JP2006068724A - Deposit removing device - Google Patents

Deposit removing device Download PDF

Info

Publication number
JP2006068724A
JP2006068724A JP2005165788A JP2005165788A JP2006068724A JP 2006068724 A JP2006068724 A JP 2006068724A JP 2005165788 A JP2005165788 A JP 2005165788A JP 2005165788 A JP2005165788 A JP 2005165788A JP 2006068724 A JP2006068724 A JP 2006068724A
Authority
JP
Japan
Prior art keywords
nozzle body
plate
deposit
removing apparatus
deposit removing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005165788A
Other languages
Japanese (ja)
Other versions
JP3813162B2 (en
Inventor
Seiji Yoshimura
省二 吉村
Kenichi Uesugi
憲一 上杉
Tasuke Miyazono
太介 宮園
Koichi Honke
浩一 本家
Toru Okada
徹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005165788A priority Critical patent/JP3813162B2/en
Priority to TW94126725A priority patent/TWI290069B/en
Publication of JP2006068724A publication Critical patent/JP2006068724A/en
Application granted granted Critical
Publication of JP3813162B2 publication Critical patent/JP3813162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposit removing device efficiently removing deposit on a plate-like member by shortening a distance between the plate-like member such as a metal plate or resin plate and a spray nozzle, and coping with removal of deposit on a high speed rolled plate-like member or high speed carried plate-like member. <P>SOLUTION: This deposit removing device X removes deposit attached to the plate-like member T by jetting compressed gas from a plurality of jetting ports 101 formed in a nozzle body 100. The device X is composed such that the nozzle body 100 is supported movably in the roughly vertical direction W1 to the surface T1 (or T2) of the plate-like member T. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,板状部材に付着した圧延油等の油成分や板状部材を洗浄するための洗浄液等の液体などの付着物を除去する付着物除去装置に関し,特に,上記板状部材に圧縮空気を吹き付けて上記付着物を除去する付着物除去装置に関するものである。   The present invention relates to a deposit removing device for removing deposits such as oil components such as rolling oil and cleaning liquid for cleaning the plate-like member attached to the plate-like member, and in particular, compressing the plate-like member. The present invention relates to a deposit removing device that blows air to remove the deposit.

一般に,圧延機により金属板や樹脂板等の板状部材を圧延する場合は,ワークロール(圧延ロール)やこのワークロールにより圧延される板状部材の冷却,或いは,圧延効率の向上等のために上記ワークロールと上記板状部材との圧延接触部に圧延油を供給している。また,板状部材の表面の汚れや酸化膜等を洗浄する必要がある場合は,上記板状部材を洗浄剤が収容された洗浄槽に通過させている。
このように圧延後の板状部材には上記圧延油や洗浄剤が付着するため,上記板状部材を巻き取り装置等で巻き取る前に上記圧延油や洗浄剤を除去する必要がある。これは,圧延油等が付着したままで板状部材が巻き取られると,巻き取られた板状部材間の接触面の摩擦係数が小さくなり,板状部材がその幅方向に横滑りして巻き取り装置に衝突したり,板状部材自体が破断する等の問題が生じるおそれがあるからである。また,圧延油の除去が不十分なまま巻き取られた板状部材(圧延コイル)を次工程で焼鈍させると焼鈍むらが発生し,製品の品質を低下させるという問題もある。更にまた,洗浄剤が付着したまま板状部材が保管されると,その洗浄剤によって板状部材が腐食するという問題も生じ得る。
In general, when a plate member such as a metal plate or a resin plate is rolled by a rolling mill, the work roll (rolling roll) or the plate member rolled by the work roll is cooled or the rolling efficiency is improved. The rolling oil is supplied to the rolling contact portion between the work roll and the plate member. Further, when it is necessary to clean the surface of the plate member, such as dirt or oxide film, the plate member is passed through a cleaning tank containing a cleaning agent.
Thus, since the rolling oil and the cleaning agent adhere to the plate member after rolling, it is necessary to remove the rolling oil and the cleaning agent before winding the plate member with a winding device or the like. This is because when the plate member is wound with the rolling oil or the like attached, the friction coefficient of the contact surface between the wound plate members becomes small, and the plate member is slid in the width direction and wound. This is because there is a possibility that problems such as collision with the take-off device or breakage of the plate member itself may occur. Further, if the plate member (rolled coil) wound up with insufficient removal of rolling oil is annealed in the next process, there is a problem that uneven annealing occurs and the quality of the product is lowered. Furthermore, if the plate-shaped member is stored with the cleaning agent attached, the plate-shaped member may be corroded by the cleaning agent.

従来,上記圧延油や洗浄剤を除去する手法が多数提案されている。例えば,鋼鉄製のローラ対,ゴム等の弾性体で表面が被覆されたゴムワイパー或いはゴムローラ対,又は不織布等の多孔質材で表面が被覆された多孔質ローラ対等によって上記板状部材に付着した圧延油や洗浄剤を掻き取る或いは絞り取る手法が公知である。また,特許文献1及び2に記載されているように,噴射ノズルから板状部材に向けて圧縮エアー(圧縮空気)を噴射させることにより圧延油或いは洗浄剤等の付着物を吹き飛ばす手法も公知である。
特開平10−8276号公報 特開平10−146611号公報
Conventionally, many methods for removing the rolling oil and cleaning agent have been proposed. For example, a steel roller pair, a rubber wiper whose surface is covered with an elastic body such as rubber or a rubber roller pair, or a porous roller pair whose surface is covered with a porous material such as a nonwoven fabric, etc. Techniques for scraping or squeezing rolling oil and cleaning agents are known. In addition, as described in Patent Documents 1 and 2, a technique of blowing off deposits such as rolling oil or cleaning agent by spraying compressed air (compressed air) from a spray nozzle toward a plate-like member is also known. is there.
Japanese Patent Laid-Open No. 10-8276 JP-A-10-146611

しかしながら,上記ゴムワイパー或いは各ローラ対を用いて付着物を除去する前記の手法は,上記ローラ対と板状部材とを接触させるものであるため,板状部材表面に引っかき傷等の接触傷が生じるおそれがある。特に,ゴムローラ対や鉄鋼ローラ対を用いた場合は,上記板状部材に対する押圧力が高くなるほど除去効果が向上されるが,その反面,接触傷が発生しやすくなるという問題がある。このような問題は,板状部材が薄いほど重大化し,時には板状部材を破断させるに至る場合もある。
また,上記多孔質ローラを用いた場合は,上記ゴムワイパー,ゴムローラ対又は鉄鋼ローラ対と較べて幾分か接触傷は軽減されるが,ローラ表面の孔詰まりにより付着物の除去効果が低下するだけでなく,孔詰まりを解消するための保守メンテナンス作業を行わなければならないという煩わしさがある。
一方,上記特許文献1,2に記載の手法は非接触で付着物を除去するものであるため上記接触傷等の問題が生じることはない。しかしながら,噴射ノズルと圧延板表面とは数mm〜数十mm程度の距離をおいて配設されているため,エアーの噴射エネルギー(噴射圧)が分散されて充分な付着物除去効果を得ることができないという問題がある。
もちろん,上記噴射ノズルに供給する圧縮エアーの圧縮圧をより高圧に設定すれば付着物の除去効果を高めることができるが,圧縮空気を生成するコンプレッサーや圧縮空気を溜める空気槽等が大型化し,更にはエアー配管等の高耐圧化を強いられることとなり経済的,実用的にみて好ましくない。
噴射ノズルを板状部材表面に極力近づけることができればエアーの噴射エネルギーの分散を防止して,効率よく付着物を除去することができるが,上記噴射ノズルを板状部材表面に近づけ過ぎると,圧延時に生じる振動や板状部材の搬送時に生じる振動,或いは板状部材の反り返り等により上記噴射ノズルと板状部材とが接触して上記板状部材を損傷させるおそれがある。そのため,従来は,上記噴射ノズルを上記圧延板表面から数mm以下に近づけることは困難であった。
また,圧延速度(搬送速度)が高速化(約800m/min以上)しつつある近年においては,上述したいずれの除去手法を用いたとしても,高速圧延,高速搬送される板状部材の付着物を効率よく,しかも効果的に除去することができない。
そこで,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,圧延された金属板等の板状部材と噴射ノズルとの離間距離を小さくして,上記板状部材上の付着物を効率よく除去し,且つ,高速圧延,高速搬送される板状部材の付着物の除去にも対応することのできる付着物除去装置を提供することにある。
However, since the above-mentioned method for removing the deposits using the rubber wiper or each roller pair is to bring the roller pair into contact with the plate member, contact scratches such as scratches are caused on the surface of the plate member. May occur. In particular, when a rubber roller pair or a steel roller pair is used, the removal effect is improved as the pressing force against the plate-like member is increased, but there is a problem that contact scratches are likely to occur. Such a problem becomes more serious as the plate-like member is thinner, and sometimes the plate-like member is broken.
Further, when the porous roller is used, contact scratches are somewhat reduced as compared with the rubber wiper, rubber roller pair, or steel roller pair, but the effect of removing deposits is reduced due to clogging of the roller surface. In addition, there is an annoyance that maintenance work must be performed to eliminate clogging.
On the other hand, since the methods described in Patent Documents 1 and 2 are intended to remove deposits in a non-contact manner, problems such as contact scratches do not occur. However, since the spray nozzle and the rolled plate surface are disposed at a distance of several mm to several tens mm, the spray energy of the air (spray pressure) is dispersed to obtain a sufficient deposit removal effect. There is a problem that can not be.
Of course, if the compression pressure of the compressed air supplied to the injection nozzle is set to a higher pressure, the effect of removing the deposits can be enhanced, but the compressor for generating the compressed air, the air tank for storing the compressed air, etc. are enlarged, Furthermore, it is forced to increase the pressure resistance of air pipes and the like, which is not preferable from an economical and practical viewpoint.
If the spray nozzle can be brought as close as possible to the plate-like member surface, it is possible to prevent the dispersion of air jet energy and efficiently remove the deposits. However, if the spray nozzle is too close to the plate-like member surface, rolling There is a possibility that the jet nozzle and the plate-like member come into contact with each other and damage the plate-like member due to vibrations sometimes generated, vibrations generated during conveyance of the plate-like member, or warping of the plate-like member. For this reason, conventionally, it has been difficult to bring the spray nozzle closer to a few mm or less from the surface of the rolled plate.
In addition, in recent years when the rolling speed (conveying speed) is increasing (about 800 m / min or more), any of the above-described removal methods can be used for high-speed rolling and deposits on plate-like members that are conveyed at high speed. Cannot be removed efficiently and effectively.
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the separation distance between a plate-like member such as a rolled metal plate and an injection nozzle, and to perform the above-described purpose on the plate-like member. It is an object of the present invention to provide a deposit removing device that can efficiently remove deposits on the plate-shaped member that can be removed at high speed, and can be removed at high speed.

