寸法変化率(%)を算出し、それらの最大値で表示した。
吸湿寸法変化率=[(吸水後寸法−吸水前寸法)/吸水前寸法]×100
なお、実施例5及び比較例6では、得られた成形体の表面に図1に示すマーキングが行われ、最大吸湿寸法変化率の算出に用いられた。
[Evaluation]
Evaluation 1. Fiber content, cut out randomly specimens from any position of the weight average fiber length shaped long fiber-reinforced polyamide resin cladding molded body was burned only the thermoplastic resin component in an electric furnace at 500 ° C., The weight and length of the remaining fiber were measured, the ratio to the weight of the test piece before combustion was taken as the content, and the weight average value of the fiber length was taken as the weight average fiber length.
Evaluation 2. Relative viscosity (ηrel)
Randomly cut out from any position of the molded long fiber reinforced polyamide resin exterior molded body and expressed as a relative viscosity measured at 23 ° C., 98% sulfuric acid at a concentration of 1%. In the case of an aromatic polyamide, it was expressed as a relative viscosity measured at 23 ° C. and 96% sulfuric acid at a concentration of 1%.
Evaluation 3. Mechanical properties Molded long fiber reinforced polyamide resin exterior molded body Randomly cut out 80 mm x 10 mm strip-shaped test pieces from any position with a thickness of 2 mm or more, bending elastic modulus, bending strength according to ISO 178, Notched Charpy impact strength was measured according to ISO 179. The measurement was performed with the number of test pieces n = 10.
Evaluation 4. A strip-shaped test piece of 30 mm × 10 mm is randomly cut out from an arbitrary position of a wall thickness of 2 mm or more of a long fiber reinforced polyamide resin exterior molded body formed with a linear expansion coefficient, and linear expansion in a temperature range of 23 ° C. to 80 ° C. The coefficient was measured. The measurement was carried out with the number of test pieces n = 10, and was carried out in two directions orthogonal to each test piece, and the ratio was calculated by dividing the maximum linear expansion coefficient by the minimum linear expansion coefficient. It is estimated that the smaller this ratio is, the more the anisotropy is reduced.
Evaluation 5. The long-fiber reinforced polyamide resin exterior molded body molded with the maximum moisture absorption dimensional change rate was subjected to water absorption treatment until a saturated water absorption state at a temperature of 23 ° C. and a relative humidity of 50%, and as shown in FIGS. Before and after water absorption using markings indicating the positions of the four corners of at least 5 squares (the length of one side is about 25 to 50 mm) drawn at an arbitrary position on the surface of the molded part having a thickness of 2 mm or more The vertical and horizontal dimensions were measured, the hygroscopic dimensional change rate (%) of the following formula was calculated, and the maximum value was displayed.
Hygroscopic dimensional change rate = [(dimension after water absorption−dimension before water absorption) / dimension before water absorption] × 100
In Example 5 and Comparative Example 6, the marking shown in FIG. 1 was performed on the surface of the obtained molded body and used for calculating the maximum moisture absorption dimensional change rate.
[実施例1]
ガラス長繊維強化ポリアミド樹脂ペレットの調製
連続したガラス繊維束(ロービング)を開繊して引き取りながら含浸ダイの中を通し、含浸ダイに供給される溶融樹脂を含浸させた後、賦形、冷却、切断する引き抜き成形法を用いて、繊維含有率30%、長さ10mmのガラス長繊維強化ポリアミド樹脂ペレットを製造した。樹脂としては、ポリアミド6(三菱エンジニアリングプラスチックス社製、製品名ノバミッド1007J、相対粘度2.2)を溶融して使用した。得られたペレット中の、ガラス繊維は、直径16μmで、ペレットと同一長さを有し、ペレットの長さ方向に実質的に平行配列しているものであった。
[Example 1]
Preparation of long glass fiber reinforced polyamide resin pellets Opening a continuous glass fiber bundle (roving) and passing it through the impregnation die, impregnating the molten resin supplied to the impregnation die, shaping, cooling, Using a pultrusion method for cutting, glass long fiber reinforced polyamide resin pellets having a fiber content of 30% and a length of 10 mm were produced. As the resin, polyamide 6 (manufactured by Mitsubishi Engineering Plastics, product name Novamid 1007J, relative viscosity 2.2) was melted and used. The glass fibers in the obtained pellets had a diameter of 16 μm, had the same length as the pellets, and were arranged substantially parallel to the length direction of the pellets.
