JP2006063327A - 蓄熱材マイクロカプセル固形物 - Google Patents

蓄熱材マイクロカプセル固形物 Download PDF

Info

Publication number
JP2006063327A
JP2006063327A JP2005214845A JP2005214845A JP2006063327A JP 2006063327 A JP2006063327 A JP 2006063327A JP 2005214845 A JP2005214845 A JP 2005214845A JP 2005214845 A JP2005214845 A JP 2005214845A JP 2006063327 A JP2006063327 A JP 2006063327A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
microcapsule
solid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214845A
Other languages
English (en)
Inventor
Yuichiro Konishi
雄一朗 小西
Koshiro Ikegami
幸史郎 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2005214845A priority Critical patent/JP2006063327A/ja
Publication of JP2006063327A publication Critical patent/JP2006063327A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

【課題】潜熱蓄熱材を内包するマイクロカプセルの固形物において、その固形物作製の際にマイクロカプセルの破壊を生ずることなく、かつ相変化温度を挟む温度域で温度変化を繰り返し与えても蓄熱効果が低減せずに長期間にわたって利用可能な、蓄熱材マイクロカプセル固形物を提供する。
【解決手段】潜熱蓄熱材を内包するマイクロカプセルの固形物であって、マイクロカプセルの体積平均粒子径が3.5μm未満であり、かつマイクロカプセルを形成する皮膜の膜厚が1nm以上、100nm以下にすることにより、その固形物作製の際にマイクロカプセルの破壊を生ずることなく、また相変化温度前後の温度変化を繰り返し与えても蓄熱効果が低減しない蓄熱材マイクロカプセル固形物を提供する。
【選択図】 なし