上記目的を達成するために本発明は,一以上の噴射口が形成されたノズル体の上記噴射口から圧縮気体を噴射させることにより板状部材に付着した付着物を除去する付着物除去装置に適用されるものであって,上記ノズル体が上記板状部材の表面に略垂直な方向へ移動自在に支持されるよう構成されている。
このように構成されることにより,圧縮気体の噴射圧による上記ノズル体への複数の作用力がバランスよく均衡するため,そのバランスによって上記ノズル体を上記板状部材から常に略一定間隔離間した位置を維持した状態のままで浮遊させることが可能となる。例えば,上記ノズル体が上記板状部材の上面側に位置する場合は,上記板状部材から略一定間隔を維持した状態のままで上記ノズル体が浮遊することになる。これにより,上記板状部材に発生した振動や板状部材の反り等の変形によって上記板状部材の表面が上下した場合であっても,その上下に追従して上記ノズル体が上下移動するため,上記板状部材の表面から上記ノズル体までの離間距離が常に略一定に維持される。その結果,上記板状部材と上記ノズル体との距離を数mm以下,具体的には0.1mm程度に設定することが可能となる。これにより,従来は数ミリ程度の離間距離を設けていたため比較的高圧の圧縮気体を供給しなければ充分な付着物除去効果を得ることができなかったが,本発明によれば上記離間距離を更に狭小とすることにより,従来よりも圧力の低い圧縮気体を用いて従来と同等或いはそれ以上の付着物除去効果を得ることができる。
また,上記板状部材と上記ノズル体との距離を小さくすることにより上記板状部材に噴射される圧縮気体の噴射圧が高まるため,圧延速度が高速化された圧延機により圧延された板状部材,即ち高速搬送された板状部材の付着物を除去することも可能となる。
In order to achieve the above object, the present invention provides a deposit removing device for removing deposits adhering to a plate member by jetting compressed gas from the jet port of a nozzle body in which one or more jet ports are formed. The nozzle body is applied so as to be movable in a direction substantially perpendicular to the surface of the plate member.
By being configured in this manner, a plurality of acting forces on the nozzle body due to the injection pressure of the compressed gas are balanced in a balanced manner, so that the nozzle body is always spaced apart from the plate member by a substantially constant distance by the balance. It is possible to float while maintaining the state. For example, when the nozzle body is positioned on the upper surface side of the plate-like member, the nozzle body floats while maintaining a substantially constant distance from the plate-like member. As a result, even when the surface of the plate-like member moves up and down due to deformation such as vibration generated in the plate-like member or warpage of the plate-like member, the nozzle body moves up and down following that up and down. , The distance from the surface of the plate member to the nozzle body is always kept substantially constant. As a result, the distance between the plate member and the nozzle body can be set to several mm or less, specifically about 0.1 mm. As a result, a separation distance of about several millimeters has been provided in the past, and a sufficient deposit removal effect could not be obtained unless a relatively high pressure compressed gas was supplied. By further narrowing, it is possible to obtain a deposit removal effect equal to or higher than that of the conventional one using a compressed gas having a pressure lower than that of the conventional one.
Further, since the injection pressure of the compressed gas injected to the plate-like member is increased by reducing the distance between the plate-like member and the nozzle body, the plate-like shape is rolled by a rolling mill whose rolling speed is increased. It is also possible to remove the deposits on the member, that is, the plate-like member conveyed at high speed.

ここで,上記噴射口それぞれの面積の合計値がノズル体の対向面の面積の略3分の2未満となるように上記噴射口が形成されていることが望ましい。これは,上記ノズル体を圧縮空気の噴射圧により浮上させてその位置で安定維持させるために最も好ましい条件であって,本出願の発明者による実験等の結果から見出されたものである。   Here, it is desirable that the injection port be formed so that the total value of the areas of the injection ports is less than about two-thirds of the area of the opposing surface of the nozzle body. This is the most preferable condition for levitation of the nozzle body by the injection pressure of compressed air and stable maintenance at that position, and was found from the results of experiments by the inventors of the present application.

また,上記ノズル体の対向面に形成された噴射口は,例えば,上記板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に直列或いは並列に配列されているものが考えられる。
また,上記ノズル体の対向面に,上記板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に長い開口部を有する平面ノズルが設けられておれば,上記板状部材の幅方向全域に圧縮気体を均等に放射することが可能となる。
更に,圧縮気体の噴射によって上記ノズル体を上記板状部材から容易に離間させるためにも,上記ノズル体を構成する主要部材は,プラスチック素材等の軽量材質であることが望ましい。
In addition, for example, the injection ports formed on the opposing surface of the nozzle body may be arranged in series or in parallel in a direction substantially orthogonal to the conveying direction of the plate member and the moving direction of the nozzle body. .
Further, if a flat nozzle having a long opening in a direction substantially orthogonal to the conveying direction of the plate member and the moving direction of the nozzle body is provided on the opposing surface of the nozzle body, the width of the plate member It becomes possible to uniformly radiate the compressed gas in the entire direction.
Further, in order to easily separate the nozzle body from the plate-like member by jetting compressed gas, it is desirable that the main member constituting the nozzle body is a lightweight material such as a plastic material.

また,上記板状部材の上面側及び下面側のいずれの表面における付着物をも除去可能とするべく,上記ノズル体は,上記板状部材の上面側及び下面側のいずれか一方又は両方に設けられてなることが好ましい。
更にまた,上記ノズル体を弾性的に支持するよう構成することが望ましい。これにより,上記ノズル体が上記板状部材の下面側に設けられた場合は,圧縮気体の噴射圧と上記板状部材に向けて作用する弾性付勢力とのバランスによって上記ノズル体を上記板状部材から常に略一定間隔だけ離間した状態に保持することが可能となる。
また,上記板状部材の上下面双方に設けられたノズル体が弾性的に支持されるよう構成すれば,例えば,上記板状部材が急激に上下変動したときであっても,上記ノズル体の上下方向へのオーバーシュートやアンダーシュート,或いはハンチング等を防止することが可能となる。
Further, the nozzle body is provided on one or both of the upper surface side and the lower surface side of the plate member so as to be able to remove deposits on both the upper surface side and the lower surface side of the plate member. It is preferable to be made.
Furthermore, it is desirable that the nozzle body be elastically supported. Thereby, when the nozzle body is provided on the lower surface side of the plate-like member, the nozzle body is made plate-like by the balance between the compressed gas injection pressure and the elastic biasing force acting toward the plate-like member. It becomes possible to always keep the member separated from the member by a substantially constant interval.
Further, if the nozzle bodies provided on both the upper and lower surfaces of the plate member are configured to be elastically supported, for example, even when the plate member suddenly fluctuates up and down, It is possible to prevent vertical overshoot, undershoot, hunting, and the like.

ところで,上記板状部材に圧縮気体が噴射されると,この気体は上記板状部材に反射して上記対向面に衝突する。このとき,圧縮気体の噴射により剥がされた付着物が上記対向面に衝突して,該対向面に付着する場合がある。特に,上記付着物が例えば油或いは油を含む塵埃などの粘性を有するものである場合は,該付着物が上記対向面に付着し易い。この場合,上記対向面に付着物が付着することによって上記噴射口が詰まったり,或いは肥大化した付着物が剥がれ落ち,上記板状部材に再付着するという問題が生じ得る。
そこで,上記対向面に,上記噴射口から噴射された圧縮気体を溜めるための陥没状の気体溜まりを設け,上記ノズル体に,上記気体溜まり内の気体を上記ノズル体の外部へ導く連通孔を形成しておけば,オイルなどの付着物を含む空気が上記気体溜まりに滞留し,この滞留した空気を外部へ排出することが可能となる。これにより,噴射口の詰まりや板状部材への付着物の再付着を軽減することができる。
この場合,上記連通孔から上記空気溜まり内の気体を吸引する吸引手段を設けておけば,付着物を含む気体の排出を効率よく行うことができる。
また,上記連通孔から排出された気体内に含まれる付着物を分離回収する付着物分離回収手段が備えられていることが望ましい。これにより,上記連通孔から排出された付着物が大気中に分散されなくなるため,人体或いは環境に優しい付着物除去装置が実現される。また,排出された付着物が上記板状部材に舞い落ちて再付着することも防止することができる。
更にまた,上記付着物分離回収手段が,付着物を含む気体から液状付着物のみを分離回収するものであることが考えられる。上記液状付着物が油や洗浄液などのように再利用可能なものである場合は,それのみを回収して再利用することができる。
By the way, when compressed gas is injected to the plate-like member, the gas is reflected by the plate-like member and collides with the facing surface. At this time, the deposit peeled off by the injection of the compressed gas may collide with the facing surface and adhere to the facing surface. In particular, when the deposit is viscous, such as oil or dust containing oil, the deposit is likely to adhere to the facing surface. In this case, there may be a problem that the adhering matter adheres to the facing surface, the injection port is clogged, or the enlarged adhering matter is peeled off and reattached to the plate-like member.
Therefore, a concavity-like gas reservoir for storing the compressed gas injected from the injection port is provided on the opposing surface, and a communication hole for introducing the gas in the gas reservoir to the outside of the nozzle body is provided in the nozzle body. If formed, air containing deposits such as oil stays in the gas reservoir, and the staying air can be discharged to the outside. Thereby, clogging of an injection nozzle and reattachment of the deposit | attachment to a plate-shaped member can be reduced.
In this case, if a suction means for sucking the gas in the air reservoir from the communication hole is provided, the gas containing the deposits can be discharged efficiently.
Further, it is desirable that an adhering matter separation and recovery means for separating and recovering the adhering matter contained in the gas discharged from the communication hole is provided. As a result, the deposits discharged from the communication holes are not dispersed in the atmosphere, so that a deposit removal device that is friendly to the human body or the environment is realized. It is also possible to prevent the discharged deposits from falling on the plate-like member and reattaching.
Furthermore, it is conceivable that the deposit separation / collection means separates and collects only the liquid deposit from the gas containing the deposit. If the liquid deposit is reusable, such as oil or cleaning liquid, it can be recovered and reused.

例えば,圧縮空気槽や圧縮空気を送給するポンプなどの故障等が原因で,圧縮空気の圧力が規定圧力未満となり,上記ノズル体を浮遊(浮上)させるだけの十分な圧縮空気が供給されなくなると,上記板状部材の上方に上記ノズル体が配設されている場合は,上記ノズル体が落下して上記板状部材を損傷させることになる。
このような不具合を防止するために,上記ノズル体と連結され,該ノズル体を上記板状部材の表面に略垂直な方向へ移動させる駆動手段と,上記ノズル体に供給される圧縮気体が予め定められた規定圧力未満となった場合に,上記駆動手段を駆動制御することにより上記ノズル体を上記板状部材から離反する方向へ移動させる駆動制御手段と,を具備することが考えられる。これにより,上記ノズル体が上記板状部材に衝突する前に強制的に引き離されるため,板状部材の損傷が防止される。
For example, due to a failure of a compressed air tank or a pump that supplies compressed air, the compressed air pressure becomes less than the specified pressure, and sufficient compressed air is not supplied to float (float) the nozzle body. When the nozzle body is disposed above the plate member, the nozzle body falls and damages the plate member.
In order to prevent such a problem, driving means connected to the nozzle body and moving the nozzle body in a direction substantially perpendicular to the surface of the plate-like member, and compressed gas supplied to the nozzle body are previously provided. It is conceivable to include drive control means for moving the nozzle body in a direction away from the plate-like member by drivingly controlling the drive means when the pressure becomes less than a prescribed pressure. Thereby, since the nozzle body is forcibly separated before colliding with the plate member, the plate member is prevented from being damaged.

以上説明したように,一以上の噴射口が形成されたノズル体の上記噴射口から圧縮気体を噴射させることにより上記板状部材に付着した付着物を除去する付着物除去装置に適用されるものであって,上記ノズル体が上記板状部材の表面に略垂直な方向へ移動自在に支持されるよう構成されているため,圧縮気体の噴射圧による上記ノズル体への複数の作用力がバランスよく均衡するため,そのバランスによって上記ノズル体を上記板状部材から常に略一定間隔離間した位置を維持した状態のままで浮遊させることが可能となる。これにより,上記板状部材に発生した振動や板状部材の反り等の変形によって上記板状部材の表面が上下した場合であっても,その上下に追従して上記ノズル体が上下移動するため,上記板状部材の表面から上記ノズル体までの離間距離が常に略一定に維持される。そのため,上記板状部材と上記ノズル体との距離を数mm以下,具体的には0.1mm程度に設定することが可能となる。これにより,従来は数ミリ程度の離間距離を設けていたため比較的高圧の圧縮気体を供給しなければ充分な付着物除去効果を得ることができなかったが,本発明によれば上記離間距離を更に狭小とすることにより,従来よりも圧力の低い圧縮気体を用いて従来と同等或いはそれ以上の付着物除去効果を得ることができる。
また,上記板状部材と上記ノズル体との距離を短くすることにより上記板状部材に噴射される圧縮気体の噴射圧が高まるため,圧延速度が高速化された圧延機により圧延された板状部材,即ち高速搬送された板状部材の付着物を除去することも可能となる。
As described above, the present invention is applied to a deposit removing device that removes deposits adhering to the plate-like member by injecting compressed gas from the nozzle of the nozzle body in which one or more nozzles are formed. Since the nozzle body is supported so as to be movable in a direction substantially perpendicular to the surface of the plate-like member, a plurality of acting forces on the nozzle body due to the injection pressure of the compressed gas are balanced. In order to achieve a good balance, the nozzle body can be floated while maintaining a position that is always spaced apart from the plate-like member by a substantially constant distance. As a result, even when the surface of the plate-like member moves up and down due to deformation such as vibration generated in the plate-like member or warpage of the plate-like member, the nozzle body moves up and down following that up and down. , The distance from the surface of the plate member to the nozzle body is always kept substantially constant. Therefore, the distance between the plate member and the nozzle body can be set to several mm or less, specifically about 0.1 mm. As a result, a separation distance of about several millimeters has been provided in the past, and a sufficient deposit removal effect could not be obtained unless a relatively high pressure compressed gas was supplied. By further narrowing, it is possible to obtain a deposit removal effect equal to or higher than that of the conventional one using a compressed gas having a pressure lower than that of the conventional one.
In addition, since the injection pressure of the compressed gas injected to the plate-like member is increased by shortening the distance between the plate-like member and the nozzle body, the plate-like shape rolled by a rolling mill whose rolling speed is increased. It is also possible to remove the deposits on the member, that is, the plate-like member conveyed at high speed.

