JP2008043858A - Deposit removing device - Google Patents

Deposit removing device Download PDF

Info

Publication number
JP2008043858A
JP2008043858A JP2006220704A JP2006220704A JP2008043858A JP 2008043858 A JP2008043858 A JP 2008043858A JP 2006220704 A JP2006220704 A JP 2006220704A JP 2006220704 A JP2006220704 A JP 2006220704A JP 2008043858 A JP2008043858 A JP 2008043858A
Authority
JP
Japan
Prior art keywords
nozzle body
plate
plate member
deposit removing
removing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006220704A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006220704A priority Critical patent/JP2008043858A/en
Publication of JP2008043858A publication Critical patent/JP2008043858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposit removing device which controls high-frequency vibration of the nozzle body produced by compressed gas blown from a nozzle body supported in a floating state to a metal member composed of e.g. a metal plate and thereby damps down the movement of the nozzle body smoothly so as to remove, without unevenness, oil attached to the plate member. <P>SOLUTION: A nozzle body is supported on the surface of a running magnetic plate-formed metal member in such a way as to move freely in a nearly vertical direction and floated from the metal plate-formed metal member through a negative adsorption pressure produced by a flow of air sprayed from a spraying spout and flowing through the clearance of the magnetic plate-formed metal member. A magnet whose magnetic flux intersects that of the magnetic plate-formed metal member is arranged on one or both sides of the magnetic plate-formed metal member on the nozzle body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,銅,アルミニウム,これらの合金,或いは半導体などの圧延板のような常磁性板状部材(以下,板状部材という)に付着した圧延油等の油成分を,上記板状部材に対向して設けたノズル体から圧縮空気を吹き付けて洗浄する洗浄液等の液体などの付着物を除去する付着物除去装置に関し,特に,上記圧縮空気の吹き付けによって生じるノズル体の振動を抑制して,付着物除去の効率を増大させることに成功した付着物除去装置に関するものである。   In the present invention, an oil component such as rolling oil adhering to a paramagnetic plate-like member (hereinafter referred to as a plate-like member) such as a rolled plate of copper, aluminum, an alloy thereof, or a semiconductor is provided to the plate-like member. The present invention relates to a deposit removing device that removes deposits such as liquid such as cleaning liquid by spraying compressed air from a nozzle body provided opposite to the nozzle body, and in particular, suppressing vibration of the nozzle body caused by the blowing of the compressed air, The present invention relates to a deposit removing device that has succeeded in increasing the efficiency of deposit removing.

一般に,圧延機により金属板や樹脂板等の板状部材を圧延する場合は,ワークロール(圧延ロール)やこのワークロールにより圧延される板状部材の冷却,或いは,圧延効率の向上等のために上記ワークロールと上記板状部材との圧延接触部に圧延油を供給している。また,板状部材の表面の汚れや酸化膜等を洗浄する必要がある場合は,上記板状部材を洗浄剤が収容された洗浄槽に通過させている。
このように圧延後の板状部材には上記圧延油や洗浄剤が付着するため,上記板状部材を巻き取り装置等で巻き取る前に上記圧延油や洗浄剤を除去する必要がある。これは,圧延油等が付着したままで板状部材が巻き取られると,巻き取られた板状部材間の接触面の摩擦係数が小さくなり,板状部材がその幅方向に横滑りして巻き取り装置に衝突したり,板状部材自体が破断する等の問題が生じるおそれがあるからである。また,圧延油の除去が不十分なまま巻き取られた板状部材(圧延コイル)を次工程で焼鈍させると焼鈍むらが発生し,製品の品質を低下させるという問題もある。更にまた,洗浄剤が付着したまま板状部材が保管されると,その洗浄剤によって板状部材が腐食するという問題も生じ得る。
In general, when rolling a plate-like member such as a metal plate or a resin plate by a rolling mill, for cooling the work roll (rolling roll) or the plate-like member rolled by this work roll, or improving the rolling efficiency, etc. The rolling oil is supplied to the rolling contact portion between the work roll and the plate member. Further, when it is necessary to clean the surface of the plate-like member, the oxide film, or the like, the plate-like member is passed through a cleaning tank containing a cleaning agent.
Thus, since the rolling oil and cleaning agent adhere to the rolled plate-like member, it is necessary to remove the rolling oil and cleaning agent before winding the plate-like member with a winding device or the like. This is because when the plate member is wound with the rolling oil or the like attached, the friction coefficient of the contact surface between the wound plate members is reduced, and the plate member is slid in the width direction and wound. This is because there is a possibility that problems such as collision with the take-off device or breakage of the plate-like member itself may occur. Further, if the plate member (rolled coil) wound with insufficient removal of rolling oil is annealed in the next step, there is a problem that unevenness of annealing occurs and the quality of the product is lowered. Furthermore, if the plate-like member is stored with the cleaning agent attached, the plate-like member may be corroded by the cleaning agent.

従来,上記圧延油や洗浄剤を除去する手法が多数提案されている。例えば,特許文献1には,走行する圧延後の板状部材の表面に対向する対向面に一以上の噴射口が形成されたノズル体を備え,上記ノズル体の上記噴射口から圧縮気体を噴射させることにより上記板状部材に付着した圧延油,洗浄油などの付着物を除去する付着物除去装置であって,上記ノズル体が,上記板状部材の表面に略垂直な方向へ移動自在に支持されてなると共に,上記噴射口から噴射され上記板状部材の間の隙間を通って流れる空気の流れに基づいて発生する負圧である吸着圧を用いて,上記ノズル体を上記板状部材から浮上して支持してなるものである付着物除去装置が提案されている。   Conventionally, many methods for removing the rolling oil and the cleaning agent have been proposed. For example, Patent Document 1 includes a nozzle body in which one or more injection ports are formed on an opposing surface facing the surface of a rolled plate-like member that travels, and a compressed gas is injected from the injection port of the nozzle body. An apparatus for removing deposits such as rolling oil and cleaning oil adhered to the plate-shaped member by allowing the nozzle body to move in a direction substantially perpendicular to the surface of the plate-shaped member. The nozzle body is supported on the nozzle member by using an adsorption pressure that is a negative pressure generated based on the flow of air injected from the injection port and flowing through the gap between the plate members. There has been proposed an apparatus for removing deposits that is lifted up and supported.

これにより,板状部材がうねったり振動したとしても,ノズル体と板状部材との間隔が厳密に一定に保たれ,圧縮気体の吹き付け力が一定に維持されるので,付着物の除去斑を生じない付着物除去装置が提供される。
また,上記のような,噴射口から噴射され上記板状部材の間の隙間を通って流れる空気の流れに基づいて発生する負圧である吸着圧を利用することなく,ノズル体の自重やバネ力などの板状部材方向への押圧力と,上記噴射口から噴射される圧縮空気の噴射圧によりノズル体を押し上げようとする押上圧とのバランスによってノズル体を板状部材に対して浮動状に支持する付着物除去装置も提案されている(特許文献2)。
As a result, even if the plate-like member swells or vibrates, the distance between the nozzle body and the plate-like member is kept strictly constant, and the spraying force of the compressed gas is kept constant. A deposit removal device that does not occur is provided.
Further, the weight of the nozzle body and the spring can be used without using the suction pressure, which is a negative pressure generated based on the air flow injected from the injection port and flowing through the gap between the plate-like members. The nozzle body floats with respect to the plate-like member by a balance between the pressing force in the direction of the plate-like member, such as force, and the pushing-up pressure that pushes up the nozzle body by the injection pressure of the compressed air injected from the injection port. There has also been proposed an apparatus for removing deposits that is supported by the above (Patent Document 2).

この場合,前記吸着圧を利用しない点において,上記特許文献1に開示の付着物除去装置のようにノズル体と板状部材の間隔を厳密に一定に制御する機能には欠けるものであるが,ノズル体を板状部材に対して浮動状に支持することからノズル体と板状部材との間隔をある程度一定に保つことが出来るので,圧縮気体の吹き付け力がある程度一定に維持され,付着物の除去斑を生じにくい点では優れた方法である。   In this case, in the point that the adsorption pressure is not used, the function of controlling the interval between the nozzle body and the plate-like member to be strictly constant like the deposit removing device disclosed in Patent Document 1 is lacking. Since the nozzle body is supported in a floating manner with respect to the plate-like member, the distance between the nozzle body and the plate-like member can be kept constant to some extent, so that the blowing force of the compressed gas is kept constant to some extent, This is an excellent method in that removal spots are less likely to occur.

しかしながら上記特許文献1及び2に開示されたいずれの付着物除去装置においても,前記した上記噴射口から噴射される圧縮空気を用いるものであるため,圧縮空気の噴きつけ力に変動があると,ノズル体と板状部材の間隔に変動を生じることになる。この点,圧縮空気の吹き付け状態は必ずしも一定ではなく,多くの場合高周波の変動を伴うために,板状部材の振動を避けることはできない。   However, in any of the deposit removing devices disclosed in Patent Documents 1 and 2, since the compressed air ejected from the above-described ejection port is used, if the spraying force of the compressed air varies, Variations occur in the interval between the nozzle body and the plate-like member. In this respect, the state of the compressed air spray is not always constant, and in many cases is accompanied by high-frequency fluctuations, so vibration of the plate-like member cannot be avoided.

一方,上記板状部材の振動を抑制する技術として,例えば特許文献3が存在する。この技術は,走行する板状部材を挟んで,その両側に磁石を配置し,上記板状部材を上記上下の磁石の磁力によって夫々逆方向に引き合うものであり,上記板状部材の位置を検出して,この位置の変動に応じてその位置変動を打ち消すように磁力を変化させて,板状部材を常に上記上下の磁石による磁力が釣り合う位置に付勢するものである。
この技術は,板状部材の位置を一定に制御する点では優れたものである。
特開2006−68724号公報 特開平5−200374号公報 特開平5−245521号公報
On the other hand, as a technique for suppressing the vibration of the plate-like member, for example, Patent Document 3 exists. In this technology, magnets are arranged on both sides of a traveling plate member, and the plate member is attracted in the opposite direction by the magnetic force of the upper and lower magnets, and the position of the plate member is detected. Then, the magnetic force is changed so as to cancel the position change according to the position change, and the plate member is always urged to a position where the magnetic forces of the upper and lower magnets are balanced.
This technique is excellent in that the position of the plate-like member is controlled to be constant.
JP 2006-68724 A Japanese Patent Application Laid-Open No. 5-200374 JP-A-5-245521

しかしながら,上記特許文献3は,板状部材の両面側にそれぞれ電磁石を配置し,その間を通過する板状部材の位置を検出して,その位置に応じて電磁石の磁力を制御することで,板状部材の走行位置が一定になるように制御するものであり,装置が複雑化及び大型化する,あるいは制御が煩雑となるなどの多くの問題を提起するものである。また,板状部材の位置に応じて電磁石による吸着力を制御するものであるので,上記吸着力の発生しない銅やアルミ,或いはこれらの合金,さらにはこれらを含む半導体のような常磁性体の板状部材には適用できない。   However, the above-mentioned patent document 3 arranges electromagnets on both sides of the plate-like member, detects the position of the plate-like member passing between them, and controls the magnetic force of the electromagnet according to the position, thereby This control is performed so that the travel position of the shaped member is constant, which raises many problems such as the complexity and size of the apparatus, and complicated control. In addition, since the attraction force by the electromagnet is controlled according to the position of the plate-like member, copper, aluminum, or an alloy thereof, which does not generate the attraction force, or a paramagnetic material such as a semiconductor containing them is used. It cannot be applied to plate-like members.

従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,上記のような板状部材に対して浮動状に支持されたノズル体から吹き付けられる圧縮気体によって生じる板状部材の高周波振動を抑制し,上記板状部材の動きを滑らかにダンピングすることで板状部材に付着した油分をむらなく除去することのできる付着物除去装置を提供することにある。   Accordingly, the present invention has been made in view of the above circumstances, and its object is to provide a plate-like shape generated by a compressed gas blown from a nozzle body supported in a floating manner on the plate-like member as described above. An object of the present invention is to provide a deposit removing device that can uniformly remove oil adhering to a plate-like member by suppressing high-frequency vibrations of the member and smoothly damping the movement of the plate-like member.

上記目的を達成するために本発明は,
走行する板状部材の表面に対向する対向面に一以上の噴射口が形成され,上記板状部材の表面に略垂直な方向へ移動自在に支持されたノズル体を備え,上記ノズル体の上記噴射口から圧縮気体を噴射させることにより上記板状部材に付着した圧延油,洗浄油などの付着物を除去する付着物除去装置において,
上記ノズル体に,磁束が上記板状部材と交差する磁石が設けられてなることを特徴とする付着物除去装置として構成されている。
上記のように上記ノズル体に,磁束が上記常磁性の板状部材と交差する磁石が設けられていることにより,上記板状部材が振動して板状部材との距離が変動すると,上記板状部材内に渦電流が発生し,板状部材が発熱する。この消費エネルギーが板状部材の運動を妨げるエネルギーとなり,付着物除去効果を発揮しつつ、板状部材の高周波振動を抑制する。また、板状部材の高周波振動に起因して騒音が発生する場合には、本発明により、高周波振動が抑制されるのと同時に騒音抑制効果が発揮される。
この発明において,板状部材とは,銅,アルミニウム,これらの合金,或いは半導体などの圧延板のような常磁性板状部材をいう。
In order to achieve the above object, the present invention provides:
One or more injection ports are formed on a surface facing the surface of the traveling plate-shaped member, and the nozzle body is supported so as to be movable in a direction substantially perpendicular to the surface of the plate-shaped member. In the deposit removing apparatus for removing deposits such as rolling oil and cleaning oil adhering to the plate-like member by injecting compressed gas from the injection port,
The nozzle body is configured as a deposit removing device in which a magnet whose magnetic flux intersects the plate-like member is provided.
As described above, when the nozzle body is provided with a magnet whose magnetic flux intersects the paramagnetic plate member, the plate member vibrates and the distance from the plate member changes. An eddy current is generated in the plate member, and the plate member generates heat. This consumed energy becomes energy that hinders the movement of the plate-like member, and suppresses high-frequency vibrations of the plate-like member while exhibiting the deposit removal effect. Further, when noise is generated due to the high frequency vibration of the plate-like member, the present invention exhibits the noise suppressing effect at the same time as the high frequency vibration is suppressed.
In the present invention, the plate-like member means a paramagnetic plate-like member such as a rolled plate of copper, aluminum, an alloy thereof, or a semiconductor.

上記のような振動抑制理論に基づくので,上記板状部材と交差する磁力線密度が高いほうが振動抑制には効果的である。従って,上記磁石が,上記板状部材の片側に設けられることはもちろん,更に上記板状部材の両側に設けられることで作用する磁力線密度を増加させることが望ましい。
上記板状部材の両側に磁石が設けられる場合には,上記両磁石の対向する面における磁極が異なる,すなわち交互に変化するものであることが望ましい。この配置によって,隣り合う磁石対がカップリングとなり磁力線密度が増大することになる。
Since it is based on the vibration suppression theory as described above, a higher magnetic line density intersecting with the plate-like member is more effective for vibration suppression. Therefore, it is desirable to increase the magnetic line density acting by providing the magnet on one side of the plate-like member and further providing it on both sides of the plate-like member.
When magnets are provided on both sides of the plate-like member, it is desirable that the magnetic poles on the opposing surfaces of the two magnets are different, that is, change alternately. With this arrangement, adjacent magnet pairs become a coupling, and the magnetic line density increases.