Description

本発明は蓄熱材を内包したマイクロカプセル固形物に関するものであり、具体的には蓄熱材の融点付近で極めて温度緩衝性に優れるマイクロカプセル固形物に関するものである。
近年、熱エネルギーを有効に利用することにより、省エネルギー化を図ることが求められている。その有効な方法として、物質の相変化に伴う潜熱を利用して蓄熱を行う方法が考えられてきた。相変化を伴わない顕熱のみを利用する方法に比べ、融点を含む狭い温度域に大量の熱エネルギーを高密度に貯蔵できるため、蓄熱材容量の縮小化がなされるだけでなく、蓄熱量が大きい割に大きな温度差が生じないめ、熱損失を少量に抑えられる利点を有する。
蓄熱材の熱交換効率を高めるために、蓄熱材をマイクロカプセル化する方法が提案されている。一般に蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(例えば、特許文献1参照)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(例えば、特許文献2参照)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(例えば、特許文献3参照)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(例えば、特許文献4参照)等の方法を用いることができる。
上記のマイクロカプセル化する方法では多くの場合、マイクロカプセルは媒体に分散した状態で得られる。それを乾燥させ固形物として取り出すことにより、内包された潜熱蓄熱材の相状態に関係なく常に固形状態を保つことができる。そのため、蓄熱材マイクロカプセル固形物はより広範囲の用途での利用が可能となる。
しかし、蓄熱材マイクロカプセルを固形化すると媒体に分散していた時には見られない問題点があった。すなわち、固形物を作製する際に成型時の外部圧力により、マイクロカプセルが破壊されてしまったり、蓄熱材マイクロカプセル固形物に相変化温度をはさむ温度域で、繰り返し温度変化を与えると蓄熱効果が低減してしまうという問題点があった。
特開昭62−1452号公報 特開昭62−149334号公報 特開昭62−225241号公報 特開平2−258052号公報
本発明では、潜熱蓄熱材を内包するマイクロカプセルの固形物において、その固形物作製の際にマイクロカプセルの破壊を生ずることなく、かつ相変化温度を挟む温度域で温度変化を繰り返し与えても蓄熱効果が低減せずに長期間にわたって利用可能な、蓄熱材マイクロカプセル固形物を提供する。
上記課題を解決すべく検討を行った結果、潜熱蓄熱材を内包するマイクロカプセルの固形物であって、該マイクロカプセルの体積平均粒子径が3.5μm未満であり、かつ該マイクロカプセルを形成する皮膜の膜厚が1nm以上、100nm以下にすることにより、その固形物作製の際にマイクロカプセルの破壊を生ずることなく、また相変化温度前後の温度変化を繰り返し与えても蓄熱効果が低減しない蓄熱材マイクロカプセル固形物を提供できることを見いだした。
本発明により、蓄熱材を内包したマイクロカプセルの固形物を安定に作製することができ、さらにこの蓄熱材マイクロカプセル固形物の充填物や、この蓄熱材マイクロカプセル固形物を樹脂、繊維、建材に加工付与した部材などの製品を長期間利用しても蓄熱性能が低減しないものを提供することが可能となった。
すなわち、蓄熱材マイクロカプセルの固形物を作製する際の成型時に外部圧力が掛かった場合に、蓄熱材マイクロカプセル固形物におけるマイクロカプセルの体積平均粒子径が大きいと、蓄熱材マイクロカプセル固形物中全体におけるマイクロカプセル同士の接触点の数が少なくなって、接触点1箇所あたりに加わる圧力が高くなり、マイクロカプセルの破壊を引き起こすことがある。これに対して、蓄熱材マイクロカプセル固形物におけるマイクロカプセルの体積平均粒子径を3.5μm未満にすることにより、蓄熱材マイクロカプセル固形物中全体におけるマイクロカプセル同士の接触点の数が多くなって、接触点1箇所あたりに加わる圧力が低くなり、外部圧力がマイクロカプセル固形物全体にうまく拡散するようになった。また、マイクロカプセルを形成する皮膜の膜厚を1nm以上、100nm以下にすることにより、マイクロカプセルの皮膜自体の強度も適切な範囲で保持されることになり、マイクロカプセルの破壊が防止できるようになった。
また、相変化温度を挟む温度域で温度変化を繰り返し与えると、蓄熱材マイクロカプセルの内部に存在する相変化化合物である蓄熱材は、融解と凝固を繰り返すことになる。これら蓄熱材は凝固状態から融解状態に変化する時は体積が増大し、逆に融解状態から凝固状態に変化する時は体積が減少する。このことに連動して、蓄熱材を内包する蓄熱材マイクロカプセルも、蓄熱材が凝固状態から融解状態に変化する時には膨張し、逆に蓄熱材が融解状態から凝固状態に変化する時には収縮する。この蓄熱材マイクロカプセルの膨張と収縮による体積変動は、水等の分散媒体に分散された状態では、その体積変動の変位は分散媒体に吸収されるのでカプセル皮膜には何らダメージは生じない。一方、マイクロカプセル固形物ではマイクロカプセル同士がお互い直接接触するので、その体積変動の変位がうまく拡散されないと、カプセル皮膜はカプセル内部の蓄熱材からと、カプセル外部の隣接するカプセルからの両方からストレスを受ける。膨張と収縮の繰り返しによってカプセル皮膜に損傷が生じて、そこからカプセル内部の蓄熱材が徐々に外部に漏れだして、蓄熱効果が低減していくという現象が起こることがあった。