また,上記ノズル体の上記対向面に陥没状の気体溜まりが設けられ,上記ノズル体に上記連通孔が形成されているため,上記気体溜まり内の付着物を含む気体が外部へ排出され,噴射口の詰まりや板状部材への付着物の再付着を軽減することができる。
また,吸引手段で気体溜まり内の気体が強制的に吸引排出されるため,付着物を含む気体を効率よく排出することができる。
また,上記付着物分離回収手段が設けられているため,上記連通孔から排出された付着物が大気中に分散されなくなり,人体或いは環境に優しい付着物除去装置が実現する。また,排出された付着物の上記板状部材への再付着も防止することができる。
更に,上記付着物分離手段は,付着物を含む気体から液状付着物のみを分離回収するものであるため,上記液状付着物が油や洗浄液などのように再利用可能なものである場合は,それのみを回収して再利用することが可能となる。
In addition, since the concavity of the nozzle body is provided with a depression-like gas reservoir, and the communication hole is formed in the nozzle body, the gas containing the deposit in the gas reservoir is discharged to the outside and injected. It is possible to reduce clogging of the mouth and reattachment of deposits on the plate-like member.
Further, since the gas in the gas reservoir is forcibly sucked and discharged by the suction means, the gas containing the deposits can be discharged efficiently.
Further, since the deposit separating and collecting means is provided, the deposit discharged from the communication hole is not dispersed in the atmosphere, and a deposit removing apparatus that is friendly to the human body or the environment is realized. In addition, reattachment of the discharged deposits to the plate member can be prevented.
Further, since the deposit separating means separates and recovers only the liquid deposit from the gas containing the deposit, when the liquid deposit is reusable like oil or cleaning liquid, Only it can be collected and reused.

また,上記駆動手段及び上記駆動制御手段が設けられているため,上記ノズル体が上記板状部材に衝突する前に強制的に引き離され,その結果,板状部材の損傷が防止される。   Further, since the drive means and the drive control means are provided, the nozzle body is forcibly separated before colliding with the plate member, and as a result, damage to the plate member is prevented.

以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る付着物除去装置Xの空気制御システムの概略を説明するブロック図,図2は上記付着物除去装置Xのノズル体100を説明する模式図,図3はノズル体100を上方へ押し上げようとする力Fと離間距離dとの関係を表す図,図4は離間距離dと付着物除去効果との関係を説明する模式図,図5は噴射口101の近傍の圧力分布を示す図,図6は本発明の第1の実施例に係る付着物除去装置X1のノズル体100aを説明する模式図,図7は本発明の第2の実施例に係る付着物除去装置X2のノズル体100bを説明する模式図,図8は本発明の第3の実施例に係る付着物除去装置X3の概略構成を示すブロック図,図9は本発明の第4の実施例に係る付着物除去装置X4のノズル体100cを説明する模式図,図10は本発明の第5の実施例に係る付着物除去装置X5の概略構成を示すブロック図である。
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
FIG. 1 is a block diagram for explaining the outline of the air control system of the deposit removing apparatus X according to the embodiment of the present invention. FIG. 2 is a schematic diagram for explaining the nozzle body 100 of the deposit removing apparatus X. FIG. 3 is a diagram illustrating the relationship between the force F that pushes the nozzle body 100 upward and the separation distance d, FIG. 4 is a schematic diagram illustrating the relationship between the separation distance d and the deposit removal effect, and FIG. FIG. 6 is a diagram showing the pressure distribution in the vicinity of the mouth 101, FIG. 6 is a schematic diagram for explaining the nozzle body 100a of the deposit removing device X1 according to the first embodiment of the present invention, and FIG. FIG. 8 is a block diagram showing a schematic configuration of the deposit removing apparatus X3 according to the third embodiment of the present invention, and FIG. 4 illustrates the nozzle body 100c of the deposit removing device X4 according to the fourth embodiment. Schematic view that, FIG. 10 is a block diagram showing a fifth schematic configuration of a deposit removing device X5 according to the embodiment of the present invention.

まず,図1のブロック図を用いて,本発明の実施の形態に係る付着物除去装置Xの空気制御システム及び概略構成について説明する。
本付着物除去装置Xは,例えば,圧延機等により圧延された金属製或いは非金属製の板状部材に付着した圧延油や洗浄剤等の液体や屑片等の付着物を除去する装置であって,図1に示すように,空気圧源5から供給された圧縮空気(圧縮気体の一例)を上記板状部材Tの表面に噴射させるノズル体100と,該ノズル体100と上記空気圧源5とを配管接続する管路6に介設された電磁弁2と,該電磁弁2の下流側の管路6に介設された減圧弁3と,該減圧弁3の下流側に介設されたエアフィルタ4と,上記電磁弁2を励磁/消磁して圧縮空気の経路(空気路)を切り換える制御を行うコントローラ1とを備えている。なお,本実施の形態では,圧縮気体として圧縮空気を用いた例について説明するが,腐食性の低い窒素ガス等を用いてもかまわない。また,本付着物除去装置Xは上記圧延機により圧延された板状部材に限られず,あらゆる板状部材にも適用され得る。
上記コントローラ1は,シーケンサ等の制御ユニット等を備えて構成されており,例えば,外部からスタート信号が入力されたことを検知すると,上記電磁弁2を励磁してこの弁を閉位置から開位置に切り換える。上記電磁弁2を介して供給された圧縮空気は減圧弁3により予め定められた一定圧力に減圧され,ドレン付のエアフィルタ4により水蒸気や塵等が除去された後に,上記ノズル体100に供給される。
First, the air control system and schematic configuration of the deposit removal apparatus X according to the embodiment of the present invention will be described with reference to the block diagram of FIG.
This deposit removal apparatus X is an apparatus that removes deposits such as liquids and debris such as rolling oil and cleaning agent adhered to a metal or non-metal plate member rolled by a rolling mill or the like. As shown in FIG. 1, a nozzle body 100 that injects compressed air (an example of compressed gas) supplied from the air pressure source 5 onto the surface of the plate member T, the nozzle body 100, and the air pressure source 5. The solenoid valve 2 is connected to the pipe 6 connecting the pipe, the pressure reducing valve 3 is connected to the pipe 6 on the downstream side of the electromagnetic valve 2, and the pressure reducing valve 3 is connected to the downstream side of the pressure reducing valve 3. And an air filter 4 and a controller 1 that performs control to switch the path (air path) of the compressed air by exciting / demagnetizing the electromagnetic valve 2. In this embodiment, an example in which compressed air is used as the compressed gas will be described, but nitrogen gas or the like having low corrosiveness may be used. Moreover, this deposit removal apparatus X is not restricted to the plate-shaped member rolled by the said rolling mill, It can be applied also to all plate-shaped members.
The controller 1 includes a control unit such as a sequencer. For example, when detecting that a start signal is input from the outside, the controller 1 excites the solenoid valve 2 to open the valve from the closed position to the open position. Switch to. The compressed air supplied through the electromagnetic valve 2 is reduced to a predetermined pressure by the pressure reducing valve 3 and is supplied to the nozzle body 100 after water vapor and dust are removed by the air filter 4 with drain. Is done.

続いて,図2の模式図を用いて,上記ノズル体100について説明する。上記ノズル体100は,図2に示すように,板状部材Tの上面側に配設されている。このノズル体100はプラスチック素材等の軽量部材で成形されており,上記板状部材Tの幅方向に長い略長方体形状をしている。ここに,図2(a)は上記ノズル体100の長手方向(図2の左右方向)の鉛直断面を示す断面模式図であり,(b)は(a)の矢印Aからみた上記ノズル体100の模式図である。図中において符号を付していない矢印は圧縮空気の流れを示す。
上記ノズル体100の上記板状部材Tの上面(上方側表面)T1に対向する対向面102には4つの噴射口101が形成されている。この4つの噴射口101は,上記板状部材Tの搬送方向W2(図2(b)参照)及び上記ノズル体100の移動方向W1(図2(a)参照)と略直交する方向W3(図2(b)参照)に直列に配列されている。なお,上記噴射口101は4つに限らず,少なくとも1以上の噴射口101が形成されていればよい。
上記対向面102には,上記噴射口101から噴射された圧縮空気を上記板状部材Tの搬送方向W2の上流側へ導き,剥離された付着物を上記搬送方向W2の上流側へ吹き飛ばすために,上記板状部材Tの搬送方向W2に平行する複数の溝106(本実施の形態では5つの溝)が所定間隔を隔てて形成されている。この溝106の上記板状部材Tの搬送方向W2上流側の一端106aは末広がり状に形成されており,上記搬送方向W2側の側面に開放されている。
なお,上記搬送方向W2に平行に形成された上記溝106では,剥離された付着物が再び上記板状部材T上に付着することになる。そのため,上記溝106とは異なり,図2(c)に示すように,上記搬送方向W2に対して上記板状部材Tの幅方向外側へ傾斜角がつけられた溝106−1を上記対向面102に形成することが好ましい。このような溝106−1が形成されておれば,該溝106−1を流れる圧縮空気と共に剥離された付着物が上記板状部材Tの幅方向外側へ吹き飛ばされるため,付着物の除去効率が向上され得る。
Next, the nozzle body 100 will be described with reference to the schematic diagram of FIG. The nozzle body 100 is disposed on the upper surface side of the plate member T as shown in FIG. The nozzle body 100 is formed of a lightweight member such as a plastic material and has a substantially rectangular shape that is long in the width direction of the plate member T. 2A is a schematic cross-sectional view showing a vertical cross section in the longitudinal direction (left-right direction in FIG. 2) of the nozzle body 100, and FIG. 2B is the nozzle body 100 viewed from the arrow A in FIG. FIG. The arrow which does not attach | subject the code | symbol in a figure shows the flow of compressed air.
Four injection ports 101 are formed on the facing surface 102 of the nozzle body 100 that faces the upper surface (upper surface) T1 of the plate member T. The four injection ports 101 have a direction W3 (see FIG. 2) that is substantially orthogonal to the conveying direction W2 (see FIG. 2B) of the plate member T and the moving direction W1 of the nozzle body 100 (see FIG. 2A). 2 (b)). The number of the injection ports 101 is not limited to four, and it is sufficient that at least one or more injection ports 101 are formed.
In order to guide the compressed air ejected from the ejection port 101 to the upstream side in the transport direction W2 of the plate-like member T on the facing surface 102, and blow off the peeled deposits upstream in the transport direction W2. A plurality of grooves 106 (five grooves in the present embodiment) parallel to the conveying direction W2 of the plate member T are formed at predetermined intervals. One end 106a of the groove 106 on the upstream side in the transport direction W2 of the plate-like member T is formed so as to widen toward the end, and is open to the side surface on the transport direction W2 side.
In the groove 106 formed in parallel with the transport direction W2, the peeled deposit adheres again on the plate member T. Therefore, unlike the groove 106, as shown in FIG. 2 (c), the groove 106-1 inclined at the outer side in the width direction of the plate member T with respect to the conveying direction W2 is formed on the opposing surface. It is preferable to form in 102. If such a groove 106-1 is formed, the adhered matter peeled off with the compressed air flowing through the groove 106-1 is blown off to the outside in the width direction of the plate-like member T. Can be improved.

