JP2006076403A - 車両の重心高演算装置 - Google Patents

車両の重心高演算装置 Download PDF

Info

Publication number
JP2006076403A
JP2006076403A JP2004261463A JP2004261463A JP2006076403A JP 2006076403 A JP2006076403 A JP 2006076403A JP 2004261463 A JP2004261463 A JP 2004261463A JP 2004261463 A JP2004261463 A JP 2004261463A JP 2006076403 A JP2006076403 A JP 2006076403A
Authority
JP
Japan
Prior art keywords
vehicle
center
gravity
moment
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004261463A
Other languages
English (en)
Inventor
Kozo Oyama
鋼造 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004261463A priority Critical patent/JP2006076403A/ja
Publication of JP2006076403A publication Critical patent/JP2006076403A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

【課題】 車両の前軸と後軸とが同相で振動している場合であっても、車両の重心高さを正確に算出することができる車両制御装置を提供する。
【解決手段】 車両制御装置は、制御装置10を有しており、制御装置10には、加速度センサ11、横加速度センサ12、および各輪に設けられたストロークセンサ13〜16が接続されている。制御装置10には、加速度センサ11から前後加速度が出力され、横加速度センサ12から横加速度が出力される。また、各ストロークセンサ13〜16から出力されたサスペンションストロークから、前輪および後輪にそれぞれ掛かる荷重を算出する。制御装置は、前後加速度から求められる水平方向の力によって発生する第一モーメントと、前輪に掛かる荷重によって発生する第二モーメントと、後輪に掛かる荷重によって発生する第三モーメントとに基づいて、車両の重心高を算出する。
【選択図】 図1

