JP2006074065A - 試料の検査装置 - Google Patents

試料の検査装置 Download PDF

Info

Publication number
JP2006074065A
JP2006074065A JP2005305912A JP2005305912A JP2006074065A JP 2006074065 A JP2006074065 A JP 2006074065A JP 2005305912 A JP2005305912 A JP 2005305912A JP 2005305912 A JP2005305912 A JP 2005305912A JP 2006074065 A JP2006074065 A JP 2006074065A
Authority
JP
Japan
Prior art keywords
inspection
defect
attribute
information
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005305912A
Other languages
English (en)
Inventor
Kenji Obara
健二 小原
Yuji Takagi
裕治 高木
Toshifumi Honda
敏文 本田
Akira Nakagaki
亮 中垣
Toshishige Kurosaki
利栄 黒▲崎▼
Yasuhiko Ozawa
康彦 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005305912A priority Critical patent/JP2006074065A/ja
Publication of JP2006074065A publication Critical patent/JP2006074065A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】欠陥検査の検査情報に基づいて行なう欠陥の詳細検査の検査効率を高める。
【解決手段】例えば、欠陥検査装置1で検出された異物や欠陥を、SEMなどを用いた詳細検査装置3で詳細に検査してその発生原因などを解明するのであるが、詳細検査する前に、欠陥検査装置1で検出された異物や欠陥を光学顕微鏡などを用いた属性検査装置で検査して夫々の属性を求め、この属性に基づいて、これら欠陥や異物を詳細検査を必要とするものと、詳細検査を必要としないものあるいは詳細検査ができないものとに区分し、詳細検査を必要とする異物や欠陥のみ詳細検査装置3で検査するようにする。
【選択図】図1