上記磁石の配置としては,上記板状部材の走行方向に対して直角の方向に横長に配置されてなることが小さな面積で多くの磁力線を上記板状部材に交差させることができて,効率的である。
また,横長の大きい磁石は,中央部で磁力線密度が低下するので,上記磁石を上記板状部材の走行方向に対して直角の方向に複数に分割することが望ましい。
As for the arrangement of the magnet, it is possible to cross the plate-like member with many lines of magnetic force in a small area because it is arranged horizontally in a direction perpendicular to the traveling direction of the plate-like member, and it is efficient. It is.
In addition, since a magnetic field density is reduced at the center of a large horizontally long magnet, it is desirable to divide the magnet into a plurality in a direction perpendicular to the traveling direction of the plate member.

上記ノズル体の支持構造としては,上記ノズル体が,上記板状部材の表面に略垂直な方向へ移動自在に支持されてなると共に,上記噴射口から噴射され上記板状部材の間の隙間を通って流れる空気の流れに基づいて発生する負圧である吸着圧を用いて,上記ノズル体を上記板状部材から浮上して支持してなるものが採用可能である。上記のように上記噴射口から噴射され上記板状部材の間の隙間を通って流れる空気の流れに基づいて発生する負圧である吸着圧を用いてノズル体を浮動状に支持することで,ノズル体と上記板状部材の間の隙間の暑さが自動的に一定に保たれる。これによってもともと出来る限り振動の少ない付着物除去装置が提供されるので,本発明にかかる振動抑制装置を設けることによってきわめて振動の少ない付着物除去装置を提供することが出来る。   As the support structure of the nozzle body, the nozzle body is supported so as to be movable in a direction substantially perpendicular to the surface of the plate-like member, and the gap between the plate-like members is ejected from the injection port. It is possible to employ one in which the nozzle body is lifted and supported from the plate-like member by using an adsorption pressure that is a negative pressure generated based on the flow of air flowing therethrough. By supporting the nozzle body in a floating manner using an adsorption pressure, which is a negative pressure generated based on the flow of air injected from the injection port and flowing through the gap between the plate-like members as described above, The heat of the gap between the nozzle body and the plate-like member is automatically kept constant. Accordingly, since the deposit removing device with as little vibration as possible is originally provided, it is possible to provide the deposit removing device with very little vibration by providing the vibration suppressing device according to the present invention.

上記ノズル体の上記対向面であって上記板状部材の走行方向上流部及び/又は下流部には,上記ノズル体に隣接して,上記板状体から遠ざかる方向へ陥没する陥没室を形成する事が望ましい。
上記陥没室があるために,ノズル体から噴出される圧縮流体によって吹き上げられた油分を含むミストが上記陥没室に流入し除去されるので,ミストの密度が高くなって板状部材に汚れを発生させる不都合が回避される。
A depression chamber is formed adjacent to the nozzle body and recessed in a direction away from the plate body on the opposite surface of the nozzle body and on the upstream and / or downstream portion in the traveling direction of the plate member. Things are desirable.
Due to the presence of the depression chamber, the mist containing the oil blown up by the compressed fluid ejected from the nozzle body flows into the depression chamber and is removed, so that the density of the mist increases and the plate member is contaminated. Inconvenience is avoided.

さらに上記陥没室は,上記板状部材の走行方向に複数形成してもよい。陥没室が沢山あることで,付着物の除去作用が増大或いは安定化する。
上記陥没室の板状部材走行方向下流側の壁面を,板状部材端部側に向かうにつれて,板状部材走行方向下流側に向けて傾斜して形成することで,陥没室に入ったミストの流れが良くなり,付着物の除去作用が増大する。
また上記1以上の陥没室に吸気源に接続された排気手段が接続されてなるように構成すれば,陥没室に流入した付着物のミスとが,陥没室内に溜まることなく排出されるので,長時間掃除なしに付着物を効率よく除去することが出来る。
Further, a plurality of the depression chambers may be formed in the traveling direction of the plate member. Because there are many depression chambers, the action of removing deposits is increased or stabilized.
The wall surface on the downstream side in the plate member traveling direction of the depression chamber is formed so as to be inclined toward the downstream side in the plate member traveling direction toward the plate member end portion side, so that the mist entering the depression chamber is formed. The flow is improved, and the action of removing deposits is increased.
In addition, if the exhaust means connected to the intake source is connected to the one or more depression chambers, the mistake of the deposits flowing into the depression chamber is discharged without accumulating in the depression chamber. Deposits can be efficiently removed without cleaning for a long time.

また,上記ノズル体の対向面に形成された噴射口は,例えば,上記板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に直列或いは並列に配列されているものが考えられる。
また,上記ノズル体の対向面に,上記板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に長い開口部を有する平面ノズルが設けられておれば,上記板状部材の幅方向全域に圧縮気体を均等に放射することが可能となる。
また,上記板状部材の上面側及び下面側のいずれの表面における付着物をも除去可能とするべく,上記ノズル体は,上記板状部材の上面側及び下面側のいずれか一方又は両方に設けられてなることが好ましい。
In addition, the injection ports formed on the opposing surface of the nozzle body may be arranged in series or in parallel in a direction substantially orthogonal to the conveying direction of the plate member and the moving direction of the nozzle body, for example. .
Further, if a flat nozzle having a long opening in a direction substantially orthogonal to the conveying direction of the plate member and the moving direction of the nozzle body is provided on the opposing surface of the nozzle body, the width of the plate member It becomes possible to radiate compressed gas uniformly in the whole direction.
Further, the nozzle body is provided on one or both of the upper surface side and the lower surface side of the plate-like member so as to be able to remove deposits on both the upper surface side and the lower surface side of the plate-like member. It is preferable to be made.

ところで,上記板状部材に圧縮気体が噴射されると,この気体は上記板状部材に反射して上記対向面に衝突する。このとき,圧縮気体の噴射により剥がされた付着物が上記対向面に衝突して,該対向面に付着する場合がある。特に,上記付着物が例えば油或いは油を含む塵埃などの粘性を有するものである場合は,該付着物が上記対向面に付着し易い。この場合,上記対向面に付着物が付着することによって上記噴射口がつまったり,或いは肥大化した付着物が剥がれ落ち,上記板状部材に再付着するという問題が生じ得る。
そこで,上記対向面に,上記噴射口から噴射された圧縮気体を溜めるための陥没状の気体溜まりを設け,上記ノズル体に,上記気体溜まり内の気体を上記ノズル体の外部へ導く連通孔を形成しておけば,オイルなどの付着物を含む空気が上記気体溜まりに滞留し,この滞留した空気を外部へ排出することが可能となる。これにより,噴射口の詰まりや板状部材への付着物の再付着を軽減することができる。
この場合,上記連通孔から上記気体溜まり内の気体を吸引する吸引手段を設けておけば,付着物を含む気体の排出を効率よく行うことができる。
By the way, when compressed gas is injected to the plate-like member, the gas is reflected by the plate-like member and collides with the facing surface. At this time, the deposit peeled off by the injection of the compressed gas may collide with the facing surface and adhere to the facing surface. In particular, when the deposit is viscous, such as oil or dust containing oil, the deposit is likely to adhere to the facing surface. In this case, there may be a problem that the deposit is stuck on the facing surface, or the injection port is clogged or the enlarged deposit is peeled off and reattached to the plate member.
Therefore, a concavity-like gas reservoir for storing the compressed gas injected from the injection port is provided on the facing surface, and a communication hole for introducing the gas in the gas reservoir to the outside of the nozzle body is provided in the nozzle body. If formed, air containing deposits such as oil stays in the gas reservoir, and the staying air can be discharged to the outside. Thereby, clogging of the injection port and reattachment of the deposit on the plate-like member can be reduced.
In this case, if a suction means for sucking the gas in the gas reservoir is provided from the communication hole, the gas containing the deposits can be discharged efficiently.

上記のように浮動状に支持されたノズル体に,該ノズル体と対向する板状部材を横切る磁力線を発生させる磁石を配置することによって,上記磁力線が交差する板状部材とノズル体との距離が変動した(すなわち振動した)時,この板状部材に渦電流が生じ,それがエネルギを消費するために板状部材の,特に高周波振動が抑制される。   The distance between the plate member and the nozzle body at which the lines of magnetic force intersect by disposing a magnet that generates a magnetic force line across the plate member facing the nozzle body on the nozzle body supported in a floating manner as described above. When the current fluctuates (that is, vibrates), an eddy current is generated in the plate member, which consumes energy, so that high frequency vibrations of the plate member are suppressed.

以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
なお,本発明における付着物を除去するためのノズル体の支持方法としては,基本的にノズル体が走行する板状部材に対して浮動状に支持されていることが前提であるが,例えば,前記特許文献1に記載のように,走行する圧延後の板状部材の表面に対向する対向面に一以上の噴射口が形成されたノズル体を備え,上記ノズル体の上記噴射口から圧縮気体を噴射させることにより上記板状部材に付着した圧延油,洗浄油などの付着物を除去する付着物除去装置であって,上記ノズル体が,上記板状部材の表面に略垂直な方向へ移動自在に支持されてなると共に,上記噴射口から噴射され上記板状部材の間の隙間を通って流れる空気の流れに基づいて発生する負圧である吸着圧を用いて,上記ノズル体を上記板状部材から浮上して支持してなるものであっても,あるいは,前記特許文献2に記載のように,上記のような,噴射口から噴射され上記板状部材の間の隙間を通って流れる空気の流れに基づいて発生する負圧である吸着圧を利用することなく,ノズル体の自重やバネ力などの板状部材方向への押圧力と,上記噴射口から噴射される圧縮空気の噴射圧によりノズル体を押し上げようとする押上圧とのバランスによってノズル体を板状部材に対して浮動状に支持するものであっても良い。
以下の実施形態では,上記特許文献1に記載の浮動支持方法によってノズル体を支持する場合について説明するが,これは一例であって,本発明はいずれの支持方法でも採用可能である。
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
The method for supporting the nozzle body for removing deposits in the present invention is based on the premise that the nozzle body is basically supported in a floating manner with respect to the plate member on which the nozzle body travels. As described in Patent Document 1, a nozzle body in which one or more injection ports are formed on a facing surface facing the surface of a rolled rolled plate-like member is provided, and compressed gas is supplied from the injection port of the nozzle body. A deposit removing device that removes deposits such as rolling oil and cleaning oil adhering to the plate member by spraying the nozzle member, wherein the nozzle body moves in a direction substantially perpendicular to the surface of the plate member. The nozzle body is attached to the plate by using an adsorption pressure that is a negative pressure generated based on the flow of air that is freely supported and is injected through the gap between the plate-like members. It floats and supports from the shaped member Or, as described in Patent Document 2, the negative pressure generated based on the air flow injected from the injection port and flowing through the gap between the plate-like members as described above. Without using a certain adsorbing pressure, the pressing force in the direction of the plate member, such as its own weight and spring force, and the pushing pressure that tries to push up the nozzle body by the injection pressure of the compressed air injected from the injection port. The nozzle body may be supported in a floating manner with respect to the plate-like member by the balance.
In the following embodiment, a case where the nozzle body is supported by the floating support method described in Patent Document 1 will be described. However, this is an example, and the present invention can be adopted by any support method.

ここに,図1は本発明の実施の形態に係る付着物除去装置Xの空気制御システムの概略を説明するブロック図,図2は上記付着物除去装置Xのノズル体100を説明する模式図,図3はノズル体100を上方へ押し上げようとする力Fと離間距離dとの関係を表す図,図4は離間距離dと付着物除去効果との関係を説明する模式図,図5は噴射口101の近傍の圧力分布を示す図,図6は本発明の第1の実施例に係る付着物除去装置X1のノズル体100aを説明する模式図,図7は本発明の第2の実施例に係る付着物除去装置X2のノズル体100bを説明する模式図,図8は本発明の第3の実施例に係る付着物除去装置X3の概略構成を示すブロック図,図9は本発明の第4の実施例に係る付着物除去装置X4のノズル体100cを説明する模式図,図10は本発明の第5の実施例に係る付着物除去装置X5の概略構成を示すブロック図,図11は,本発明の実施形態に用いられる磁石の配置を示す図((a)は,板状部材の両側に配設したノズル体にそれぞれ磁石を取り付けた場合の側面図,(b)は,ノズル体の上流部及び下流部の両側に磁石を設けた状態を示すノズル体の上面図,(c)は,板状部材の両側に設けられた磁石の磁力線と板状部材との位置関係を示す側面図),図12は,図11に示した磁石の磁力線の概念を示す図((a)は,1本の横長の磁石における磁力線の発生状体を示す正面図,(b)は,横長の磁石を複数に分割した場合の磁力線の状態を示すノズル体の正面図),図13は,磁石の数と振動抑制効果(振動減衰率)の関係を示すグラフ,図14は,図11に示した磁石の詳細図((a)は,ノズル体の片側にのみ磁石を取り付けた状態の側断面図,(b)は,(a)の磁石の詳細を示すノズル体の底面図,(c)は,磁石が電磁石である場合の詳細を示す側断面図),図15は,本発明における振動抑制原理を示す図である。   FIG. 1 is a block diagram for explaining the outline of the air control system of the deposit removing apparatus X according to the embodiment of the present invention. FIG. 2 is a schematic diagram for explaining the nozzle body 100 of the deposit removing apparatus X. FIG. 3 is a diagram illustrating the relationship between the force F that pushes the nozzle body 100 upward and the separation distance d, FIG. 4 is a schematic diagram illustrating the relationship between the separation distance d and the deposit removal effect, and FIG. FIG. 6 is a diagram showing the pressure distribution in the vicinity of the mouth 101, FIG. 6 is a schematic diagram for explaining the nozzle body 100a of the deposit removing apparatus X1 according to the first embodiment of the present invention, and FIG. 7 is a second embodiment of the present invention. FIG. 8 is a schematic diagram for explaining the nozzle body 100b of the deposit removing apparatus X2 according to the present invention, FIG. 8 is a block diagram showing a schematic configuration of the deposit removing apparatus X3 according to the third embodiment of the present invention, and FIG. 4 illustrates the nozzle body 100c of the deposit removing device X4 according to the fourth embodiment. FIG. 10 is a block diagram showing a schematic configuration of the deposit removing apparatus X5 according to the fifth embodiment of the present invention, and FIG. 11 is a diagram showing the arrangement of magnets used in the embodiment of the present invention (( a) is a side view when magnets are attached to the nozzle bodies arranged on both sides of the plate-like member, and (b) is a nozzle showing a state in which magnets are provided on both sides of the upstream and downstream portions of the nozzle body. (C) is a side view showing the positional relationship between the magnetic force lines of the magnets provided on both sides of the plate-like member and the plate-like member), and FIG. 12 is a concept of the magnetic force lines of the magnet shown in FIG. (A) is a front view showing a magnetic force line generating body in one horizontally long magnet, and (b) is a front view of the nozzle body showing a state of magnetic lines when the horizontally long magnet is divided into a plurality of pieces. Fig. 13 is a graph showing the relationship between the number of magnets and the vibration suppression effect (vibration damping rate). 4 is a detailed view of the magnet shown in FIG. 11 ((a) is a side cross-sectional view of a state where a magnet is attached only to one side of the nozzle body, and (b) is a nozzle body showing details of the magnet of (a). (C) is a side sectional view showing details when the magnet is an electromagnet), and FIG. 15 is a diagram showing the principle of vibration suppression in the present invention.