Description

本発明は、車両の重心高を算出する車両の重心高演算装置に係り、特に、車両の姿勢安定のために用いて好適な車両の重心高演算装置に関する。
車両の姿勢安定制御を行うためには、車両の重心高さを求めることが要求されることがある。このように、車両の重心高さを求めるものとして、従来、ロール角センサや横加速度センサなどを用いた重心高演算装置がある。この重心高演算装置では、ロール中心を求める必要があるが、ロール中心は車両の荷物積載量によって変化してしまうので、正確な重心高を算出するのが困難であった。
また、車両の重心高さを求めるものとしては、特開2000−292316号公報に開示された車両の重心高さの推定演算装置もある。この重心高さの推定演算装置は、車両の前後方向の加速度センサで検出した制動時加速度と、左右車輪をそれぞれ支持する複数のエアサスペンションに設けた圧力センサで検出した制動時の後軸荷重変化量などに基づいて、車両の重心高さを求めるものである。さらに説明すると、車両の制動時、車両における前輪周りの重心の移動により発生するモーメントと、後輪が取り付けられた後軸の荷重の増加により発生するモーメントが等しいことを用いて車両の重心高を算出するものである。
特開2000−292316号公報
しかし、上記特許文献1に開示された重心高さの推定演算装置においては、前軸周りの重心の移動により発生するモーメントと、後軸の荷重の増加により発生するモーメントが等しいことを用いて車両の重心高を算出している。このため、車両の前軸と後軸とが同相で振動している場合、後軸の荷重の増加量を正確に検出することができず、この場合には、正確な重心高さを求めることができないという問題があった。
そこで、本発明の課題は、車両の前軸と後軸とが同相で振動している場合であっても、車両の重心高さを正確に算出することができる車両の重心高演算装置を提供することにある。
上記課題を解決した本発明に係る車両の重心高演算装置は、複数の車輪が設けられた車両の重心高求める車両の重心高演算装置であって、車両の重心に加わる水平方向の力を検出する水平方向力検出手段と、重心から見て、水平方向の力が作用する側に位置する車輪に加わる荷重の変化量を検出する第一荷重変化量検出手段と、重心から水平方向の力の作用する側と逆側に位置する車輪に加わる荷重の変化量を検出する第二荷重変化量検出手段と、水平方向の力によって発生する第一モーメントと、第一荷重検出手段により検出された荷重変化によって発生する第二モーメントと、第二荷重検出手段により検出された荷重変化によって発生する第三モーメントと、を用いて、車両の重心高を演算する重心高演算手段と、を備えるものである。
本発明に係る車両の重心高演算装置においては、水平方向の力によって発生する第一モーメントのほか、第一荷重検出手段により検出された荷重変化によって発生する第二モーメントと、第二荷重検出手段により検出された荷重変化によって発生する第三モーメントと、を用いて、車両の重心高を演算する。これにより、重心に加わる水平方向の力によるモーメントとそれぞれの車輪の荷重変化によって発生するモーメントから重心高を正確に演算することができる。
ここで、重心高演算手段は、第一モーメントに対して逆方向を向いた第二モーメントと、第一モーメントに対して同方向を向いた第三モーメントと、を用いて、車両の重心高を算出する態様とすることができる。
このように、第一モーメントに対して逆方向を向いた第二モーメントと、第一モーメントに対して同方向を向いた第三モーメントとを用いて、車両重心高を算出するので、第二モーメントを発生させる荷重の増加・減少分は、第三モーメントを発生させる荷重の増加・減少分と同等となる。このため、前輪に接続された前軸と後輪に接続された後軸が同相で振動すると、たとえば、上方向に振動しているときに前輪および後輪の荷重を検知した場合、実際より前輪および後輪の荷重増加量は小さく検出される。このとき、前輪の荷重増加によるモーメントが実際より小さく演算されるが、後輪の荷重増加分によるモーメントに関しても小さく演算される。よって、同相で振動しても精度よく重心高を演算することができる。
また、水平方向検出手段は、水平方向の力として、車両の前後方向を検出し、第一荷重変化量検出手段は、車両の前輪に加わる荷重を検出し、第二荷重変化量検出手段は、車両の後輪に加わる荷重を検出する、態様とすることもできる。
車両では、たとえば制動時において、重心に前後方向の加速度が加わり、前輪に加わる荷重は増加し、後輪に加わる荷重は減少する。このときに発生する重心におけるモーメントと、前後輪における荷重変化を検出することにより、重心高を正確に算出することができる。
本発明に係る車両の重心高演算装置によれば、車両の前軸と後軸とが同相で振動している場合であっても、車両の重心高さを正確に算出することができる。