これに対して、蓄熱材マイクロカプセル固形物におけるマイクロカプセルの体積平均粒子径が3.5μm未満である場合には、膨張と収縮による体積変動の緩衝空間となるべきマイクロカプセル同士の接触箇所以外の隙間の各容積が小さくなる。しかし、マイクロカプセルを形成する皮膜の膜厚を1nm以上、100nm以下にすることによって、マイクロカプセルの皮膜が容易に変形することができるようになり、膨張と収縮による体積変動にマイクロカプセル皮膜の変形がうまく追随するようになる。さらに、小さい容積の上記隙間にその体積変動の変位がうまく吸収されるようになり、カプセル皮膜には損傷が生じなくなる。すなわち相変化温度を挟む温度域で温度変化を繰り返し与えても蓄熱効果が低減せずに、長期間にわたって利用可能な性能を維持することが達成できた。
本発明に用いるマイクロカプセルで内包される潜熱蓄熱材は相転移に伴う潜熱を利用して蓄熱する目的で用いられるものであり、融点あるいは凝固点を有する化合物であれば使用可能である。具体的な蓄熱材としては、テトラデカン、ヘキサデカン、オクタデカン、パラフィンワックス等の脂肪族炭化水素化合物(パラフィン類化合物)、無機系共晶物及び無機系水和物、パルミチン酸、ミリスチン酸等の脂肪酸類、ベンゼン、p-キシレン等の芳香族炭化水素化合物、パルミチン酸イソプロピル、ステアリン酸ブチル等のエステル化合物、ステアリルアルコール等のアルコール類等の化合物が挙げられ、好ましくは融解熱量が約80kJ/kg以上の化合物で、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止材、比重調節材、劣化防止剤等を添加することができる。また、融点の異なる2種以上の蓄熱材を混合して用いることも可能である。
本発明に係るマイクロカプセルの製法として物理的方法と化学的方法が知られているが、特に潜熱蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(特開昭62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(特開昭62−149334公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(特開昭62−225241公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052公報)等に記載されている方法が用いられる。
マイクロカプセルの膜材としては、界面重合法、インサイチュー(in−situ)法等の手法で得られるポリスチレン、アクリル樹脂、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン類、アミノ樹脂、またはゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、物理的、化学的に安定なインサイチュー法によるメラミンホルマリン樹脂皮膜、尿素ホルマリン樹脂皮膜を用いたマイクロカプセル、または界面重合法によるポリウレタン樹脂皮膜、ポリウレタンウレア樹脂皮膜、ポリウレア樹脂皮膜を用いたマイクロカプセルを使用することが特に好ましい。
本発明の蓄熱材マイクロカプセル固形物を得る方法としては、通常水分散液の状態で作製されるマイクロカプセル分散液に必要に応じて結着剤を加えて、スプレードライヤー、ドラムドライヤー、フリーズドライヤー、フィルタープレスなどの各種乾燥装置・脱水装置を用いて媒体の水を蒸発・脱水させて粉体や固形体の状態にする方法を挙げることができる。また、上記の装置で粉体や固形体の状態にした後に、必要に応じて結着剤を加えて、押出し造粒、転動造粒、撹拌造粒など各種造粒法を用いて造粒することで粒径を大きくし、扱いやすくした造粒体にすることも可能である。本発明では、これら粉体や固形体および造粒体の総称として固形物と呼ぶことにする。なお、固形物の形態としては球状、楕円形、立方体、直方体、円柱状、円錐状、俵状、桿状、正多面体、星形、筒型等如何なる形状でも良い。
本発明に係るマイクロカプセルの体積平均粒子径は3.5μm未満に、さらに好ましくは0.5μm以上、3μm以下の範囲にすることが好ましい。この範囲以下の粒子径でも充分本発明の目的は達成されるが、物理的な強撹拌により乳化を行なおうとすると、極めて長時間あるいは高温を必要とするため工業的に得策とは言えない。粒子径がこの範囲よりも大きいと、物理的圧力に対する強度が弱くなってしまうことがある。本発明で述べる体積平均粒子径とはマイクロカプセル粒子の体積換算値の平均粒子径を表わすものであり、原理的には一定体積の粒子を小さいものから順に篩分けし、その50%体積に当たる粒子が分別された時点での粒子径を意味する。体積平均粒子径の測定は顕微鏡観察による実測でも算定可能であるが、市販の電気的、光学的粒子径測定装置を用いることにより自動的に測定可能であり、本発明における体積平均粒子径は「コールターN4」(米国COULTER ELECTRONICS社製)を用いて測定を行なった。
マイクロカプセルの粒子径は、カプセル作製時に用いる乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(攪拌回転数、時間等)等を適宜調節して所望の粒子径に設定する。