まず,図1のブロック図を用いて,本発明の実施の形態に係る付着物除去装置Xの空気制御システム及び概略構成について説明する。
本付着物除去装置Xは,例えば,圧延機等により圧延された板状部材に付着した圧延油や洗浄剤等の液体や屑片等の付着物を除去する装置であって,図1に示すように,空気圧源5から供給された圧縮空気(圧縮気体の一例)を上記板状部材Tの表面に噴射させて,上記板状部材Tの表面に付着した圧延油,洗浄油などを除去するべく上記板状部材に対向した面に一以上の噴射口を備えたノズル体100と,該ノズル体100と上記空気圧源5とを配管接続する管路6に介設された電磁弁2と,該電磁弁2の下流側の管路6に介設された減圧弁3と,該減圧弁3の下流側に介設されたエアフィルタ4と,上記電磁弁2を励磁/消磁して圧縮空気の経路(空気路)を切り換える制御を行うコントローラ1とを備えている。なお,本実施の形態では,圧縮気体として圧縮空気を用いた例について説明するが,腐食性の低い窒素ガス等を用いてもかまわない。また,本付着物除去装置Xは上記圧延機により圧延された板状部材に限られず,あらゆる板状部材にも適用され得る。
First, the air control system and schematic configuration of the deposit removal apparatus X according to the embodiment of the present invention will be described with reference to the block diagram of FIG.
This deposit removal apparatus X is an apparatus for removing deposits such as liquids such as rolling oil and cleaning agents and scraps adhered to a plate-like member rolled by a rolling mill or the like, as shown in FIG. As described above, compressed air (an example of compressed gas) supplied from the air pressure source 5 is sprayed onto the surface of the plate member T to remove rolling oil, cleaning oil, and the like adhering to the surface of the plate member T. Therefore, a nozzle body 100 having one or more injection ports on the surface opposed to the plate-like member, and an electromagnetic valve 2 interposed in a pipe 6 connecting the nozzle body 100 and the air pressure source 5 by piping; The pressure reducing valve 3 interposed in the pipe line 6 on the downstream side of the electromagnetic valve 2, the air filter 4 interposed on the downstream side of the pressure reducing valve 3, and the compressed air by exciting / demagnetizing the electromagnetic valve 2. And a controller 1 that performs control to switch the path (air path). In this embodiment, an example in which compressed air is used as the compressed gas will be described, but nitrogen gas or the like having low corrosiveness may be used. Moreover, this deposit removal apparatus X is not restricted to the plate-shaped member rolled by the said rolling mill, It can be applied also to all plate-shaped members.

上記コントローラ1は,シーケンサ等の制御ユニット等を備えて構成されており,例えば,外部からスタート信号が入力されたことを検知すると,上記電磁弁2を励磁してこの弁を閉位置から開位置に切り換える。上記電磁弁2を介して供給された圧縮空気は減圧弁3により予め定められた一定圧力に減圧され,ドレン付のエアフィルタ4により水蒸気や塵等が除去された後に,上記ノズル体100に供給される。   The controller 1 includes a control unit such as a sequencer. For example, when detecting that a start signal is input from the outside, the controller 1 excites the solenoid valve 2 to open the valve from the closed position to the open position. Switch to. The compressed air supplied through the electromagnetic valve 2 is reduced to a predetermined pressure by the pressure reducing valve 3 and is supplied to the nozzle body 100 after water vapor and dust are removed by the air filter 4 with drain. Is done.

続いて,図2の模式図を用いて,上記ノズル体100について説明する。上記ノズル体100は,図2に示すように,板状部材Tの上面側に配設されている。このノズル体100はプラスチック素材等の軽量部材で成形されており,上記板状部材Tの幅方向に長い略長方体形状をしている。ここに,図2(a)は上記ノズル体100の長手方向(図2の左右方向)の鉛直断面を示す断面模式図であり,(b)は(a)の矢印Aからみた上記ノズル体100の模式図である。図中において符号を付していない矢印は圧縮空気の流れを示す。
上記ノズル体100の上記板状部材Tの上面(上方側表面)T1に対向する対向面102には4つの噴射口101が形成されている。この4つの噴射口101は,上記板状部材Tの搬送方向W2(図2(b)参照)及び上記ノズル体100の移動方向W1(図2(a)参照)と略直交する方向W3(図2(b)参照)に直列又は並列に配列されている。なお,上記噴射口101は4つに限らず,少なくとも1以上の噴射口101が形成されていればよい。
Next, the nozzle body 100 will be described with reference to the schematic diagram of FIG. The nozzle body 100 is disposed on the upper surface side of the plate member T as shown in FIG. The nozzle body 100 is formed of a lightweight member such as a plastic material and has a substantially rectangular shape that is long in the width direction of the plate member T. 2A is a schematic cross-sectional view showing a vertical cross section in the longitudinal direction (left-right direction in FIG. 2) of the nozzle body 100, and FIG. 2B is the nozzle body 100 as viewed from the arrow A in FIG. FIG. The arrow which does not attach | subject the code | symbol in a figure shows the flow of compressed air.
Four injection ports 101 are formed on the facing surface 102 of the nozzle body 100 facing the upper surface (upper surface) T1 of the plate member T. The four injection ports 101 have a direction W3 (see FIG. 2) that is substantially orthogonal to the conveying direction W2 (see FIG. 2B) of the plate member T and the moving direction W1 of the nozzle body 100 (see FIG. 2A). 2 (b)) are arranged in series or in parallel. The number of the injection ports 101 is not limited to four, and it is sufficient that at least one or more injection ports 101 are formed.

上記対向面102には,上記噴射口101から噴射された圧縮空気を上記板状部材Tの搬送方向W2の上流側へ導き,剥離された付着物を上記搬送方向W2の上流側へ吹き飛ばすために,上記板状部材Tの搬送方向W2に平行する複数の溝106(本実施の形態では5つの溝)が所定間隔を隔てて形成されている。この溝106の上記板状部材Tの搬送方向W2上流側の一端106aは末広がり状に形成されており,上記搬送方向W2側の側面に開放されている。
なお,上記搬送方向W2に平行に形成された上記溝106では,剥離された付着物が再び上記板状部材T上に付着する可能性がある。そのため,上記溝106とは異なり,図2(c)に示すように,上記搬送方向W2に対して上記板状部材Tの幅方向外側へ傾斜角がつけられた溝106−1を上記対向面102に形成することが好ましい。このような溝106−1が形成されておれば,該溝106−1を流れる圧縮空気と共に剥離された付着物が上記板状部材Tの幅方向外側へ吹き飛ばされるため,付着物の除去効率が向上され得る。
In order to guide the compressed air ejected from the ejection port 101 to the upstream side in the transport direction W2 of the plate-like member T on the facing surface 102 and blow off the peeled deposits upstream in the transport direction W2. A plurality of grooves 106 (five grooves in the present embodiment) parallel to the conveying direction W2 of the plate member T are formed at predetermined intervals. One end 106a on the upstream side in the conveying direction W2 of the plate-like member T of the groove 106 is formed in a divergent shape and is open to the side surface on the conveying direction W2 side.
In addition, in the groove 106 formed in parallel with the transport direction W2, there is a possibility that the peeled adhered matter will adhere to the plate-like member T again. Therefore, unlike the groove 106, as shown in FIG. 2 (c), the groove 106-1 inclined at the outer side in the width direction of the plate member T with respect to the transport direction W2 is formed on the opposing surface. It is preferable to form in 102. If such a groove 106-1 is formed, the adhered matter peeled off with the compressed air flowing through the groove 106-1 is blown off to the outside in the width direction of the plate-like member T. Can be improved.

上記ノズル体100の上記対向面102とは逆の面103には,前記空気圧源5(図1)から供給され前記減圧弁4により所定圧に減圧された圧縮空気を上記ノズル体100に供給するための一の供給口104が形成されている。この供給口104は,上記各噴射口101を内部で連通する連通路105に貫通されている。したがって,この供給口104に圧縮空気が供給されると,上記連通路105を通って上記各噴射口101から上記板状部材Tの上面T1に圧縮空気が噴射される。   Compressed air supplied from the air pressure source 5 (FIG. 1) and decompressed to a predetermined pressure by the pressure reducing valve 4 is supplied to the nozzle body 100 on a surface 103 opposite to the facing surface 102 of the nozzle body 100. One supply port 104 for the purpose is formed. This supply port 104 is penetrated by the communication path 105 which connects each said injection port 101 inside. Accordingly, when compressed air is supplied to the supply port 104, the compressed air is injected from the respective injection ports 101 to the upper surface T <b> 1 of the plate-like member T through the communication path 105.

また,上記ノズル体100の上記面103にはスライドバー111が立設されており,更にその上方には上記スライドバー111を垂直方向にスライド移動可能に支持するスライドガイド112が適宜設けられている。このスライドバー111及びスライドガイド112(以下,これらを総称してスライド機構110という)は,上記ノズル体100を上記板状部材Tの上面T1に略垂直な方向W1へ移動自在に支持する手段の一例である。もちろん,上記スライド機構110に限らず,例えば,一端が固定されたつるまきバネ等の弾性部材により上記ノズル体100を上方から吊り下げた状態で支持する機構(図8参照)や,上記ノズル体100の長手方向の側方から架け渡された板ばね等の弾性部材で上記ノズル体100を支持する機構等を用いて上記ノズル体100を上記略垂直方向W1へ移動自在に弾性支持するものであってもよい。   Further, a slide bar 111 is erected on the surface 103 of the nozzle body 100, and a slide guide 112 for supporting the slide bar 111 so as to be slidable in the vertical direction is appropriately provided above the slide bar 111. . The slide bar 111 and the slide guide 112 (hereinafter collectively referred to as a slide mechanism 110) are means for supporting the nozzle body 100 movably in a direction W1 substantially perpendicular to the upper surface T1 of the plate member T. It is an example. Of course, not limited to the slide mechanism 110, for example, a mechanism (see FIG. 8) that supports the nozzle body 100 while being suspended from above by an elastic member such as a helical spring with one end fixed, or the nozzle body. The nozzle body 100 is elastically supported so as to be movable in the substantially vertical direction W1 using a mechanism that supports the nozzle body 100 with an elastic member such as a leaf spring spanned from the side in the longitudinal direction of the 100. There may be.

さらに,上記ノズル体100の上記対向面102であって,上記板状部材Tの走行方向W2上流部には,上記ノズル体100に隣接して,上記板状体Tから遠ざかる方向へ陥没する陥没室200が形成されている。上記陥没室200は,この陥没室200を側断面で示す図7(b)に明らかなように,上記ノズル体100の板状部材走行方向上流側側面に取り付けられる後壁200aと,該後壁200aと平行に対向する前壁200bと,左右の側壁200cとによって囲まれた下方に開放された空間によって構成されている。
なお,上記左右の側壁200cは,後記する排気室202と陥没室200とを連通させるために,一部(又は全部)が切除されている。
この陥没室200は,上記ノズル体100から噴射された圧縮気体によって上記板状部材表面から吹き上げられた上記圧延油,洗浄油などのミストが流入しうる空間であり,これらの陥没室200に流入したミストは,上記陥没室200の壁面に付着することによってその一部が圧縮流体から取り除かれる。
また,残部は,後述のように排気される。
当然ながら,上記陥没室200の壁部材質は,ノズル体100と同じものでも良いし,或いは,その内面にテフロン(登録商標)などの剥離材の被覆を施して,ミストによる壁面の汚れを防止する処理をする事が望ましい。
Further, a concavity that is located in the facing surface 102 of the nozzle body 100 and is upstream of the plate-like member T in the traveling direction W2 is located adjacent to the nozzle body 100 and away from the plate-like body T. A chamber 200 is formed. As shown in FIG. 7B, which shows the depression chamber 200 in a sectional side view, the depression chamber 200 includes a rear wall 200a attached to the upstream side surface in the plate member traveling direction of the nozzle body 100, and the rear wall. It is constituted by a space opened downwardly surrounded by a front wall 200b facing in parallel with 200a and left and right side walls 200c.
The left and right side walls 200c are partly (or entirely) cut away so that an exhaust chamber 202 and a depressed chamber 200, which will be described later, communicate with each other.
The depression chamber 200 is a space into which mist such as the rolling oil and cleaning oil blown up from the surface of the plate member by the compressed gas jetted from the nozzle body 100 can flow, and flows into these depression chambers 200. A part of the mist adhered to the wall surface of the depression chamber 200 is removed from the compressed fluid.
The remainder is exhausted as described later.
Of course, the wall material of the depression chamber 200 may be the same as that of the nozzle body 100, or the inner surface thereof is coated with a release material such as Teflon (registered trademark) to prevent the mist from contaminating the wall surface. It is desirable to perform processing.

更に,上記ノズル体100の板状部材走行方向上流側と下流側の端部には,図2,図6,図7に示すように,内部に永久磁石300を内蔵する磁石ホルダ302が各々1個づつ取り付けられている。この磁石の取り付け方向は,図に示すように各磁石の磁束が上記板状部材と交差する方向である。これによって磁石の磁力線を上記板状部材Tが切ることになり,板状部材Tとノズル体100との距離が振動によって変動することにより板状部材Tに渦電流が生じる。これが抵抗となって磁石300及びこれと一体となったノズル体100の圧縮空気噴出による板状部材の高周波振動がダンピングされる。
上記のような渦電流は,磁束密度が高いほど大きくなる。従って,適切なヨークを設けるなどして板状部材Tを横切る磁束の数を多くする工夫が必要である。
Further, at the upstream and downstream ends of the nozzle member 100 in the travel direction of the plate member, as shown in FIGS. 2, 6 and 7, magnet holders 302 each incorporating a permanent magnet 300 are respectively provided. It is attached one by one. The magnet is attached in the direction in which the magnetic flux of each magnet intersects the plate member as shown in the figure. Accordingly, the plate-like member T cuts the magnetic lines of force of the magnet, and an eddy current is generated in the plate-like member T when the distance between the plate-like member T and the nozzle body 100 varies due to vibration. This acts as a resistance, and the high frequency vibration of the plate-like member due to the compressed air ejection of the magnet 300 and the nozzle body 100 integrated therewith is damped.
The above eddy current increases as the magnetic flux density increases. Therefore, a device for increasing the number of magnetic fluxes traversing the plate-like member T by providing an appropriate yoke is required.