外装成形体の射出成形
添付の図1に示す、厚み3mm、150mm×150mm、最大投影面積22500mm2 の平板状外装成形体を、東芝機械製IS−150射出成形機を用いて成形した。すなわち、上記のように調製した長繊維強化ポリアミド樹脂ペレットを、270℃に加熱した射出成形機の加熱シリンダーに供給し、可塑化、溶融、計量した。なお、可塑化、計量は射出成形機のゲージ圧で5MPaの背圧をかけながら実施した。計量後、金型のキャビティに図示の樹脂ゲートを介し射出充填した。射出時間を2秒とし、射出成形機のゲージ圧力で100MPaの保圧力を20秒かけ、冷却時間25秒経過後に金型を開き長繊維強化ポリアミド樹脂製外装成形体を取り出し、成形を終了した。なお、このときの金型温度は70℃とした。
このようにして得られた長繊維強化外装成形体は、剛性感の高い構造体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−1に示す。評価結果における機械的性質がいずれも非常に高く、さらに、線膨張係数、線膨張の異方性、吸湿寸法変化がすべて小さく、自動車用外装成形体としての機能を満たすものであった。
Injection Molding of Outer Molded Article A flat outer molded article having a thickness of 3 mm, 150 mm × 150 mm, and a maximum projected area of 22500 mm 2 shown in FIG. 1 attached thereto was molded using an IS-150 injection molding machine manufactured by Toshiba Machine. That is, the long fiber reinforced polyamide resin pellets prepared as described above were supplied to a heating cylinder of an injection molding machine heated to 270 ° C., and plasticized, melted, and weighed. The plasticization and measurement were performed while applying a back pressure of 5 MPa with the gauge pressure of the injection molding machine. After the weighing, the mold cavity was filled by injection through the illustrated resin gate. The injection time was set to 2 seconds, the holding pressure of 100 MPa was applied for 20 seconds with the gauge pressure of the injection molding machine, the mold was opened after the cooling time of 25 seconds had elapsed, and the long fiber reinforced polyamide resin exterior molded product was taken out to finish molding. The mold temperature at this time was 70 ° C.
The long fiber reinforced exterior molded body thus obtained was a highly rigid structure. Moreover, about the test piece cut out from this molded object, the result of having evaluated fiber content rate, a weight average fiber length, a mechanical property, a linear expansion coefficient, a hygroscopic dimensional change rate, and a relative viscosity is shown in postscript Table-1. The mechanical properties in the evaluation results were all very high, and further, the linear expansion coefficient, the linear expansion anisotropy, and the moisture absorption dimensional change were all small, satisfying the function as an automobile exterior molded article.
[実施例2]
実施例1において、長繊維強化ポリアミド樹脂ペレット調製の際に、繊維含有率30%を50%に代えた以外は、実施例1と同様にして長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の高い構造体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−1に示す。評価結果における機械的性質がいずれも非常に高く、さらに、線膨張係数、線膨張の異方性、吸湿寸法変化率がすべて小さく、自動車用外装成形体としての機能を満たすものであった。
[Example 2]
In Example 1, a long fiber reinforced exterior molded body was molded in the same manner as in Example 1 except that the fiber content 30% was changed to 50% when the long fiber reinforced polyamide resin pellets were prepared.
The long fiber reinforced exterior molded body thus obtained was a highly rigid structure. Moreover, about the test piece cut out from this molded object, the result of having evaluated fiber content rate, a weight average fiber length, a mechanical property, a linear expansion coefficient, a hygroscopic dimensional change rate, and a relative viscosity is shown in postscript Table-1. The mechanical properties in the evaluation results were all very high, and the linear expansion coefficient, the linear expansion anisotropy, and the hygroscopic dimensional change rate were all small, satisfying the function as an automotive exterior molded article.
[実施例3]
実施例2において、長繊維強化ポリアミド樹脂ペレット調製の際に、ポリアミド6に代えて芳香族ポリアミド(三菱エンジニアリングプラスチックス社製、製品名レニー6002、相対粘度2.1、MXD6−PAと略称する。)を使用し、射出成形の際に、射出成形機の加熱シリンダー温度270℃を280℃、金型温度70℃を135℃とした以外は、実施例2と同様にして長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の高い構造体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率を評価した結果を後記表−1に示す。評価結果における機械的性質がいずれも非常に高く、さらに、線膨張係数、線膨張の異方性、吸湿寸法変化率がすべて小さく、自動車用外装成形体としての機能を満たすものであった。
[Example 3]
In Example 2, when preparing the long fiber reinforced polyamide resin pellets, instead of the polyamide 6, aromatic polyamide (manufactured by Mitsubishi Engineering Plastics, product name Reny 6002, relative viscosity 2.1, MXD6-PA is abbreviated as MXD6-PA). ), And during the injection molding, a long fiber reinforced exterior molded body was obtained in the same manner as in Example 2 except that the heating cylinder temperature of the injection molding machine was 270 ° C. and the mold temperature 70 ° C. was 135 ° C. Was molded.