Description

本発明は、半導体製造過程での半導体ウェハなどの試料上に発生する異物や欠陥の検査方法及びその検査装置に関する。
半導体デバイスは、基板となるウェハに対して、露光・現像・エッチングなどの複数の処理を行なうことにより製造され、その複数の処理工程のうちの所定の処理工程での処理後に、異物検査装置や外観検査装置により、ウェハ上の異物や欠陥の位置,大きさの検査が行なわれる。そして、この検査によって検出された異物や欠陥に対し、その全数あるいは一部を、人手により、光学顕微鏡あるいはSEM(Scanning Electron Microscope:走査電子顕微鏡)などの拡大撮像装置で拡大撮像することにより、その大きさや形状,テクスチャ(表面の模様)などの詳細情報を得、これを異物や欠陥の発生工程を特定するための一助としていた。 また、近年では、異物検査装置や外観検査装置からの検査データを基に、自動的に異物や欠陥の拡大画像を取得する機能、即ち、ADR(Auto Defect Review)を有する拡大撮像装置が開発されている。
ところで、ADRは、前述したように、異物検査装置や外観検査装置からの検査データを基に行なわれる。かかる検査装置の検出情報には、ノイズなどにより少なからぬ虚報(例えば、欠陥でないのに、欠陥とすること)が含まれている場合が多い。検査精度を高めようとすると、かかる虚報が増加する。このような場合、ADRでは、欠陥の存在しない画像を多量に取得することになり、検査時間に無駄が発生してしまう。
また、検出系の違いにより、異物検査装置や外観検査装置で欠陥として検出されても、詳細検査装置では、これが検出できない場合がある。例えば、詳細検査装置をSEMとした場合、ウェハ上に形成された透明な層の下に存在する異物を観察することができない。このような場合でも、ADRでは、同様に、異物や欠陥が観測できない画像、あるいはまた、異物や欠陥が存在しない画像を多量に取得することになり、検査時間に大きな無駄が生じてしまうことになる。
また、人手により観察する場合、異物や欠陥の特徴が正面からの画像でわかりにくい場合には、観察角度を変化させて俯瞰像を得るなど撮像条件を調整することがある。しかし、ADRを行なう場合、このような異物や欠陥の特徴に応じて撮像条件を変える、というようなことはできないため、解析するに必要な情報を得る画像が得られない場合がある。このような場合も、無駄な検査となる。
本発明の目的は、かかる従来技術の問題点を解消し、詳細検査の検査効率や検査効果の向上を実現した試料の検査方法及びその装置を提供することにある。
上記目的を達成するために、本発明による試料の検査方法は、欠陥検査処理で検出された欠陥の情報に基づいて検出された該欠陥の詳細検査処理の制御を行なう試料の欠陥を検査する方法であって、該欠陥検査処理で試料の欠陥位置情報を得、該欠陥位置情報に検出された欠陥の性質を示す属性情報を付加し、詳細検査処理で、該位置情報に基づいて検査位置を特定し、該属性に基づいて詳細検査を行なうものである。
また、本発明による試料の検査方法は、前記属性情報を、前記欠陥検査処理で得られた前記欠陥位置情報の相対的位置関係より得られる欠陥の性質を含むものである。
また、本発明による試料の検査方法は、前記属性情報を、前記欠陥検査処理で得られた前記欠陥位置情報に基づいて、光学的検出手段による前記欠陥の検査によって得られる前記欠陥の属性に関する情報を含むものである。
また、本発明による試料の検査方法は、前記属性情報を、前記欠陥検査処理で得られた該欠陥位置情報と別工程の欠陥検査処理により得られた欠陥位置情報との比較によって得られる前記欠陥の属性に関する情報を含むものである。
また、本発明による試料の検査方法は、前記属性情報は、前記欠陥が前記試料の表面に存在するか否か、あるいは、前記欠陥の前記詳細検査を行なうか否かを示す情報を含むものである。
また、本発明による試料の検査方法は、前記欠陥の属性毎に予め設定した個数のみ前記詳細検査処理を行なう、あるいは、前記欠陥の属性毎に、属する欠陥の個数に応じて設定した個数のみ前記詳細検査処理を行なうものである。
また、本発明による試料の検査方法は、前記属性情報に基づいて前記詳細検査処理を行なわない前記欠陥を決める、あるいは、前記属性情報に基づいて傾斜観察による前記欠陥の詳細検査処理を行なうものである。
また、本発明による試料の検査方法は、前記詳細検査処理を走査型電子顕微鏡を用いて、あるいは、走査型電子顕微鏡及びX線分析装置を用いて行なうものである。そして、走査型電子顕微鏡の加速電圧,プローブ電流,検出器の種類,ワークディスタンス,画像の加算回数,観察角度,倍率のうちの少なくとも1つ以上を変更するものである。
また、本発明による試料の検査方法は、前記属性情報に基づいて、前記X線分析装置による詳細検査処理を行なうか否か判定して検査するものである。
上記目的を達成するために、本発明による試料の検査装置は、該試料の欠陥を検出する欠陥検出手段と、該欠陥にその属性情報を付加する属性付加手段と、該属性情報を記憶する記憶手段と、該属性情報に基づいて該欠陥の詳細検査を行なう詳細検査手段とを備えた構成をなしている。
また、本発明による試料の検査装置は、該試料の属性情報を取得する情報取得手段と、該属性情報に基づいて検査方法を判断する判断手段と、該判断手段の判断結果に基づいて該欠陥の詳細検査を行なう詳細検査手段とを備えた構成をなしている。
また、本発明による試料の検査装置は、複数の検査装置を用い、第1の検査装置から得られた欠陥に関する情報に基づいて第2,第3の検査装置で再度該欠陥の検査を行なうものであって、該第1の検査装置は、該試料の欠陥位置を検出する検出手段と、該検出手段により検出された欠陥の位置情報を出力する出力手段とを備え、該第2の検査装置は、該第1の検査装置の該出力手段から出力された該位置情報を取得する情報取得手段と、該位置情報に基づいて該試料の検査位置を制御する制御手段と、該検査位置での欠陥の検査を行なう検査手段と、該検査手段の検査結果に基づいて属性情報を形成し、検査した該欠陥に該属性情報を付加する属性付加手段と、該属性情報を出力する出力手段とを備え、第3の検査装置は、該第2の検査装置の該出力手段から出力された該属性情報を取得する情報取得手段と、取得した該属性情報に基づいて検査方法を判断する判断手段と、該判断手段の判断結果に基づいて該属性情報が付加された該欠陥の詳細検査を行なう検査手段とを備えた構成をなしている。
また、本発明による試料の検査装置は、複数の検査装置を用い、第4の検査装置から得られた欠陥に関する情報に基づいて第5の検査装置で該欠陥の詳細検査を行なうものであって、第4の検査装置は、該試料の欠陥の位置を検出する検出手段と、該検出手段によって検出された該欠陥の位置情報を記憶する記憶手段と、該位置情報に基づいて該試料での検査位置を制御する制御手段と、該欠陥の属性検査を行なう検査手段と、該属性検査の結果に基づいて該欠陥に属性情報を付加する属性付加手段と、該属性情報を出力する出力手段を備え、該第5の検査装置は、該第4の手段の該出力手段から出力された該属性情報を取得する情報取得手段と、取得した該属性情報に基づいて検査方法を判断する判断手段と、該判断手段の判断結果に基づいて該属性情報が付加された該欠陥の詳細検査を行なう検査手段とを備えた構成をなしている。
また、本発明による試料の検査装置は、複数の検査装置を用い、第6の検査装置から得られた欠陥に関する情報に基づいて第7の検査装置で該欠陥の詳細検査を行なうものであって、該第6の検査装置は、該試料の欠陥の位置を検出する検出手段と、該検出手段により検出された該欠陥の位置情報を出力する出力手段とを備え、該第7の検査装置は、該第6の検査装置の該出力手段から出力された該位置情報を取得する情報取得手段と、取得した該位置情報に基づいて該試料の検査位置を制御する制御手段と、該制御手段で制御された検査位置での該欠陥の属性検査を行なう属性検査手段と、該属性検査手段によって得られた該欠陥の属性情報を付加する属性付加手段と、該属性情報を記憶する記憶手段と、該属性情報に基づいて検査方法を判断する判断手段と、該判断手段の判断結果に基づいて該欠陥の詳細検査を行なう詳細検査手段とを備えた構成をなしている。
また、本発明による試料の検査装置は、試料の欠陥の位置を検出する検出手段と、該検出手段により検出された欠陥の位置情報を記憶する第1の記憶手段と、該記憶手段に記憶された位置情報に基づいて該試料の検査位置を制御する制御手段と、該制御手段によって制御された該試料の検査位置を検査し、該検査位置での欠陥の属性検査を行なう属性検査手段と、該属性検査手段の検査結果に基づいて該欠陥に属性情報を付加する属性付加手段と、該属性情報を記憶する第2の記憶手段と、該第2の記憶手段に記憶された該属性情報に基づいて詳細検査での検査方法を判断する判断手段と、該判断手段の判断結果に基づいて該欠陥の詳細検査を行なう詳細検査手段とを備えた構成をなしている。
また、本発明による試料の検査装置は、試料としての半導体ウェハの欠陥を検出する欠陥検出手段と、該欠陥検出手段で検出される欠陥が該半導体ウェハの表面に存在するか、下地に存在するかを判定する判定手段と該欠陥検出手段で検出された欠陥の座標に関する情報と該判定手段の判定結果とを記憶する記憶手段と、該記憶手段に記憶された該欠陥の座標に関する情報と該判定結果とを出力する出力手段と、を備えた構成をなしている。
また、本発明による試料の検査装置は、前記詳細検査手段が走査型電子顕微鏡とX線分析装置との少なくともいずれか一方を有する構成をなしている。
また、本発明による試料の検査装置は、前記属性検査手段が光学式顕微鏡を有する構成をなしている。
本発明によれば、試料で検出した欠陥毎に、それに付加された属性に基づいて詳細検査を行なう必要があるか否かを判別できるから、確実に詳細検査を必要とする欠陥のみ詳細検査をすることができて、無駄な詳細検査を省くことができ、詳細検査の効率化・時間短縮化を図ることができる。