図14に示した実施形態では,磁石300が板状部材Tの片側のみに設けられているが,上記磁束数を多くするためには,図11(a)(c)に示すように,板状部材Tの両側に磁石300を配置する事が望ましい。この場合,図11(a)に示すように板状部材Tの両側にノズル体100を設けて,これに磁石をそれぞれは位置しても良いが,板状部材Tの裏面にはノズル体100を設けず,単に磁石のみを配置してもかまわない。このように板状部材の両側に磁石を設ける場合には,両磁石の対向する面における磁極が異なるように配置することで磁力線密度を増大させることが望ましい。
この実施形態では磁石300が,上記板状部材Tの走行方向に対して直角の方向に横長に配置されている。この方向に配置することで,ノズル体100の長さを短くできる長所がある。また,磁石300が板状部材Tの長手方向に配設されると,板状部材Tの長手方向の軸回りの振動が起きやすくなるので,このようなことを避けるためにも横方向に設けることが望ましい。
In the embodiment shown in FIG. 14, the magnet 300 is provided only on one side of the plate-like member T. However, in order to increase the number of magnetic fluxes, as shown in FIGS. It is desirable to arrange the magnets 300 on both sides of the shaped member T. In this case, as shown in FIG. 11 (a), nozzle bodies 100 may be provided on both sides of the plate-like member T, and magnets may be positioned on the nozzle bodies 100, respectively. It is possible to simply place magnets without providing When magnets are provided on both sides of the plate-like member as described above, it is desirable to increase the magnetic line density by arranging them so that the magnetic poles on the opposing surfaces of both magnets are different.
In this embodiment, the magnet 300 is disposed horizontally in a direction perpendicular to the traveling direction of the plate member T. By arranging in this direction, there is an advantage that the length of the nozzle body 100 can be shortened. Further, if the magnet 300 is disposed in the longitudinal direction of the plate member T, vibration around the longitudinal axis of the plate member T is likely to occur. It is desirable.

但し,長尺の磁石300は,図12(a)に示すように,その中央部で磁束密度が低下し,振動抑制効果が低下する。従って,磁石の長尺化を避けるために,上記磁石が,図12(b)に示されるように,上記磁性板状部材の走行方向に対して直角の方向に複数に分割されてなることが望ましい。このように分割することで,磁石の製造も容易になる。この場合,(b)に示すように,隣り合う磁石の極性を交互に違えることで,磁束密度が増加し,強いダンピングが期待される。また磁束が空間に発散されないように,板状部材Tとは反対側の磁石端部をコの字状のヨーク306で接続することも,磁束の漏れをなくし磁束密度を増加させる効果がある。   However, as shown in FIG. 12A, the long magnet 300 has a reduced magnetic flux density at the center thereof, and a vibration suppression effect is reduced. Therefore, in order to avoid lengthening the magnet, the magnet may be divided into a plurality of parts in a direction perpendicular to the traveling direction of the magnetic plate-like member as shown in FIG. desirable. By dividing in this way, the magnet can be easily manufactured. In this case, as shown in (b), by alternately changing the polarities of adjacent magnets, the magnetic flux density increases, and strong damping is expected. Further, connecting the magnet end opposite to the plate-like member T with a U-shaped yoke 306 so as not to diverge the magnetic flux into the space has the effect of eliminating magnetic flux leakage and increasing the magnetic flux density.

上記の磁石は,ノズル体100の噴射口101の板状部材走行方向に見てその上流部と下流部に設けることが望ましいが,もちろん図14に示すように,片側にのみ設けることも可能である。また,ノズル体100に偏った回転力を与えないように上下動のガイドとなっている前記スライドバー111の出来るだけ近くに配置することが望ましい。
この実施形態では,磁石300として永久磁石を採用しているが,これは,発火性の雰囲気で用いることを考えたものであり,発火性のない環境で用いるのであれば,図14(c)に示すように電磁石300aを採用することも出来るし,発火性の雰囲気で電磁石を用いるのであれば,防爆性を考慮することが望ましい。
The magnet is preferably provided in the upstream portion and the downstream portion of the nozzle body 100 in the direction of travel of the plate-like member of the injection port 101, but of course, it can be provided only on one side as shown in FIG. is there. In addition, it is desirable to arrange the nozzles 100 as close as possible to the slide bar 111 that serves as a guide for vertical movement so as not to apply a biased rotational force.
In this embodiment, a permanent magnet is employed as the magnet 300. However, this is intended to be used in an ignitable atmosphere, and if used in an environment that does not ignite, FIG. 14 (c). The electromagnet 300a can be employed as shown in FIG. 5 or if the electromagnet is used in an ignitable atmosphere, it is desirable to consider explosion resistance.

ここで,上述のように構成されたノズル体100に圧縮空気が供給された場合の上記ノズル体100の動作について説明する。上記供給口104から圧縮空気が供給されると,供給された圧縮空気は上記連通路105を通って各噴射口101から噴射される(図2(a)参照)。上記噴射口101から噴射された圧縮空気はその圧縮圧が一気に解き放たれて上記板状部材Tの上面T1に向かって略放射状に吹き付けられる(図2(b)参照)。
また,上記板状部材Tに吹き付けられた圧縮空気は,上記板状部材Tの上面T1に吹き付けられた後に,上記ノズル体100を上記板状部材Tから離間させようとする力,即ち,上記ノズル体100を移動方向W1の上方へ押し上げようとする押上力となって上記ノズル体100に作用する。
このように,上記ノズル体100に上記押上力が作用することにより上記ノズル体100が上記板状部材Tから浮上することになる。上記押上力により上記ノズル体100が浮上すると,上記ノズル体100の対向面102と上記板状部材Tとの間には隙間dが生じる。この隙間dには上記ノズル体100から噴射された空気圧による空気圧層が形成され,これにより,上記ノズル体100が上記板状部材Tから距離dだけ離間した位置で浮遊する。なお,本実施の形態例では,上記ノズル体100を上記板状部材Tの上面T1から距離d0だけ浮上させて,その位置で上記ノズル体100が浮遊するように圧縮空気の圧縮圧が調整されている。
Here, the operation of the nozzle body 100 when compressed air is supplied to the nozzle body 100 configured as described above will be described. When compressed air is supplied from the supply port 104, the supplied compressed air is injected from each injection port 101 through the communication path 105 (see FIG. 2A). The compressed air injected from the injection port 101 is released at a stretch and is blown substantially radially toward the upper surface T1 of the plate member T (see FIG. 2B).
The compressed air blown to the plate-like member T is blown onto the upper surface T1 of the plate-like member T, and then the force for separating the nozzle body 100 from the plate-like member T, that is, the above-mentioned The nozzle body 100 acts on the nozzle body 100 as an upward force that pushes the nozzle body 100 upward in the movement direction W1.
Thus, the nozzle body 100 floats from the plate-like member T when the push-up force acts on the nozzle body 100. When the nozzle body 100 is lifted by the lifting force, a gap d is generated between the opposing surface 102 of the nozzle body 100 and the plate member T. In the gap d, an air pressure layer is formed by the air pressure injected from the nozzle body 100, and the nozzle body 100 floats at a position separated from the plate member T by a distance d. Incidentally, in this embodiment, the nozzle member 100 is floated by a distance d 0 from the top surface T1 of the plate-like member T, the compression pressure of the compressed air as the nozzle body 100 is suspended at that position adjustment Has been.

このようして吹き付けられた圧縮空気の噴射圧によって,上記ノズル体100が浮遊させられると共に,上記板状部材Tの上面T1上に付着した圧延油や洗浄剤等の液体,屑片,汚れ等の付着物が剥離される。また,噴射された圧縮空気は上記溝106に沿って上記板状部材Tの搬送方向W2の上流側へ流されるため,剥離され,ミスト化された付着物はこの流れに乗って上記ノズル体100と上記板状部材Tの上面T1との隙間を通って上記搬送方向W2の上流側へ吹き飛ばされる。   The nozzle body 100 is floated by the jetting pressure of the compressed air thus blown, and liquid such as rolling oil and cleaning agent adhering to the upper surface T1 of the plate-like member T, debris, dirt, etc. The deposits are peeled off. Further, since the jetted compressed air flows along the groove 106 to the upstream side in the conveying direction W2 of the plate-like member T, the separated and misted adhering matter rides on this flow and flows into the nozzle body 100. Through the gap between the plate-like member T and the upper surface T1 of the plate member T.

上記のように圧延板などの板状部材T上の油分を噴射口101からの圧縮気体にて除去する場合,板状部材Tに垂直,あるいは斜め方向に圧縮空気を噴きつけ,板状部材Tに付着した油を吹き飛ばす。そのとき,圧縮空気の圧力変動により板状部材が振動を起こし,騒音,あるいは板破断の原因となる。また,この実施形態のようなノズル体100が浮動状に支持されている空気浮上ワイパー式の場合は,板状部材Tとノズル体100との間隔が0.1mm程度と狭いため,振動が生じると板状部材Tとノズル体100との間隔が変化し油切れが悪くなる。そのため,板状部材の振動を押さえる必要がある。そのために,上記磁束が上記板状部材Tと交差する磁石300がノズル体100に設けられている。   When the oil on the plate member T such as a rolled plate is removed with the compressed gas from the injection port 101 as described above, the compressed air is sprayed perpendicularly or obliquely to the plate member T, and the plate member T Blow off any oil that adheres to the surface. At that time, the plate-like member vibrates due to the pressure fluctuation of the compressed air, which causes noise or breakage of the plate. Further, in the case of the air floating wiper type in which the nozzle body 100 is supported in a floating manner as in this embodiment, vibration occurs because the distance between the plate-like member T and the nozzle body 100 is as narrow as about 0.1 mm. And the space | interval of the plate-shaped member T and the nozzle body 100 changes, and oil shortage worsens. Therefore, it is necessary to suppress the vibration of the plate member. For this purpose, the nozzle body 100 is provided with a magnet 300 in which the magnetic flux intersects the plate member T.

この場合,振動抑制原理を説明する図15に示すように,板状部材Tに対して板状部材が振動するのは,上記磁石300と板状部材Tとの距離が変化する方向である。この距離の変動に基づいて圧延板などの板状部材Tを貫通する磁束密度が変化し,板状部材Tに渦電流が流れる。板状部材Tには電気抵抗があるため,渦電流が熱エネルギーに変換され,エネルギーが消費される。この消費エネルギーが板状部材の振動を妨げるエネルギーとなる。すなわち,板状部材Tにダンピングが作用することになり,板状部材の高周波振動が抑制される。
前記したように,磁束密度が高いほど振動抑制効果は大きい。従って,磁束密度を高めるような磁石の配置が望ましい。そのため永久磁石を複数個に分割し,前記したように複数の磁石を並べて配置する。また,圧延板に対抗する磁石面が,NSNSと交互になるように配置することが望ましい。もし,板状部材Tに対抗する磁石300の極が同じなら図12(a)のように真ん中のほうで磁束密度が小さくなり,振動抑制効果が小さい。
図12(b)のように磁石の極がNSNSと交互になるように配置すると,隣り合った磁石同士に磁力線が発生し,板を通過する磁束密度が大きくなる。
In this case, as shown in FIG. 15 for explaining the vibration suppression principle, the plate member vibrates with respect to the plate member T in the direction in which the distance between the magnet 300 and the plate member T changes. Based on the variation in distance, the magnetic flux density penetrating the plate member T such as a rolled plate changes, and an eddy current flows through the plate member T. Since the plate member T has electrical resistance, the eddy current is converted into thermal energy and consumed. This consumed energy is energy that prevents vibration of the plate-like member. That is, damping acts on the plate-like member T, and high-frequency vibration of the plate-like member is suppressed.
As described above, the higher the magnetic flux density, the greater the vibration suppression effect. Therefore, it is desirable to arrange the magnets so as to increase the magnetic flux density. Therefore, the permanent magnet is divided into a plurality of pieces, and the plurality of magnets are arranged side by side as described above. Moreover, it is desirable to arrange so that the magnet surface that opposes the rolled plate is alternated with NSNS. If the poles of the magnet 300 opposed to the plate member T are the same, the magnetic flux density becomes smaller in the middle as shown in FIG. 12A, and the vibration suppressing effect is small.
If it arrange | positions so that the pole of a magnet may alternate with NSNS like FIG.12 (b), a magnetic force line will generate | occur | produce between adjacent magnets and the magnetic flux density which passes a board will become large.

図13は,磁石数と振動抑制効果の関係を実験により求めたグラフである。このように隙間一定(0.3mm)の場合は,交互に並べたほうが振動抑制効果が大きいことがわかる。また,磁石と板の間隔が小さいほど振動抑制効果が大きい。
上記のように磁石300(すなわちノズル体100)と板状部材Tの間隔が小さいほど振動抑制効果が大きい。空気浮上式ノズル体100体は板状部材Tとワイパーの間隔が0.1mmとい。従って,空気浮上式ノズル体100に磁石を取り付けると,振動抑制効果が大きくなり,付着物の除去斑防止に有効である。
FIG. 13 is a graph in which the relationship between the number of magnets and the vibration suppression effect is obtained by experiments. Thus, it can be seen that when the gap is constant (0.3 mm), the vibration suppression effect is greater when the gaps are arranged alternately. In addition, the smaller the gap between the magnet and the plate, the greater the vibration suppression effect.
As described above, the smaller the distance between the magnet 300 (that is, the nozzle body 100) and the plate member T, the greater the vibration suppressing effect. In the 100 air-floating nozzle body, the distance between the plate-like member T and the wiper is 0.1 mm. Therefore, when a magnet is attached to the air floating nozzle body 100, the vibration suppressing effect is increased, which is effective in preventing the deposits from being removed.

上記板状部材Tの上面T1との隙間を通って上記搬送方向W2の上流側へ吹き飛ばされた上記圧延油,洗浄油などのミストは,板状体走行方向上流側に形成された前記陥没室200に流入する。流入したミストは,上記陥没室200に,その左右端部に接続された排気室202に作用する負圧に基づいて,上記排気室202に流入し,排気室202に接続された図外の負圧源に吸引されて除去される。上記負圧源に接続された排気室202が,本発明における吸気源に接続された排気手段の一例である。   Mist such as the rolling oil and cleaning oil blown to the upstream side in the conveying direction W2 through the gap with the upper surface T1 of the plate-like member T is the depression chamber formed on the upstream side in the plate-like body running direction. 200. The mist that has flowed into the depression chamber 200 flows into the exhaust chamber 202 based on the negative pressure acting on the exhaust chamber 202 connected to the left and right ends of the depression chamber 200 and is connected to the exhaust chamber 202. It is sucked and removed by the pressure source. The exhaust chamber 202 connected to the negative pressure source is an example of exhaust means connected to the intake source in the present invention.