The long fiber reinforced exterior molded body thus obtained was a highly rigid structure. Moreover, the result of having evaluated the fiber content rate, the weight average fiber length, the mechanical property, the linear expansion coefficient, and the hygroscopic dimensional change rate about the test piece cut out from this molded object is shown in the postscript Table-1. The mechanical properties in the evaluation results were all very high, and further, the linear expansion coefficient, the linear expansion anisotropy, and the hygroscopic dimensional change rate were all small, satisfying the function as an automotive exterior molded article.
[実施例4]
実施例2において、外装成形体の射出成形の際に、添付の図1に示す平板状成形体に代えて、図2に示す、厚み3mm、150mm×200mmで、一部切り欠き部を有し最大投影面積27300mm2 であり、断面積90mm2 、流路長45mmの狭流路をもつ外装成形体とした以外は、実施例2と同様にして長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の高い構造体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−1に示す。評価結果における機械的性質がいずれも非常に高く、さらに、線膨張係数、線膨張の異方性、吸湿寸法変化率がすべて小さく、自動車用外装成形体としての機能を満たすものであった。
[Example 4]
In Example 2, at the time of injection molding of the exterior molded body, instead of the flat plate-shaped molded body shown in FIG. 1 attached, it has a thickness of 3 mm, 150 mm × 200 mm, and has a partially cutaway portion. the maximum projected area 27300Mm 2, the cross-sectional area 90 mm 2, except that the outer molded body having a narrow channel of the channel length 45mm was molded long fiber-reinforced outer molded body in the same manner as in example 2.
The long fiber reinforced exterior molded body thus obtained was a highly rigid structure. Moreover, about the test piece cut out from this molded object, the result of having evaluated fiber content rate, a weight average fiber length, a mechanical property, a linear expansion coefficient, a hygroscopic dimensional change rate, and a relative viscosity is shown in postscript Table-1. The mechanical properties in the evaluation results were all very high, and further, the linear expansion coefficient, the linear expansion anisotropy, and the hygroscopic dimensional change rate were all small, satisfying the function as an automotive exterior molded article.
[実施例5]
実施例2において、外装成形体の射出成形の際に、金型のキャビティの大きさを、厚み4mm、150mm×150mmに変え、両キャビティ面に、予め成形された0.5mm厚みのポリアミド6製フィルムを装着した以外は、実施例2と同様にして、長繊維強化樹脂層の両面に非強化樹脂層が積層された、外装成形体(最大投影面積:22500mm2 )を成形した。この積層された平板状外装成形体における、長繊維強化樹脂層/非強化樹脂層の厚み比は3であった。ポリアミド6製フィルムの片面には位置ずれ等の評価用に十字マークがスクリーン印刷により印刷されており、印刷面を封入する形で成形した。
このようにして得られた長繊維強化外装成形体は、表面の平滑性に優れ、剛性感の高い成形体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−1に示す。評価結果における機械的性質がいずれも非常に高く、さらに、線膨張係数、線膨張の異方性、吸湿寸法変化率がすべて小さく、自動車用外装成形体としての機能を満たすものであった。
[Example 5]
In Example 2, at the time of injection molding of the outer molded body, the size of the mold cavity was changed to 4 mm and 150 mm × 150 mm, and both the cavity surfaces were made of polyamide 6 having a thickness of 0.5 mm previously formed. An exterior molded body (maximum projected area: 22500 mm 2 ) in which a non-reinforced resin layer was laminated on both sides of a long fiber reinforced resin layer was molded in the same manner as in Example 2 except that a film was attached. The thickness ratio of the long fiber reinforced resin layer / non-reinforced resin layer in this laminated flat plate-shaped molded body was 3. A cross mark was printed by screen printing on one side of the polyamide 6 film for evaluation of misalignment or the like, and the film was molded so as to enclose the printed side.
The long fiber reinforced exterior molded body thus obtained was a molded body having excellent surface smoothness and high rigidity. Moreover, about the test piece cut out from this molded object, the result of having evaluated fiber content rate, a weight average fiber length, a mechanical property, a linear expansion coefficient, a hygroscopic dimensional change rate, and a relative viscosity is shown in postscript Table-1. The mechanical properties in the evaluation results were all very high, and further, the linear expansion coefficient, the linear expansion anisotropy, and the hygroscopic dimensional change rate were all small, satisfying the function as an automotive exterior molded article.