蓄熱材を内包するマイクロカプセルの皮膜の膜厚は1nm以上、100nm以下であり、好ましくは5nm以上、70nm以下であり、さらに好ましくは10nm以上、50nm以下である。特に、12nm以上、47nm以下が特に好ましい。膜厚が厚すぎると相変化温度を挟む温度域で繰り返し温度変化を与えると蓄熱性能が低減しやすくなる。膜厚が薄すぎると皮膜を通して蓄熱材が失われ、蓄熱性能が低減しやすくなったり、物理的圧力に対する強度が弱くなったりする。なお、本発明に係る膜厚は蓄熱材マイクロカプセル固形物をミクロトームにて切断した断面を走査電子顕微鏡により観察することにより測定した。
本発明の蓄熱材マイクロカプセル固形物は、それ単独で利用可能であるが、繊維、樹脂、無機素材などの中に分散・混合したり、吸着材や発熱材と複合したり、包材中に充填したりして利用することも可能である。
本発明の蓄熱材マイクロカプセル固形物をマイクロ波照射により加熱及び蓄熱する保温材に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる、マイクロ波照射により加熱及び蓄熱する保温材とは、例えば特開2001−303032号公報や特開2005−179458号公報に記載のように、シリカゲル等の吸水性化合物あるいは極性構造を有する化合物と蓄熱材マイクロカプセル固形物とを単独または適当な包材に充填したものである。マイクロ波を照射することにより吸水性化合物あるいは極性構造を有する化合物が発熱して、その熱が直接または間接的に接触している蓄熱材マイクロカプセル固形物に伝熱され、蓄熱が可能となる。蓄熱材マイクロカプセル固形物のマイクロカプセル粒子径と皮膜膜厚を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、加熱(蓄熱)と使用(放熱)とを繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。
本発明の蓄熱材マイクロカプセル固形物を寝具に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる寝具とは、枕、ベッドパッド、シーツ、布団、毛布などが挙げられ、天然繊維や合成繊維からなる布地を単独で使用したもの、若しくはその内部に綿、羊毛、羽毛、ウレタンフォーム、スポンジ、ゲル状クッション材、蕎麦殻、プラスチックビーズなどの合成素材や天然素材からなる充填物が充填されているものである。蓄熱材マイクロカプセル固形物は布地内に単独で充填されたり、上記充填物と共に充填されたりして用いられる。蓄熱材マイクロカプセル固形物のマイクロカプセル粒子径と皮膜膜厚を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、使用時に人体から受ける圧力によるマイクロカプセルの破壊を抑制したり、使用(吸熱)と放置(放冷)とを繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。
本発明の蓄熱材マイクロカプセル固形物を建築材料に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる建築材料とは、コンクリート、セメントボード、石膏ボード、樹脂ボード、木質繊維・鉱物性繊維・合成樹脂繊維等を用いた繊維質ボードなどへ蓄熱材マイクロカプセル固形物を混合・塗工したものである。これらを躯体、天井、壁、床などへ利用することにより室内温度が上がりにくい、もしくは下がりにくい環境を作ることが可能となる。また、加熱器や冷却器と組み合わせて、暖房及び/または冷房システムとして使用することもできる。蓄熱材マイクロカプセル固形物のマイクロカプセル粒子径と皮膜膜厚を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、固形物を用いた建築材料を製造する際に成型時の圧力によるマイクロカプセルの破壊を抑制したり、使用(吸熱と放冷、または蓄熱と放熱)を繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。
本発明の蓄熱材マイクロカプセル固形物をガス吸着材に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる、ガス吸着材とは、例えば特開2001−145832号公報に記載のように、活性炭、ゼオライト、アルミナ、シリカゲル、有機金属錯体等の吸着材と蓄熱材マイクロカプセル固形物とを複合させたものである。吸着対象のガスとしては、メタンなどの天然ガス系、プロパンやブタンなどの石油ガス系、水素、一酸化炭素や二酸化炭素、酸素、窒素、臭気性ガス、酸性ガス、塩基性ガス、有機溶剤ガスなどが挙げられる。これらのガスを吸着材に吸着させるときに発生する熱(吸着熱)を、蓄熱材マイクロカプセル固形物に蓄熱吸収させて温度上昇を抑制して、吸着効率の低下を抑制することができる。また、吸着材からガスを脱着させるときに吸収する熱(脱着熱)を、蓄熱材マイクロカプセル固形物に蓄熱していた熱から放熱供給して温度低下を抑制して、脱着効率の低下を抑制することができる。蓄熱材マイクロカプセル固形物のマイクロカプセル粒子径と皮膜膜厚を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、使用(蓄熱と放熱)を繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。
以下、本発明の実施手順を実施例として具体的に説明する。なお、実施例中の部数や百分率は特にことわりがない限り質量基準である。また、蓄熱量については示差走査熱量計(米国パーキンエルマー社、DSC7)で測定される融解熱量により決定した。膜厚は、電界放出型走査電子顕微鏡(FE−SEM)により観察して測定した。
〈耐熱履歴性〉