このように上記ミストは,ノズル体100の板状体走行方向上流側に設けられた陥没室200に吸い込まれて除去されるので,ノズル体100の板状体走行方向上流部に停滞して,密度を増加させることがなく,従って圧延油などが,板状部材表面に残るという問題が生じない。
上記のように陥没室200への吸引によって圧延油などのミストが除去されるが,陥没室200が1列(段)だけであると,上記陥没室200で除去し切れなかった上記のようなミストの一部は,さらに上流部に流出することになる。
このようなさらに上流部に流れ出たミストを捕捉するために,陥没室200を図2(c)に示すように,上記板状部材Tの走行方向に複数形成し,板状体走行方向下流側の陥没室から更に上流方向へ溢れ出たミストを,更に上流側の陥没室200で捕捉することが望ましい。このような複数段の陥没室200によって,陥没室から溢れ出るミストの量が減少し,ミストの捕捉率が向上する。
As described above, the mist is sucked into and removed from the depression chamber 200 provided on the upstream side in the plate body traveling direction of the nozzle body 100. The density is not increased, and therefore, there is no problem that the rolling oil remains on the surface of the plate member.
As described above, mist such as rolling oil is removed by suction into the depression chamber 200. However, if the depression chamber 200 is only one row (stage), the mist chamber 200 cannot be removed in the depression chamber 200 as described above. Part of the mist will flow further upstream.
In order to capture such mist flowing further upstream, a plurality of depression chambers 200 are formed in the traveling direction of the plate member T as shown in FIG. It is desirable to capture the mist overflowing further upstream from the depression chamber 200 in the depression chamber 200 further upstream. By such a multi-stage depression chamber 200, the amount of mist overflowing from the depression chamber is reduced, and the mist capture rate is improved.

上記のような陥没室200の数は,3段或いは4段という具合に多いほうがミストとの除去効率という面では有利であるが,ある程度の段数以上になれば効率は一定に収束するので,多ければよいというわけではない。
上記のように陥没室を複数設ける場合,上流側の陥没室200の板状部材走行方向の下流側の壁部(後壁200a)に,流入したミストを含む空気を板状部材側方に設けた前記排気室の方向へ流す傾斜面204aを図2(c)のように形成することが望ましい。図2(c)に記載した傾斜面204は陥没室中央部中心として左右に対称に傾斜する形となっている。これは,左右にそれぞれ排気室202が設けられているからであって,図6(b)に示すように排気室202が陥没室200の片側にのみ設けられている場合には,上記排気室202の設けられている側に向けて後退するように傾斜する傾斜面204bを設けることが望ましい。
The number of depression chambers 200 as described above is more advantageous in terms of removal efficiency with mist, such as three or four stages. However, if the number of depression chambers 200 exceeds a certain number of stages, the efficiency converges to a certain level. That's not to say.
When a plurality of depression chambers are provided as described above, air including mist that has flowed in is provided on the side of the plate-like member on the downstream wall portion (rear wall 200a) in the plate-like member traveling direction of the depression chamber 200 on the upstream side. Further, it is desirable to form an inclined surface 204a that flows in the direction of the exhaust chamber as shown in FIG. The inclined surface 204 shown in FIG. 2 (c) is symmetrically inclined left and right with respect to the center of the depressed chamber. This is because the exhaust chambers 202 are provided on the left and right, respectively, and when the exhaust chamber 202 is provided only on one side of the depressed chamber 200 as shown in FIG. It is desirable to provide an inclined surface 204b that is inclined so as to recede toward the side where 202 is provided.

上記のように,陥没室下流側の壁面(前記後壁200a)を,排気室202がある側の陥没室端部(側壁200c)に向けて後退させる,すなわち,陥没室の板状部材走行方向下流側の壁面を,板状部材端部側に向かうにつれて,板状部材走行方向下流側に向けて傾斜して形成することで,陥没室200にたまったミストを上記傾斜壁面204に沿って流し,排気室202に誘導することで,ミストの除去効率が向上することになる。   As described above, the wall surface on the downstream side of the depression chamber (the rear wall 200a) is retracted toward the depression chamber end portion (side wall 200c) on the side where the exhaust chamber 202 is located, that is, the plate member traveling direction of the depression chamber The mist accumulated in the depression chamber 200 is caused to flow along the inclined wall surface 204 by forming the downstream wall surface to be inclined toward the downstream side in the plate member traveling direction as it goes toward the end of the plate member. , By guiding to the exhaust chamber 202, the mist removal efficiency is improved.

ここで,上記ノズル体100に作用する力F(縦軸,以下,作用力Fという)と,上記ノズル体100及び上記板状部材Tの上面T1間の離間距離d(横軸)との関係について図3及び図5を用いて説明する。ここに,図3は上記作用力Fと上記離間距離dとの関係を示す図であり,図5は噴射口101の近傍の圧力分布を示す図であって,(a)は離間距離dが距離d0のときの圧力分布,(b)は離間距離dが距離d1(>d0)のときの圧力分布,(c)は離間距離dが距離d2(<d0)のときの圧力分布を示す。なお,ここでは,上記作用力Fには,圧縮空気の噴射圧により上記ノズル体100を移動方向W1の上方へ押し上げようとする押上力と,後述するように上記ノズル体100を上記板状部材Tへ吸着させようとする吸着力とが含まれるものとし,上記ノズル体100の重力を無視して説明する。 Here, the relationship between the force F acting on the nozzle body 100 (vertical axis, hereinafter referred to as acting force F) and the separation distance d (horizontal axis) between the nozzle body 100 and the upper surface T1 of the plate member T. Will be described with reference to FIGS. 3 is a diagram showing the relationship between the acting force F and the separation distance d. FIG. 5 is a diagram showing the pressure distribution in the vicinity of the injection port 101. FIG. Pressure distribution when the distance is d 0 , (b) is the pressure distribution when the separation distance d is the distance d 1 (> d 0 ), and (c) is when the separation distance d is the distance d 2 (<d 0 ). The pressure distribution is shown. Here, the acting force F includes a push-up force that pushes up the nozzle body 100 upward in the moving direction W1 by the injection pressure of compressed air, and the nozzle body 100 as the plate-like member as described later. It is assumed that the attraction force to be attracted to T is included and the gravity of the nozzle body 100 is ignored.

図3に示すグラフから理解できるように,上記離間距離dが上記距離d0のときは,上記作用力Fは0となる。このとき,図5(a)に示すように,圧縮空気の噴射圧により上記ノズル体100を押し上げようとする押上圧P1の積分値(即ち,押上げ力)と,上記ノズル体100を上記板状部材Tへ吸着させようとする吸着圧P2の積分値(即ち,吸着力)とがバランスよく均衡した関係が維持されることにより,上記距離d0離れた位置で上記ノズル体100が浮遊している状態にある。なお,上記吸着圧P2は,上記ノズル体100と上記板状部材Tとの隙間から圧縮空気が流れ出るときに生じる負圧であり,この負圧により上記吸着力が生じる。 As can be understood from the graph shown in FIG. 3, when the distance d is the distance d 0 , the acting force F is zero. At this time, as shown in FIG. 5A, the integral value (ie, the pushing force) of the push-up pressure P 1 for pushing up the nozzle body 100 by the injection pressure of compressed air and the nozzle body 100 are By maintaining a well-balanced relationship with the integrated value (ie, adsorption force) of the adsorption pressure P 2 to be adsorbed on the plate-like member T, the nozzle body 100 is positioned at the position separated by the distance d 0. It is in a floating state. The adsorption pressure P 2 is a negative pressure generated when compressed air flows out from the gap between the nozzle body 100 and the plate member T, and the negative pressure generates the adsorption force.

ここで,上記板状部材Tの圧延時或いは搬送時に発生する振動等により上記板状部材Tの上面T1が下方向へ移動して上記離間距離dが距離d0より大きい距離d1(>d0)となった場合は,上記離間距離dの空間内における圧縮空気の流れを妨げようとする抵抗が小さくなり,圧縮空気が逃げ易くなって,流れ出る空気の流速が増加する。そのため,図5(b)に示すように上記吸着圧P2が大きくなって上記吸着力が上記押上力に勝り,この吸着力によって上記ノズル体100が下方へ移動し,離間距離dが距離d1から距離d0に縮められる。従って,上記板状部材Tの上面T1が下方向へ移動した場合でも,すぐに上記ノズル体100は上記均衡状態に復元され,上記距離d0離れた位置で浮遊することになる。
一方,上記離間距離dが距離d0より小さい距離d2(<d0)となった場合は,上述とは逆に,上記離間距離dの空間内における圧縮空気の流れを妨げようとする抵抗が大きくなり,圧縮空気が逃げ難くなって,流れ出る空気の流速が減少する。そのため,図5(c)に示すように上記吸着圧P2が小さくなって上記押上力が上記吸着力に勝るため,この押上力によって上記ノズル体100が上方へ移動し,離間距離dが距離d2から距離d0に広げられる。従って,この場合でも,すぐに上記ノズル体100は上記均衡状態に復元される。
Here, the upper surface T1 of the plate member T is moved downward due to vibration or the like that occurs during rolling or conveyance of the plate member T, and the distance d 1 (> d) is greater than the distance d 0. 0 ), the resistance to block the flow of compressed air in the space of the separation distance d is reduced, the compressed air is easily escaped, and the flow velocity of the flowing air increases. Therefore, larger is the adsorption pressure P 2 as shown in FIG. 5 (b) better than the above pushing force the suction force, the nozzle body 100 is moved downward by the suction force, the distance d is the distance d The distance is reduced from 1 to the distance d 0 . Therefore, even when the top surface T1 of the plate-like member T moves downward, the nozzle body 100 immediately restored to the equilibrium state, it would float above the distance d 0 away.
On the other hand, when the distance d becomes a distance d 0 is smaller than the distance d 2 (<d 0), in contrast to the above, when you to obstruct the flow of compressed air in the space of the distance d resistor Becomes larger, the compressed air becomes difficult to escape, and the flow velocity of the flowing air decreases. Therefore, since the push-up force is superior to the suction force becomes smaller the suction pressure P 2 as shown in FIG. 5 (c), the nozzle body 100 is moved upward by the push-up force, the distance d is the distance The distance is extended from d 2 to a distance d 0 . Accordingly, even in this case, the nozzle body 100 is immediately restored to the equilibrium state.

このように,本付着物除去装置Xにおいては,上記板状部材Tの上面T1が上下した場合であっても,その上下に追従して上記ノズル体100が上下移動するため,上記板状部材Tの上面T1から上記ノズル体100までの離間距離dが常に略一定に維持されることになる。すなわち,たとえ上記板状部材Tが振動した場合であっても,常に一定の離間距離dが維持されるため,上記離間距離dを限りなく0に近い距離d0(例えば0.1mm)に設定したとしても,ノズル体100が上記板状部材Tに接触することはなく,そのため上記板状部材Tが損傷することもない。
ここで,上記板状部材Tが急激に上下変動した場合は,この上下変動に追従して上記ノズル体100も急激に上下変動するため,上記ノズル体100が上下方向へオーバーシュート或いはアンダーシュートを起こすおそれがある。また,このオーバーシュート及びアンダーシュートが周期的に起こり上記ノズル体100がハンチングするおそれもある。従って,ノズル体100は,上記オーバーシュートやハンチング等を防止するため,バネ等の弾性部材によって弾性的に支持することが望ましい。具体的には,前記スライドバー111につるまきバネを介在させる手法や,オイルダンパー等の緩衝部材で構成されたスライドバー111を用いる手法等が考えられる。
Thus, in the present deposit removing apparatus X, even when the upper surface T1 of the plate member T moves up and down, the nozzle body 100 moves up and down following the upper and lower sides, so that the plate member The distance d from the upper surface T1 of T to the nozzle body 100 is always maintained substantially constant. That is, even when the plate-like member T vibrates, a constant separation distance d is always maintained, so the separation distance d is set to a distance d 0 (for example, 0.1 mm) that is as close to 0 as possible. Even if it does, the nozzle body 100 does not contact the said plate-shaped member T, Therefore, the said plate-shaped member T is not damaged.
Here, when the plate-shaped member T suddenly fluctuates up and down, the nozzle body 100 also fluctuates up and down abruptly following the up-and-down fluctuation, so the nozzle body 100 overshoots or undershoots up and down. There is a risk of it happening. Further, the overshoot and undershoot may occur periodically, and the nozzle body 100 may be hunted. Therefore, it is desirable that the nozzle body 100 be elastically supported by an elastic member such as a spring in order to prevent the above-described overshoot and hunting. Specifically, a method of interposing a helical spring in the slide bar 111, a method of using the slide bar 111 formed of a buffer member such as an oil damper, and the like can be considered.

ところで,上記ノズル体100の対向面102に形成された上記噴射口101の開口面積及び上記対向面102の面積は,上記ノズル体100を浮上させる上で重要な要素となる。その理由を図5を用いて以下に説明する。なお,ここでも便宜上,上記ノズル体100の重量を無視して説明する。
図5(b)に示すように,離間距離dが大きくなると,上述したように,上記離間距離dの空間内における圧縮空気の流れを妨げようとする抵抗が小さくなり,外部へ流れ出る圧縮空気の流量が増加する。そのため,上記ノズル体100の対向面102(特に上記噴射口101の周辺部分)に対して上記吸着圧P2(負圧)が発生する。この吸着圧P2は,上記ノズル体100を上記板状部材Tに吸着させようとする力となって作用する。ここで,圧縮空気の噴射圧により上記ノズル体100を押し上げようとする押上圧P1(>0),上記吸着圧P2(<0),すべての噴射口101の開口面積の合計値をS1,上記ノズル体100の対向面102における上記吸着圧P2が作用する面積の合計値をS2とすると,(P1×S1)+(P2×S2)<0の条件を満たす場合は,ノズル体100を上方へ押し上げようとする押上力よりも,上記板状部材Tに吸着しようとする吸着力が勝るため,上記ノズル体100は下方へ引き下げられることになる。
従って,離間距離dの大きさにかかわらず,距離d0を維持した状態で上記ノズル体100を浮遊させるには,P1×S1>P2×S2の条件を満足すれば足りると考えられる。ここで,噴射圧P1と平均圧P2とは相関関係にあるため,上記条件を満足するためには面積S1及びS2を変動値として捉えて上記条件を満たすようにすればよい。
一方,板状部材Tの付着物は上記ノズル体100の対向面102を流れる圧縮空気によって除去されるため,上記面積S2を面積S1と較べてあまりにも小さくすると付着物が除去されにくくなり除去効果が低下することになる。
By the way, the opening area of the injection port 101 formed on the facing surface 102 of the nozzle body 100 and the area of the facing surface 102 are important factors for floating the nozzle body 100. The reason will be described below with reference to FIG. Here, for the sake of convenience, the description will be made ignoring the weight of the nozzle body 100.
As shown in FIG. 5B, when the separation distance d is increased, as described above, the resistance to block the flow of compressed air in the space of the separation distance d is reduced, and the compressed air flowing out to the outside is reduced. The flow rate increases. Therefore, the adsorption pressure P 2 (negative pressure) is generated on the facing surface 102 of the nozzle body 100 (particularly the peripheral portion of the injection port 101). The suction pressure P2 acts as a force for attracting the nozzle body 100 to the plate member T. Here, the total value of the push-up pressure P 1 (> 0), the adsorption pressure P 2 (<0), and the opening area of all the injection ports 101 for pushing up the nozzle body 100 by the injection pressure of the compressed air is S 1. when the total value of the area above the suction pressure P2 in the opposing surface 102 of the nozzle body 100 acts to S 2, if (P 1 × S 1) + (P2 × S 2) <0 condition is satisfied, Since the attraction force to be attracted to the plate member T is superior to the push-up force to push the nozzle body 100 upward, the nozzle body 100 is pulled down.
Accordingly, it is considered that it is sufficient to satisfy the condition of P 1 × S 1 > P 2 × S 2 in order to float the nozzle body 100 while maintaining the distance d 0 regardless of the size of the separation distance d. It is done. Here, since the injection pressure P 1 and the average pressure P 2 have a correlation, in order to satisfy the above condition, the areas S 1 and S 2 may be regarded as fluctuation values so as to satisfy the above condition.
On the other hand, fouling of the plate-like member T to be removed by the compressed air flowing through the opposite surface 102 of the nozzle body 100, hardly deposits are removed with reduced too as compared with the area S 1 of the area S 2 The removal effect will be reduced.