[比較例1]
実施例1において、ガラス長繊維強化ポリアミド樹脂ペレット調製の際に、繊維含有率30%に代えて10%とした以外は、実施例1と同様にして長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の低い成形体となった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、相対粘度を評価した結果を後記表−2に示す。成形体の重量平均繊維長は2.8mmと長い結果であったが、評価結果における機械的性質がいずれも低く、さらに、最大線膨張係数が7.0×10-5K-1、異方性(最大線膨張係数/最小線膨張係数比)が1.9、最大吸湿寸法変化率が0.65%とすべて大きく、自動車用外装成形体としての機能を満たさないものであった。
[Comparative Example 1]
In Example 1, a long fiber reinforced exterior molded body was molded in the same manner as in Example 1 except that the fiber content was changed to 30% instead of 30% when preparing the glass long fiber reinforced polyamide resin pellets.
The long fiber reinforced exterior molded article thus obtained was a molded article having a low rigidity. Further, Table 2 shows the results of evaluating the fiber content, the weight average fiber length, the mechanical properties, the linear expansion coefficient, and the relative viscosity of the test piece cut out from the molded body. Although the weight average fiber length of the molded body was 2.8mm and long result, undervalued both mechanical properties in the results, furthermore, the maximum linear expansion coefficient of 7.0 × 10 -5 K -1, anisotropic The properties (maximum linear expansion coefficient / minimum linear expansion coefficient ratio) were as large as 1.9 and the maximum hygroscopic dimensional change rate was 0.65%, all of which did not satisfy the function as an exterior molded article for automobiles.
[比較例2]
実施例1において、ガラス長繊維強化ポリアミド樹脂ペレット調製に代えて、繊維含有率30%のポリアミド6(三菱エンジニアリングプラスチックス社製、商品名ノバミッド1013GH30)を用いた以外は、実施例1と同様に長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の高い成形体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、相対粘度を評価した結果を後記表−2に示すが、成形体の重量平均繊維長は0.41mmと短いため、評価結果における衝撃強度は低く、かつ最大線膨張係数が7.1×10-5K-1、異方性が2.2、最大吸湿寸法変化率が0.32%とすべて大きく、自動車用外装成形体としての機能を満たさないものであった。
[Comparative Example 2]
In Example 1, it replaced with the glass long fiber reinforced polyamide resin pellet preparation, and it was the same as Example 1 except having used polyamide 6 (Mitsubishi Engineering Plastics Co., Ltd., brand name Novamid 1013GH30) with a fiber content of 30%. A long fiber reinforced exterior molded article was molded.
The long fiber reinforced exterior molded product thus obtained was a molded product with a high rigidity. In addition, the test piece cut out from the molded product, the fiber content, the weight average fiber length, the mechanical properties, the linear expansion coefficient, and the relative viscosity are shown in Table 2 below. Since the length is as short as 0.41 mm, the impact strength in the evaluation result is low, the maximum linear expansion coefficient is 7.1 × 10 −5 K −1 , the anisotropy is 2.2, and the maximum moisture absorption dimensional change rate is 0.00. All of them were as large as 32% and did not satisfy the function as exterior molded articles for automobiles.
[比較例3]
実施例2において、外装成形体の射出成形の際に、添付の図1に示す平板状成形体に代えて、図3に示す、厚み3mm、150mm×200mmで、一部切り欠き部を有し最大投影面積23600mm2 であり、断面積100mm2 、流路長160mmの狭流路をもつ外装成形体とした以外は、実施例2と同様にして長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の高い成形体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−2に示す。評価結果における最大線膨張係数が6.0×10-5K-1、異方性が2.3、最大吸湿寸法変化率が0.36%とすべて大きく、自動車用外装成形体としての機能を満たさないものであった。
[Comparative Example 3]
In Example 2, at the time of injection molding of the exterior molded body, instead of the flat plate-shaped molded body shown in FIG. 1 attached, it has a thickness of 3 mm, 150 mm × 200 mm, and has a partially cutaway portion. the maximum projected area 23600Mm 2, the cross-sectional area 100 mm 2, except that the outer molded body having a narrow channel of the channel length 160mm was molded long fiber-reinforced outer molded body in the same manner as in example 2.
The long fiber reinforced exterior molded product thus obtained was a molded product with a high rigidity. In addition, the test piece cut out from the molded body was evaluated in terms of fiber content, weight average fiber length, mechanical properties, linear expansion coefficient, hygroscopic dimensional change rate, and relative viscosity, as shown in Table 2 below. The maximum linear expansion coefficient in the evaluation results is 6.0 × 10 −5 K −1 , the anisotropy is 2.3, and the maximum hygroscopic dimensional change rate is 0.36%, all of which are functions as an automotive exterior molded body. It was not satisfied.