温度制御が可能な恒温槽中に蓄熱カプセル固形物を入れ、相変化温度を挟む温度域として−10℃から60℃までを温度変化させ、(昇温に1時間、60℃で30分保持、降温に1時間、−10℃で30分保持のサイクルを1回として)、1000回の温度変化を与えた後の蓄熱量を測定し、温度変化を与える前の熱量との比を耐熱履歴性とした。数値が大きいほど温度変化を与えた後での蓄熱性の保持性に優れていることを示す。
以下の評価結果の表には、耐熱履歴性が95%以上は◎、同90%以上95%未満は○、同80%以上90%未満は○△、同70%以上80%未満は△、同50%以上70%未満は△×、同50%未満は×として表示している。
〈溶剤抽出率〉
作製された蓄熱カプセル固形物1gを、n−ヘキサン50mLで5分間震盪抽出した後、ヘキサン相をガスクロで測定し、検出された蓄熱剤成分量を蓄熱カプセル固形物への仕込み蓄熱剤成分量で除した値を溶剤抽出率(百分率)とし、皮膜破壊の程度の目安とした。この溶剤抽出率が小さいほど皮膜の破壊が少なく良好であることを示す。
以下の評価結果の表には、溶剤抽出率が2%未満は◎、同2%以上4%未満は○、同4%以上7%未満は○△、同7%以上10%未満は△、同10%以上20%未満は△×、同20%以上は×として表示している。
(実施例1)
蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点28℃のn−オクタデカン80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン6gと37%ホルムアルデヒド水溶液12g及び水24gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られた蓄熱材マイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、粉体状の蓄熱材マイクロカプセル固形物を得た。さらにこの粉体状の蓄熱材マイクロカプセル固形物100部に20%ポリビニルアルコール水溶液25部を添加し、押し出し式造粒装置を用いて短径2.1mm、長径3.4mmの造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた造粒体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は20nmであった。また、得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.8%であり、耐熱履歴性は96%であった。
(実施例2〜29)
実施例1における、メラミンの配合量、37%ホルムアルデヒド水溶液の配合量、及び蓄熱材マイクロカプセルの体積平均粒子径をそれぞれ表1に記載の数量にし、メラミン−ホルマリン初期縮合物水溶液中の水の添加量は表1の37%ホルムアルデヒド水溶液の配合量の各2倍量にした以外は実施例1と同様の操作で実施例2〜29の造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた各蓄熱材マイクロカプセル固形物の評価結果を同じく表1に示した。
(比較例1〜6)
実施例1における、メラミンの配合量、37%ホルムアルデヒド水溶液の配合量、及び蓄熱材マイクロカプセルの体積平均粒子径をそれぞれ表1に記載の数量にし、メラミン−ホルマリン初期縮合物水溶液中の水の添加量は表1の37%ホルムアルデヒド水溶液の配合量の各2倍量にした以外は実施例1と同様の操作で比較例1〜6の造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた各蓄熱材マイクロカプセル固形物の評価結果を同じく表1に示した。
Figure 2006063327
(実施例30)
蓄熱材マイクロカプセル分散液の作製:尿素4.7gとレゾルシン0.5gを溶解し、pHを3.0に調整した5%のエチレン−無水マレイン酸共重合体のナトリウム塩水溶液100g中に、潜熱蓄熱材として融点16℃のn−ヘキサデカン80gを激しく撹拌しながら添加し、乳化を行なった。次にこの乳化液に37%ホルムアルデヒド水溶液14gと水20gを添加し60℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。低粘度で分散安定性が良好な、尿素ホルマリン樹脂皮膜のマイクロカプセルの分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液を実施例1と同様の操作で、粉体状の蓄熱材マイクロカプセル固形物を経て、造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた造粒体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は20nmであった。また、得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は1.7%であり、耐熱履歴性は95%であった。
(実施例31)