そこで,本出願の発明者は,ノズル体100を上記距離d0を維持した状態で浮遊させる条件と,上記除去効果を高めるための条件との両方を満足する条件として,
1<2S2…(1)
が最適であるということを実験,研究を繰り返し行うことにより見出している。ここで,上記ノズル体100の対向面102の面積をSとすると,この面積Sは,S≒S1+S2と近似することができるため,上式(1)は以下のように変形することができる。
3S1<2S…(2)
即ち,上記噴射口101それぞれの開口部の面積の合計値が上記対向面102の面積の略3分の2未満となるように上記噴射口101が形成されていれば,圧縮空気の圧力に影響されずに上記押上力と上記吸着力とのバランスがとり易くなり,上記ノズル体100を板状部材Tの振動等に追従して安定的に浮遊させると共に,充分な除去効果を得ることができる。
Therefore, the inventor of the present application as a condition satisfying both the condition for floating the nozzle body 100 while maintaining the distance d 0 and the condition for enhancing the removal effect.
S 1 <2S 2 (1)
Has been found through repeated experiments and research. Here, when the area of the facing surface 102 of the nozzle body 100 is S, this area S can be approximated as S≈S 1 + S 2, and thus the above equation (1) can be modified as follows. Can do.
3S 1 <2S (2)
That is, if the injection port 101 is formed such that the total area of the openings of the injection ports 101 is less than about two-thirds of the area of the facing surface 102, the pressure of the compressed air is affected. Accordingly, it is easy to balance the push-up force and the suction force, and the nozzle body 100 can be stably floated following the vibration of the plate-like member T, and a sufficient removal effect can be obtained. .

ところで,本実施の形態例では上記距離d0が比較的0に近い0.1mmとなるようにノズル体100に供給される圧縮空気圧が調整されている。このように,離間距離dを0に近い値に設定する理由を以下に述べる。
図4に示すように,板状部材Tの上面T1に対して垂直方向に圧縮空気が吹き付けられて,上記圧縮空気が上記板状部材Tに衝突する範囲の面積(図4中の破線で囲まれた面積)をW,上記板状部材Tに圧縮空気が衝突するまでの圧縮空気の流速(離間距離dにおける平均流速)をVとすると,WV2の値が大きいほど,板状部材Tの上面T1上の付着物を除去する力が大きいと考えられる。ここで,上記ノズル体100の噴射口101から噴射される圧縮空気の流量をQとすると,Q≒WVと近似することができるため,
WV2≒QV…(3)
と表わすことができる。ここで,噴射される流量Qが一定の場合は,上式(3)より,流速Vが大きいほど付着物を除去する力が大きいということは容易に理解できる。
一般に,ノズル体100の噴射口101から圧縮空気が噴射されると,その圧縮圧が解放されて圧縮空気が放射状に吹き出されるため,流速Vは噴射口101から離れるに従って低下する。また,上記離間距離dの空間に介在する大気も抵抗となって流速Vを低下させる要因となる。従って,流量Qが一定の場合は,離間距離dが小さいほど,上記流速Vは大きくなるため,上記付着物を除去する力が大きくなる。このような理由により,本実施の形態例では上記距離d0が比較的0に近い値0.1mmとなるようにノズル体100に供給される圧縮空気圧を設定している。
By the way, in this embodiment, the compressed air pressure supplied to the nozzle body 100 is adjusted so that the distance d 0 is 0.1 mm which is relatively close to 0. The reason why the separation distance d is set to a value close to 0 will be described below.
As shown in FIG. 4, the area of the range in which the compressed air is blown in the direction perpendicular to the upper surface T1 of the plate member T and the compressed air collides with the plate member T (enclosed by the broken line in FIG. 4). ), And W is the flow velocity of compressed air until the compressed air collides with the plate member T (average flow velocity at the separation distance d), the larger the value of WV 2 , It is thought that the force which removes the deposit | attachment on the upper surface T1 is large. Here, if the flow rate of the compressed air injected from the injection port 101 of the nozzle body 100 is Q, it can be approximated as Q≈WV.
WV 2 ≈QV (3)
Can be expressed as Here, when the flow rate Q to be injected is constant, it can be easily understood from the above formula (3) that the larger the flow velocity V, the greater the force for removing deposits.
In general, when compressed air is injected from the injection port 101 of the nozzle body 100, the compressed pressure is released and the compressed air is blown radially, so that the flow velocity V decreases as the distance from the injection port 101 increases. In addition, the atmosphere present in the space of the separation distance d becomes a resistance and causes the flow velocity V to decrease. Therefore, when the flow rate Q is constant, the smaller the separation distance d is, the larger the flow velocity V becomes, so that the force for removing the deposit increases. For this reason, in this embodiment, the compressed air pressure supplied to the nozzle body 100 is set so that the distance d 0 is a value that is relatively close to 0, 0.1 mm.

次に,図6を用いて,本発明の第1の実施例に係る付着物除去装置X1について説明する。
この実施例における付着物除去装置X1が上記実施の形態における付着物除去装置Xと異なるところは,図6に示されるように,前記ノズル体100に代えて,板状部材Tの上面T1に対向する対向面102に溝107が設けられたノズル体100aを用いる点にある。なお,上述の実施の形態の構成要素と同一の構成要素については上述の実施の形態と同符号を付してその説明を省略する。ここに,図6(a)は上記ノズル体100aの長手方向(図6の左右方向)の鉛直断面を示す断面模式図であり,(b)は(a)の矢印Bからみた上記ノズル体100aの模式図である。図6中には前記ノズル体100に形成された溝106(図2参照)は図示されていないが,上記ノズル体100aは上記溝106が形成されたものであってもかまわない。
図6に示すように,上記溝107は,上記板状部材Tの搬送方向W2(図6(b)参照)に直交する方向に4つの噴射口101それぞれを連通するよう形成されている。これにより,例えば上記噴射口101が少数であっても,4つの噴射口101から噴射された圧縮空気を上記板状部材Tの上面T1の幅方向全域に均等に噴射させることが可能となる。
Next, the deposit removal apparatus X1 according to the first embodiment of the present invention will be described with reference to FIG.
The deposit removing device X1 in this example is different from the deposit removing device X in the above embodiment in that it faces the upper surface T1 of the plate member T instead of the nozzle body 100 as shown in FIG. The nozzle body 100a in which the groove 107 is provided on the facing surface 102 is used. Note that the same components as those of the above-described embodiment are denoted by the same reference numerals as those of the above-described embodiment, and description thereof is omitted. Here, FIG. 6A is a schematic cross-sectional view showing a vertical cross section in the longitudinal direction of the nozzle body 100a (the left-right direction in FIG. 6), and FIG. 6B is the nozzle body 100a viewed from the arrow B in FIG. FIG. Although the groove 106 (see FIG. 2) formed in the nozzle body 100 is not shown in FIG. 6, the nozzle body 100a may have the groove 106 formed therein.
As shown in FIG. 6, the groove 107 is formed to communicate with each of the four injection ports 101 in a direction orthogonal to the conveying direction W <b> 2 of the plate-like member T (see FIG. 6B). Thereby, for example, even if the number of the injection ports 101 is small, the compressed air injected from the four injection ports 101 can be evenly injected over the entire width direction of the upper surface T1 of the plate member T.

続いて,図7を用いて,本発明の第2の実施例に係る付着物除去装置X2について説明する。
この実施例では,前記ノズル体100に代えて図7に示されるノズル体100bが用いられる。上記付着物除去装置X2が具備するノズル体100bは,その対向面102に,板状部材Tの搬送方向W2(図7(a)参照)及びノズル体100bの移動方向W1(図7(b)参照)と略直交する方向W3に直列に4つの噴射口101が配列されており,更に,上記直列に配列された4つの噴射口を1組とする噴射口列101aと略同じ噴射口列101bが上記方向W3に並列に所定間隔を隔てて上記方向W2の下流側に配列されている。このように上記噴射口列101a,101bが並列に配列されることにより,上記噴射口列101aでは除去できなかった付着物が上記板状部材Tに残存した場合でも,上記板状部材Tの搬送方向W2下流側に配列された上記噴射口列101bによって付着物の除去処理が行われるため,付着物の除去効果がより一層向上され得る。なお,この実施例では,上記したように2列の噴射口列(101a,101b)が形成されたノズル体100bについて例示したが,特に2列に限定されることはない。
また,上記ノズル体100bには,上記板状部材Tの搬送方向W2及び上記ノズル体100bの移動方向W1と略直交する方向W3に長い開口部を有する平面ノズル108が形成されている。このような平面ノズル108が形成されることにより,圧縮空気を上記板状部材Tの上面T1の幅方向全域に均等に噴射させることが可能となる。
ここで,上述した噴射口101はいずれも上記ノズル体100,100a等をその移動方向W1に移動させるために上記板状部材Tに対して略垂直に圧縮空気を噴射するように形成されている。しかし,上記板状部材Tに垂直に噴射された圧縮空気は専ら付着物を剥離するよう作用するが,剥離した付着物を板状部材Tの搬送方向W2上流側へ吹き飛ばす作用は少ない。もちろん,上記付着物除去装置X2には,上記噴射口101から噴射された圧縮空気を上記板状部材Tの搬送方向上流側へ導く溝106が形成されているが,この溝106を流れる空気流は上記噴射口101から噴射された圧縮空気の一部を利用したものであるため,剥離した付着物を搬送方向W2上流側へ吹き飛ばす作用はさほど大きくない。また,噴射した圧縮空気の一部が上記溝106を流れるため,付着物を剥離させる力が低減されることにもなる。そのため,この実施例では,図7(b)に示すように,上記板状部材Tの搬送方向上流側に圧縮空気を噴射させるべく,上記平面ノズル108に傾斜角がつけられている。
Subsequently, the deposit removing apparatus X2 according to the second embodiment of the present invention will be described with reference to FIG.
In this embodiment, a nozzle body 100 b shown in FIG. 7 is used in place of the nozzle body 100. The nozzle body 100b included in the deposit removing device X2 has a conveying direction W2 (see FIG. 7A) of the plate-like member T and a moving direction W1 of the nozzle body 100b (see FIG. 7B) on the opposite surface 102. The four injection ports 101 are arranged in series in a direction W3 substantially orthogonal to the reference), and substantially the same injection port row 101b as the injection port row 101a including the four injection ports arranged in series. Are arranged on the downstream side of the direction W2 with a predetermined interval in parallel with the direction W3. By arranging the ejection port arrays 101a and 101b in parallel as described above, even if the deposits that could not be removed by the ejection port array 101a remain on the plate member T, the transport of the plate member T is performed. Since the deposit removal process is performed by the ejection port array 101b arranged on the downstream side in the direction W2, the deposit removal effect can be further improved. In this embodiment, the nozzle body 100b in which the two injection nozzle arrays (101a, 101b) are formed as described above is illustrated, but the present invention is not limited to two.
Further, the nozzle body 100b is formed with a flat nozzle 108 having a long opening in the transport direction W2 of the plate member T and the direction W3 substantially orthogonal to the movement direction W1 of the nozzle body 100b. By forming such a planar nozzle 108, it becomes possible to uniformly inject compressed air over the entire width direction of the upper surface T1 of the plate member T.
Here, each of the injection ports 101 described above is formed to inject compressed air substantially perpendicularly to the plate member T in order to move the nozzle bodies 100, 100a and the like in the moving direction W1. . However, the compressed air jetted perpendicularly to the plate-like member T acts exclusively to peel off the deposits, but there is little action to blow off the peeled deposits upstream in the transport direction W2 of the plate-like member T. Of course, the deposit removing device X2 is formed with a groove 106 for guiding the compressed air ejected from the ejection port 101 to the upstream side in the transport direction of the plate member T. Since a part of the compressed air jetted from the jet port 101 is used, the action of blowing off the separated deposits upstream in the transport direction W2 is not so great. In addition, since a part of the jetted compressed air flows through the groove 106, the force for separating the deposits can be reduced. Therefore, in this embodiment, as shown in FIG. 7B, the flat nozzle 108 is inclined so as to inject compressed air to the upstream side of the plate member T in the conveying direction.

また,上記ノズル体100bには,上記噴射口101から噴射され,上記対向面102と上記板状部材Tとの間の空間を流れる空気を滞留させる空気溜まり109a(気体溜まりの一例に相当)が形成されている。これは,剥離された付着物を効率よく取り除くために,上記対向面102側に剥離された付着物を有する空気を溜めるためのものである。また,上記対向面102とは逆の面103側には上記空気溜まり109a内の空気を外部に逃がすために,上記空気溜まり109aを外部へ導く空気逃がし孔109b(連通孔の一例に相当)が形成されている。
上記空気溜まり109a及び空気逃がし孔109bが無ければ,圧縮空気の噴射により剥ぎ取られた付着物が上記対向面102に衝突して再付着し,上記噴射口101などが付着物で詰まったり,吹き飛ばされた付着物が上記板状部材Tに再付着するという問題が生じるおそれがあるが,本実施例では,上記空気溜まり109a及び空気逃がし孔109bが設けられているため,剥がされた付着物を含む空気が上記空気溜まり109aに滞留し,その滞留した空気が上記空気逃がし孔109bを通って外部へ押し出されるようにして排出される。そのため,上記問題が軽減される。
なお,上記空気逃がし孔109bに配管やフレキシブルホースなどで接続されたブロアファン(吸気手段の一例に相当)を配設してもよい。上記ブロアファンを駆動させて,上記空気逃がし孔109bから上記空気溜まり190a内の空気を吸引するようにすれば,付着物を含む空気をより効率よく排出することが可能となる。
The nozzle body 100b has an air reservoir 109a (corresponding to an example of a gas reservoir) that retains air that is injected from the injection port 101 and flows through the space between the facing surface 102 and the plate member T. Is formed. This is for accumulating the air having the separated deposit on the facing surface 102 side in order to efficiently remove the separated deposit. Further, an air escape hole 109b (corresponding to an example of a communication hole) that guides the air reservoir 109a to the outside is provided on the surface 103 side opposite to the facing surface 102 in order to release the air in the air reservoir 109a to the outside. Is formed.
If the air reservoir 109a and the air escape hole 109b are not present, the deposits peeled off by the jet of compressed air collide with the opposing surface 102 and reattach, and the injection port 101 is clogged with the deposits or blown away. However, in this embodiment, since the air reservoir 109a and the air escape hole 109b are provided, the adhered matter that has been peeled off is likely to be reattached to the plate member T. The contained air stays in the air reservoir 109a, and the staying air is discharged so as to be pushed out through the air escape hole 109b. Therefore, the above problem is reduced.
A blower fan (corresponding to an example of an intake means) connected to the air escape hole 109b by a pipe or a flexible hose may be provided. If the blower fan is driven to suck the air in the air reservoir 190a from the air escape hole 109b, it is possible to discharge the air containing the deposits more efficiently.