[比較例4]
実施例2において、外装成形体の射出成形の際に、添付の図1に示す平板状成形体に代えて、図4に示す、厚み3mm、150mm×200mmで、一部切り欠き部を有し最大投影面積20400mm2 であり、断面積90mm2 、流路長160mmの狭流路をもつ外装成形体とした以外は、実施例2と同様にして長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の高い成形体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−2に示す。評価結果における最大線膨張係数が6.5×10-5K-1、異方性が3.0、最大吸湿寸法変化率が0.41%とすべて大きく、自動車用外装成形体としての機能を満たさないものであった。
[Comparative Example 4]
In Example 2, at the time of injection molding of the exterior molded body, instead of the flat plate-shaped molded body shown in FIG. 1 attached, it has a thickness of 3 mm, 150 mm × 200 mm, and has a partially cutaway portion. the maximum projected area 20400Mm 2, the cross-sectional area 90 mm 2, except that the outer molded body having a narrow channel of the channel length 160mm was molded long fiber-reinforced outer molded body in the same manner as in example 2.
The long fiber reinforced exterior molded product thus obtained was a molded product with a high rigidity. In addition, the test piece cut out from the molded body was evaluated in terms of fiber content, weight average fiber length, mechanical properties, linear expansion coefficient, hygroscopic dimensional change rate, and relative viscosity, as shown in Table 2 below. The maximum linear expansion coefficient in the evaluation results is 6.5 × 10 −5 K −1 , the anisotropy is 3.0, and the maximum moisture absorption dimensional change rate is 0.41%, all of which are functions as an automotive exterior molded body. It was not satisfied.
[比較例5]
実施例2において、ガラス長繊維強化ポリアミド樹脂ペレット調製の際に、ポリアミド6(三菱エンジニアリングプラスチックス社製、製品名ノバミッド1007J、相対粘度2.2)に代えて、ポリアミド6(三菱エンジニアリングプラスチックス社製、製品名ノバミッド1030J、相対粘度4.5)を用いた以外は、実施例2と同様にして長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化成形体は、剛性感の高い成形体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−2に示すが、成形体の重量平均繊維長は0.91mmと短いため、評価結果における衝撃強度は低く、かつ最大線膨張係数が6.5×10-5K-1、異方性が2.0、最大吸湿寸法変化率が0.32%とすべて大きく、自動車用外装成形体としての機能を満たさないものであった。
[Comparative Example 5]
In Example 2, polyamide 6 (Mitsubishi Engineering Plastics Co., Ltd.) was used instead of polyamide 6 (manufactured by Mitsubishi Engineering Plastics, product name Novamid 1007J, relative viscosity 2.2) when preparing the long glass fiber reinforced polyamide resin pellets. A long fiber reinforced exterior molded article was molded in the same manner as in Example 2 except that manufactured product name Novamid 1030J and relative viscosity 4.5) were used.
The long fiber reinforced molded product thus obtained was a molded product with high rigidity. Further, the test piece cut out from the molded body, the fiber content, weight average fiber length, mechanical properties, linear expansion coefficient, hygroscopic dimensional change rate, the results of evaluating relative viscosity are shown in Table 2 below. Since the weight average fiber length of the body is as short as 0.91 mm, the impact strength in the evaluation results is low, the maximum linear expansion coefficient is 6.5 × 10 −5 K −1 , the anisotropy is 2.0, and the maximum moisture absorption dimension The rate of change was as large as 0.32%, and did not satisfy the function as an automobile exterior molded body.
[比較例6]
実施例5において、外装成形体の射出成形の際に、金型の両キャビティ面に、0.5mm厚みのポリアミド6フィルムに代えて、1.1mm厚みのポリアミド6フィルムを装着した以外は、実施例5と同様にして、長繊維強化樹脂層の両面に非強化樹脂層が積層された外装成形体を成形した。この積層された平板状外装成形体における、長繊維強化樹脂層/非強化樹脂層の厚み比は0.82であった。
このようにして得られた長繊維強化外装成形体は、表面の平滑性に優れた成形体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、吸湿寸法変化率、相対粘度を評価した結果を後記表−2に示す。評価結果における剛性、強度等の機械的性質はいずれも低く、さらに、最大線膨張係数が7.0×10-5K-1、異方性が2.1、最大吸湿寸法変化率が0.37%とすべて大きく、自動車用外装成形体としての機能を満たさないものであった。
[Comparative Example 6]
In Example 5, in the case of injection molding of the outer molded body, except that a polyamide 6 film having a thickness of 1.1 mm was attached to both cavity surfaces of the mold instead of the polyamide 6 film having a thickness of 0.5 mm. In the same manner as in Example 5, an exterior molded body in which a non-reinforced resin layer was laminated on both sides of a long fiber reinforced resin layer was molded. The thickness ratio of the long fiber reinforced resin layer / non-reinforced resin layer in the laminated flat molded body was 0.82.
