JP2006059704A - Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery - Google Patents

Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery Download PDF

Info

Publication number
JP2006059704A
JP2006059704A JP2004241047A JP2004241047A JP2006059704A JP 2006059704 A JP2006059704 A JP 2006059704A JP 2004241047 A JP2004241047 A JP 2004241047A JP 2004241047 A JP2004241047 A JP 2004241047A JP 2006059704 A JP2006059704 A JP 2006059704A
Authority
JP
Japan
Prior art keywords
negative electrode
metal
secondary battery
ion secondary
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004241047A
Other languages
Japanese (ja)
Other versions
JP4723830B2 (en
Inventor
Yasushi Madokoro
靖 間所
Toshihide Suzuki
利英 鈴木
Minoru Sakai
稔 酒井
Kunihiko Eguchi
邦彦 江口
Katsuhiro Nagayama
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2004241047A priority Critical patent/JP4723830B2/en
Publication of JP2006059704A publication Critical patent/JP2006059704A/en
Application granted granted Critical
Publication of JP4723830B2 publication Critical patent/JP4723830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium ion secondary battery in which, compared with a negative electrode consisting of conventional carbon material containing graphite or metal, there are no pulverization and separation of the active material, thereby discharge capacity is large and excellent cycle characteristics and initial charge and discharge efficiency can be obtained, and the lithium ion secondary battery using this secondary battery negative electrode and demonstrating the above characteristics. <P>SOLUTION: This is the negative electrode for the lithium ion secondary battery which has a metal-contained layer that contains a carbon material and a metal capable of alloying with lithium of 1-100 parts by mass against the carbon material 100 parts by mass on the surface of a current collector and of which thickness is 20-70 μm, and has a carbon material layer on top of the metal-contained layer, and a lithium ion secondary battery using the negative electrode is also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放電容量が高いリチウムイオン二次電池用負極、およびリチウムイオン二次電池に関するものである。   The present invention relates to a negative electrode for a lithium ion secondary battery having a high discharge capacity, and a lithium ion secondary battery.

リチウムイオン二次電池は、他の二次電池に比べて、高エネルギー密度という優れた特性を有しており、電子機器の電源として現在広く普及している。近年、電子機器の小型化または高性能化が急速に進み、リチウムイオン二次電池のさらなる高エネルギー密度化に対する要望はますます高まっている。
現在、リチウムイオン二次電池は、正極にLiCoO2 、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は、充放電の可逆性に優れるものの、その放電容量はすでに層間化合物LiC6 に相当する上限の理論値372mAh/g に近い値まで到達しており、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
Lithium ion secondary batteries have an excellent characteristic of high energy density compared to other secondary batteries, and are currently widely used as power sources for electronic devices. In recent years, miniaturization or performance enhancement of electronic devices has rapidly progressed, and there is an increasing demand for further higher energy density of lithium ion secondary batteries.
At present, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in reversibility of charge and discharge, its discharge capacity has already reached a value close to the upper limit of the theoretical value of 372 mAh / g corresponding to the intercalation compound LiC 6 , achieving further higher energy density. In order to achieve this, it is necessary to develop a negative electrode material having a discharge capacity larger than that of graphite.

黒鉛に代わる負極材料として、リチウムと合金を形成する金属質物や、該金属質物と炭素、黒鉛などとの複合化物が検討されている。例えば、特許文献1、2では、集電体の上に、リチウムと合金を形成する金属または半導体からなる第一活物質層を形成し、さらに、その上に炭素質からなる第二活物質層を形成した負極が提案されている。しかし、第一活物質層は集電体の全体を覆っており、充電時の膨張率が大きいため、充放電を繰返すと集電体との密着力が低下し、サイクル特性が低下するという問題がある。   As a negative electrode material replacing graphite, a metallic material that forms an alloy with lithium, and a composite material of the metallic material with carbon, graphite, and the like have been studied. For example, in Patent Documents 1 and 2, a first active material layer made of a metal or a semiconductor that forms an alloy with lithium is formed on a current collector, and a second active material layer made of carbonaceous material is further formed thereon. There has been proposed a negative electrode in which is formed. However, since the first active material layer covers the entire current collector and has a large expansion coefficient at the time of charging, there is a problem in that the adhesion with the current collector is reduced and the cycle characteristics are deteriorated when charging and discharging are repeated. There is.

特許文献3では、集電体の上に、炭素を主成分とする第一の層と、リチウムイオン導電性を有する膜状材料(金属、合金、金属酸化物)を主成分とする第二の層が積層してなる負極が提案されている。しかし、第二の層の充電時の膨張率が大きいため、充放電を繰返すと、第二の層の第一の層からの剥離が生じ、サイクル特性が低下するという問題がある。   In Patent Document 3, a first layer mainly composed of carbon on a current collector and a second layer mainly composed of a film-like material (metal, alloy, metal oxide) having lithium ion conductivity are provided. A negative electrode formed by laminating layers has been proposed. However, since the expansion rate at the time of charging of the second layer is large, there is a problem that when the charge and discharge are repeated, the second layer is peeled off from the first layer and the cycle characteristics are deteriorated.