上記ノズル体100の上記対向面102とは逆の面103には,前記空気圧源5(図1)から供給され前記減圧弁4により所定圧に減圧された圧縮空気を上記ノズル体100に供給するための一の供給口104が形成されている。この供給口104は,上記各噴射口101を内部で連通する連通路105に貫通されている。したがって,この供給口104に圧縮空気が供給されると,上記連通路105を通って上記各噴射口101から上記板状部材Tの上面T1に圧縮空気が噴射される。
また,上記ノズル体100の上記面103にはスライドバー111が立設されており,更にその上方には上記スライドバー111を垂直方向にスライド移動可能に支持するスライドガイド112が適宜設けられている。このスライドバー111及びスライドガイド112(以下,これらを総称してスライド機構110という)は,上記ノズル体100を上記板状部材Tの上面T1に略垂直な方向W1へ移動自在に支持する手段の一例である。もちろん,上記スライド機構110に限らず,例えば,一端が固定されたつるまきバネ等の弾性部材により上記ノズル体100を上方から吊り下げた状態で支持する機構(図8参照)や,上記ノズル体100の長手方向の側方から架け渡された板ばね等の弾性部材で上記ノズル体100を支持する機構等を用いて上記ノズル体100を上記略垂直方向W1へ移動自在に弾性支持するものであってもよい。
Compressed air supplied from the air pressure source 5 (FIG. 1) and decompressed to a predetermined pressure by the pressure reducing valve 4 is supplied to the nozzle body 100 on a surface 103 opposite to the facing surface 102 of the nozzle body 100. One supply port 104 for the purpose is formed. This supply port 104 is penetrated by the communication path 105 which connects each said injection port 101 inside. Therefore, when compressed air is supplied to the supply port 104, the compressed air is injected from the injection ports 101 to the upper surface T <b> 1 of the plate-like member T through the communication path 105.
Further, a slide bar 111 is erected on the surface 103 of the nozzle body 100, and a slide guide 112 for supporting the slide bar 111 so as to be slidable in the vertical direction is appropriately provided above the slide bar 111. . The slide bar 111 and the slide guide 112 (hereinafter collectively referred to as the slide mechanism 110) are means for supporting the nozzle body 100 movably in a direction W1 substantially perpendicular to the upper surface T1 of the plate member T. It is an example. Of course, not limited to the slide mechanism 110, for example, a mechanism (see FIG. 8) that supports the nozzle body 100 while being suspended from above by an elastic member such as a helical spring with one end fixed, or the nozzle body. The nozzle body 100 is elastically supported so as to be movable in the substantially vertical direction W1 by using a mechanism that supports the nozzle body 100 with an elastic member such as a leaf spring spanned from the side in the longitudinal direction of 100. There may be.

ここで,上述のように構成されたノズル体100に圧縮空気が供給された場合の上記ノズル体100の動作について説明する。上記供給口104から圧縮空気が供給されると,供給された圧縮空気は上記連通路105を通って各噴射口101から噴射される(図2(a)参照)。上記噴射口101から噴射された圧縮空気はその圧縮圧が一気に解き放たれて上記板状部材Tの上面T1に向かって略放射状に吹き付けられる(図2(b)参照)。
また,上記板状部材Tに吹き付けられた圧縮空気は,上記板状部材Tの上面T1に吹き付けられた後に,上記ノズル体100を上記板状部材Tから離間させようとする力,即ち,上記ノズル体100を移動方向W1の上方へ押し上げようとする押上力となって上記ノズル体100に作用する。このように,上記ノズル体100に上記押上力が作用することにより上記ノズル体100が上記板状部材Tから浮上することになる。上記押上力により上記ノズル体100が浮上すると,上記ノズル体100の対向面102と上記板状部材Tとの間には隙間dが生じる。この隙間dには上記ノズル体100から噴射された空気圧による空気圧層が形成され,これにより,上記ノズル体100が上記板状部材Tから距離dだけ離間した位置で浮遊する。なお,本実施の形態例では,上記ノズル体100を上記板状部材Tの上面T1から距離d0だけ浮上させて,その位置で上記ノズル体100が浮遊するように圧縮空気の圧縮圧が調整されている。
このようして吹き付けられた圧縮空気の噴射圧によって,上記ノズル体100が浮遊させられると共に,上記板状部材Tの上面T1上に付着した圧延油や洗浄剤等の液体,屑片,汚れ等の付着物が剥離される。また,噴射された圧縮空気は上記溝106に沿って上記板状部材Tの搬送方向W2の上流側へ流されるため,剥離された付着物はこの流れに乗って上記ノズル体100と上記板状部材Tの上面T1との隙間を通って上記搬送方向W2の上流側へ吹き飛ばされる。
Here, the operation of the nozzle body 100 when compressed air is supplied to the nozzle body 100 configured as described above will be described. When compressed air is supplied from the supply port 104, the supplied compressed air is injected from each injection port 101 through the communication path 105 (see FIG. 2A). The compressed air injected from the injection port 101 is released at a stretch and is blown substantially radially toward the upper surface T1 of the plate member T (see FIG. 2B).
The compressed air blown to the plate-like member T is blown onto the upper surface T1 of the plate-like member T, and then the force for separating the nozzle body 100 from the plate-like member T, that is, the above-mentioned The nozzle body 100 acts on the nozzle body 100 as an upward force that pushes the nozzle body 100 upward in the movement direction W1. Thus, the nozzle body 100 floats from the plate-like member T when the push-up force acts on the nozzle body 100. When the nozzle body 100 is lifted by the lifting force, a gap d is generated between the opposing surface 102 of the nozzle body 100 and the plate member T. In the gap d, an air pressure layer is formed by the air pressure injected from the nozzle body 100, and the nozzle body 100 floats at a position separated from the plate member T by a distance d. Incidentally, in this embodiment, the nozzle member 100 is floated by a distance d 0 from the top surface T1 of the plate-like member T, the compression pressure of the compressed air as the nozzle body 100 is suspended at that position adjustment Has been.
The nozzle body 100 is floated by the jetting pressure of the compressed air thus blown, and liquid such as rolling oil and cleaning agent adhering to the upper surface T1 of the plate member T, debris, dirt, etc. The deposits are peeled off. Further, since the jetted compressed air flows along the groove 106 to the upstream side in the conveying direction W2 of the plate-like member T, the peeled adhered matter rides on this flow and the nozzle body 100 and the plate-like shape. The material T is blown off to the upstream side in the transport direction W2 through the gap with the upper surface T1.

ここで,上記ノズル体100に作用する力F(縦軸,以下,作用力Fという)と,上記ノズル体100及び上記板状部材Tの上面T1間の離間距離d(横軸)との関係について図3及び図5を用いて説明する。ここに,図3は上記作用力Fと上記離間距離dとの関係を示す図であり,図5は噴射口101の近傍の圧力分布を示す図であって,(a)は離間距離dが距離d0のときの圧力分布,(b)は離間距離dが距離d1(>d0)のときの圧力分布,(c)は離間距離dが距離d2(<d0)のときの圧力分布を示す。なお,ここでは,上記作用力Fには,圧縮空気の噴射圧により上記ノズル体100を移動方向W1の上方へ押し上げようとする押上力と,後述するように上記ノズル体100を上記板状部材Tへ吸着させようとする吸着力とが含まれるものとし,上記ノズル体100の重力を無視して説明する。
図3に示すグラフから理解できるように,上記離間距離dが上記距離d0のときは,上記作用力Fは0となる。このとき,図5(a)に示すように,圧縮空気の噴射圧により上記ノズル体100を押し上げようとする押上圧P1の積分値(即ち,押上げ力)と,上記ノズル体100を上記板状部材Tへ吸着させようとする吸着圧P2の積分値(即ち,吸着力)とがバランスよく均衡した関係が維持されることにより,上記距離d0離れた位置で上記ノズル体100が浮遊している状態にある。なお,上記吸着圧P2は,上記ノズル体100と上記板状部材Tとの隙間から圧縮空気が流れ出るときに生じる負圧であり,この負圧により上記吸着力が生じる。
Here, the relationship between the force F acting on the nozzle body 100 (vertical axis, hereinafter referred to as acting force F) and the separation distance d (horizontal axis) between the nozzle body 100 and the upper surface T1 of the plate member T. Will be described with reference to FIGS. 3 is a diagram showing the relationship between the acting force F and the separation distance d. FIG. 5 is a diagram showing the pressure distribution in the vicinity of the injection port 101. FIG. Pressure distribution when the distance is d 0 , (b) is the pressure distribution when the separation distance d is the distance d 1 (> d 0 ), and (c) is when the separation distance d is the distance d 2 (<d 0 ). The pressure distribution is shown. Here, the acting force F includes a push-up force that pushes up the nozzle body 100 upward in the moving direction W1 by the injection pressure of compressed air, and the nozzle body 100 as the plate-like member as described later. It is assumed that the suction force to be attracted to T is included and the gravity of the nozzle body 100 is ignored.
As can be understood from the graph shown in FIG. 3, when the distance d is the distance d 0 , the acting force F is zero. At this time, as shown in FIG. 5A, the integral value (ie, the pushing force) of the push-up pressure P 1 for pushing up the nozzle body 100 by the injection pressure of compressed air and the nozzle body 100 are By maintaining a well-balanced relationship with the integrated value (ie, adsorption force) of the adsorption pressure P 2 to be adsorbed on the plate-like member T, the nozzle body 100 is positioned at the position separated by the distance d 0. It is in a floating state. The adsorption pressure P 2 is a negative pressure generated when compressed air flows out from the gap between the nozzle body 100 and the plate member T, and the negative pressure generates the adsorption force.

ここで,上記板状部材Tの圧延時或いは搬送時に発生する振動等により上記板状部材Tの上面T1が下方向へ移動して上記離間距離dが距離d0より大きい距離d1(>d0)となった場合は,上記離間距離dの空間内における圧縮空気の流れを妨げようとする抵抗が小さくなり,圧縮空気が逃げ易くなって,流れ出る空気の流速が増加する。そのため,図5(b)に示すように上記吸着圧P2が大きくなって上記吸着力が上記押上力に勝り,この吸着力によって上記ノズル体100が下方へ移動し,離間距離dが距離d1から距離d0に縮められる。従って,上記板状部材Tの上面T1が下方向へ移動した場合でも,すぐに上記ノズル体100は上記均衡状態に復元され,上記距離d0離れた位置で浮遊することになる。
一方,上記離間距離dが距離d0より小さい距離d2(<d0)となった場合は,上述とは逆に,上記離間距離dの空間内における圧縮空気の流れを妨げようとする抵抗が大きくなり,圧縮空気が逃げ難くなって,流れ出る空気の流速が減少する。そのため,図5(c)に示すように上記吸着圧P2が小さくなって上記押上力が上記吸着力に勝るため,この押上力によって上記ノズル体100が上方へ移動し,離間距離dが距離d2から距離d0に広げられる。従って,この場合でも,すぐに上記ノズル体100は上記均衡状態に復元される。
このように,本付着物除去装置Xにおいては,上記板状部材Tの上面T1が上下した場合であっても,その上下に追従して上記ノズル体100が上下移動するため,上記板状部材Tの上面T1から上記ノズル体100までの離間距離dが常に略一定に維持されることになる。すなわち,たとえ上記板状部材Tが振動した場合であっても,常に一定の離間距離dが維持されるため,上記離間距離dを限りなく0に近い距離d0(例えば0.1mm)に設定したとしても,ノズル体100が上記板状部材Tに接触することはなく,そのため上記板状部材Tが損傷することもない。
ここで,上記板状部材Tが急激に上下変動した場合は,この上下変動に追従して上記ノズル体100も急激に上下変動するため,上記ノズル体100が上下方向へオーバーシュート或いはアンダーシュートを起こすおそれがある。また,このオーバーシュート及びアンダーシュートが周期的に起こり上記ノズル体100がハンチングするおそれもある。従って,ノズル体100は,上記オーバーシュートやハンチング等を防止するため,バネ等の弾性部材によって弾性的に支持することが望ましい。具体的には,前記スライドバー111につるまきバネを介在させる手法や,オイルダンパー等の緩衝部材で構成されたスライドバー111を用いる手法等が考えられる。
Here, the upper surface T1 of the plate member T is moved downward due to vibration or the like that occurs during rolling or conveyance of the plate member T, and the distance d 1 (> d) is greater than the distance d 0. 0 ), the resistance to block the flow of compressed air in the space of the separation distance d is reduced, the compressed air is easily escaped, and the flow velocity of the flowing air increases. Therefore, larger is the adsorption pressure P 2 as shown in FIG. 5 (b) better than the above pushing force the suction force, the nozzle body 100 is moved downward by the suction force, the distance d is the distance d The distance is reduced from 1 to the distance d 0 . Therefore, even when the top surface T1 of the plate-like member T moves downward, the nozzle body 100 immediately restored to the equilibrium state, would float above the distance d 0 away.
On the other hand, when the distance d becomes a distance d 0 is smaller than the distance d 2 (<d 0), in contrast to the above, when you to obstruct the flow of compressed air in the space of the distance d resistor Becomes larger, the compressed air becomes difficult to escape, and the flow velocity of the flowing air decreases. Therefore, since the push-up force is superior to the suction force becomes smaller the suction pressure P 2 as shown in FIG. 5 (c), the nozzle body 100 is moved upward by the push-up force, the distance d is the distance The distance is extended from d 2 to a distance d 0 . Accordingly, even in this case, the nozzle body 100 is immediately restored to the equilibrium state.
Thus, in the present deposit removing apparatus X, even when the upper surface T1 of the plate member T moves up and down, the nozzle body 100 moves up and down following the upper and lower sides, so that the plate member The distance d from the upper surface T1 of T to the nozzle body 100 is always maintained substantially constant. That is, even when the plate-like member T vibrates, a constant separation distance d is always maintained, so the separation distance d is set to a distance d 0 (for example, 0.1 mm) that is as close to 0 as possible. Even if it does, the nozzle body 100 does not contact the said plate-shaped member T, Therefore, the said plate-shaped member T is not damaged.
Here, when the plate-shaped member T suddenly fluctuates up and down, the nozzle body 100 also fluctuates up and down abruptly following the up-and-down fluctuation, so the nozzle body 100 overshoots or undershoots up and down. There is a risk of it happening. Further, the overshoot and undershoot may occur periodically, and the nozzle body 100 may be hunted. Therefore, it is desirable that the nozzle body 100 be elastically supported by an elastic member such as a spring in order to prevent the above-described overshoot and hunting. Specifically, a method of interposing a helical spring in the slide bar 111, a method of using the slide bar 111 formed of a buffer member such as an oil damper, and the like can be considered.