また、本発明によれば、異物や欠陥毎に付加される属性に応じた詳細検査での撮像条件を予め設定しておき、検出した異物や欠陥の撮像条件をその属性をもとに変更することにより、異物や欠陥の種類に応じて観察し易い画像を取得することができるし、画像処理に適した条件設定を行なうことにより、安定した画像処理結果を得ることができる。
以下、本発明の実施形態を図面を用いて説明する。
図1は本発明による試料の検査装置及びその装置に用いる各検査装置を示す図であって、1は欠陥検査装置、2は属性検査装置、3は詳細検査装置、4は欠陥/属性検査装置、5は属性/詳細検査装置、6は欠陥/属性/詳細検査装置、7はデータサーバである。
同図において、欠陥検査装置1は、半導体ウェハ上の異物や欠陥(以下、特別の場合を除き、これらをまとめて、欠陥という)の位置を検査するものであって、例えば、日立製作所製WI−890 のような検査装置である。
属性検査装置2は、検査情報取得手段と欠陥の属性に関する検査手段と属性を付加する属性付加手段とを備えた検査装置である。
詳細検査装置3は、上記の属性に基づいて検査方法を判断する判断手段と欠陥の詳細検査用の検査手段とを備えた検査装置である。
欠陥/属性検査装置4は、欠陥の検出手段とその属性を付加する属性付加手段とを備えた検査装置である。
属性/詳細検査装置5は、検査情報取得手段と欠陥の属性に関する検査手段と属性を付加する属性付加手段とを備え、かつこの属性に基づいて詳細検査を行なう検査手段を備えた検査装置である。
欠陥/属性/詳細検査装置6は、欠陥の位置を検査する検査手段やその位置情報に基づいて欠陥の属性を検査する検査手段,この欠陥の属性を付加する属性付加手段を備え、かつこの属性に基づいて詳細検査を行なう検査手段を備えた検査装置である。
データサーバ7は、これら検査装置1〜6で得られた検査データを管理するデータサーバである。
これら検査装置1〜6はサーバ7とはネットワークにより接続され、夫々の検査装置で得られた欠陥に関するデータがネットワークを介してデータサーバ7に送られ、管理されるのであるが、これら検査装置1〜6が全て用いられるのではなく、これら検査装置の1つあるいは2つ以上を組み合わせて半導体ウェハの検査を行なうものである。以下、かかる組み合わせからなる本発明による試料の検査方法とその装置の各実施形態について説明する。
〔第1の実施形態〕
この第1の実施形態は、図1の検査装置1〜3を組み合わせたものであって、欠陥検査装置1で検出された欠陥をその半導体ウェハ上での位置を表わすデータ(以下、欠陥位置データという)を用いて光学式顕微鏡と撮像装置を備えた属性検査装置2で検査し、これによって得られる画像を解析することにより、これら欠陥の属性を求めるものであって、この属性を基に選択された欠陥のみを詳細検査装置3での詳細な検査の対象とするものである。
図2は図1における属性検査装置2の一具体例を示す構成図であって、8は情報入出力装置、9はコンピュータ、10は制御装置、11はモニタ、12は撮像装置、13はXYZステージ、WFは検査試料としての半導体ウェハである。
同図において、検査試料としての半導体ウェハWFがXYZステージ13に固定されている。このXYZステージ13は、制御装置10により、コンピュータ9からの制御信号に応じてX,Y,Z方向に移動が可能である。
撮像装置12は光学顕微鏡を備えており、この光学顕微鏡を介して半導体ウェハWFを拡大撮像するものであって、XYZステージ13を制御することにより、半導体ウェハWF上の任意の位置を拡大して観察することができる。この半導体ウェハWFは欠陥検査装置1(図1)によって欠陥の検査が行なわれており、この検査によって得られた欠陥位置データがデータサーバ7(図1)に格納されている。この半導体ウェハWFをこの属性検査装置2で検査する場合には、図2において、コンピュータ9がこの半導体ウェハWFから得られた欠陥位置データをこのサーバ7から情報入出力装置8から取り込み、この欠陥位置データに基づいて制御信号を制御回路10に送り、半導体ウェハWF上の欠陥または異物の位置が撮像装置12で観測できる位置になるように、XYZステージ13を位置決め制御する。なお、情報入出力装置8は、コンピュータ9に含まれていてもよい。
コンピュータ9は、撮像装置12で得られる画像を取り込み、モニタ11で表示させるとともに、この画像を解析してこの欠陥の属性の情報(以下、属性情報という)を欠陥位置データに付加し、情報入出力装置8を介してデータサーバ7に格納する。
この属性は、欠陥が次の詳細検査装置3(図1)の検査対象とすべきか否かを決めるための基準であって、コンピュータ10での画像解析の結果、発生工程や発生原因が明らかな属性を持つ欠陥、詳細検査装置3では観測できない属性を持つ欠陥は詳細検査装置3の検査対象としないようにする。
この属性としては、欠陥の色合い(例えば、白黒といった色の違い)や大きさ,形状などであって、これによって欠陥の発生原因を特定できるものとできないものとを区別することができる。例えば、画像解析で白く見える欠陥は発生原因を特定でき、黒く見える欠陥はその発生原因を特定できない場合があるし、また、小さい欠陥は倍率が低く、低解像度の光学式顕微鏡では充分解析することができず、高解像度のSEMなどの詳細検査装置3による再検査が必要になる。このように、属性情報は、欠陥を詳細検査装置3でさらに再検査することが必要か否かを判定するのに使用するためのものである。
なお、欠陥に付与する属性としては、上記のように、画像解析して得られたものばかりでなく、その他の方法によって得られたものであってもよい。例えば、欠陥が多数密集している場合には、その発生原因が不明な場合があり、詳細検査装置3でさらに検査する必要がある場合がある。従って、欠陥が多数密集しているか否かもそれら欠陥の属性とすることができる。また、ひっかき傷のように、多数の欠陥が1つの曲線上に並んでいる場合もあるが、このようなことも属性とすることができる。さらに、検査対象の半導体ウェハの欠陥検査装置1による現在の検査工程の検査結果とそれ以前の欠陥検査装置による検査工程での検査結果と比較し、現在の検査工程で検出された欠陥が新規に発生したものであるか、それ以前の製造工程で既に発生していたものかも属性とすることができる。それ以前の製造工程で既に発生していた欠陥は、詳細検査装置3で検査する必要がないことになる。さらには、属性情報としては、属性検査装置2の検査結果に基づいて、「詳細検査装置3による検査要」,「詳細検査装置3による検査不要」といった情報としてもよい。
図3は図2における属性検査装置2による検査動作を示すフローチャートである。
図2及び図3において、コンピュータ9は、まず、XYZステージ13に搭載した検査対象の半導体ウェハWFに関するデータをデータサーバ7に問い合わせることにより、この半導体ウェハWFの欠陥位置データを取得する(ステップ100)。そして、この取得した欠陥位置データを用いて、この異物または欠陥が撮像装置12が備えた光学顕微鏡の視野内に入るように、制御装置10によってXYZステージ13を移動制御し、この光学顕微鏡で拡大された異物または欠陥の部分を撮像装置12で撮像する(ステップ101)。
次に、撮像した異物の欠陥の拡大画像をモニタ11に表示するとともに、この拡大画像から異物または欠陥を解析する。この解析は、予め人手によって学習させた学習データを基にニューラルネットワークやファジィ推論などの分類エンジンにより分類するものであって、分類結果を属性として欠陥に付与する(ステップ102)。この付与された属性は、属性情報として、情報入出力装置8を介してデータサーバ7(図1)に出力され、該当する欠陥位置データとともに管理される(ステップ103)。かかる検査が欠陥検査装置1(図1)で検出された全ての欠陥について行なわれる(ステップ104)。
図4は図1における詳細検査装置3の一具体例を示す構成図であって、14は情報入出力装置、15はコンピュータ、16は制御装置、17はモニタ、18はSEM(走査型電子顕微鏡)を用いた撮像装置、19は電子ビーム源、20は電子光学系、21はXYステージ、22は2次電子検出器、EBは電子ビーム,EB’は2次電子である。また、WFは図2に示した属性検査装置2で検査された半導体ウェハである。
この詳細検査装置3は、図2で示した属性検査装置2で検査された欠陥のうち、その属性を基に必要とされる欠陥のみ詳細に検査するものであり、ここでは、SEMを用いているため、高い倍率で詳細に欠陥の検査をすることができる。
同図において、コンピュータ15は、図2に示した属性検査装置2で得られた属性を基に、各欠陥の詳細検査の要不要や設定する検査条件を判断する判断手段をなすものであって、撮像装置18は、この判断手段の判断に基づいて、検査対象とする欠陥を詳細に検査し、この拡大画像を出力する検査手段をなすものである。
被検査対象となる半導体ウェハWFが、撮像装置18内のXYステージ21に固定されている。また、コンピュータ15は、XYステージ21に固定されている半導体ウェハWFで欠陥検出装置1(図1)により検出された欠陥についての欠陥位置データと属性情報とをデータサーバ7(図1)から情報入出力装置14を介して取り込み、これらの欠陥位置データを有する欠陥毎に、属性情報に基づいて、この欠陥や異物が検査対象となるか否かを判定し、検査対象となる欠陥に対しては、その欠陥位置データに基づいて制御信号を制御装置16に送り、この制御装置16により、撮像装置18でこの検査対象となる欠陥が撮像装置18で検査できるように、XYステージ21を位置決めし、これとともに、この検査対象となる欠陥の属性に基づいて欠陥の撮像条件などの検査条件を判断し、この検査条件を設定するための設定制御信号を撮像装置18に送る。