The long fiber reinforced exterior molded article thus obtained was a molded article excellent in surface smoothness. In addition, the test piece cut out from the molded body was evaluated in terms of fiber content, weight average fiber length, mechanical properties, linear expansion coefficient, hygroscopic dimensional change rate, and relative viscosity, as shown in Table 2 below. The mechanical properties such as rigidity and strength in the evaluation results are all low, the maximum linear expansion coefficient is 7.0 × 10 −5 K −1 , the anisotropy is 2.1, and the maximum hygroscopic dimensional change rate is 0.00. All of them were as large as 37% and did not satisfy the function as an automobile exterior molded article.
[比較例7]
比較例2において、繊維含有率30%のポリアミド6(三菱エンジニアリングプラスチックス社製、商品名ノバミッド1013GH30)に代えて、繊維含有率50%の芳香族ポリアミド(三菱瓦斯化学社製、商品名MXナイロンS6121、相対粘度3.65、MXと略称する。)を用いた以外は、比較例2と同様に長繊維強化外装成形体を成形した。
このようにして得られた長繊維強化外装成形体は、剛性感の高い成形体であった。また、該成形体から切り出した試験片について、繊維含有率、重量平均繊維長、機械的性質、線膨張係数、相対粘度を評価した結果を後記表−2に示すが、成形体の重量平均繊維長は0.55mmと短いため、評価結果における衝撃強度が著しく低く、自動車用外装成形体としての機能を満たさないものであった。
[Comparative Example 7]
In Comparative Example 2, instead of polyamide 6 having a fiber content of 30% (trade name Novamid 1013GH30 manufactured by Mitsubishi Engineering Plastics), an aromatic polyamide having a fiber content of 50% (trade name MX nylon manufactured by Mitsubishi Gas Chemical Co., Ltd.) A long fiber reinforced exterior molded body was molded in the same manner as in Comparative Example 2 except that S6121, relative viscosity 3.65, and abbreviated as MX) were used.
The long fiber reinforced exterior molded product thus obtained was a molded product with a high rigidity. In addition, the test piece cut out from the molded product, the fiber content, the weight average fiber length, the mechanical properties, the linear expansion coefficient, and the relative viscosity are shown in Table 2 below. Since the length was as short as 0.55 mm, the impact strength in the evaluation result was remarkably low, and the function as an exterior molded article for automobiles was not satisfied.
Claims (12)
1)肉厚2mm以上の成形体部分の、最大線膨張係数が5×10-5K-1以下であり、かつ、最大線膨張係数/最小線膨張係数の比が1.8以下である
2)肉厚2mm以上の成形体部分の、最大吸湿寸法変化率が0.3%以下である The content of the reinforcing fibers dispersed in the molded body is 30% by weight to 90% by weight, the weight average fiber length is 1.5 mm to 10 mm, and the maximum projected area of the molded body is 20000 mm 2 or more, flow path length of the cross-sectional area 100 mm 2 or less narrow channel at the time of molding is not less 150mm or less, and, long-fiber-reinforced polyamide resin cladding moldings, characterized in that it comprises the following properties.
1) The maximum linear expansion coefficient of a molded part having a thickness of 2 mm or more is 5 × 10 −5 K −1 or less, and the ratio of the maximum linear expansion coefficient / minimum linear expansion coefficient is 1.8 or less. ) The maximum hygroscopic dimensional change rate of the molded part having a thickness of 2 mm or more is 0.3% or less.
(A):30重量%〜100重量%、
(B):0重量%〜70重量%
の範囲内であることを特徴とする請求項1〜4のいずれか1項に記載の長繊維強化ポリアミド樹脂製外装成形体。 As the molding material, a mixture in which the recycled resin (B) is blended with the long fiber reinforced polyamide resin (A) is used, and the composition ratio is (A): 30% by weight to 100% by weight based on the weight of the mixture,
(B): 0% to 70% by weight
The long-fiber reinforced polyamide resin-made exterior molded body according to any one of claims 1 to 4, wherein the outer-molded body is within the range of 1).