蓄熱材マイクロカプセル分散液の作製:潜熱蓄熱材として融点16℃のn−ヘキサデカン80gに多価イソシアネートとして、ジシクロヘキシルメタン4,4−ジイソシアネート(住友バイエルウレタン(株)製脂肪族イソシアネート、商品名デスモジュールW)14gを溶解した物を、5%ポリビニルアルコール(クラレ(株)製、商品名ポバール117)水溶液100g中に添加し、室温で撹拌乳化を行った。次にこの乳化液に3%ポリエーテル水溶液(旭電化工業(株)製ポリエーテル、商品名アデカポリエーテルEDP−450)55gを添加した後、60℃で加熱と撹拌を施した。低粘度で分散安定性が良好な、蓄熱材マイクロカプセル分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液を実施例1と同様の操作で、粉体状の蓄熱材マイクロカプセル固形物を経て、造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた造粒体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は40nmであった。また、得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は1.2%であり、耐熱履歴性は97%であった。
(実施例32)
蓄熱材マイクロカプセル分散液の作製:潜熱蓄熱材として融点16℃のn−ヘキサデカン80gにメタクリル酸メチル9gを溶解させ、これを75℃の1%ポリビニルアルコール水溶液300gに入れ、強撹拌により乳化を行った。次にこの乳化液の入った重合容器内を75℃に保ちながら窒素雰囲気にした後、イオン交換水15gに溶解させた2,2′−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}ジハイドロクロライド0.3gを添加した。7時間後に重合を終了し、重合容器内を室温にまで冷却し、カプセル化を終了した。得られたマイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液を実施例1と同様の操作で、粉体状の蓄熱材マイクロカプセル固形物を経て、造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた造粒体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は40nmであった。また、得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は2.7%であり、耐熱履歴性は93%であった。
(実施例33)
蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点55℃のパラフィンワックス80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン6gと37%ホルムアルデヒド水溶液12g及び水18gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られた蓄熱材マイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、粉体状の蓄熱材マイクロカプセル固形物を得た。さらにこの粉体状の蓄熱材マイクロカプセル固形物100部に25%ポリビニルアルコール水溶液30部を添加し、押し出し式造粒装置を用いて短径2.1mm、長径3.8mmの造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた造粒体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は20nmであった。また、得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.7%であり、耐熱履歴性は97%であった。
マイクロ波照射により加熱及び蓄熱する保温材の作製:上記で得られた造粒体状の蓄熱材マイクロカプセル固形物35質量部と粒径2mmのシリカゲル粒子65質量部とを混合し、木綿製の袋に500gを充填した。電子レンジを用いて2分間加熱を行ったところ、心地よい温度域である43℃以上の温度が70分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を100回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、43℃以上の温度を持続する時間にも変化は生じなかった。
(実施例34)
枕の作製:実施例1で得られた造粒体状の蓄熱材マイクロカプセル固形物100質量部と蕎麦殻100質量部とを混合した後、綿製布地をタテ40cm×ヨコ60cmの袋状に縫製したものに充填して、蓄熱性を有する枕を得た。この枕を室温25℃の部屋に6時間放置した後、使用すると快適な冷涼感が1時間持続した。また、この操作を100回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、快適な冷涼感を維持する時間にも変化は生じなかった。
(実施例35)
蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点16℃のn−ヘキサデカン80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン6gと37%ホルムアルデヒド水溶液12g及び水18gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られた蓄熱材マイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、粉体の平均径が120μmである粉体状の蓄熱材マイクロカプセル固形物を得た。得られた粉体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は20nmであった。また、得られた粉体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は1.9%であり、耐熱履歴性は95%であった。