そこで、撮像装置18では、SEMでの電子ビーム発生源19や電子光学系20を制御して電子ビームEBを集束,偏向させ、半導体ウェハWF上の検査対象となった欠陥の領域を電子ビームEBで走査する。この場合、検査条件に応じて走査領域を異ならせてもよい。例えば、検査対象となる欠陥が1つの欠陥または異物であれば、それが存在する領域を、また、検査対象が多数密集した欠陥である場合には、これら欠陥を含む領域を夫々電子ビームEBで走査する。
この電子ビームEBの照射により、半導体ウェハWFの欠陥の部分から2次電子EB’が発生する。これを2次電子検出器22で検出することにより、半導体ウェハWFの異物または欠陥部分の拡大画像(これをSEM画像という)が得られる。このSEM画像はコンピュータ15に取り込まれ、モニタ17に表示されるとともに、情報入出力装置14を介してデータサーバ7(図1)に送られて保管される。作業者は、このモニタ画面から欠陥の詳細を観察することができ、これによってこれら欠陥の発生原因などを知ることができる。勿論、これらのことをコンピュータ15がSEM画像から解析し、新たな属性情報として情報入出力装置14を介してデータサーバ7(図1)に送り、そこに保管するようにしてもよい。
なお、撮像装置18に、さらに、X線分析装置も装備するようにし、属性に応じて欠陥を構成する材料の分析などを行なうようにすることもできる。このような分析結果の拡大画像のコンピュータ15に取り込まれ、モニタ17に表示されたり、データサーバ7に保管されたりし、さらに、その解析結果を新たな属性としてデータサーバ7に保管するようにしてもよい。
また、データサーバ7に保管された欠陥位置データや上記の各属性情報は、別途設けられたモニタやプリンタなどの出力装置に出力するようにすることもできる。
図5は図4に示した詳細検査装置3の検査動作を示すフローチャートである。 同図において、コンピュータ15は、まず、検査対象の半導体ウェハWFについてデータサーバ7に問い合わせることにより、この半導体ウェハWFの欠陥検査装置1(図1)で得られた欠陥に関する欠陥位置データと属性検査装置2(図1)で付与された属性情報を取得する(ステップ200)。そして、このときの異物または欠陥が、この属性情報により、この詳細検査装置3での検査対象でないことが判明したときには(ステップ201)、データサーバ7に問い合わせて次の欠陥位置データとこれに付与された属性情報とを取得して(ステップ200)検査対象の異物または欠陥か否かを判定するが(ステップ201)、検査対象とする異物または欠陥であるときには(ステップ201)、上記のように撮像装置18を動作させてSEM画像を取得する(ステップ203)。以上の動作をXYステージ21に載置された半導体ウェハWF上の検出された欠陥の全てについて行なう(ステップ204)。
以上のようにして、欠陥検査装置1,属性検査装置2及び詳細検査装置3を用いた第1の実施形態では、属性検査装置2で取得した属性情報に基づいて、詳細検査装置3で検査対象とする欠陥を選別することができる。
ここで、属性検査装置2は光学顕微鏡を用いて検査するものであるが、欠陥の検査を迅速に短時間で行なうことができるという利点がある反面、倍率が小さくて解像度が低く、精密な検査ができず、特に、非常に細かい欠陥の検査が難しいという問題もある。これに対し、SEMやX線分析装置は、1つ1つの欠陥の検査に時間が掛り、検査に長時間を要するという欠点があるが、倍率が高く、解像度の高い画像が得られて精度の良い解析,分析が可能という利点がある。また、SEMやX線分析装置では、層の中にあるなど、欠陥によっては、検査できないものもある。
この第1の実施形態は、光学顕微鏡を備えた属性検査装置2とSEMやX線分析装置を備えた詳細検査装置3との特徴を活かし、光学顕微鏡を用いた検査で発生原因が明らかとなる欠陥、また、詳細検査装置3で検査できないような欠陥に対しては、属性検査装置2による検査のみとし、詳細検査装置3で検査が可能で、かつさらに詳細に検査が必要な欠陥は詳細検査装置3で検査するようにするものであって、詳細検査装置3で検査する必要があるかどうかを属性検査装置2での解析結果で得られる属性で決めるようにするものである。
このように、この第1の実施形態では、詳細な検査を必要とする欠陥を詳細検査装置3で検査でき、それ以外の欠陥は検査時間が短かい属性検査装置2の検査で済ますようにするものであるから、無駄な詳細検査を省いて検査時間を大幅に短縮することができるし、充分な検査結果が得られることになる。従って、検査効率と検査効果の向上が実現する。
〔第2の実施形態〕
この第2の実施形態は、図1における欠陥/属性検査装置4と詳細検査装置3とを組み合わせたものである。この欠陥/属性検査装置4は、図1における欠陥検査装置1と属性検査装置2とを備えた構成をなすものであって、詳細検査装置3は、この欠陥/属性検査装置4で得られる属性を基に、上記のように、詳細検査の対象となる欠陥を選別して詳細検査するものである。
図6はこの欠陥/属性検査装置4の一具体例を示す構成図であって、23は欠陥検査系、24は属性検査系、25はXYZステージ、26は制御装置であり、図2に対応する部分には同一符号を付けて重複する説明を省略する。
同図において、この欠陥/属性検査装置4は、図1における欠陥検査装置1のように、欠陥の位置を検査する欠陥検査系23と、図1における属性検査装置2のように、欠陥検査系23で得られた位置データをもとに、各欠陥の属性を検査する属性検査系24とから構成されている。
検査対象となる半導体ウェハWFは、まず、欠陥検査系23において、XYZステージ25に載置され、コンピュータ9の制御のもとにこの半導体ウエハWFでの欠陥の検査が行なわれる。この欠陥検査系23はコンピュータ9で制御されるのであるが、この場合、制御装置26はコンピュータ9からの検査位置の指示に応じてXYZステージ25をXY方向に移動制御し、この半導体ウェハWFの検査領域全体での検査ができるようにする。このとき、コンピュータ9は半導体ウェハWFでの順次の検査位置を把握しており、欠陥検査系23での検査で欠陥が検出されると、そのときの検査位置を欠陥位置データとして記憶する。このようにして、半導体ウェハWFでの欠陥位置データがコンピュータ9に得られることになる。なお、このようして得られた欠陥位置データは、情報入出力装置8を介してデータサーバ7(図1)に格納するようにしてもよい。
欠陥検査系23でのこの半導体ウェハWFの欠陥検査が終了すると、次に、この半導体ウェハWFは属性検査系24に移送されてXYZステージ13に載置される。この属性検査系24は、得られた欠陥位置データをもとにしたコンピュータ9の制御のもとに、図2で説明した属性検査装置2と同様に動作して、この欠陥位置データで表わされる位置の欠陥毎に上記のような属性が検出される。このようにして検出された属性情報は欠陥位置データに付加され、情報入出力装置8を介してデータサーバ7(図1)に格納される。勿論、このようにして得られた欠陥位置データや属性情報をモニタ11で表示するようにしてもよいし、また、図示しないプリンタで出力するようにしてもよい。
次に、データサーバ7からこれら欠陥位置データと属性情報とが詳細検査装置3(図4)に取り込まれ、上記のように、この属性情報を用いて詳細検査の対象となる欠陥が選別され、この選別された欠陥に対して詳細検査が行なわれる。
このようにして、この第2の実施形態においても、上記第1の実施形態と同様の効果が得られるが、さらに、欠陥検査系23と属性検査系24とが一体に設けられているので、欠陥検査と属性検査とを一連の流れとして行なうことができ、同じ検査対象に対して検査に要する時間を短縮することができる。
なお、上記では、欠陥検査系23から属性検査系24に半導体ウェハWFを搬送するようにしたが、欠陥検査系23と属性検査系24とで半導体ウェハWFが載置されるXYZステージを共通とし、欠陥検査系23で検査が終了すると、この半導体ウェハWFが載置されているXYZステージを属性検査系24に移動させるようにしてもよい。勿論、この場合には、検査系23,24毎に制御装置26,10を設ける必要がなく、共通の制御装置を用いて検査系23,24毎にそれに応じた制御を行なわせるようにすることもでき、装置の簡略化が図れることになる。
〔第3の実施形態〕
この第3の実施形態は、図1における属性/詳細検査装置5と欠陥検査装置1とを組み合わせたものである。この属性/詳細検査装置5は、図1における属性検査装置2と詳細検査装置3とを備えた構成をなすものである。
図7はこの属性/詳細検査装置5の一具体例を示す構成図であって、27は詳細検査系、28は情報入出力装置、29はコンピュータ、30はモニタであり、図4及び図6に対応する部分には同一符号を付けて重複する説明を省略する。
同図において、この欠陥/属性検査装置4は、図6で説明した属性検査系24と、図4に示した詳細検査装置3のように、属性検査系24で得られた属性情報をもとに選択された欠陥の詳細検査を行なう詳細検査系27とから構成されている。ここで、情報入出力装置28やコンピュータ29,モニタ30は属性検査系24と詳細検査系27とで共通に使用されるものであり、属性検査系24に対しては、これら情報入出力装置28やコンピュータ29,モニタ30が夫々図2における情報入出力装置8やコンピュータ9,モニタ11に対応し、詳細検査系27に対しては、これら情報入出力装置28やコンピュータ29,モニタ30が夫々図4での情報入出力装置14やコンピュータ15,モニタ17に対応する。
検査対象となる半導体ウェハWFは、まず、図1での欠陥検査装置1で欠陥検査が行なわれ、その検査結果である欠陥位置データがデータサーバ7に格納される。