ところで,上記ノズル体100の対向面102に形成された上記噴射口101の開口面積及び上記対向面102の面積は,上記ノズル体100を浮上させる上で重要な要素となる。その理由を図5を用いて以下に説明する。なお,ここでも便宜上,上記ノズル体100の重量を無視して説明する。
図5(b)に示すように,離間距離dが大きくなると,上述したように,上記離間距離dの空間内における圧縮空気の流れを妨げようとする抵抗が小さくなり,外部へ流れ出る圧縮空気の流量が増加する。そのため,上記ノズル体100の対向面102(特に上記噴射口101の周辺部分)に対して上記吸着圧P2(負圧)が発生する。この吸着圧P2は,上記ノズル体100を上記板状部材Tに吸着させようとする力となって作用する。ここで,圧縮空気の噴射圧により上記ノズル体100を押し上げようとする押上圧P1(>0),上記吸着圧P2(<0),すべての噴射口101の開口面積の合計値をS1,上記ノズル体100の対向面102における上記吸着圧P2が作用する面積の合計値をS2とすると,(P1×S1)+(P2×S2)<0の条件を満たす場合は,ノズル体100を上方へ押し上げようとする押上力よりも,上記板状部材Tに吸着しようとする吸着力が勝るため,上記ノズル体100は下方へ引き下げられることになる。従って,離間距離dの大きさにかかわらず,距離d0を維持した状態で上記ノズル体100を浮遊させるには,P1×S1>P2×S2の条件を満足すれば足りると考えられる。ここで,噴射圧P1と平均圧P2とは相関関係にあるため,上記条件を満足するためには面積S1及びS2を変動値として捉えて上記条件を満たすようにすればよい。
一方,板状部材Tの付着物は上記ノズル体100の対向面102を流れる圧縮空気によって除去されるため,上記面積S2を面積S1と較べてあまりにも小さくすると付着物が除去されにくくなり除去効果が低下することになる。
By the way, the opening area of the injection port 101 formed on the facing surface 102 of the nozzle body 100 and the area of the facing surface 102 are important factors for floating the nozzle body 100. The reason will be described below with reference to FIG. Here, for the sake of convenience, the description will be made ignoring the weight of the nozzle body 100.
As shown in FIG. 5B, when the separation distance d is increased, as described above, the resistance to block the flow of compressed air in the space of the separation distance d is reduced, and the compressed air flowing out to the outside is reduced. The flow rate increases. Therefore, the adsorption pressure P 2 (negative pressure) is generated on the facing surface 102 of the nozzle body 100 (particularly the peripheral portion of the injection port 101). The adsorption pressure P 2 acts as a force for adsorbing the nozzle body 100 to the plate member T. Here, the total value of the push-up pressure P 1 (> 0), the adsorption pressure P 2 (<0), and the opening area of all the injection ports 101 for pushing up the nozzle body 100 by the compressed air injection pressure is S. 1 , where S 2 is the total area where the adsorption pressure P 2 acts on the facing surface 102 of the nozzle body 100, the condition of (P 1 × S 1 ) + (P 2 × S 2 ) <0 is satisfied. In this case, the suction force for attracting the plate member T is superior to the push force for pushing the nozzle body 100 upward, so that the nozzle body 100 is pulled downward. Accordingly, it is considered that it is sufficient to satisfy the condition of P 1 × S 1 > P 2 × S 2 in order to float the nozzle body 100 while maintaining the distance d 0 regardless of the size of the separation distance d. It is done. Here, since the injection pressure P 1 and the average pressure P 2 have a correlation, in order to satisfy the above condition, the areas S 1 and S 2 may be regarded as fluctuation values so as to satisfy the above condition.
On the other hand, fouling of the plate-like member T to be removed by the compressed air flowing through the opposite surface 102 of the nozzle body 100, hardly deposits are removed with reduced too as compared with the area S 1 of the area S 2 The removal effect will be reduced.

そこで,本出願の発明者は,ノズル体100を上記距離d0を維持した状態で浮遊させる条件と,上記除去効果を高めるための条件との両方を満足する条件として,
1<2S2…(1)
が最適であるということを実験,研究を繰り返し行うことにより見出している。ここで,上記ノズル体100の対向面102の面積をSとすると,この面積Sは,S≒S1+S2と近似することができるため,上式(1)は以下のように変形することができる。
3S1<2S…(2)
即ち,上記噴射口101それぞれの開口部の面積の合計値が上記対向面102の面積の略3分の2未満となるように上記噴射口101が形成されていれば,圧縮空気の圧力に影響されずに上記押上力と上記吸着力とのバランスがとり易くなり,上記ノズル体100を板状部材Tの振動等に追従して安定的に浮遊させると共に,充分な除去効果を得ることができる。
Therefore, the inventor of the present application satisfies the condition that both the condition for floating the nozzle body 100 while maintaining the distance d 0 and the condition for enhancing the removal effect are as follows:
S 1 <2S 2 (1)
Has been found through repeated experiments and research. Here, when the area of the facing surface 102 of the nozzle body 100 is S, this area S can be approximated as S≈S 1 + S 2, and thus the above equation (1) can be modified as follows. Can do.
3S 1 <2S (2)
That is, if the injection port 101 is formed so that the total area of the openings of the injection ports 101 is less than about two-thirds of the area of the facing surface 102, the pressure of the compressed air is affected. Accordingly, it is easy to balance the push-up force and the suction force, and the nozzle body 100 can be floated stably following the vibration of the plate-like member T, and a sufficient removal effect can be obtained. .

ところで,本実施の形態例では上記距離d0が比較的0に近い0.1mmとなるようにノズル体100に供給される圧縮空気圧が調整されている。このように,離間距離dを0に近い値に設定する理由を以下に述べる。
図4に示すように,板状部材Tの上面T1に対して垂直方向に圧縮空気が吹き付けられて,上記圧縮空気が上記板状部材Tに衝突する範囲の面積(図4中の破線で囲まれた面積)をW,上記板状部材Tに圧縮空気が衝突するまでの圧縮空気の流速(離間距離dにおける平均流速)をVとすると,WV2の値が大きいほど,板状部材Tの上面T1上の付着物を除去する力が大きいと考えられる。ここで,上記ノズル体100の噴射口101から噴射される圧縮空気の流量をQとすると,Q≒WVと近似することができるため,
WV2≒QV…(3)
と表わすことができる。ここで,噴射される流量Qが一定の場合は,上式(3)より,流速Vが大きいほど付着物を除去する力が大きいということは容易に理解できる。
一般に,ノズル体100の噴射口101から圧縮空気が噴射されると,その圧縮圧が解放されて圧縮空気が放射状に吹き出されるため,流速Vは噴射口101から離れるに従って低下する。また,上記離間距離dの空間に介在する大気も抵抗となって流速Vを低下させる要因となる。従って,流量Qが一定の場合は,離間距離dが小さいほど,上記流速Vは大きくなるため,上記付着物を除去する力が大きくなる。このような理由により,本実施の形態例では上記距離d0が比較的0に近い値0.1mmとなるようにノズル体100に供給される圧縮空気圧を設定している。
By the way, in this embodiment, the compressed air pressure supplied to the nozzle body 100 is adjusted so that the distance d 0 is 0.1 mm which is relatively close to 0. The reason why the separation distance d is set to a value close to 0 will be described below.
As shown in FIG. 4, the area in which compressed air is blown in a direction perpendicular to the upper surface T1 of the plate-like member T and the compressed air collides with the plate-like member T (enclosed by a broken line in FIG. 4). the area) and W, the flow rate of compressed air to the compressed air to the plate-like member T collides (average flow velocity at the distance d) to by V, as the value of WV 2 is large, plate-like member T It is considered that the force for removing the deposit on the upper surface T1 is large. Here, if the flow rate of the compressed air injected from the injection port 101 of the nozzle body 100 is Q, it can be approximated as Q≈WV.
WV 2 ≈QV (3)
Can be expressed as Here, when the flow rate Q to be injected is constant, it can be easily understood from the above formula (3) that the larger the flow velocity V, the greater the force for removing deposits.
In general, when compressed air is injected from the injection port 101 of the nozzle body 100, the compressed pressure is released and the compressed air is blown radially, so that the flow velocity V decreases as the distance from the injection port 101 increases. In addition, the air present in the space of the separation distance d becomes a resistance and causes the flow velocity V to decrease. Therefore, when the flow rate Q is constant, the smaller the separation distance d is, the larger the flow velocity V becomes, so that the force for removing the deposits increases. For this reason, in this embodiment, the compressed air pressure supplied to the nozzle body 100 is set so that the distance d 0 is a value that is relatively close to 0, 0.1 mm.

次に,図6を用いて,本発明の第1の実施例に係る付着物除去装置X1について説明する。
この実施例における付着物除去装置X1が上記実施の形態における付着物除去装置Xと異なるところは,図6に示されるように,前記ノズル体100に代えて,板状部材Tの上面T1に対向する対向面102に溝107が設けられたノズル体100aを用いる点にある。なお,上述の実施の形態の構成要素と同一の構成要素については上述の実施の形態と同符号を付してその説明を省略する。ここに,図6(a)は上記ノズル体100aの長手方向(図6の左右方向)の鉛直断面を示す断面模式図であり,(b)は(a)の矢印Bからみた上記ノズル体100aの模式図である。図6中には前記ノズル体100に形成された溝106(図2参照)は図示されていないが,上記ノズル体100aは上記溝106が形成されたものであってもかまわない。
図6に示すように,上記溝107は,上記板状部材Tの搬送方向W2(図6(b)参照)に直交する方向に4つの噴射口101それぞれを連通するよう形成されている。これにより,例えば上記噴射口101が少数であっても,4つの噴射口101から噴射された圧縮空気を上記板状部材Tの上面T1の幅方向全域に均等に噴射させることが可能となる。
Next, the deposit removal apparatus X1 according to the first embodiment of the present invention will be described with reference to FIG.
The deposit removing device X1 in this example is different from the deposit removing device X in the above embodiment in that it faces the upper surface T1 of the plate member T instead of the nozzle body 100 as shown in FIG. The nozzle body 100a in which the groove 107 is provided on the facing surface 102 is used. Note that the same components as those of the above-described embodiment are denoted by the same reference numerals as those of the above-described embodiment, and description thereof is omitted. Here, FIG. 6A is a schematic cross-sectional view showing a vertical cross section in the longitudinal direction (left-right direction in FIG. 6) of the nozzle body 100a, and FIG. FIG. Although the groove 106 (see FIG. 2) formed in the nozzle body 100 is not shown in FIG. 6, the nozzle body 100a may have the groove 106 formed therein.
As shown in FIG. 6, the groove 107 is formed to communicate with each of the four injection ports 101 in a direction orthogonal to the conveying direction W <b> 2 of the plate-like member T (see FIG. 6B). Thereby, for example, even if the number of the injection ports 101 is small, the compressed air injected from the four injection ports 101 can be evenly injected over the entire width direction of the upper surface T1 of the plate member T.