以下、図面を参照して本発明の実施形態について説明する。なお、各実施形態において、同一の機能を有する部材等について、重複する記載は省略することがある。図1は、本発明の第一の実施形態に係る車両の重心高さ演算装置を含む車両制御装置のブロック構成図である。
図1に示すように、本実施形態に係る重心高演算装置を含む車両制御装置は、制御装置10、加速度センサ11、および横加速度センサ12を備えており、加速度センサ11および横加速度センサ12は、制御装置10に電気的に接続されている。加速度センサ11は、車両の加速度を検出しており、横加速度センサ12は、車両の横加速度を検出している。これらの加速度センサ11および横加速度センサ12は、検出した加速度や横加速度を制御装置10に出力している。
また、車両の重心高さ演算装置は、右前輪ストロークセンサ13、左前輪ストロークセンサ14、右後輪ストロークセンサ15、および左後輪ストロークセンサ16を備えている。右前輪ストロークセンサ13は、車両の右前輪を支持するエアサスペンションに取り付けられており、右前輪のサスペンションストロークを検出している。左前輪ストロークセンサ14は、車両の左前輪を支持するエアサスペンションに取り付けられており、左前輪のサスペンションストロークを検出している。
右後輪ストロークセンサ15は、車両の右後輪を支持するエアサスペンションに取り付けられており、右後輪のサスペンションストロークを検出している。左後輪ストロークセンサ16は、車両の左後輪を支持するエアサスペンションに取り付けられており、左後輪のサスペンションストロークを検出している。これらの各ストロークセンサ13〜16は、それぞれ制御装置10に電気的に接続されており、検出したサスペンションストロークをそれぞれ制御装置10に出力している。
制御装置10は、センサ11,12から出力された加速度および横加速度、並びにストロークセンサ13〜16からそれぞれ出力された各車輪に対応するサスペンションストロークに基づいて、車両の重心高さを算出している。また、制御装置10は、車両が制動状態や急加速状態状態でない定常状態で走行を行っているか否かを判定するための定常判定しきい値を記憶している。さらに、制御装置10は、車両がカーブを走行することなく、直進走行を行っているか否かを判定するための直進判定しきい値を記憶している。加えて、制御装置10は、ホイールベースやトレッド幅などの車両の諸元を記憶している。
また、制御装置10は、ブレーキ17に接続されており、ブレーキの自動制御を行っている。ブレーキの自動制御では、横加速度センサ12で検出した横加速度が、算出した重心高さを用いて決定された車両の挙動安定性の限界しきい値以上となったときに、ブレーキを自動的にかける制御を行っている。
以上の構成を有する本実施形態に係る車両の重心高さ演算装置を含む車両制御装置の制御手順について説明する。図2は、車両制御装置の制御手順を示すフローチャートである。
図2に示すように、本実施形態に係る車両制御装置においては、重心高さを求めるにあたり、まず横加速度センサ12によって車両の横加速度を検出する(S1)。横加速度センサ12は、検出した車両の横加速度を制御装置10に出力する。横加速度センサ12で車両の横加速度を検出するとともに、加速度センサ11では、車両のブレーキなどに伴う車両の前後方向(進行方向)加速度を検出する(S2)。加速度センサ11は、検出した車両の前後方向加速度を制御装置10に出力する。
また、各車輪に対応するエアサスペンションに取り付けられたストロークセンサ13〜16では、それぞれ各輪に対応するサスペンションのサスペンションストローク値を検出する(S3)。これらの各ストロークセンサ13〜16は、検出したサスペンションストローク値を制御装置10に出力する。
続いて、制御装置10では、定常判定を行う(S4)。定常判定では、加速度センサ11から出力された車両の前後加速度Gxと、予め記憶している定常判定しきい値とを比較する。定常判定の結果、前後加速度Gxが定常判定しきい値以下である場合には、車両は制動状態にはない、定常状態にあると判断する。このように、制動状態ではなく定常状態にある判断した場合には、ブレーキの自動制御を行うことはなく、車両の挙動安定性の限界しきい値を求めるためのデータとして、車両重量および車両重量の配分を計算するとともに、これらの平均を求める(S5)。車両重量は、車両への荷物の搭載量や乗員数などの要因によって変動するので、下記(1)式を用いて現在の車両重量mを求める。
m=(WFR+WFL+WRR+WRL)/g ・・・(1)
ここで、WFR:右前車輪に掛かる輪荷重
FL:左前車輪に掛かる輪荷重
RR:右後車輪に掛かる輪荷重
RL:右後車輪に掛かる輪荷重
g:重力加速度
各ストロークセンサ13〜16では、それぞれの車輪におけるサスペンションストロークを検出しているが、サスペンションストロークSiと輪加重Wiとの間には、前後方向の加速度および速度が0の状態で、図3に示すグラフの関係がある。図3に示すサスペンションストロークSiと輪加重Wiとの間の関係を示すグラフは、ストロークセンサ13〜16の取り付け状況などによって異なり、たとえば車両の停止時や定常直進状態のときに、各輪ごとに予め求めておく。このグラフを参照することにより、各ストロークセンサ13〜16が検出したサスペンションストロークに基づいて、各車輪の輪荷重を求める。また、図3に示すグラフから、各輪におけるサスペンションストロークに対する輪荷重の変化勾配Kiを求める。