欠陥検査装置1で欠陥検査が終了した半導体ウェハWFは属性検査系24のXYZステージ13に載置される。これとともに、コンピュータ29はデータサーバ7(図1)から、情報入出力装置28を介して、この半導体ウェハWFに対する欠陥位置データを取り込み、この欠陥位置データをもとに、図2で説明したようにして、欠陥検査装置1で検出された欠陥を検査し、それらの属性情報を求める。かかる属性情報は、欠陥位置データとともに、コンピュータ29に保持されるが、情報入出力装置28を介してデータサーバ(図1)に格納するようにしてもよい。
属性検査系24での属性検査が終了すると、次に、この半導体ウェハWFは属性検査系24から詳細検査系27に搬送され、XYZステージ21に載置される。この詳細検査系27では、図4で説明した詳細検査装置3と同様に、コンピュータ29の制御のもとに、属性検査系24で得られた属性情報によって選択された欠陥の詳細検査が行なわれ、あるいはまた、この属性情報に応じて各欠陥の撮像条件が変更され、これによって夫々の欠陥の拡大画像を得たり、これを解析して詳細検査が行なわれる。また、詳細検査系27にX線分析手段も装備するようにすることにより、上記のように、欠陥のX線分析を行なうようにすることもできる。勿論、このようにして得られた拡大画像や解析・分析結果をモニタ30で表示するようにしてもよいし、また、図示しないプリンタで出力するようにしてもよい。
このようにして得られた拡大画像や解析・分析情報は、上記の欠陥位置データや属性情報とともに、情報入出力装置28を介してデータサーバ(図1)に格納される。
以上のようにして、この第3の実施形態においても、上記第1の実施形態と同様の効果が得られるが、さらに、属性検査系24と詳細検査系27とが一体に設けられているので、属性検査と詳細検査とを一連の流れとして行なうことができ、同じ検査対象に対して検査に要する時間を短縮することができる。
なお、上記では、属性検査系24から詳細検査系27に半導体ウェハWFを搬送するようにしたが、これら属性検査系24と詳細検査系27とで半導体ウェハWFが載置されるXYZステージを共通とし、属性検査系24で検査が終了すると、この半導体ウェハWFが載置されているXYZステージを詳細検査系27に移動させるようにしてもよい。勿論、この場合には、検査系24,27毎に制御装置10,16を設ける必要がなく、共通の制御装置を用いて検査系24,27毎にそれに応じた制御を行なわせるようにすることもでき、装置の簡略化が図れることになる。
〔第4の実施形態〕
この第4の実施形態は、図1における欠陥/属性/詳細検査装置6のみからなるものである。この欠陥/属性/詳細検査装置6は、図1における欠陥検査装置1と属性検査装置2と詳細検査装置3とを備えた構成をなすものである。
図8はこの欠陥/属性/詳細検査装置6の一具体例を示す構成図であって、31は情報入出力装置、32はコンピュータ、33はモニタであり、前出図面に対応する部分には同一符号を付けて重複する説明を省略する。
同図において、この欠陥/属性検査装置4は、図6に説明した欠陥/属性検査装置4に図7に示した詳細検査系27を追加した構成をなすものであり、情報入出力装置31やコンピュータ32,モニタ33はこれら欠陥検査系23,属性検査系24及び詳細検査系27に共通に使用されるものである。
検査対象となる半導体ウェハWFは、まず、欠陥検査系23のXYZステージ25に載置され、先に図6で説明したように、この半導体ウェハWFでの欠陥検出が行なわれ、この検査結果得られる欠陥位置データがコンピュータ32に保持される。なお、この欠陥位置データは、情報入出力装置31を介してデータサーバ7(図1)に格納することもできる。
この欠陥検査系23での検査が終了すると、半導体ウェハWFは属性検査系24に搬送され、そのXYZステージ13に載置される。そして、この属性検査系24では、図6で説明したように、コンピュータ32に保持されている欠陥位置データをもとに、欠陥検査系23で検出された欠陥を検査し、それらの属性情報を求める。かかる属性情報は、欠陥位置データとともに、コンピュータ29に保持されるが、情報入出力装置31を介してデータサーバ(図1)に格納するようにしてもよい。また、かかる属性情報は、欠陥位置データとともにモニタ33で表示するようにしてもよい。
属性検査系24での属性検査が終了すると、次に、この半導体ウェハWFは属性検査系24から詳細検査系27に搬送され、XYZステージ21に載置される。この詳細検査系27では、図7で説明したように、属性検査系24で得られた属性情報によって選択された欠陥の詳細検査が行なわれ、あるいはまた、この属性情報に応じて各欠陥の撮像条件が変更され、これによって夫々の欠陥の拡大画像を得たり、これを解析して詳細検査が行なわれる。また、詳細検査系27にX線分析手段も装備するようにすることにより、上記のように、欠陥のX線分析を行なうようにすることもできる。勿論、このようにして得られた拡大画像や解析・分析結果をモニタ33で表示するようにしてもよいし、また、図示しないプリンタで出力するようにしてもよい。
このようにして得られた拡大画像や解析・分析情報は、上記の欠陥位置データや属性情報とともに、情報入出力装置31を介してデータサーバ7(図1)に格納される。
以上のようにして、この第4の実施形態においても、上記第1の実施形態と同様の効果が得られるが、さらに、欠陥検査系23と属性検査系24と詳細検査系27とが一体に設けられているので、欠陥検査から詳細検査までを一連の流れとして行なうことができ、同じ検査対象に対して検査に要する時間をさらに短縮することができる。
なお、上記では、欠陥検査系23から属性検査系24へ、さらに、属性検査系24から詳細検査系27へ半導体ウェハWFを搬送するようにしたが、これら欠陥検査系23と属性検査系24と詳細検査系27とで半導体ウェハWFが載置されるXYZステージを共通とし、これら検査系間でXYZステージを移動させるようにしてもよい。勿論、この場合には、検査系23,24,27毎に制御装置26,10,16を設ける必要がなく、共通の制御装置を用いて検査系23,24,27毎にそれに応じた制御を行なわせるようにすることもでき、装置の簡略化が図れることになる。
ここで、半導体ウェハWFの処理工程で生ずる異物を例にとり、その属性の具体例についてさらに説明する。
図9は製造中の半導体ウェハWFの1処理工程での縦断面を示す図であって、Fmは異物、Sbは基板となるシリコンウェハ、Hw1,Hw2は配線などの階層である。
図9(a),(b)は基板Sb上に階層Hw1,Hw2が形成された処理工程までを示すものであって、同図(a)は透明な酸化膜の階層Hw2 の上に、即ち、ウェハ表面に欠陥Fmが存在する場合を、また、同図(b)は階層Hw1,Hw2間、即ち、下地に異物Fmが存在する場合を夫々示している。図9(a)に示すような欠陥Fmの場合には、光学顕微鏡は勿論のこと、SEMやX線分析装置でも観測できるが、図9(b)に示すように、異物が下地に存在する場合には、光学顕微鏡で観測できるものの、SEMやX線分析装置では観測することができない。そこで、このような異物Fmの属性としては、異物Fmがウェハ表面に存在するか、下地に存在するかで与えることができる。かかる属性により、下地に存在する異物FmをSEMやX線分析装置などの詳細検査の対象からはずすことができ、詳細検査の効率化を図ることができる。
なお、かかる異物Fmの検査から、属性を、異物Fmがウェハ表面に存在するか、下地に存在するかを表わす情報とするのではなく、詳細検査を行なうか否か、即ち、詳細検査要か否かを表わす情報としてもよい。
また、下地に存在するものは傾斜観察を行なうこととすれば、異物によるパターンの盛り上がり具合が観察し易い画像を、異物が下地に存在する場合だけ選択的に撮ることができる。
欠陥がウェハ表面に存在するか、下地に存在するかの判定は、光学顕微鏡の画像を解析することによって行なう。例えば、欠陥の輪郭は、欠陥がウェハ表面に存在するときに比べ、下地に存在するときの方がぼやけてしまう。このぼけ具合を解析することにより判定する。また、欠陥の色は、欠陥がウェハ表面に存在するときに比べて、下地に存在するときの方がある傾向をもって変化する。そこで、欠陥領域の色を解析することにより判定する。
また、属性検査装置2での撮像装置12(図2)には、光学式顕微鏡だけでなく、属性を判定するための専用の検出系を用いてもよい。例えば、属性として、上記のように、欠陥がウェハの表面にあるか、下地にあるのかを与えるとするものの専用の検出系として、図10に示す構成のものがある。但し、Lmは光源、Ls1はコリメータ、Ls2は集光レンズ、Hmはハーフミラー、Pfは偏光板であり、図9に対応する部分には同一符号をつけている。
同図において、この検出系は、光源Lmと、光源Lmから出射される照明光を平行光にするコリメータLs1と、この平行光を反射するハーフミラーHmと、このハーフミラーHmで反射された平行光を対象物に集光する集光レンズLs2とから構成されて対象物を明視野照明し、さらに、かかる光路中、例えば、ハーフミラーHmと集光レンズLs2との間にS偏光のみを通過させる偏光板またはこれと同等の光減衰を生じさせるNDフィルタ(Neutral Density Filter:濃度フィルタ)を入替え可能としているものであり、対象物からの反射光を、集光レンズLs2,偏光板PfまたはNDフィルタ及びハーフミラーHmを介して図示しない光検出器で検出するものである。照明光が集光した位置に異物Fmが存在すると、その表面での乱反射によって検出器での受光量が変化し、これによって異物Fmが存在することが検出できるが、光路中に偏光板Pfを挿入した場合の受光量とNDフィルタを挿入した場合の受光量との差の有無により、異物Fmがウェハ表面に存在するか、下地に存在するかを検出することができる。