続いて,図7を用いて,本発明の第2の実施例に係る付着物除去装置X2について説明する。
この実施例では,前記ノズル体100に代えて図7に示されるノズル体100bが用いられる。上記付着物除去装置X2が具備するノズル体100bは,その対向面102に,板状部材Tの搬送方向W2(図7(a)参照)及びノズル体100bの移動方向W1(図7(b)参照)と略直交する方向W3に直列に4つの噴射口101が配列されており,更に,上記直列に配列された4つの噴射口を1組とする噴射口列101aと略同じ噴射口列101bが上記方向W3に並列に所定間隔を隔てて上記方向W2の下流側に配列されている。このように上記噴射口列101a,101bが並列に配列されることにより,上記噴射口列101aでは除去できなかった付着物が上記板状部材Tに残存した場合でも,上記板状部材Tの搬送方向W2下流側に配列された上記噴射口列101bによって付着物の除去処理が行われるため,付着物の除去効果がより一層向上され得る。なお,この実施例では,上記したように2列の噴射口列(101a,101b)が形成されたノズル体100bについて例示したが,特に2列に限定されることはない。
また,上記ノズル体100bには,上記板状部材Tの搬送方向W2及び上記ノズル体100bの移動方向W1と略直交する方向W3に長い開口部を有する平面ノズル108が形成されている。このような平面ノズル108が形成されることにより,圧縮空気を上記板状部材Tの上面T1の幅方向全域に均等に噴射させることが可能となる。
ここで,上述した噴射口101はいずれも上記ノズル体100,100a等をその移動方向W1に移動させるために上記板状部材Tに対して略垂直に圧縮空気を噴射するように形成されている。しかし,上記板状部材Tに垂直に噴射された圧縮空気は専ら付着物を剥離するよう作用するが,剥離した付着物を板状部材Tの搬送方向W2上流側へ吹き飛ばす作用は少ない。もちろん,上記付着物除去装置X2には,上記噴射口101から噴射された圧縮空気を上記板状部材Tの搬送方向上流側へ導く溝106が形成されているが,この溝106を流れる空気流は上記噴射口101から噴射された圧縮空気の一部を利用したものであるため,剥離した付着物を搬送方向W2上流側へ吹き飛ばす作用はさほど大きくない。また,噴射した圧縮空気の一部が上記溝106を流れるため,付着物を剥離させる力が低減されることにもなる。そのため,この実施例では,図7(b)に示すように,上記板状部材Tの搬送方向上流側に圧縮空気を噴射させるべく,上記平面ノズル108に傾斜角がつけられている。
Subsequently, the deposit removing apparatus X2 according to the second embodiment of the present invention will be described with reference to FIG.
In this embodiment, a nozzle body 100 b shown in FIG. 7 is used in place of the nozzle body 100. The nozzle body 100b included in the deposit removing device X2 has a conveying direction W2 (see FIG. 7A) of the plate-like member T and a moving direction W1 of the nozzle body 100b (see FIG. 7B) on the opposite surface 102. The four injection ports 101 are arranged in series in a direction W3 substantially orthogonal to the reference), and substantially the same injection port row 101b as the injection port row 101a including the four injection ports arranged in series. Are arranged on the downstream side of the direction W2 with a predetermined interval in parallel with the direction W3. By arranging the ejection port arrays 101a and 101b in parallel as described above, even if the deposits that could not be removed by the ejection port array 101a remain on the plate member T, the transport of the plate member T is performed. Since the deposit removal process is performed by the ejection port array 101b arranged on the downstream side in the direction W2, the deposit removal effect can be further improved. In this embodiment, the nozzle body 100b in which the two injection nozzle arrays (101a, 101b) are formed as described above is illustrated, but the present invention is not limited to two.
Further, the nozzle body 100b is formed with a flat nozzle 108 having a long opening in the transport direction W2 of the plate member T and the direction W3 substantially orthogonal to the movement direction W1 of the nozzle body 100b. By forming such a planar nozzle 108, it becomes possible to uniformly inject compressed air over the entire width direction of the upper surface T1 of the plate member T.
Here, each of the injection ports 101 described above is formed to inject compressed air substantially perpendicularly to the plate member T in order to move the nozzle bodies 100, 100a and the like in the moving direction W1. . However, the compressed air jetted perpendicularly to the plate-like member T acts exclusively to peel off the deposits, but there is little action to blow off the peeled deposits upstream in the transport direction W2 of the plate-like member T. Of course, the deposit removing device X2 is formed with a groove 106 for guiding the compressed air ejected from the ejection port 101 to the upstream side in the transport direction of the plate member T. Since a part of the compressed air jetted from the jet port 101 is used, the action of blowing off the separated deposits upstream in the transport direction W2 is not so great. In addition, since a part of the jetted compressed air flows through the groove 106, the force for separating the deposits can be reduced. Therefore, in this embodiment, as shown in FIG. 7B, the flat nozzle 108 is inclined so as to inject compressed air to the upstream side of the plate member T in the conveying direction.

また,上記ノズル体100bには,上記噴射口101から噴射され,上記対向面102と上記板状部材Tとの間の空間を流れる空気を滞留させる空気溜まり109a(気体溜まりの一例に相当)が形成されている。これは,剥離された付着物を効率よく取り除くために,上記対向面102側に剥離された付着物を有する空気を溜めるためのものである。また,上記対向面102とは逆の面103側には上記空気溜まり109a内の空気を外部に逃がすために,上記空気溜まり109aを外部へ導く空気逃がし孔109b(連通孔の一例に相当)が形成されている。
上記空気溜まり109a及び空気逃がし孔109bが無ければ,圧縮空気の噴射により剥ぎ取られた付着物が上記対向面102に衝突して再付着し,上記噴射口101などが付着物で詰まったり,吹き飛ばされた付着物が上記板状部材Tに再付着するという問題が生じるおそれがあるが,本実施例では,上記空気溜まり109a及び空気逃がし孔109bが設けられているため,剥がされた付着物を含む空気が上記空気溜まり109aに滞留し,その滞留した空気が上記空気逃がし孔109bを通って外部へ押し出されるようにして排出される。そのため,上記問題が軽減される。
なお,上記空気逃がし孔109bに配管やフレキシブルホースなどで接続されたブロアファン(吸気手段の一例に相当)を配設してもよい。上記ブロアファンを駆動させて,上記空気逃がし孔109bから上記空気溜まり190a内の空気を吸引するようにすれば,付着物を含む空気をより効率よく排出することが可能となる。
The nozzle body 100b has an air reservoir 109a (corresponding to an example of a gas reservoir) that retains the air that is injected from the injection port 101 and flows through the space between the facing surface 102 and the plate member T. Is formed. This is for accumulating the air having the separated deposit on the facing surface 102 side in order to efficiently remove the separated deposit. Further, an air escape hole 109b (corresponding to an example of a communication hole) for guiding the air reservoir 109a to the outside is provided on the surface 103 side opposite to the facing surface 102 in order to release the air in the air reservoir 109a to the outside. Is formed.
If the air reservoir 109a and the air escape hole 109b are not present, the deposits peeled off by the jet of compressed air collide with the opposing surface 102 and reattach, and the injection port 101 is clogged with deposits or blown away. However, in the present embodiment, since the air reservoir 109a and the air escape hole 109b are provided, the peeled adhered matter is removed. The contained air stays in the air reservoir 109a, and the staying air is discharged so as to be pushed out through the air escape hole 109b. Therefore, the above problem is reduced.
Note that a blower fan (corresponding to an example of an intake means) connected to the air escape hole 109b by a pipe or a flexible hose may be provided. If the blower fan is driven to suck the air in the air reservoir 190a from the air escape hole 109b, the air containing the deposits can be discharged more efficiently.

次に,図8のブロック図を用いて,本発明の第3の実施例について説明する。この実施例に係る付着物除去装置X3は,ノズル体100b(第2の実施例,図7参照)に設けられた上記空気逃がし孔109bと,吸気手段の一例であるブロアファン121とを接続する管路に,上記空気逃がし孔190bから排出された空気内に含まれる液状或いは霧状の圧延油(液状付着物の一例)を空気と分離して装置外に設けられたオイルタンク130などに回収する油分離機120(付着物分離回収手段の一例)と,分離された圧延油をオイルタンク130に導くイジェクタ122とを備えて構成されている。なお,本付着物除去装置X3の他の構成要素については上述の第2の実施例に係る付着物除去装置X2の構成と同様であるため,ここでは他の構成要素の説明を省略する。
上記油分離機120としては種々のものが考えられるが,ここでは,空気から圧延油のみを分離するオイルフィルタ120aが内部に配設され,上記オイルフィルタ120aにより分離された圧延油を貯留するドレン孔120c付きのドレン層120bを有する装置を例示する。
上記イジェクタ122は,上記ドレン孔120cに連結されており,外部から供給される圧縮空気を上記イジェクタ122で還流させることにより上記イジェクタ122内部で生じる負圧を利用して,上記ドレン層120bから圧延油を吸引してオイルタンク130へ導くものである。上記ブロア121の運転中は,上記上記油分離機120では,ノズル体100bからオイルフィルタ120aを通ってブロア121へ抜ける流路に沿って空気が流れるため,その空気流により生じる負圧が原因となって上記ドレン層120bの圧延油が上記ドレン孔120cから排出されにくくなるが,本付着物除去装置X3には上記イジェクタ122が設けられているため,上記ブロア121の運転中であっても,上記圧延油を強制的に排出させることが可能となる。
このように構成された本付着物除去装置X3では,上記空気逃がし孔190bから排出された空気が上記油分離機120に送り込まれると,上記オイルフィルタ120aによって圧延油が分離される。そして,圧延油が分離された空気は,上記ブロアファン121により上記油分離機120から吸い出されて外部に排出される。一方,上記オイルフィルタ120aにより分離された圧延油は,上記ドレン層120bに貯留される。そして,上記ドレン層120bに溜まった圧延油は,上記イジェクタ122によって上記ドレン孔120cから吸い出されて,上記オイルタンク130へ向けて排出される。
なお,上記イジェクタ122へ圧縮空気を常時供給すると,ドレン層120bの圧延油が全て排出された場合は,上記ドレン孔120cから空気が排出されてしまい,圧延油の分離効率が低下だけでなく,ブロア121が高負荷となるというおそれがある。そのため,間欠的に,即ち,所定時間毎に上記イジェクタ122へ圧縮空気を供給することが好ましい。或いは,上記ドレン層120bにフロースイッチなどを設けておき,所定の圧延油が貯留されたことを示す上記フロースイッチからの出力信号を受けたことを条件に,圧縮空気切換弁などを動作させて所定時間だけ圧縮空気を供給するようにしてもかまわない。
このように,本付着物除去装置X3では,空気と圧延油とが分離され,圧延油がオイルタンク130に回収されるため,圧延油を含む空気が大気中に放出されずに済み,人体或いは環境に与える害を除去することが可能となる。排出された圧延油が回収されるため,圧延油の再利用が可能となりる。
この実施例では,圧延油を分離して回収する例について述べてきたが,例えば,圧延油以外の液状の付着物を分離回収する場合にも,本実施例に係る付着物除去装置X3を適用することが可能である。
また,上記オイルフィルタに代えて塵埃などの固形の付着物を排出された空気から分離する図示しないエアフィルタを設ければ,液状付着物に限らず,固形の付着物をも分離回収することが可能となる。
Next, a third embodiment of the present invention will be described with reference to the block diagram of FIG. The deposit removing device X3 according to this embodiment connects the air escape hole 109b provided in the nozzle body 100b (second embodiment, see FIG. 7) and a blower fan 121 which is an example of an intake means. Liquid or mist-like rolling oil (an example of liquid deposits) contained in the air discharged from the air escape hole 190b is separated from the air in the pipe line and collected in an oil tank 130 provided outside the apparatus. And an ejector 122 that guides the separated rolling oil to the oil tank 130. The other components of the deposit removal apparatus X3 are the same as the configuration of the deposit removal apparatus X2 according to the second embodiment described above, and thus the description of the other components is omitted here.
Various oil separators 120 are conceivable. Here, an oil filter 120a for separating only the rolling oil from the air is disposed inside, and a drain for storing the rolling oil separated by the oil filter 120a is stored. The apparatus which has the drain layer 120b with the hole 120c is illustrated.
The ejector 122 is connected to the drain hole 120c, and is rolled from the drain layer 120b using negative pressure generated inside the ejector 122 when the compressed air supplied from the outside is recirculated by the ejector 122. Oil is sucked and guided to the oil tank 130. During the operation of the blower 121, in the oil separator 120, air flows along the flow path from the nozzle body 100 b through the oil filter 120 a to the blower 121, which is caused by the negative pressure generated by the air flow. Thus, the rolling oil of the drain layer 120b is difficult to be discharged from the drain hole 120c. However, since the deposit removing device X3 is provided with the ejector 122, even when the blower 121 is in operation, It becomes possible to forcibly discharge the rolling oil.
In the adhered matter removing apparatus X3 configured as described above, when the air discharged from the air escape hole 190b is sent to the oil separator 120, the rolling oil is separated by the oil filter 120a. The air from which the rolling oil is separated is sucked out of the oil separator 120 by the blower fan 121 and discharged to the outside. Meanwhile, the rolling oil separated by the oil filter 120a is stored in the drain layer 120b. The rolling oil accumulated in the drain layer 120 b is sucked out from the drain hole 120 c by the ejector 122 and discharged toward the oil tank 130.
When the compressed air is constantly supplied to the ejector 122, when all of the rolling oil in the drain layer 120b is discharged, not only the air is discharged from the drain hole 120c, but the separation efficiency of the rolling oil is reduced. There is a risk that the blower 121 will be heavily loaded. Therefore, it is preferable to supply compressed air to the ejector 122 intermittently, that is, every predetermined time. Alternatively, a flow switch or the like is provided in the drain layer 120b, and a compressed air switching valve or the like is operated on condition that an output signal from the flow switch indicating that a predetermined rolling oil is stored is received. The compressed air may be supplied for a predetermined time.
Thus, in this deposit removal apparatus X3, since air and rolling oil are isolate | separated and rolling oil is collect | recovered by the oil tank 130, the air containing rolling oil does not need to be discharge | released in air | atmosphere, It is possible to remove the harm to the environment. Since the discharged rolling oil is recovered, the rolling oil can be reused.
In this embodiment, an example in which the rolling oil is separated and recovered has been described. However, for example, the deposit removing apparatus X3 according to this embodiment is applied to a case where liquid deposits other than the rolling oil are separated and recovered. Is possible.
If an air filter (not shown) that separates solid deposits such as dust from the discharged air is provided instead of the oil filter, not only liquid deposits but also solid deposits can be separated and recovered. It becomes possible.