枕の作製:上記で得られた粉体状の蓄熱材マイクロカプセル固形物25質量部とウレタン樹脂前駆体75質量部とを混合した後、ウレタン樹脂を硬化させ、タテ30cm×ヨコ50cm×高さ10cmのゲル状物を作製し、これに木綿製のカバーを施して、蓄熱性を有する枕を得た。この枕を庫内温度7℃の冷蔵庫内に6時間静置した後、使用すると快適な冷涼感が2時間持続した。また、この操作を100回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、快適な冷涼感を維持する時間にも変化は生じなかった。
(実施例36)
蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点28℃のn−オクタデカン80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン6gと37%ホルムアルデヒド水溶液12g及び水18gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られた蓄熱材マイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、粉体状の蓄熱材マイクロカプセル固形物を得た。さらにこの粉体状の蓄熱材マイクロカプセル固形物100部に25%ポリビニルアルコール水溶液30部を添加し、押し出し式造粒装置を用いて短径1.0mm、長径2.4mmの造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた造粒体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は20nmであった。また、得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は1.1%であり、耐熱履歴性は96%であった。
木質ボードの作製:上記で得られた造粒体状の蓄熱材マイクロカプセル固形物25質量部と充填用素材として長径3mm以下の木材粉末75部、及び30%濃度の尿素ホルマリン樹脂初期縮合物水溶液30部をよく混合した後、圧力3MPa、温度160℃の条件下で加圧、加熱成形を行い、縦横40cm四方で厚さ5mmの蓄熱性を有する木質ボードを得た。この板状成形体を6枚組み合わせて立方体状の箱を作製して、庫内温度15℃の大型恒温チャンバー内に6時間放置した後、庫内温度を33℃に切り替えたところ、箱内部中央部の空気温度は28℃以下を3時間維持することができた。また、大型恒温チャンバーの庫内温度を10℃と35℃とに交互に2時間ごとに切り替える操作を10回繰り返したところ、箱内部中央部の空気温度は19〜28℃の比較的狭い範囲での温度変動に留まり、優れた蓄熱性能が確認できた。さらに、この操作を100回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、箱内部中央部の空気温度の変動範囲にも変化は生じなかった。
(実施例37)
蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点36℃のパラフィンワックス80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン6gと37%ホルムアルデヒド水溶液12g及び水18gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。得られた蓄熱材マイクロカプセルの体積平均粒子径は1.7μmであった。
蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、粉体状の蓄熱材マイクロカプセル固形物を得た。さらにこの粉体状の蓄熱材マイクロカプセル固形物100部に25%ポリビニルアルコール水溶液30部を添加し、押し出し式造粒装置を用いて短径1.0mm、長径2.3mmの造粒体状の蓄熱材マイクロカプセル固形物を得た。得られた造粒体状の蓄熱材マイクロカプセル固形物のカプセル皮膜の膜厚は20nmであった。また、得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.9%であり、耐熱履歴性は97%であった。
ガス吸着材の作製:上記で得られた造粒体状の蓄熱材マイクロカプセル固形物30部と、平均粒径1.2mmの活性炭100部と混合し、蓄熱材複合吸着剤を得た。この蓄熱材複合吸着剤を用いてメタンガス(供給ガス温度=25℃)の吸着量を測定したところ、圧力1MPaにおけるガス吸着量は蓄熱材複合吸着剤1gあたり45mgであった。また、ガスの圧力を1MPaと0.1MPaとを交互に繰り返してガスの吸着と脱着を50回繰り返したところ、融点付近の36℃前後の温度が長時間持続し、蓄熱材複合吸着剤の温度上昇はほとんど見られず、ガス吸着量も蓄熱材複合吸着剤1gあたり42mgとほとんど低下せず、優れた蓄熱効果が確認できた。さらに、この操作を100回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、ガス吸着量にも変化は生じなかった。
本発明により、蓄熱材を内包したマイクロカプセルの固形物を長期間利用しても蓄熱性能が低減しにくくなり、樹脂、繊維、無機素材、建材などに組み込むことで長期間蓄熱性能を維持する製品を提供することが可能である。