即ち、光路中に偏光板Pfを挿入してS偏光で半導体ウェハWFを照明したときと、光路中にNDフィルタを挿入して光源Lmからの照明光を減衰して半導体ウェハWFを照明したときとで、光検出器から画像を得、これらの画像の明るさを比較するのであるが、図10(a)はウェハ表面に異物Fmがある場合を示すものであって、このような場合には、異物Fmの表面での光の反射は、偏光板Pfを挿入した場合とNDフィルタを挿入した場合とで同等である。従って、夫々毎に得られる画像の明るさも同等である。このことから、検出される異物Fmはウェハの表面に存在することが分かる。
図10(b)は下地に異物Fmが存在する場合であって、この場合には、照明光は階層Hw2 内を通り、異物Fmで反射されるのであるが、光路中に偏光板Pfを挿入して照明光をS偏光とした場合には、このS偏光は階層Hw2の表面、即ち、ウェハ表面で反射されてしまうため、異物Fmからの反射光量が少ない。これに対し、NDフィルタを挿入した場合には、照明光に含まれるS偏光はウェハ表面で反射されるものの、かなりの光量の照明光が階層Hw2内を通って異物Fmで反射されることになり、反射光量が多い。このため、NDフィルタを挿入した場合に得られる画像に比べ、偏光板Pfを挿入した場合に得られる画像の方が暗くなり、これら画像の明るさの違いから、異物Fmが下地に存在することが分かる。以上のことは、欠陥についても同様である。
このようにして、図10に示した専用の検出系を用いることにより、得られる画像の明るさを比較して欠陥がウェハ表面にあるか、下地にあるのかを判定することができる。
図11は暗視野照明系を用いた専用の検出系を示す図である。この検出系は、P偏光とS偏光の2種類の照明を行ない、夫々の表明に対して画像を取得するものである。
図11(a)に示すように、異物Fmが表面に存在する場合には、相対的に、表面での反射率の低いP偏光の照明による画像が暗く、表面での反射率の高いS偏光の照明による画像が明るくなる。一方、図11(b)に示すように、異物Fmが下地に存在する場合には、相対的に、表面での反射率の低いP偏光の照明による画像が明るく、表面での反射率の高いS偏光の照明による画像が暗くなる。従って、これら両者の画像の明るさを比較することにより、異物Fmがウェハ表面に存在するか、下地に存在するかを判定することができる。このことは、欠陥についても同様である。
なお、図10及び図11に示す具体例において、半導体ウェハWFでの照明位置は、勿論、欠陥検査装置1(図1)で得られた欠陥位置データを用いて決められるものである。
以上の方法以外に、共焦点系の光学系を用いて合焦点位置を厳密に測定することにより、欠陥がウェハ表面に存在するか、下地に存在するかを判定することもできるし、現在検査中の工程よりも以前の工程における検査データを参照し、同一位置にある欠陥は下地に存在すると判定するようにしてもよい。
また、欠陥の属性をその発生原因としてもよく、このような場合には、同一属性を持つ欠陥については、それらの全てについて画像を取得するようにするものではなく、属性毎に予め決められた個数の欠陥の画像を取得し、それ以上の欠陥については画像を取得しないようにしてもよい。このような場合には、欠陥の発生原因となる画像は取得しつつも、残りの欠陥に対して詳細検査を省くことができるので、欠陥の詳細検査時間をさらに短縮することができる。
また、属性毎に、検出された欠陥の個数に応じて設定した個数の欠陥の詳細検査を行なうようにしてもよい。これによると、上記と同様、詳細検査時間を短縮できるとともに、属性毎の欠陥の発生比率を認識することができる。
また、詳細検査装置3や詳細検査系27において、属性毎に、SEMでの欠陥の観察が最もし易いように、あるいは画像処理がし易いように、SEMでの加速電圧やプローブ電流、検出器の種類、ワークディスタンス、画像の加算回数、観察角度などの条件を予め設定しておき、詳細検査時に欠陥の属性毎に予め設定した条件を用いて画像を取得するようにすることができる。これによると、欠陥の属性に応じた最適な撮像条件で画像を取得することができ、観察し易い画像を取得することができる。また、画像処理に適した設定を行なうことにより、安定した画像処理結果を得ることができる。
また、欠陥の属性をその大きさとし、この大きさに応じてSEMでの撮像倍率を変更するようにすることもできる。これによると、最適な倍率で欠陥の画像を取得することができる。
また、欠陥の外観検査装置から大きさなどの属性を取得し、ある大きさより小さいもののみを詳細検査装置3あるいは詳細検査部27で詳細検査して画像を取得するようにしてもよく、必ずしもかかる検査装置による出力結果を用いて再度属性を付加するための検査を行なうというようにしなくてもよい。
また、上記各実施形態では、属性検査装置2や属性検査系24で欠陥の属性を取得するものであるが、使用する属性によっては、欠陥検査装置1あるいは欠陥検査系23において、欠陥の位置検出のために使用する画像を利用して属性の検出も行なうようにしてもよい。例えば、かかる画像を利用することにより、欠陥の面積(大きさ)や周囲長,色,明るさ,テクスチャ,背景パータンとの相対関係などの特徴を検出することができるものであり、これらやこれらの複合を属性として、欠陥の検査と並行して取得するようにしてもよい。
また、詳細検査装置3や詳細検査系27でどのような属性を持つ欠陥を検査するか否かを判定する場合、そのための判定条件を設定する手法が必要である。その一例をSEMによる詳細検査を例として図12に示す。
同図において、ここでは、設定を行なう属性の例として、サイズ,密集部サンプリング,前工程欠陥削除,膜,配線,パターン欠陥,異物を挙げている。
「サイズ」は、欠陥部分の寸法である。
「密集部サンプリング」は、欠陥が多数密集している部分を認識し、密集部分に属すると判定した欠陥から詳細検査を行なう欠陥をランダムサンプリングする割合を指定するものである。
「前工程欠陥削除」は、前の工程での欠陥位置データと現在の工程での欠陥位置データとを比較し、前工程と重複して存在する欠陥位置データを削除して、現在の工程で新たに出現した欠陥位置データを用いることを指定するものである。
「膜」,「配線」,「パターン欠陥」及び「異物」は、これら夫々の属性を持つ欠陥を詳細検査するか否かを指定するものである。
なお、設定する属性としては、以上のもののみに限定されるものではなく、詳細検査装置や詳細検査系で検査できる欠陥の特徴を表わすものであればよい。
また、上記の判定条件を設定する手法は、属性と検査する/しないとの関係を関連付ける機能を有しておればよく、テキストデータなどをエディタで編集するなど、GUI(Graphic User Interface)を有していなくとも構わない。この機能は、各欠陥検査装置毎に実現されていてもよく、データサーバ上に実現されていてもよい。
また、かかる設定手法により設定された条件により、図1の欠陥検査装置1で検出された欠陥位置データに対して、半導体ウェハWF上のどの位置の欠陥が検査対象として選ばれたかをモニタに表示するようにしてもよい。図13はその表示画面の一具体例を示すものである。
この具体例は、図12に示した設定条件に基づいて、検出された欠陥が詳細検査の対象として選ばれたか否かを示すものであり、〇印は検査対象となる欠陥を、×印は検査対象とならない欠陥を夫々表わしている。これら欠陥の表示位置は、欠陥検査装置で得られた欠陥位置データによるものである。
かかる表示は、詳細検査装置3や詳細検査系27で行なうようにしてもよいが、データサーバ7にモニタを設けてこれで表示するようにしてもよい。また、この表示は、欠陥検査で得られた欠陥位置データに対し、どの欠陥が詳細検査の対象と判定されたかが分かる機能を有していればよい。また、このように欠陥の位置を表示した後、検査する属性を変更できるようにしてもよい。
本発明による試料の検査方法及びその装置に用いる各種の検査装置を示す図である。 本発明による試料の検査方法及び装置の第1の実施例に用いる図1での属性検査装置の一具体例を示す構成図である。 図2に示した属性検査装置による検査過程を示すフローチャートである。 本発明による試料の検査方法及び装置の第1の実施例に用いる図1での詳細検査装置の一具体例を示す構成図である。 図4に示した詳細検査装置による検査過程を示すフローチャートである。 本発明による試料の検査方法及び装置の第2の実施例に用いる図1での欠陥/属性検査装置の一具体例を示す構成図である。 本発明による試料の検査方法及び装置の第3の実施例に用いる図1での属性/詳細検査装置の一具体例を示す構成図である。 本発明による試料の検査方法及び装置の第4の実施例に用いる図1での欠陥/属性/詳細検査装置の一具体例を示す構成図である。 試料に生ずる異物の状態の例を示す断面図である。 図9に示した異物の属性を検査する検査装置の検出光学系の一具体例を示す図である。 図9に示した異物の属性を検査する検査装置の検出光学系の他の具体例を示す図である。 詳細検査の検査対象となる異物や欠陥の判定条件の一具体例を示す図である。 図12に示した判定条件の結果を表わす表示画面を示す図である。
符号の説明
1 欠陥検査装置
2 属性検査装置
3 詳細検査装置
4 欠陥/属性検査装置
5 属性/詳細検査装置
6 欠陥/属性/詳細検査装置
7 データサーバ
8 情報入出力装置
9 コンピュータ
10 制御装置
11 モニタ
12 撮像装置
WF 半導体ウェハ
13 ステージ
14 情報入出力装置
15 コンピュータ
16 制御装置
17 モニタ
18 走査型電子顕微鏡を用いた撮像装置
19 電子源
EB 電子ビーム
20 電子光学系
21 ステージ
22 二次電子検出器
23 欠陥検出系
24 属性検出系
25 ステージ
26 制御装置
27 詳細検出系
28 情報入出力装置
29 コンピュータ
30 モニタ
31 情報入出力装置
32 コンピュータ
33 モニタ