次に,図9を用いて,本発明の第4の実施例について説明する。この実施例に係る付着物除去装置X4には,上記板状部材Tの上面T1側だけでなく,下面T2側にも上述した実施の形態におけるノズル体100が設けられている。ここで,上記ノズル体100が上記板状部材Tの下面T2側に設けられた場合は,上記上面T1側に設けた場合とは逆方向に圧縮空気を噴射させるように上記ノズル体100を配置しなければならない。そのため,この場合は,図9に示されるように,上記ノズル体100がその自重により下方に移動することを防止すると共に,上記ノズル体100を板状部材Tの下面T2に略垂直な方向W1へ移動自在に支持するため,上記ノズル体100をつるまきバネ等の弾性部材113により弾性的に支持している。このように構成されることにより,上記板状部材Tの両面における付着物を除去することが可能となるだけでなく,上記ノズル体100の上下方向へのオーバーシュートやアンダーシュート,或いはハンチングを防止することが可能となる。   Next, a fourth embodiment of the present invention will be described with reference to FIG. In the deposit removing device X4 according to this example, the nozzle body 100 in the above-described embodiment is provided not only on the upper surface T1 side of the plate member T but also on the lower surface T2 side. Here, when the nozzle body 100 is provided on the lower surface T2 side of the plate-like member T, the nozzle body 100 is disposed so as to inject compressed air in a direction opposite to that provided on the upper surface T1 side. Must. Therefore, in this case, as shown in FIG. 9, the nozzle body 100 is prevented from moving downward due to its own weight, and the nozzle body 100 is moved in a direction W1 substantially perpendicular to the lower surface T2 of the plate member T. The nozzle body 100 is elastically supported by an elastic member 113 such as a helical spring. By being configured in this way, it is possible not only to remove deposits on both surfaces of the plate member T, but also to prevent overshoot, undershoot or hunting of the nozzle body 100 in the vertical direction. It becomes possible to do.

上述の実施の形態及び各実施例に係る付着物除去装置では,上記板状部材の上方に上記ノズル体100が配設されている場合は,上記空気圧源5から供給される圧縮空気の圧力が何らかの原因で低下することにより,上記ノズル体100が落下して上記板状部材Tを損傷させるという問題点がある。ここで説明する本発明の第5の実施例に係る付着物除去装置X5は,上記問題点を解決し得るよう構成されている。
具体的には,図10のブロック図に示すように,前記した減圧弁3,エアフィルタ4,コントローラ1,及びノズル体100に加え,予め定められた作動圧力値(規定圧力値)に設定された圧力スイッチ7と,圧縮空気が供給されることにより作動するシリンダ140(駆動手段の一例)とを備えて構成されている。また,上述の実施形態及び実施例の構成とはことなり,上記電磁弁2に代えて3方切り換え可能な3方電磁弁2aが用いられている。
In the deposit removing apparatus according to the above-described embodiment and each example, when the nozzle body 100 is disposed above the plate-like member, the pressure of the compressed air supplied from the air pressure source 5 is reduced. There is a problem in that the nozzle body 100 falls and damages the plate-like member T by being lowered for some reason. The deposit removing apparatus X5 according to the fifth embodiment of the present invention described here is configured to solve the above-described problems.
Specifically, as shown in the block diagram of FIG. 10, in addition to the pressure reducing valve 3, the air filter 4, the controller 1, and the nozzle body 100, a predetermined operating pressure value (specified pressure value) is set. The pressure switch 7 and a cylinder 140 (an example of drive means) that operates when compressed air is supplied. Unlike the configuration of the above-described embodiment and example, a three-way solenoid valve 2a that can be switched in three ways is used instead of the solenoid valve 2.

上記シリンダ140は,内部にバネなどの弾性部材140aとピストン140bとを備えた単動式のシリンダであって,所定の圧力(少なくとも上記弾性部材140aによる付勢力以上の力をピストン140bに作用させ得る空気圧力)以上の圧縮空気が空気供給室140dに供給されると,上記弾性部材140aの付勢方向とは逆の方向(上記弾性部材140aを圧縮させる方向)へ上記ピストン140bが作動するものである。このシリンダ140は,上記ピストン140bが鉛直方向へ作動し,かつ,圧縮空気の供給により上記ピストン140bが上方向へ作動するように支持部材141に取り付けられている。
また,上記ピストン140bの下方に伸びるピストン軸140cは,前記した弾性部材113(図9参照)を介して上記ノズル体100を支持する支持部材142に連結されている。このように連結されることで,上記ピストン140bが作動すると,上記ノズル体100が板状部材Tの表面に略垂直な方向へ持ち上げられることになる。
The cylinder 140 is a single-acting cylinder having an elastic member 140a such as a spring and a piston 140b inside, and applies a predetermined pressure (at least a force greater than the urging force of the elastic member 140a to the piston 140b. When the above compressed air is supplied to the air supply chamber 140d, the piston 140b operates in a direction opposite to the urging direction of the elastic member 140a (the direction in which the elastic member 140a is compressed). It is. The cylinder 140 is attached to the support member 141 so that the piston 140b operates in the vertical direction and the piston 140b operates in the upward direction by supplying compressed air.
The piston shaft 140c extending below the piston 140b is connected to a support member 142 that supports the nozzle body 100 via the elastic member 113 (see FIG. 9). By being connected in this way, when the piston 140b is operated, the nozzle body 100 is lifted in a direction substantially perpendicular to the surface of the plate member T.

上記電磁弁2aは,1つの入力ポートと2つの出力ポートを有する3方電磁弁であり,入力ポートP1は空気圧源5に配管接続されている。一方,2つの出力ポートのうち,消磁されることにより空気圧減5と連通するポートP2は上記シリンダ140の空気供給室140dに配管接続されており,励磁されることにより空気圧減5と連通するポートP3は上記減圧弁3に配管接続されている。
上記圧力スイッチ7は,上記ノズル体100に供給される圧縮空気が予め定められた規定圧力未満となった場合に検出信号をコントローラ1に送信する。なお,上記規定圧力は,ノズル体100を浮上させるのに最低限必要な圧力である。
The solenoid valve 2a is a three-way solenoid valve having one input port and two output ports, and the input port P1 is connected to the air pressure source 5 by piping. On the other hand, of the two output ports, the port P2 that communicates with the air pressure reduction 5 by demagnetization is connected to the air supply chamber 140d of the cylinder 140 by piping, and the port P2 that communicates with the air pressure reduction 5 when excited. P3 is connected to the pressure reducing valve 3 by piping.
The pressure switch 7 transmits a detection signal to the controller 1 when the compressed air supplied to the nozzle body 100 becomes less than a predetermined specified pressure. The specified pressure is the minimum pressure necessary for the nozzle body 100 to float.

このように構成された本付着物除去装置X5では,圧縮空気が供給されることにより上記ノズル体100が浮遊(浮上)している最中に,上記圧力スイッチ7から上記コントローラ1へ検出信号が出力されると,上記3方電磁弁2aが上記コントローラ1によって消磁される。これにより,上記3方電磁弁2aが作動して,出力ポートP3が閉じられ,そして,出力ポートP2が開けられる。その後,上記出力ポートP2を介して圧縮空気が上記空気供給室140dに供給される。なお,上述の如く上記3方電磁弁2aを制御する上記コントローラ1が駆動制御手段に相当する。
上記シリンダ140では,上記空気供給室140dに圧縮空気が供給されると,ピストン140bが上方へ移動し,上記ノズル体100が上記ピストン140bの移動に伴って上方へ持ち上げられる。
このように,ノズル体100へ供給される圧縮空気の圧力が規定圧力未満になった場合は,上記ノズル体100が上記シリンダ140により持ち上げられるため,上記ノズル体100の落下による上記板状部材Tの損傷が防止される。
In the adhered matter removing apparatus X5 configured as described above, a detection signal is sent from the pressure switch 7 to the controller 1 while the nozzle body 100 is floating (floating) by supplying compressed air. When output, the three-way solenoid valve 2a is demagnetized by the controller 1. As a result, the three-way solenoid valve 2a is operated, the output port P3 is closed, and the output port P2 is opened. Thereafter, compressed air is supplied to the air supply chamber 140d through the output port P2. As described above, the controller 1 that controls the three-way electromagnetic valve 2a corresponds to the drive control means.
In the cylinder 140, when compressed air is supplied to the air supply chamber 140d, the piston 140b moves upward, and the nozzle body 100 is lifted upward as the piston 140b moves.
As described above, when the pressure of the compressed air supplied to the nozzle body 100 becomes less than the specified pressure, the nozzle body 100 is lifted by the cylinder 140, and thus the plate member T caused by the drop of the nozzle body 100 is used. Damage is prevented.

なお,この第5の実施例では,板状部材Tの上面側にノズル体100が配設された場合について説明したが,もちろん,上述の第4の実施例で説明したように,上記板状部材Tの下面側にノズル体100が配設された場合にも同じように適用することが可能である。なお,この場合は,ピストン140bが作動することにより上記板状部材Tの下面から下方へノズル体100を引き下げるように上記シリンダ140が配設される。
また,この実施例では,駆動手段として単動式のシリンダ140を用いた例について示したが,例えば,複動式のシリンダを用いる例であってもかまわない。
In the fifth embodiment, the case where the nozzle body 100 is disposed on the upper surface side of the plate member T has been described. Of course, as described in the fourth embodiment, the plate shape The same can be applied to the case where the nozzle body 100 is disposed on the lower surface side of the member T. In this case, the cylinder 140 is disposed so that the nozzle body 100 is pulled down from the lower surface of the plate-like member T by the operation of the piston 140b.
In this embodiment, an example in which a single-acting cylinder 140 is used as the driving means has been described. However, for example, a double-acting cylinder may be used.