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004267155A JP2006083227A (en) | 2004-09-14 | 2004-09-14 | Exterior molded article made of long fiber reinforced polyamide resin |
EP05782239.7A EP1790454B1 (en) | 2004-09-14 | 2005-09-07 | Process for producing an exterior body comprising long fiber reinforced thermoplastic resin |
CN 200910171775 CN101665121B (en) | 2004-09-14 | 2005-09-07 | Exterior formed article made of long fiber-reinforced thermoplastic resin |
US11/662,518 US7465481B2 (en) | 2004-09-14 | 2005-09-07 | Exterior molding body comprising a long fiber reinforced thermoplastic resin |
PCT/JP2005/016413 WO2006030673A1 (en) | 2004-09-14 | 2005-09-07 | Exterior formed article made of long fiber-reinforced thermoplastic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004267155A JP2006083227A (en) | 2004-09-14 | 2004-09-14 | Exterior molded article made of long fiber reinforced polyamide resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006083227A true JP2006083227A (en) | 2006-03-30 |
Family
ID=36162002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004267155A Pending JP2006083227A (en) | 2004-09-14 | 2004-09-14 | Exterior molded article made of long fiber reinforced polyamide resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006083227A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008095066A (en) * | 2006-05-25 | 2008-04-24 | Mitsubishi Engineering Plastics Corp | Molded article from fiber-reinforced thermoplastic resin |
JP2009256647A (en) * | 2008-03-25 | 2009-11-05 | Toray Ind Inc | Thermoplastic resin composition and molded article |
JP2010202759A (en) * | 2009-03-03 | 2010-09-16 | Unitika Ltd | Polyamide resin composition pellet and method for producing the same |
JP2010235779A (en) * | 2009-03-31 | 2010-10-21 | Toray Ind Inc | Prepreg, preform and molded product |
JP2011189747A (en) * | 2011-05-10 | 2011-09-29 | Toray Ind Inc | Method of manufacturing press molded article |
US8071205B2 (en) | 2008-07-31 | 2011-12-06 | Toray Industries, Inc. | Prepreg, preform, molded product, and method for manufacturing prepreg |
JP2013199121A (en) * | 2006-05-25 | 2013-10-03 | Mitsubishi Engineering Plastics Corp | Molding of fiber-reinforced thermoplastic resin |
WO2014038508A1 (en) | 2012-09-06 | 2014-03-13 | 東レ株式会社 | Impact-absorbing member |
WO2021124907A1 (en) * | 2019-12-17 | 2021-06-24 | フクビ化学工業株式会社 | Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06114869A (en) * | 1992-10-09 | 1994-04-26 | Asahi Chem Ind Co Ltd | Glass fiber reinforced thermoplastic resin molded product |
JPH0760788A (en) * | 1993-08-25 | 1995-03-07 | Mitsubishi Gas Chem Co Inc | Synthetic resin molded product and its manufacture |
JPH09296053A (en) * | 1996-03-06 | 1997-11-18 | Toray Ind Inc | Fiber-reinforced thermoplastic resin molding |
JP2002226703A (en) * | 2001-02-06 | 2002-08-14 | Toray Ind Inc | Exterior vehicular part |
JP2003105196A (en) * | 2001-09-28 | 2003-04-09 | Mitsubishi Engineering Plastics Corp | Polyamide resin composition and molded product using the same |
JP2003126643A (en) * | 2001-10-29 | 2003-05-07 | Dainippon Ink & Chem Inc | Pulp-like hygroscopic material and conditioned paper |
JP2005119380A (en) * | 2003-10-15 | 2005-05-12 | Mitsubishi Engineering Plastics Corp | Panel structure for automobile |
JP2006082275A (en) * | 2004-09-14 | 2006-03-30 | Mitsubishi Engineering Plastics Corp | Exterior molded product made of long fiber reinforced thermoplastic resin |
-
2004
- 2004-09-14 JP JP2004267155A patent/JP2006083227A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06114869A (en) * | 1992-10-09 | 1994-04-26 | Asahi Chem Ind Co Ltd | Glass fiber reinforced thermoplastic resin molded product |
JPH0760788A (en) * | 1993-08-25 | 1995-03-07 | Mitsubishi Gas Chem Co Inc | Synthetic resin molded product and its manufacture |
JPH09296053A (en) * | 1996-03-06 | 1997-11-18 | Toray Ind Inc | Fiber-reinforced thermoplastic resin molding |
JP2002226703A (en) * | 2001-02-06 | 2002-08-14 | Toray Ind Inc | Exterior vehicular part |
JP2003105196A (en) * | 2001-09-28 | 2003-04-09 | Mitsubishi Engineering Plastics Corp | Polyamide resin composition and molded product using the same |
JP2003126643A (en) * | 2001-10-29 | 2003-05-07 | Dainippon Ink & Chem Inc | Pulp-like hygroscopic material and conditioned paper |
JP2005119380A (en) * | 2003-10-15 | 2005-05-12 | Mitsubishi Engineering Plastics Corp | Panel structure for automobile |