重量配分計算では、車両の重心に対する車両の重量配分を求める。車両の重量配分は、重心から前輪または後輪までの距離の比で表されるので、ここでは、重心から前輪または後輪までの距離を、車両の重量配分に代用して求める。重心から前輪までの距離lは、下記(2)式を用いて求めることができる。また、重心から後輪までの距離lは、下記(3)式を用いて求めることができる。
=WB・(WFR+WFL)/(WFR+WFL+WRR+WRL) ・・・(2)
ここで、WB:ホイールベース
=WB−l ・・・(3)
制御装置10では、このようにして求めた車両重量および重量配分を逐一記憶しており、車両の挙動安定性の限界しきい値がリセットされるまでの間に記憶された車両重量および重量配分の平均を算出している。このようにして車両重量および重量配分の計算、並びにこれらの平均を求めたら、制御を終了する。
また、ステップS4において、前後加速度Gxが定常判定しきい値以下でなく、制動状態にあると判断した場合には、続いて直進判定を行う(S6)。直進判定では、横加速度センサ12から出力された車両の横加速度Gyと、予め記憶している直進判定しきい値とを比較する。直進判定の結果、車両の横加速度Gyが直進判定しきい値以下であると判断したときには、定常状態でなく、直進状態である。
したがって、車両は、たとえば直進走行中にブレーキをかけた状態となっている。直進走行中にブレーキをかけると、横加速度Gyがほとんど生じない状態で、前後方向の加速度が生じているので、前後方向の加速度から車両の重心高さを求めることができ、精度よく重心高を算出することができる。そこで、直進判定の結果車両の横加速度Gyが直進判定しきい値以下のときに、車両の重心高Hを算出する(S7)。重心高Hの算出は、下記(4)式を用いて行うことができる。
H=(ΔS・K・l−ΔS・K・l)/m・Gx ・・・(4)
ここで、ΔS :前輪のサスペンションストローク変化(右前輪のサスペンションストロークSfrと左前輪のサスペンションストロークSflの平均値)
:前輪におけるサスペンションストロークに対する輪荷重の変化勾配
ΔS:後輪のサスペンションストローク変化(右後輪のサスペンションストロークSrrと左後輪のサスペンションストロークSrlの平均値)
:後輪におけるサスペンションストロークに対する輪荷重の変化勾配
m:車両重量(=WFR+WFL+WRR+WRL
上記(4)について、車両における力関係を示した図4を参照して説明する。いま、車両の制動時、車両に影響するモーメントを考えると、前後の水平方向の力によって発生する重心X周りのモーメント(以下「第一モーメント」という)と、前輪側のストロークセンサ13,14で検出される前輪FW周りの第二モーメント(以下「第二モーメント」という)と、後輪側のストロークセンサ15,16で検出される後輪RW周りのモーメント(以下「第三モーメント」という)とがある。
ここで、重心X周りの第一モーメントおよび後輪RW周りの第三モーメントは、時計回りに作用し、前輪FW周りの第二モーメントは反時計回りに作用する。したがって、第二モーメントは、第一モーメントに対して逆方向を向いており、第三モーメントは、第一モーメントに対して同方向を向いている。
第一モーメントはm・Gx・H、第二モーメントはΔS・K・l、第三モーメントはΔSr・Kr・lrでそれぞれ表される。したがって、これらの第一モーメントから第三モーメントの釣り合いを考えると、下記(5)式が成り立つ。
m・Gx・H=ΔS・K・l+ΔS・K・l ・・・(5)
この(5)式を変形することにより、(4)式が得られる。
このように、水平方向に掛かる力のモーメント(第一モーメント)と、前後の車輪に加わる荷重のモーメント(第二モーメントおよび第三モーメント)に基づいて車両の重心高Hを求めているので、重心高Hを正確に求めることができる。また、第一モーメントに対して逆向きの第二モーメントおよび同じ向きの第三モーメントを用いて重心高Hを求めているので、前輪の支持する前軸と後輪を支持する後軸とが同相で上下動した場合でも、正確に重心高Hを求めることができる。
また、直進制動中は、各輪におけるストロークセンサ13〜16と、車両の前後加速度Gxとは比例関係にある。このため、図5に示すように、各輪におけるストロークセンサ13〜16のサスペンションストロークSと、前後加速度Gxとの関係を求めておき、この関係と、車両重量m、サスペンションストロークに対する輪荷重の変化勾配K、および重心から前輪、後輪までの距離l、lは、を用いて重心高さHを求めることもできる。
こうして、車両の重心高Hを求めたら、車両の挙動安定性の限界しきい値THRを算出する(S8)。車両の挙動安定性の限界しきい値THRを求める。車両の挙動安定性の限界しきい値THRは、下記(6)式によって求めることができる。
THR=2・α・T/H ・・・(6)
ここで、T:トレッド幅
α:安全係数(<1)
このようにして車両の挙動安定性の限界しきい値THRを求めたら、車両のドアが開いたか否かを判断する(S9)。車両のドアが開いたか否かの判断は、たとえばドアの開閉スイッチが操作されたか否かにより判断する。その結果、ドアが開いていないと判断した場合には、車両における荷物の積載量や乗員数には変化がなく、車両重量mには変化がないとして制御を終了する。一方、ドアが開いたと判断した場合には、荷物の積載量や乗員数に変化があった可能性があるため、車両の挙動安定性の限界しきい値をリセットする(S10)。こうして、制御を終了する。