Claims (1)

  1. 潜熱蓄熱材を内包するマイクロカプセルの固形物であって、該マイクロカプセルの体積平均粒子径が3.5μm未満であり、かつ該マイクロカプセルを形成する皮膜の膜厚が1nm以上、100nm以下であることを特徴とする蓄熱材マイクロカプセル固形物。
JP2005214845A 2004-07-26 2005-07-25 蓄熱材マイクロカプセル固形物 Pending JP2006063327A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214845A JP2006063327A (ja) 2004-07-26 2005-07-25 蓄熱材マイクロカプセル固形物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004217006 2004-07-26
JP2005214845A JP2006063327A (ja) 2004-07-26 2005-07-25 蓄熱材マイクロカプセル固形物

Publications (1)

Publication Number Publication Date
JP2006063327A true JP2006063327A (ja) 2006-03-09

Family

ID=36110080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214845A Pending JP2006063327A (ja) 2004-07-26 2005-07-25 蓄熱材マイクロカプセル固形物

Country Status (1)

Country Link
JP (1) JP2006063327A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069680A (ja) * 2006-09-13 2008-03-27 Mahle Filter Systems Japan Corp キャニスタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069680A (ja) * 2006-09-13 2008-03-27 Mahle Filter Systems Japan Corp キャニスタ
JP4718400B2 (ja) * 2006-09-13 2011-07-06 株式会社マーレ フィルターシステムズ キャニスタ

Similar Documents

Publication Publication Date Title
Li et al. Incorporation technology of bio-based phase change materials for building envelope: A review
WO2017105352A1 (en) Synthesis of inorganic sio2 microcapsules containing phase change materials and applications therein
WO2003106833A1 (ja) キャニスター用潜熱蓄熱型吸着材及びその製造方法
JP2006063328A (ja) 蓄熱材マイクロカプセル固形物
JP2012531509A (ja) 発泡体組成物
DE102008004485A1 (de) Verkapselung von organischen und anorganischen Latentwärmespeichermaterialien
JP2005320527A (ja) 蓄熱材マイクロカプセル、蓄熱材マイクロカプセル分散液、蓄熱材マイクロカプセル固形物およびその利用方法
JP2006192428A (ja) マイクロカプセル固形物およびその利用方法
KR100632983B1 (ko) 상변화물질을 함유한 점착제 시트
KR100481282B1 (ko) 상변화물질을 이용한 도료조성물
JP2006097000A (ja) 蓄熱材マイクロカプセル固形物
JP2006263681A (ja) マイクロカプセル造粒物及びその利用方法
WO2007058003A1 (ja) 蓄熱材マイクロカプセル、蓄熱材マイクロカプセル分散液および蓄熱材マイクロカプセル固形物
JP4845576B2 (ja) 蓄熱材マイクロカプセル、蓄熱材マイクロカプセル分散液および蓄熱材マイクロカプセル固形物
Sonare et al. Review on applications of microencapsulated phase change material in buildings for thermal storage system
Yadav et al. A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications
JP2006096999A (ja) 蓄熱材マイクロカプセル固形物
JP2003311118A (ja) 蓄熱機能付き吸着材およびその製造方法
JP2006063327A (ja) 蓄熱材マイクロカプセル固形物
JP2006097002A (ja) 蓄熱材マイクロカプセル固形物
JP2006097001A (ja) 蓄熱材マイクロカプセル固形物
JP2007137991A (ja) 蓄熱材マイクロカプセル、蓄熱材マイクロカプセル分散液および蓄熱材マイクロカプセル固形物
JP2007145943A (ja) 蓄熱材マイクロカプセル、蓄熱材マイクロカプセル分散液および蓄熱材マイクロカプセル固形物
JP2006213914A (ja) 蓄熱材マイクロカプセル造粒物
JP2006176761A (ja) 蓄熱材マイクロカプセル固形物