次に,図8のブロック図を用いて,本発明の第3の実施例について説明する。この実施例に係る付着物除去装置X3は,ノズル体100b(第2の実施例,図7参照)に設けられた上記空気逃がし孔109bと,吸気手段の一例であるブロアファン121とを接続する管路に,上記空気逃がし孔190bから排出された空気内に含まれる液状或いは霧状の圧延油(液状付着物の一例)を空気と分離して装置外に設けられたオイルタンク130などに回収する油分離機120(付着物分離回収手段の一例)と,分離された圧延油をオイルタンク130に導くイジェクタ122とを備えて構成されている。なお,本付着物除去装置X3の他の構成要素については上述の第2の実施例に係る付着物除去装置X2の構成と同様であるため,ここでは他の構成要素の説明を省略する。   Next, a third embodiment of the present invention will be described with reference to the block diagram of FIG. The deposit removing device X3 according to this embodiment connects the air escape hole 109b provided in the nozzle body 100b (see the second embodiment, FIG. 7) and a blower fan 121 which is an example of an intake means. Liquid or mist-like rolling oil (an example of liquid deposits) contained in the air discharged from the air escape hole 190b is separated from the air and collected in an oil tank 130 provided outside the apparatus. And an ejector 122 that guides the separated rolling oil to the oil tank 130. The other components of the deposit removal apparatus X3 are the same as the configuration of the deposit removal apparatus X2 according to the second embodiment described above, and the description of the other components is omitted here.

上記油分離機120としては種々のものが考えられるが,ここでは,空気から圧延油のみを分離するオイルフィルタ120aが内部に配設され,上記オイルフィルタ120aにより分離された圧延油を貯留するドレン孔120c付きのドレン層120bを有する装置を例示する。
上記イジェクタ122は,上記ドレン孔120cに連結されており,外部から供給される圧縮空気を上記イジェクタ122で還流させることにより上記イジェクタ122内部で生じる負圧を利用して,上記ドレン層120bから圧延油を吸引してオイルタンク130へ導くものである。上記ブロア121の運転中は,上記上記油分離機120では,ノズル体100bからオイルフィルタ120aを通ってブロア121へ抜ける流路に沿って空気が流れるため,その空気流により生じる負圧が原因となって上記ドレン層120bの圧延油が上記ドレン孔120cから排出されにくくなるが,本付着物除去装置X3には上記イジェクタ122が設けられているため,上記ブロア121の運転中であっても,上記圧延油を強制的に排出させることが可能となる。
Various oil separators 120 are conceivable. Here, an oil filter 120a for separating only the rolling oil from the air is disposed inside, and a drain for storing the rolling oil separated by the oil filter 120a is stored. The apparatus which has the drain layer 120b with the hole 120c is illustrated.
The ejector 122 is connected to the drain hole 120c, and is rolled from the drain layer 120b using negative pressure generated inside the ejector 122 when the compressed air supplied from the outside is recirculated by the ejector 122. Oil is sucked and guided to the oil tank 130. During the operation of the blower 121, in the oil separator 120, air flows along the flow path from the nozzle body 100 b through the oil filter 120 a to the blower 121, which is caused by the negative pressure generated by the air flow. Thus, the rolling oil of the drain layer 120b is difficult to be discharged from the drain hole 120c. However, since the deposit removing device X3 is provided with the ejector 122, even when the blower 121 is in operation, It becomes possible to forcibly discharge the rolling oil.

このように構成された本付着物除去装置X3では,上記空気逃がし孔190bから排出された空気が上記油分離機120に送り込まれると,上記オイルフィルタ120aによって圧延油が分離される。そして,圧延油が分離された空気は,上記ブロアファン121により上記油分離機120から吸い出されて外部に排出される。一方,上記オイルフィルタ120aにより分離された圧延油は,上記ドレン層120bに貯留される。そして,上記ドレン層120bに溜まった圧延油は,上記イジェクタ122によって上記ドレン孔120cから吸い出されて,上記オイルタンク130へ向けて排出される。
なお,上記イジェクタ122へ圧縮空気を常時供給すると,ドレン層120bの圧延油が全て排出された場合は,上記ドレン孔120cから空気が排出されてしまい,圧延油の分離効率が低下だけでなく,ブロア121が高負荷となるというおそれがある。そのため,間欠的に,即ち,所定時間毎に上記イジェクタ122へ圧縮空気を供給することが好ましい。或いは,上記ドレン層120bにフロースイッチなどを設けておき,所定の圧延油が貯留されたことを示す上記フロースイッチからの出力信号を受けたことを条件に,圧縮空気切換弁などを動作させて所定時間だけ圧縮空気を供給するようにしてもかまわない。
In the adhered matter removing apparatus X3 configured as described above, when the air discharged from the air escape hole 190b is sent to the oil separator 120, the rolling oil is separated by the oil filter 120a. The air from which the rolling oil is separated is sucked out of the oil separator 120 by the blower fan 121 and discharged to the outside. Meanwhile, the rolling oil separated by the oil filter 120a is stored in the drain layer 120b. The rolling oil accumulated in the drain layer 120 b is sucked out from the drain hole 120 c by the ejector 122 and discharged toward the oil tank 130.
When the compressed air is constantly supplied to the ejector 122, when all of the rolling oil in the drain layer 120b is discharged, not only the air is discharged from the drain hole 120c, but the separation efficiency of the rolling oil is reduced. There is a risk that the blower 121 will be heavily loaded. Therefore, it is preferable to supply compressed air to the ejector 122 intermittently, that is, every predetermined time. Alternatively, a flow switch or the like is provided in the drain layer 120b, and a compressed air switching valve or the like is operated on condition that an output signal from the flow switch indicating that a predetermined rolling oil is stored is received. The compressed air may be supplied for a predetermined time.

このように,本付着物除去装置X3では,空気と圧延油とが分離され,圧延油がオイルタンク130に回収されるため,圧延油を含む空気が大気中に放出されずに済み,人体或いは環境に与える害を除去することが可能となる。排出された圧延油が回収されるため,圧延油の再利用が可能となりうる。
この実施例では,圧延油を分離して回収する例について述べてきたが,例えば,圧延油以外の液状の付着物を分離回収する場合にも,本実施例に係る付着物除去装置X3を適用することが可能である。
また,上記オイルフィルタに代えて塵埃などの固形の付着物を排出された空気から分離する図示しないエアフィルタを設ければ,液状付着物に限らず,固形の付着物をも分離回収することが可能となる。
Thus, in this deposit removal apparatus X3, since air and rolling oil are isolate | separated and rolling oil is collect | recovered by the oil tank 130, the air containing rolling oil does not need to be discharge | released in air | atmosphere, It is possible to remove the harm to the environment. Since the discharged rolling oil is recovered, the rolling oil can be reused.
In this embodiment, an example in which the rolling oil is separated and recovered has been described. However, for example, the deposit removing apparatus X3 according to this embodiment is applied to a case where liquid deposits other than the rolling oil are separated and recovered. Is possible.
If an air filter (not shown) that separates solid deposits such as dust from the discharged air is provided in place of the oil filter, not only liquid deposits but also solid deposits can be separated and recovered. It becomes possible.

次に,図9を用いて,本発明の第4の実施例について説明する。この実施例に係る付着物除去装置X4には,上記板状部材Tの上面T1側だけでなく,下面T2側にも上述した実施の形態におけるノズル体100が設けられている。ここで,上記ノズル体100が上記板状部材Tの下面T2側に設けられた場合は,上記上面T1側に設けた場合とは逆方向に圧縮空気を噴射させるように上記ノズル体100を配置しなければならない。そのため,この場合は,図9に示されるように,上記ノズル体100がその自重により下方に移動することを防止すると共に,上記ノズル体100を板状部材Tの下面T2に略垂直な方向W1へ移動自在に支持するため,上記ノズル体100をつるまきバネ等の弾性部材113により弾性的に支持している。このように構成されることにより,上記板状部材Tの両面における付着物を除去することが可能となるだけでなく,上記ノズル体100の上下方向へのオーバーシュートやアンダーシュート,或いはハンチングを防止することが可能となる。   Next, a fourth embodiment of the present invention will be described with reference to FIG. The deposit removing apparatus X4 according to this example is provided with the nozzle body 100 in the above-described embodiment not only on the upper surface T1 side of the plate member T but also on the lower surface T2 side. Here, when the nozzle body 100 is provided on the lower surface T2 side of the plate-like member T, the nozzle body 100 is disposed so as to inject compressed air in a direction opposite to that provided on the upper surface T1 side. Must. Therefore, in this case, as shown in FIG. 9, the nozzle body 100 is prevented from moving downward by its own weight, and the nozzle body 100 is moved in a direction W1 substantially perpendicular to the lower surface T2 of the plate member T. The nozzle body 100 is elastically supported by an elastic member 113 such as a helical spring. By being configured in this way, it is possible not only to remove deposits on both surfaces of the plate-like member T, but also to prevent overshooting, undershooting, or hunting of the nozzle body 100 in the vertical direction. It becomes possible to do.

上述の実施の形態及び各実施例に係る付着物除去装置では,上記板状部材の上方に上記ノズル体100が配設されている場合は,上記空気圧源5から供給される圧縮空気の圧力が何らかの原因で低下することにより,上記ノズル体100が落下して上記板状部材Tを損傷させるという問題点がある。ここで説明する本発明の第5の実施例に係る付着物除去装置X5は,上記問題点を解決し得るよう構成されている。
具体的には,図10のブロック図に示すように,前記した減圧弁3,エアフィルタ4,コントローラ1,及びノズル体100に加え,予め定められた作動圧力値(規定圧力値)に設定された圧力スイッチ7と,圧縮空気が供給されることにより作動するシリンダ140(駆動手段の一例)とを備えて構成されている。また,上述の実施形態及び実施例の構成とはことなり,上記電磁弁2に代えて3方切り換え可能な3方電磁弁2aが用いられている。
In the deposit removing apparatus according to the above-described embodiment and each example, when the nozzle body 100 is disposed above the plate-like member, the pressure of the compressed air supplied from the air pressure source 5 is reduced. There is a problem in that the nozzle body 100 falls and damages the plate-like member T by being lowered for some reason. The deposit removing apparatus X5 according to the fifth embodiment of the present invention described here is configured to solve the above-described problems.
Specifically, as shown in the block diagram of FIG. 10, in addition to the pressure reducing valve 3, the air filter 4, the controller 1, and the nozzle body 100, a predetermined operating pressure value (specified pressure value) is set. The pressure switch 7 and a cylinder 140 (an example of drive means) that operates when compressed air is supplied. Unlike the configuration of the above-described embodiment and example, a three-way solenoid valve 2a that can be switched in three ways is used instead of the solenoid valve 2.

上記シリンダ140は,内部にバネなどの弾性部材140aとピストン140bとを備えた単動式のシリンダであって,所定の圧力(少なくとも上記弾性部材140aによる付勢力以上の力をピストン140bに作用させ得る空気圧力)以上の圧縮空気が空気供給室140dに供給されると,上記弾性部材140aの付勢方向とは逆の方向(上記弾性部材140aを圧縮させる方向)へ上記ピストン140bが作動するものである。このシリンダ140は,上記ピストン140bが鉛直方向へ作動し,かつ,圧縮空気の供給により上記ピストン140bが上方向へ作動するように支持部材141に取り付けられている。
また,上記ピストン140bの下方に伸びるピストン軸140cは,前記した弾性部材113(図9参照)を介して上記ノズル体100を支持する支持部材142に連結されている。このように連結されることで,上記ピストン140bが作動すると,上記ノズル体100が板状部材Tの表面に略垂直な方向へ持ち上げられることになる。
The cylinder 140 is a single-acting cylinder having an elastic member 140a such as a spring and a piston 140b therein, and applies a predetermined pressure (at least a force greater than the urging force of the elastic member 140a to the piston 140b. When the above compressed air is supplied to the air supply chamber 140d, the piston 140b operates in a direction opposite to the biasing direction of the elastic member 140a (the direction in which the elastic member 140a is compressed). It is. The cylinder 140 is attached to the support member 141 so that the piston 140b operates in the vertical direction and the piston 140b operates in the upward direction by supplying compressed air.
The piston shaft 140c extending below the piston 140b is connected to a support member 142 that supports the nozzle body 100 via the elastic member 113 (see FIG. 9). By being connected in this way, when the piston 140b is operated, the nozzle body 100 is lifted in a direction substantially perpendicular to the surface of the plate member T.

上記電磁弁2aは,1つの入力ポートと2つの出力ポートを有する3方電磁弁であり,入力ポートP1は空気圧源5に配管接続されている。一方,2つの出力ポートのうち,消磁されることにより空気圧減5と連通するポートP2は上記シリンダ140の空気供給室140dに配管接続されており,励磁されることにより空気圧減5と連通するポートP3は上記減圧弁3に配管接続されている。
上記圧力スイッチ7は,上記ノズル体100に供給される圧縮空気が予め定められた規定圧力未満となった場合に検出信号をコントローラ1に送信する。なお,上記規定圧力は,ノズル体100を浮上させるのに最低限必要な圧力である。
The solenoid valve 2 a is a three-way solenoid valve having one input port and two output ports, and the input port P 1 is connected to the air pressure source 5 by piping. On the other hand, of the two output ports, the port P 2 that communicates with the air pressure reduction 5 by demagnetization is connected to the air supply chamber 140d of the cylinder 140 by piping, and communicates with the air pressure reduction 5 when excited. The port P3 is connected to the pressure reducing valve 3 by piping.
The pressure switch 7 transmits a detection signal to the controller 1 when the compressed air supplied to the nozzle body 100 becomes less than a predetermined specified pressure. The specified pressure is a minimum pressure required for the nozzle body 100 to float.