また、ステップS5において、横加速度Gyが直進判定しきい値以下ではないと判断した場合には、車両は、制動状態でありかつ直進状態でない、たとえばカーブを走行している状態にある。このときには、車両の挙動が不安定となることが懸念されるので、車両の挙動判定を行う。車両の挙動判定は、横加速度センサ12で検出した横加速度Gyが、ステップS8で算出した車両の挙動安定性の限界しきい値THR以下となっているか否かによって行う(S11)。
車両の挙動判定の結果、横加速度Gyが車両の挙動安定性の限界しきい値THR以下ではないと判断した場合には、ブレーキ17の自動制御を行い、車両にブレーキ17をかけて(S12)、車両の挙動の安定化を図る。一方、横加速度Gyが車両の挙動安定性の限界しきい値以下である場合には、ブレーキ17の自動制御を行うことなく走行を継続する。そして、制御を終了する。
このように、本実施形態に係る車両制御装置では、車両の重心高を求めて、この車両の重心高を利用して車両挙動の不安定さの低減を図っている。このとき、車両の重心高を求める際、水平前後方向に加わる力による第一モーメントのほか、前輪周りの第二モーメントおよび後輪周りの第三モーメントを利用している。このため、たとえば前輪と後輪とが同相で振動している場合であっても、車両の重心高を正確に求めることができる。したがって、確実に車両挙動の不安定さの低減を図ることができる。
次に、第二の実施形態に係る車両制御装置について説明する。本実施形態に係る車両制御装置における上記第一の実施形態との主な相違点は、上記第一の実施形態では車両の前後方向の加速度を検出するのに対して、本実施形態では走行路面の平均斜度を求めている点である。
図6に示すように、本実施形態に係る車両制御装置では、上記第一の実施形態で設けられていた加速度センサ11に代えて、GPS装置20が設けられている。その他の点については、上記第一の実施形態と同様の構成を有している。GPS装置20は、現在における車両の走行位置を検出している。また、GPS装置20には、走行路面の標高情報を記憶しており、現在車両が走行している路面の標高を検出することができる。
本実施形態に係る車両制御装置においては、車両が一定速度で走行している間、所定の時刻tにおける車両が位置する路面の標高GPSと、時刻t−1における車両が位置する路面の標高GPSt−1とから、路面の平均斜度θを求める。平均斜度θは、下記(7)式によって求めることができる。
θ=(GPS−GPSt−1)/L ・・・(7)
ここで、L:車両の時刻t−1〜tまでの走行距離
平均斜度が求められると、車両における力関係は、図7に示すように表すことができる。重心Xに水平方向に係る力のモーメントは、mgsinθ・Hで表すことができる。また、前輪FWに加わるモーメントおよび後輪RWに加わるモーメントは、上記第一の実施形態と同様、それぞれΔS・K・l、ΔS・K・l表すことができる。したがって、図7に示す状態を参照してこれらのモーメントの釣り合いを考えると、平均斜度θおよび各車輪のサスペンションストロークを用いた下記(8)式の関係が成り立つ。
mgsinθ・H=ΔS・K・l−ΔS・K・l ・・・(8)
したがって、(8)式を変形した下記(9)式によって、車両の重心高を算出することができる。
H=ΔS・K・l−ΔS・K・l/mgsinθ ・・・(9)
このように、前後方向の加速度を検出する加速度センサを用いることなく、GPS装置を用いて検出した標高から平均斜度を求める方法によっても、車両の重心高を求めることができる。この場合でも、水平前後方向に加わる力による第一モーメントのほか、前輪周りの第二モーメントおよび後輪周りの第三モーメントを利用している。このため、たとえば前輪と後輪とが同相で振動している場合であっても、車両の重心高を正確に求めることができる。
また、走行路面の平均斜度を求める際には、GPS装置の代わりに、気圧計や標高計などを用いることもできる。気圧計を用いる場合には、一定速度で走行中における時刻tにおける気圧Pと、時刻t−1における気圧Pt−1とから、下記(10)式により平均斜度θを算出する。
θ=(P−Pt−1)/L ・・・(10)
こうして求めた平均斜度と、各車輪のサスペンションストロークとを用いて、上記(9)式によって車両の重心高さを求めることもできる。
第一の実施形態に係る車両制御装置のブロック構成図である。 車両制御装置による制御手順を示すフローチャートである。 サスペンションストロークと輪加重との関係を示すグラフである。 車両における力関係を模式的に示した説明図である。 サスペンションストロークと前後加速度との関係の例を示すグラフである。 第二の実施形態に係る車両制御装置のブロック構成図である。 車両における力関係を模式的に示した説明図である。
符号の説明
10…制御装置、11…加速度センサ、12…横加速度センサ、13…右前輪ストロークセンサ、14…左前輪ストロークセンサ、15…右後輪ストロークセンサ、16…左後輪ストロークセンサ、17…ブレーキ、20…GPS装置、FW…前輪、RW…後輪。