JP2006082275A (en) * | 2004-09-14 | 2006-03-30 | Mitsubishi Engineering Plastics Corp | Exterior molded product made of long fiber reinforced thermoplastic resin |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008095066A (en) * | 2006-05-25 | 2008-04-24 | Mitsubishi Engineering Plastics Corp | Molded article from fiber-reinforced thermoplastic resin |
JP2013199121A (en) * | 2006-05-25 | 2013-10-03 | Mitsubishi Engineering Plastics Corp | Molding of fiber-reinforced thermoplastic resin |
JP2009256647A (en) * | 2008-03-25 | 2009-11-05 | Toray Ind Inc | Thermoplastic resin composition and molded article |
KR101146612B1 (en) * | 2008-07-31 | 2012-05-14 | 도레이 카부시키가이샤 | Prepreg, preform, molded product, and method for manufacturing prepreg |
US8071205B2 (en) | 2008-07-31 | 2011-12-06 | Toray Industries, Inc. | Prepreg, preform, molded product, and method for manufacturing prepreg |
JP2010202759A (en) * | 2009-03-03 | 2010-09-16 | Unitika Ltd | Polyamide resin composition pellet and method for producing the same |
JP2010235779A (en) * | 2009-03-31 | 2010-10-21 | Toray Ind Inc | Prepreg, preform and molded product |
JP2011189747A (en) * | 2011-05-10 | 2011-09-29 | Toray Ind Inc | Method of manufacturing press molded article |
WO2014038508A1 (en) | 2012-09-06 | 2014-03-13 | 東レ株式会社 | Impact-absorbing member |
JPWO2014038508A1 (en) * | 2012-09-06 | 2016-08-08 | 東レ株式会社 | Shock absorbing member |
US9452596B2 (en) | 2012-09-06 | 2016-09-27 | Toray Industries, Inc. | Impact-absorbing member |
WO2021124907A1 (en) * | 2019-12-17 | 2021-06-24 | フクビ化学工業株式会社 | Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same |
JPWO2021124907A1 (en) * | 2019-12-17 | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4439361B2 (en) | Long fiber reinforced thermoplastic resin exterior molding | |
CN109401293B (en) | Reinforced polyamide molding compounds with low haze and molded bodies made therefrom | |
CN109401294B (en) | Reinforced polyamide moulding compounds having low haze and moulded bodies produced therefrom | |
JP5560056B2 (en) | Manufacturing method of polyamide resin molded product | |
CN109401295A (en) | Reinforced polyamide moulding compound with low haze and the moulding bodies being made from it | |
WO2007097184A1 (en) | Glass-fiber-reinforced thermoplastic resin composition and molded article | |
JP2005194532A (en) | Polyamide resin and car component comprising the same | |
KR101816434B1 (en) | Carbon fiber reinforced thermoplastic resin composition for foam molding and molded article using the same | |
TWI844715B (en) | Liquid crystal polyester resin particles and method for producing the same, and method for producing a molded body | |
US7465481B2 (en) | Exterior molding body comprising a long fiber reinforced thermoplastic resin | |
JP2006083227A (en) | Exterior molded article made of long fiber reinforced polyamide resin | |
JP4535772B2 (en) | Long-fiber reinforced polyamide resin automobile body front structure | |
WO2021153366A1 (en) | Cold press molded body containing carbon fiber and glass fiber, and manufacturing method thereof | |
JP2008529827A (en) | Method for manufacturing a semi-structural panel | |
JP2004524473A (en) | Thermoplastic resin throttle body | |
EP3775023B1 (en) | A polyamide composition, manufacturing method, an application and article thereof | |
US20200399468A1 (en) | Polyamide composition for liquid-assisted injection moulding applications | |
KR102321899B1 (en) | Glass long fiber reinforced thermoplastic resin composition for foam molding and battery pack housing manufactured using the same | |
KR102690844B1 (en) | Recycled polyamide resin composition, molded article comprising same and manufacturing method for same | |
KR20180038266A (en) | Long Fiber Reinforced Article And Resin Composition Of The Same | |
US20220106447A1 (en) | Long glass fiber reinforced thermoplastic resin composition and molded article including the same | |
JP6741833B1 (en) | Injection molded products | |
KR100622718B1 (en) | The composition of polyamide resin for micrcellular foaming prcess | |
JP2022010813A (en) | Resin composition and molded article thereof | |
JP2023020915A (en) | Resin composition and molded article of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101201 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120111 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121225 |