Claims (5)

  1. 試料の欠陥を検査する装置であって、
    該試料の属性情報を取得する情報取得手段と、
    該属性情報に基づいて検査方法を判断する判断手段と、
    該判断手段の判断結果に基づいて該欠陥の詳細検査を行なう詳細検査手段と
    を備えたことを特徴とする試料の検査装置。
  2. 複数の検査装置を用い、第1の検査装置から得られた欠陥に関する情報に基づいて第2の検査装置で該欠陥の詳細検査を行なう試料の検査装置において、
    第1の検査装置は、該試料の欠陥の位置を検出する検出手段と、該検出手段によって検出された該欠陥の位置情報を記憶する記憶手段と、該位置情報に基づいて該試料での検査位置を制御する制御手段と、該欠陥の属性検査を行なう検査手段と、該属性検査の結果に基づいて該欠陥に属性情報を付加する属性付加手段と、該属性情報を出力する出力手段を備え、
    該第2の検査装置は、該第1の検査装置の該出力手段から出力された該属性情報を取得する情報取得手段と、取得した該属性情報に基づいて検査方法を判断する判断手段と、該判断手段の判断結果に基づいて該属性情報が付加された該欠陥の詳細検査を行なう検査手段とを備えたことを特徴とする試料の検査装置。
  3. 複数の検査装置を用い、第3の検査装置から得られた欠陥に関する情報に基づいて第4の検査装置で該欠陥の詳細検査を行なう試料の検査装置において、
    該第3の検査装置は、
    該試料の欠陥の位置を検出する検出手段と、
    該検出手段により検出された該欠陥の位置情報を出力する出力手段と
    を備え、
    該第4の検査装置は、
    該第3の検査装置の該出力手段から出力された該位置情報を取得する情報取得手段と、
    取得した該位置情報に基づいて該試料の検査位置を制御する制御手段と、
    該制御手段で制御された検査位置での該欠陥の属性検査を行なう属性検査手段と、
    該属性検査手段によって得られた該欠陥の属性情報を付加する属性付加手段と、
    該属性情報を記憶する記憶手段と、
    該属性情報に基づいて検査方法を判断する判断手段と、
    該判断手段の判断結果に基づいて該欠陥の詳細検査を行なう詳細検査手段と を備えたことを特徴とする試料の検査装置。
  4. 請求項1〜3のいずれか1つにおいて、
    前記詳細検査手段が走査型電子顕微鏡とX線分析装置との少なくともいずれか一方を有することを特徴とする試料の検査装置。
  5. 請求項1〜3のいずれか1つにおいて、
    前記属性検査手段が光学式顕微鏡を有することを特徴とする試料の検査装置。
JP2005305912A 2005-10-20 2005-10-20 試料の検査装置 Pending JP2006074065A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305912A JP2006074065A (ja) 2005-10-20 2005-10-20 試料の検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305912A JP2006074065A (ja) 2005-10-20 2005-10-20 試料の検査装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26416499A Division JP3802716B2 (ja) 1999-09-17 1999-09-17 試料の検査方法及びその装置