Claims (3)

  1. 複数の車輪が設けられた車両の重心高を求める車両の重心高演算装置であって、
    車両の重心に加わる水平方向の力を検出する水平方向力検出手段と、
    前記重心から見て、前記水平方向の力が作用する側に位置する車輪に加わる荷重の変化量を検出する第一荷重変化量検出手段と、
    前記重心から前記水平方向の力の作用する側と逆側に位置する車輪に加わる荷重の変化量を検出する第二荷重変化量検出手段と、
    前記水平方向の力によって発生する第一モーメントと、前記第一荷重検出手段により検出された荷重変化によって発生する第二モーメントと、第二荷重検出手段により検出された荷重変化によって発生する第三モーメントと、を用いて、前記車両の重心高を演算する重心高演算手段と、
    を備えることを特徴とする車両の重心高演算装置。
  2. 前記重心高演算手段は、前記第一モーメントに対して逆方向を向いた前記第二モーメントと、前記第一モーメントに対して同方向を向いた前記第三モーメントと、を用いて、前記車両の重心高を算出する請求項1に記載の車両の重心高演算装置。
  3. 前記水平方向検出手段は、前記水平方向の力として、前記車両の前後方向を検出し、
    前記第一荷重変化量検出手段は、前記車両の前輪に加わる荷重を検出し、
    前記第二荷重変化量検出手段は、前記車両の後輪に加わる荷重を検出する、
    請求項2に記載の車両の重心高演算装置。
JP2004261463A 2004-09-08 2004-09-08 車両の重心高演算装置 Pending JP2006076403A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261463A JP2006076403A (ja) 2004-09-08 2004-09-08 車両の重心高演算装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261463A JP2006076403A (ja) 2004-09-08 2004-09-08 車両の重心高演算装置