このように構成された本付着物除去装置X5では,圧縮空気が供給されることにより上記ノズル体100が浮遊(浮上)している最中に,上記圧力スイッチ7から上記コントローラ1へ検出信号が出力されると,上記3方電磁弁2aが上記コントローラ1によって消磁される。これにより,上記3方電磁弁2aが作動して,出力ポートP3が閉じられ,そして,出力ポートP2が開けられる。その後,上記出力ポートP2を介して圧縮空気が上記空気供給室140dに供給される。なお,上述の如く上記3方電磁弁2aを制御する上記コントローラ1が駆動制御手段に相当する。
上記シリンダ140では,上記空気供給室140dに圧縮空気が供給されると,ピストン140bが上方へ移動し,上記ノズル体100が上記ピストン140bの移動に伴って上方へ持ち上げられる。
このように,ノズル体100へ供給される圧縮空気の圧力が規定圧力未満になった場合は,上記ノズル体100が上記シリンダ140により持ち上げられるため,上記ノズル体100の落下による上記板状部材Tの損傷が防止される。
In the adhered matter removing apparatus X5 configured as described above, a detection signal is sent from the pressure switch 7 to the controller 1 while the nozzle body 100 is floating (floating) by supplying compressed air. When output, the three-way solenoid valve 2a is demagnetized by the controller 1. Thus, the three-way solenoid valve 2a is activated, the output port P3 is closed, and the output port P 2 is opened. Thereafter, compressed air is supplied to the air supply chamber 140d via the output port P 2. As described above, the controller 1 that controls the three-way electromagnetic valve 2a corresponds to the drive control means.
In the cylinder 140, when compressed air is supplied to the air supply chamber 140d, the piston 140b moves upward, and the nozzle body 100 is lifted upward as the piston 140b moves.
As described above, when the pressure of the compressed air supplied to the nozzle body 100 becomes less than the specified pressure, the nozzle body 100 is lifted by the cylinder 140, and thus the plate member T due to the drop of the nozzle body 100 is used. Damage is prevented.

なお,この第5の実施例では,板状部材Tの上面側にノズル体100が配設された場合について説明したが,もちろん,上述の第4の実施例で説明したように,上記板状部材Tの下面側にノズル体100が配設された場合にも同じように適用することが可能である。 なお,この場合は,ピストン140bが作動することにより上記板状部材Tの下面から下方へノズル体100を引き下げるように上記シリンダ140が配設される。
また,この実施例では,駆動手段として単動式のシリンダ140を用いた例について示したが,例えば,複動式のシリンダを用いる例であってもかまわない。
In the fifth embodiment, the case where the nozzle body 100 is disposed on the upper surface side of the plate-like member T has been described. Of course, as described in the above-described fourth embodiment, the above plate-like member is used. The same can be applied to the case where the nozzle body 100 is disposed on the lower surface side of the member T. In this case, the cylinder 140 is disposed so that the nozzle body 100 is pulled down from the lower surface of the plate-like member T by the operation of the piston 140b.
In this embodiment, an example in which a single-acting cylinder 140 is used as the driving means has been described. However, for example, a double-acting cylinder may be used.

本発明の実施の形態に係る付着物除去装置Xの空気制御システムの概略を説明するブロック図。The block diagram explaining the outline of the air control system of the deposit | attachment removal apparatus X which concerns on embodiment of this invention. 付着物除去装置Xのノズル体及びを説明する模式図。The schematic diagram explaining the nozzle body of the deposit | attachment removal apparatus X, and. ノズル体100に作用する力Fと,離間距離dとの関係を表す図。The figure showing the relationship between the force F which acts on the nozzle body 100, and the separation distance d. 離間距離dと付着物除去効果との関係を説明する模式図。The schematic diagram explaining the relationship between the separation distance d and the deposit removal effect. 噴射口101の近傍の圧力分布を示す図。The figure which shows the pressure distribution of the vicinity of the injection nozzle 101. FIG. 本発明の第1の実施例に係る付着物除去装置X1のノズル体100aを説明する模式図。The schematic diagram explaining the nozzle body 100a of the deposit | attachment removal apparatus X1 which concerns on 1st Example of this invention. 本発明の第2の実施例に係る付着物除去装置X2のノズル体100bを説明する模式図。The schematic diagram explaining the nozzle body 100b of the deposit | attachment removal apparatus X2 which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る付着物除去装置X3の概略構成を示すブロック図。The block diagram which shows schematic structure of the deposit | attachment removal apparatus X3 which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係る付着物除去装置X4のノズル体100cを説明する模式図。The schematic diagram explaining the nozzle body 100c of the deposit | attachment removal apparatus X4 which concerns on the 4th Example of this invention. 本発明の第5の実施例に係る付着物除去装置X5の概略構成を示すブロック図。The block diagram which shows schematic structure of the deposit | attachment removal apparatus X5 which concerns on the 5th Example of this invention. 本発明の実施形態に用いられる磁石の配置を示す図。The figure which shows arrangement | positioning of the magnet used for embodiment of this invention. 図11に示した磁石の磁力線の概念を示す図。The figure which shows the concept of the magnetic force line of the magnet shown in FIG. 磁石の数と振動抑制効果(振動減衰率)の関係を示すグラフ。The graph which shows the relationship between the number of magnets, and a vibration suppression effect (vibration damping factor). 図11に示した磁石の詳細図。FIG. 12 is a detailed view of the magnet shown in FIG. 11. 本発明における振動抑制原理を示す図。The figure which shows the vibration suppression principle in this invention.

符号の説明Explanation of symbols

1…コントローラ
2…電磁弁
3…減圧弁
4…エアフィルタ
5…空気圧源
6…管路
7…圧力スイッチ
100…ノズル体
101…噴射口
102…対向面
104…供給口
105…連通路
106…溝
107…溝
108…平板ノズル
109a…空気溜まり
109b…空気逃がし孔
110…スライド機構
111…スライドバー
112…スライドガイド
113…弾性部材
120…油分離機
121…ブロア
122…イジェクタ
130…オイルタンク
140…シリンダ
300…磁石
302…磁石ホルダ
DESCRIPTION OF SYMBOLS 1 ... Controller 2 ... Solenoid valve 3 ... Pressure reducing valve 4 ... Air filter 5 ... Air pressure source 6 ... Pipe line 7 ... Pressure switch 100 ... Nozzle body 101 ... Injection port 102 ... Opposite surface 104 ... Supply port 105 ... Communication channel 106 ... Groove 107 ... groove 108 ... flat nozzle 109a ... air reservoir 109b ... air escape hole 110 ... slide mechanism 111 ... slide bar 112 ... slide guide 113 ... elastic member 120 ... oil separator 121 ... blower 122 ... ejector 130 ... oil tank 140 ... cylinder 300 ... magnet 302 ... magnet holder

Claims (15)

走行する常磁性板状部材の表面に対向する対向面に一以上の噴射口が形成され,上記常磁性板状部材の表面に略垂直な方向へ移動自在に支持されたノズル体を備え,上記ノズル体の上記噴射口から圧縮気体を噴射させることにより上記常磁性板状部材に付着した圧延油,洗浄油などの付着物を除去する付着物除去装置において,
上記ノズル体に,磁束が上記常磁性板状部材と交差する磁石が設けられてなることを特徴とする付着物除去装置。
One or more injection holes are formed on the opposing surface facing the surface of the traveling paramagnetic plate member, and the nozzle body is supported so as to be movable in a direction substantially perpendicular to the surface of the paramagnetic plate member. In the deposit removing apparatus for removing deposits such as rolling oil and cleaning oil adhering to the paramagnetic plate-like member by jetting compressed gas from the jet port of the nozzle body,
A deposit removing apparatus, wherein the nozzle body is provided with a magnet whose magnetic flux intersects with the paramagnetic plate-like member.
磁束が上記常磁性板状部材と交差する磁石が,上記常磁性板状部材の片側若しくは両側に設けられてなる請求項1に記載の付着物除去装置。   The deposit removing apparatus according to claim 1, wherein magnets whose magnetic flux intersects the paramagnetic plate member are provided on one side or both sides of the paramagnetic plate member. 上記常磁性板状部材の両側に設けられた磁石の対向する面における磁極が異なるものである請求項1あるいは2のいずれかに記載の付着物除去装置。   3. The deposit removing apparatus according to claim 1, wherein magnetic poles on opposite surfaces of magnets provided on both sides of the paramagnetic plate member are different. 上記磁石が上記常磁性板状部材の走行方向に対して直角の方向に横長に配置されてなる請求項1〜3のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to any one of claims 1 to 3, wherein the magnet is disposed horizontally long in a direction perpendicular to the traveling direction of the paramagnetic plate member. 上記磁石が上記常磁性板状部材の走行方向に対して直角の方向に複数に分割されてなる請求項1〜4のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to any one of claims 1 to 4, wherein the magnet is divided into a plurality of parts in a direction perpendicular to the traveling direction of the paramagnetic plate member. 上記ノズル体が,上記常磁性板状部材の表面に略垂直な方向へ移動自在に支持されてなると共に,上記噴射口から噴射され上記常磁性板状部材の間の隙間を通って流れる空気の流れに基づいて発生する負圧である吸着圧を用いて,上記ノズル体を上記常磁性板状部材から浮上して支持してなるものである請求項1〜5のいずれかに記載の付着物除去装置。   The nozzle body is supported so as to be movable in a direction substantially perpendicular to the surface of the paramagnetic plate member, and air that is injected from the injection port and flows through a gap between the paramagnetic plate members. The deposit according to any one of claims 1 to 5, wherein the nozzle body is lifted and supported from the paramagnetic plate member by using an adsorption pressure which is a negative pressure generated based on a flow. Removal device. ノズル体の上記対向面であって上記常磁性板状部材の走行方向に上流部に,上記ノズル体に隣接して,上記板状体から遠ざかる方向へ陥没する陥没室が形成されてなる請求項1〜6のいずれかに記載の付着物除去装置。   A depression chamber is formed on the opposite surface of the nozzle body, upstream of the paramagnetic plate-like member in the traveling direction, adjacent to the nozzle body and recessed in a direction away from the plate-like body. The deposit removing apparatus according to any one of 1 to 6. 上記陥没室が,上記常磁性板状部材の走行方向に複数形成されてなる請求項7に記載の付着物除去装置。   The deposit removing apparatus according to claim 7, wherein a plurality of the depression chambers are formed in a traveling direction of the paramagnetic plate member. 上記陥没室の常磁性板状部材走行方向下流側の壁面が,常磁性板状部材端部側に向かうにつれて,常磁性板状部材の走行方向下流側に向けて傾斜して形成されてなる請求項7あるいは8のいずれかに記載の付着物除去装置。   The wall surface on the downstream side of the paramagnetic plate member in the running direction of the depression chamber is formed so as to be inclined toward the downstream side in the running direction of the paramagnetic plate member as it goes toward the end of the paramagnetic plate member. Item 10. The deposit removing apparatus according to any one of Items 7 and 8. 上記1以上の陥没室に吸気源に接続された排気手段が接続されてなる請求項7〜9のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to any one of claims 7 to 9, wherein an exhaust means connected to an intake source is connected to the one or more depressed chambers. 上記噴射口が,上記常磁性板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に直列或いは並列に配列されてなる請求項1〜10のいずれかに記載の付着物除去装置。   The deposit removing device according to any one of claims 1 to 10, wherein the injection ports are arranged in series or in parallel in a direction substantially perpendicular to a conveying direction of the paramagnetic plate member and a moving direction of the nozzle body. . 上記対向面に,上記常磁性板状部材の搬送方向及び上記ノズル体の移動方向と略直交する方向に長い開口部を有する平面ノズルが設けられてなる請求項1〜11のいずれかに記載の付着物除去装置。   The planar nozzle which has a long opening part in the direction substantially orthogonal to the conveyance direction of the said paramagnetic plate-shaped member, and the movement direction of the said nozzle body is provided in the said opposing surface. Deposit removal device. 上記ノズル体が,上記常磁性板状部材の上面側及び下面側のいずれか一方又は両方に設けられてなる請求項1〜12のいずれかに記載の付着物除去装置。   The deposit removing apparatus according to any one of claims 1 to 12, wherein the nozzle body is provided on one or both of the upper surface side and the lower surface side of the paramagnetic plate member. 上記対向面に,上記噴射口から噴射された圧縮気体を溜めるための陥没状の気体溜まりが設けられ,
上記ノズル体に,上記気体溜まり内の気体を上記ノズル体の外部へ導く連通孔が形成されてなる請求項1〜13のいずれかに記載の付着物除去装置。
The opposed surface is provided with a depression-like gas reservoir for storing the compressed gas injected from the injection port,
The deposit removing apparatus according to any one of claims 1 to 13, wherein a communication hole for guiding the gas in the gas reservoir to the outside of the nozzle body is formed in the nozzle body.
上記連通孔から上記気体溜まり内の気体を吸引する吸引手段を更に備えてなる請求項14に記載の付着物除去装置。   The deposit removing apparatus according to claim 14, further comprising suction means for sucking gas in the gas reservoir from the communication hole.
JP2006220704A 2006-08-11 2006-08-11 Deposit removing device Pending JP2008043858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220704A JP2008043858A (en) 2006-08-11 2006-08-11 Deposit removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220704A JP2008043858A (en) 2006-08-11 2006-08-11 Deposit removing device

Publications (1)

Publication Number Publication Date
JP2008043858A true JP2008043858A (en) 2008-02-28

Family

ID=39178105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220704A Pending JP2008043858A (en) 2006-08-11 2006-08-11 Deposit removing device

Country Status (1)

Country Link
JP (1) JP2008043858A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256619B1 (en) * 2010-12-28 2013-04-19 주식회사 포스코 Chute cohesion material elimination apparatus
CN111993917A (en) * 2020-08-20 2020-11-27 焦培刚 New energy automobile safety charging device
CN113028077A (en) * 2021-02-26 2021-06-25 重庆市江北嘴水源空调有限公司 Valve for water intake from river

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256619B1 (en) * 2010-12-28 2013-04-19 주식회사 포스코 Chute cohesion material elimination apparatus
CN111993917A (en) * 2020-08-20 2020-11-27 焦培刚 New energy automobile safety charging device
CN111993917B (en) * 2020-08-20 2022-11-15 山东交通学院 New energy automobile safety charging device
CN113028077A (en) * 2021-02-26 2021-06-25 重庆市江北嘴水源空调有限公司 Valve for water intake from river
CN113028077B (en) * 2021-02-26 2022-09-16 重庆市江北嘴水源空调有限公司 Valve for taking water from river

Similar Documents

Publication Publication Date Title
WO2006013848A1 (en) Deposit removing device
JP3813162B2 (en) Deposit removal device
KR101282453B1 (en) Cleaning device and cleaning method
JP2008043858A (en) Deposit removing device
JP5879903B2 (en) Dry cleaning housing, dry cleaning device and dry cleaning system
KR100885590B1 (en) Deposit removing device
JP4689765B2 (en) Cleaning medium and cleaning device
US20070001520A1 (en) Linear motor
WO2010013596A1 (en) Filtering device
JP4619331B2 (en) Deposit removal device
JP4752858B2 (en) Plate-like body conveying device and control method thereof
JP2014039921A (en) Dry cleaning housing, dry cleaning device, and dry cleaning method
JP6278786B2 (en) Inkjet coating head cleaning device and coating liquid coating device
TWI259892B (en) Air cleaning device
JP2007196094A (en) Treatment liquid supply unit and substrate treatment apparatus equipped with the same
JP5912375B2 (en) Coating liquid coating device
JP2008062145A (en) Apparatus and method for dry-cleaning
KR20170061300A (en) Substrate cleaning module and substrate transferring apparatus having the same
KR101599363B1 (en) Apparatus and metod for cleaning mask of Organic light emitting diode
JP4749287B2 (en) Cleaning device
JP2000232132A (en) Device for mounting solder ball
JP2021102180A (en) Dust collector and laser beam machine
JP2007061714A (en) Washing device
JP2016120494A (en) Coating liquid coating apparatus
JP2010274278A (en) Laser beam machine