本発明の実施の形態に係る付着物除去装置Xの空気制御システムの概略を説明するブロック図。The block diagram explaining the outline of the air control system of the deposit | attachment removal apparatus X which concerns on embodiment of this invention. 付着物除去装置Xのノズル体100を説明する模式図。The schematic diagram explaining the nozzle body 100 of the deposit | attachment removal apparatus X. FIG. ノズル体100に作用する力Fと,離間距離dとの関係を表す図。The figure showing the relationship between the force F which acts on the nozzle body 100, and the separation distance d. 離間距離dと付着物除去効果との関係を説明する模式図。The schematic diagram explaining the relationship between the separation distance d and the deposit removal effect. 噴射口101の近傍の圧力分布を示す図。The figure which shows the pressure distribution of the vicinity of the injection nozzle 101. FIG. 本発明の第1の実施例に係る付着物除去装置X1のノズル体100aを説明する模式図。The schematic diagram explaining the nozzle body 100a of the deposit | attachment removal apparatus X1 which concerns on 1st Example of this invention. 本発明の第2の実施例に係る付着物除去装置X2のノズル体100bを説明する模式図。The schematic diagram explaining the nozzle body 100b of the deposit | attachment removal apparatus X2 which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る付着物除去装置X3の概略構成を示すブロック図。The block diagram which shows schematic structure of the deposit | attachment removal apparatus X3 which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係る付着物除去装置X4のノズル体100cを説明する模式図。The schematic diagram explaining the nozzle body 100c of the deposit | attachment removal apparatus X4 which concerns on the 4th Example of this invention. 本発明の第5の実施例に係る付着物除去装置X5の概略構成を示すブロック図。The block diagram which shows schematic structure of the deposit | attachment removal apparatus X5 which concerns on the 5th Example of this invention.

符号の説明Explanation of symbols

1…コントローラ
2…電磁弁
3…減圧弁
4…エアフィルタ
5…空気圧減
6…管路
7…圧力スイッチ
100…ノズル体
101…噴射口
102…対向面
104…供給口
105…連通路
106…溝
107…溝
108…平板ノズル
109a…空気溜まり
109b…空気逃がし孔
110…スライド機構
111…スライドバー
112…スライドガイド
113…弾性部材
120…油分離機
121…ブロア
122…イジェクタ
130…オイルタンク
140…シリンダ
DESCRIPTION OF SYMBOLS 1 ... Controller 2 ... Solenoid valve 3 ... Pressure reducing valve 4 ... Air filter 5 ... Air pressure reduction 6 ... Pipe line 7 ... Pressure switch 100 ... Nozzle body 101 ... Injection port 102 ... Opposite surface 104 ... Supply port 105 ... Communication channel 106 ... Groove 107 ... groove 108 ... flat nozzle 109a ... air reservoir 109b ... air escape hole 110 ... slide mechanism 111 ... slide bar 112 ... slide guide 113 ... elastic member 120 ... oil separator 121 ... blower 122 ... ejector 130 ... oil tank 140 ... cylinder

Claims (12)

板状部材の表面に対向する対向面に一以上の噴射口が形成されたノズル体を備え,上記ノズル体の上記噴射口から圧縮気体を噴射させることにより上記板状部材に付着した付着物を除去する付着物除去装置であって,
上記ノズル体が上記板状部材の表面に略垂直な方向へ移動自在に支持されてなることを特徴とする付着物除去装置。
A nozzle body having one or more injection ports formed on an opposing surface facing the surface of the plate-like member, and deposits adhered to the plate-like member by injecting compressed gas from the injection ports of the nozzle body. A deposit removing device for removing,
The deposit removing apparatus, wherein the nozzle body is supported so as to be movable in a direction substantially perpendicular to the surface of the plate-like member.
上記噴射口それぞれの面積の合計値が上記対向面の面積の略3分の2未満となるように上記噴射口が形成されてなる請求項1に記載の付着物除去装置。   The deposit removing apparatus according to claim 1, wherein the injection port is formed so that a total value of the areas of the injection ports is less than about two-thirds of an area of the facing surface. 上記噴射口が,上記板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に直列或いは並列に配列されてなる請求項1又は2のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to claim 1 or 2, wherein the injection ports are arranged in series or in parallel in a direction substantially orthogonal to a conveying direction of the plate-like member and a moving direction of the nozzle body. 上記対向面に,上記板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に長い開口部を有する平面ノズルが設けられてなる請求項1〜3のいずれかに記載の付着物除去装置。   The deposit according to any one of claims 1 to 3, wherein a flat nozzle having a long opening in a direction substantially orthogonal to a conveying direction of the plate-like member and a moving direction of the nozzle body is provided on the facing surface. Removal device. 上記ノズル体を構成する主要部材が,プラスチック素材からなる請求項1〜4のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to any one of claims 1 to 4, wherein a main member constituting the nozzle body is made of a plastic material. 上記ノズル体が,上記板状部材の上面側及び下面側のいずれか一方又は両方に設けられてなる請求項1〜5のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to any one of claims 1 to 5, wherein the nozzle body is provided on one or both of an upper surface side and a lower surface side of the plate-like member. 上記ノズル体を弾性的に支持してなる請求項1〜6のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to any one of claims 1 to 6, wherein the nozzle body is elastically supported. 上記対向面に,上記噴射口から噴射された圧縮気体を溜めるための陥没状の気体溜まりが設けられ,
上記ノズル体に,上記気体溜まり内の気体を上記ノズル体の外部へ導く連通孔が形成されてなる請求項1〜7のいずれかに記載の付着物除去装置。
The opposed surface is provided with a depression-like gas reservoir for storing the compressed gas injected from the injection port,
The deposit removing apparatus according to any one of claims 1 to 7, wherein a communication hole for guiding the gas in the gas reservoir to the outside of the nozzle body is formed in the nozzle body.
上記連通孔から上記空気溜まり内の気体を吸引する吸引手段を更に備えてなる請求項8に記載の付着物除去装置。   The deposit removing apparatus according to claim 8, further comprising suction means for sucking gas in the air reservoir from the communication hole. 上記連通孔から排出された気体内に含まれる付着物を分離回収する付着物分離回収手段を更に備えてなる請求項8又は9のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to claim 8, further comprising deposit separating and collecting means for separating and collecting deposits contained in the gas discharged from the communication hole. 上記付着物分離回収手段が,付着物を含む気体から液状付着物のみを分離回収するものである請求項10に記載の付着物除去装置。   11. The deposit removing apparatus according to claim 10, wherein the deposit separating and collecting means separates and collects only the liquid deposit from the gas containing the deposit. 上記ノズル体と連結され,該ノズル体を上記板状部材の表面に略垂直な方向へ移動させる駆動手段と,
上記ノズル体に供給される圧縮気体が予め定められた規定圧力未満となった場合に,上記駆動手段を駆動制御することにより上記ノズル体を上記板状部材から離反する方向へ移動させる駆動制御手段と,
を更に備えてなる請求項1〜11のいずれかに記載の付着物除去装置。
Driving means connected to the nozzle body and moving the nozzle body in a direction substantially perpendicular to the surface of the plate-like member;
Drive control means for moving the nozzle body in a direction away from the plate-like member by driving the drive means when the compressed gas supplied to the nozzle body is less than a predetermined pressure. When,
The deposit removing apparatus according to claim 1, further comprising:
JP2005165788A 2004-08-05 2005-06-06 Deposit removal device Active JP3813162B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005165788A JP3813162B2 (en) 2004-08-05 2005-06-06 Deposit removal device
TW94126725A TWI290069B (en) 2004-08-05 2005-08-08 Deposit removing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004229468 2004-08-05
JP2005165788A JP3813162B2 (en) 2004-08-05 2005-06-06 Deposit removal device

Publications (2)

Publication Number Publication Date
JP2006068724A true JP2006068724A (en) 2006-03-16
JP3813162B2 JP3813162B2 (en) 2006-08-23

Family

ID=36149875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165788A Active JP3813162B2 (en) 2004-08-05 2005-06-06 Deposit removal device

Country Status (2)

Country Link
JP (1) JP3813162B2 (en)
TW (1) TWI290069B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043834A (en) * 2006-08-10 2008-02-28 Kobe Steel Ltd Deposit removing device
JP2011224487A (en) * 2010-04-21 2011-11-10 Kawazoe Kikai Seisakusho:Kk Deposit-removal implement and deposit-removing device
JP2012159421A (en) * 2011-02-01 2012-08-23 Ulvac Japan Ltd Particle measuring instrument
CN102748933A (en) * 2012-06-26 2012-10-24 中国重型机械研究院有限公司 Hot air purging device
KR101583619B1 (en) * 2014-07-16 2016-01-11 주식회사 삼우에코 dust removal nozzle of strip surface
KR101583617B1 (en) * 2014-07-16 2016-01-11 주식회사 삼우에코 Induced fluid nozzle of strip surface
CN113439017A (en) * 2019-02-19 2021-09-24 宝理塑料株式会社 Device and method for removing deposit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806702B2 (en) * 2013-05-16 2015-11-10 川崎重工業株式会社 Plate cutting machine with clean function

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043834A (en) * 2006-08-10 2008-02-28 Kobe Steel Ltd Deposit removing device
JP4619331B2 (en) * 2006-08-10 2011-01-26 株式会社神戸製鋼所 Deposit removal device
JP2011224487A (en) * 2010-04-21 2011-11-10 Kawazoe Kikai Seisakusho:Kk Deposit-removal implement and deposit-removing device
JP2012159421A (en) * 2011-02-01 2012-08-23 Ulvac Japan Ltd Particle measuring instrument
CN102748933A (en) * 2012-06-26 2012-10-24 中国重型机械研究院有限公司 Hot air purging device
KR101583619B1 (en) * 2014-07-16 2016-01-11 주식회사 삼우에코 dust removal nozzle of strip surface
KR101583617B1 (en) * 2014-07-16 2016-01-11 주식회사 삼우에코 Induced fluid nozzle of strip surface
CN113439017A (en) * 2019-02-19 2021-09-24 宝理塑料株式会社 Device and method for removing deposit
CN113439017B (en) * 2019-02-19 2023-09-05 宝理塑料株式会社 Device and method for removing attached matter

Also Published As

Publication number Publication date
JP3813162B2 (en) 2006-08-23
TW200609051A (en) 2006-03-16
TWI290069B (en) 2007-11-21

Similar Documents

Publication Publication Date Title
WO2006013848A1 (en) Deposit removing device
JP3813162B2 (en) Deposit removal device
JP4758497B2 (en) Cleaning device and cleaning method
US20080052953A1 (en) Dry cleaning device and dry cleaning method
KR100885590B1 (en) Deposit removing device
JP4403379B2 (en) Head cleaning device for inkjet printer and printer provided with the cleaning device
CN113499985B (en) A jetting device and dry separation machine for sorting out material
JP4689765B2 (en) Cleaning medium and cleaning device
US6517188B1 (en) Ink jet print head cleaning
JP4619331B2 (en) Deposit removal device
KR101778393B1 (en) Alien substance removing apparatus
JP2008043858A (en) Deposit removing device
JP2007190709A (en) Liquid droplet ejector and cleaning method therefor
JP2009160536A (en) Adhering foreign matter removal apparatus, adhering foreign matter removal method, and sheet-like material
JP6742976B2 (en) Honeycomb catalyst activity recovery device
JP6468431B2 (en) Liquid ejection device
JP4546186B2 (en) Inkjet head maintenance device
JP2013071112A (en) Coating liquid coating apparatus
JP2001179635A (en) Blasting device
JP4749287B2 (en) Cleaning device
JP2008237985A (en) Stuck foreign matter removing apparatus and stuck foreign matter removing method
JP2009072651A (en) Stuck foreign matter removing apparatus and stuck foreign matter removing method
JPH092638A (en) Device for cleaning surface of belt of conveyor
JP4381534B2 (en) Abrasive removal device
CN116653454A (en) Conveying device and printing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Ref document number: 3813162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7