Publications (1)

Publication Number Publication Date
JP2006076403A true JP2006076403A (ja) 2006-03-23

Family

ID=36156229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261463A Pending JP2006076403A (ja) 2004-09-08 2004-09-08 車両の重心高演算装置

Country Status (1)

Country Link
JP (1) JP2006076403A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004458A1 (ja) * 2009-07-07 2011-01-13 トヨタ自動車株式会社 車両制御装置
WO2011004459A1 (ja) * 2009-07-07 2011-01-13 トヨタ自動車株式会社 車両制御装置及び演算装置
JP2018083568A (ja) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 自動傾斜車両

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004458A1 (ja) * 2009-07-07 2011-01-13 トヨタ自動車株式会社 車両制御装置
WO2011004459A1 (ja) * 2009-07-07 2011-01-13 トヨタ自動車株式会社 車両制御装置及び演算装置
CN102066176A (zh) * 2009-07-07 2011-05-18 丰田自动车株式会社 车辆控制装置
JP5024457B2 (ja) * 2009-07-07 2012-09-12 トヨタ自動車株式会社 車両制御装置
US8296049B2 (en) 2009-07-07 2012-10-23 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP5146603B2 (ja) * 2009-07-07 2013-02-20 トヨタ自動車株式会社 車両制御装置及び演算装置
US8483924B2 (en) 2009-07-07 2013-07-09 Toyota Jidosha Kabushiki Kaisha Vehicle control system, and operation device
JP2018083568A (ja) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 自動傾斜車両
CN108099917A (zh) * 2016-11-25 2018-06-01 丰田自动车株式会社 自动倾斜车辆
CN108099917B (zh) * 2016-11-25 2020-11-13 丰田自动车株式会社 自动倾斜车辆

Similar Documents

Publication Publication Date Title
JP4161923B2 (ja) 車両安定化制御システム
US6834218B2 (en) Roll over stability control for an automotive vehicle
US6684140B2 (en) System for sensing vehicle global and relative attitudes using suspension height sensors
JP3458734B2 (ja) 車輌の運動制御装置
US6593849B2 (en) Wheel lift identification for an automotive vehicle
JP3369467B2 (ja) 車両の重心高さの推定演算装置
US20010008986A1 (en) Roll over stability control for an automotive vehicle
US6725140B2 (en) Method and apparatus for determining lateral velocity of a motor vehicle in closed form for all road and driving conditions
JPH08244589A (ja) 車両の安定性維持制御装置
GB2382336A (en) Vehicle yaw stability control
EP1386807B1 (en) System and method for determining a wheel departure angle for a rollover control system
EP1386808B1 (en) System and method for characterizing vehicle body to road angle for vehicle roll stability control
WO2002020318A1 (en) Lateral acceleration sensor compensation for an inclined measurement plane
TW201630764A (zh) 用於測定二輪車的傾斜角度的方法
WO2018029914A1 (ja) 車両状態量推定装置
JP2008265545A (ja) 車両の重心位置推定装置及び重心位置/ヨー慣性モーメント推定装置。
JPH11304662A (ja) 車両の重心高さの推定演算装置
KR102533560B1 (ko) 차량 운동 상태 추정 장치, 차량 운동 상태 추정 방법 그리고 차량
JP3748334B2 (ja) 車両の姿勢制御装置
US20080167777A1 (en) Method for Controlling the Steering Orientation of a Vehicle
US20110190985A1 (en) Method and system for estimating a cornering limit of an automotive vehicle and a computer program product for carrying out said method
JP2006076403A (ja) 車両の重心高演算装置
KR101928154B1 (ko) 차량의 롤오버 감지 방법 및 장치
KR101459683B1 (ko) 자동차 및 그 제어방법
KR101298388B1 (ko) 차량 전복 방지 장치 및 그 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030