Publications (1)

Publication Number Publication Date
JP2006074065A true JP2006074065A (ja) 2006-03-16

Family

ID=36154265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305912A Pending JP2006074065A (ja) 2005-10-20 2005-10-20 試料の検査装置

Country Status (1)

Country Link
JP (1) JP2006074065A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294361A (ja) * 2007-05-28 2008-12-04 Hitachi High-Technologies Corp 欠陥観察装置及び欠陥観察方法
WO2019065607A1 (ja) * 2017-09-27 2019-04-04 株式会社日立ハイテクノロジーズ 特定検査向け支援システム、特定検査向け支援方法およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283582A (ja) * 1996-04-17 1997-10-31 Fujitsu Ltd 異物組成自動分析装置及び異物組成自動分析方法
JPH1027833A (ja) * 1996-07-09 1998-01-27 Jeol Ltd 異物分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283582A (ja) * 1996-04-17 1997-10-31 Fujitsu Ltd 異物組成自動分析装置及び異物組成自動分析方法
JPH1027833A (ja) * 1996-07-09 1998-01-27 Jeol Ltd 異物分析方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294361A (ja) * 2007-05-28 2008-12-04 Hitachi High-Technologies Corp 欠陥観察装置及び欠陥観察方法
WO2019065607A1 (ja) * 2017-09-27 2019-04-04 株式会社日立ハイテクノロジーズ 特定検査向け支援システム、特定検査向け支援方法およびプログラム
JP2019060741A (ja) * 2017-09-27 2019-04-18 株式会社日立ハイテクノロジーズ 特定検査向け支援システム、特定検査向け支援方法およびプログラム
US11561184B2 (en) 2017-09-27 2023-01-24 Hitachi High-Tech Corporation Support system for specified inspection, support method for specified inspection, and non-transitory computer readable medium

Similar Documents

Publication Publication Date Title
JP3802716B2 (ja) 試料の検査方法及びその装置
JP4230838B2 (ja) 欠陥検査装置における検査レシピ設定方法および欠陥検査方法
KR102019534B1 (ko) 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출
JP4250898B2 (ja) 回路パターンの検査方法及びその装置
JP5228490B2 (ja) 画像解析によって欠陥検査を行う欠陥検査装置
US8274651B2 (en) Method of inspecting a semiconductor device and an apparatus thereof
US6297879B1 (en) Inspection method and apparatus for detecting defects on photomasks
US8111902B2 (en) Method and apparatus for inspecting defects of circuit patterns
JP2019505089A (ja) 領域適応的欠陥検出を行うシステムおよび方法
JP2001159616A (ja) パターン検査方法及びパターン検査装置
KR20180113572A (ko) 결함 분류 장치 및 결함 분류 방법
WO2000003413A1 (fr) Procede et dispositif d'observation d'un objet
JP2006261162A (ja) レビュー装置及びレビュー装置における検査方法
JP2004294358A (ja) 欠陥検査方法および装置
KR20090023553A (ko) 반도체 불량 해석 장치, 불량 해석 방법 및 불량 해석 프로그램
JP2014035326A (ja) 欠陥検査装置
JP2004177139A (ja) 検査条件データ作成支援プログラム及び検査装置及び検査条件データ作成方法
WO2007144971A1 (ja) 半導体不良解析装置、不良解析方法、及び不良解析プログラム
JP2010080969A (ja) 試料の観察方法およびその装置
JP5372365B2 (ja) 検査装置及び検査方法
JP2009150718A (ja) 検査装置および検査プログラム
JP2006074065A (ja) 試料の検査装置
JP4021084B2 (ja) 電子顕微鏡及び検査方法
JP2001281178A (ja) 欠陥検出方法、半導体装置の製造方法および欠陥検出装置
JP2011185715A (ja) 検査装置及び検査方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924