特開2001−283834号公報JP 2001-283834 A 特開2002−15729号公報JP 2002-15729 A 特開2003−249211号公報JP 2003-249 211 A

本発明は、前記のような状況を鑑みてなされたものであり、リチウムイオン二次電池用負極として用いて、従来の黒鉛材料からなる負極、および各種の金属質物層と、黒鉛質物および/または炭素質物の複合化物層との積層体からなる負極と比べて、放電容量が高く、優れたサイクル特性と初期充放電効率が得られるリチウムイオン二次電池用負極、ならびに該二次電池用負極を用いた、前記特性を発揮するリチウムイオン二次電池を提供することが目的である。   The present invention has been made in view of the above situation, and is used as a negative electrode for a lithium ion secondary battery, and includes a negative electrode made of a conventional graphite material, various metal material layers, and a graphite material and / or Compared to a negative electrode composed of a laminate of a carbonaceous material composite layer, a negative electrode for a lithium ion secondary battery having a high discharge capacity, excellent cycle characteristics and initial charge / discharge efficiency, and a negative electrode for the secondary battery It is an object to provide a lithium ion secondary battery that exhibits the above characteristics.

本発明は、集電体の表面に、炭素材料と、炭素材料100質量部に対して1〜100質量部のリチウムと合金化可能な金属とを含有する厚みが20〜70μmの金属含有層を有し、該金属含有層の上に、炭素材料層を有することを特徴とするリチウムイオン二次電池用負極である。   In the present invention, a metal-containing layer having a thickness of 20 to 70 μm containing a carbon material and 1 to 100 parts by mass of lithium and an alloyable metal with respect to 100 parts by mass of the carbon material is provided on the surface of the current collector. And a negative electrode for a lithium ion secondary battery, comprising a carbon material layer on the metal-containing layer.

本発明のリチウムイオン二次電池用負極は、前記炭素材料層の厚みが5〜40μmであることが好ましい。   In the negative electrode for a lithium ion secondary battery of the present invention, the carbon material layer preferably has a thickness of 5 to 40 μm.

本発明のリチウムイオン二次電池用負極は、前記リチウムと合金化可能な金属がシリコンおよび/またはスズであることが好ましい。   In the negative electrode for a lithium ion secondary battery of the present invention, the metal that can be alloyed with lithium is preferably silicon and / or tin.

本発明のリチウムイオン二次電池用負極は、前記金属含有層の炭素材料が天然黒鉛を含むことが好ましい。   In the negative electrode for a lithium ion secondary battery of the present invention, the carbon material of the metal-containing layer preferably contains natural graphite.

本発明のリチウムイオン二次電池用負極は、前記炭素材料層がメソフェーズ小球体の黒鉛化物を含むことが好ましい。   In the negative electrode for a lithium ion secondary battery of the present invention, it is preferable that the carbon material layer contains a graphitized mesophase spherule.

また、本発明は、前記いずれか一つのリチウムイオン二次電池用負極を用いたことを特徴とするリチウムイオン二次電池である。   Moreover, the present invention is a lithium ion secondary battery using any one of the negative electrodes for lithium ion secondary batteries.

本発明のリチウムイオン二次電池は、集電体の表面に、炭素材料と合金化可能な金属を含有する金属含有層を有し、該金属含有層の上に炭素材料層を有するため、該金属が充放電に伴う膨張・収縮により微粉化しても、該金属が金属含有層から剥離することがない。また、金属含有層には、該金属に比べ膨張率が小さく、集電体との密着性のよい炭素材料を含有しているため、充放電を繰返しても、金属含有層の集電体との密着性が低下せず、導電性を維持することができる。その結果、本発明のリチウムイオン二次電池用負極を用いて作製したリチウムイオン二次電池は、放電容量と初期充放電効率が高く、優れたサイクル特性を有する。   The lithium ion secondary battery of the present invention has a metal-containing layer containing a metal that can be alloyed with a carbon material on the surface of the current collector, and has a carbon material layer on the metal-containing layer. Even if the metal is pulverized by expansion / contraction associated with charge / discharge, the metal does not peel from the metal-containing layer. In addition, since the metal-containing layer contains a carbon material that has a lower expansion coefficient than the metal and has good adhesion to the current collector, The adhesiveness is not lowered, and the conductivity can be maintained. As a result, the lithium ion secondary battery produced using the negative electrode for lithium ion secondary batteries of the present invention has high discharge capacity and initial charge / discharge efficiency, and has excellent cycle characteristics.

以下に、本発明をさらに詳細に説明する。
(リチウムイオン二次電池)
リチウムイオン二次電池(単に、二次電池とも称す)は、通常、負極、正極および非水電解質を主たる構成要素とし、これら要素が、例えば、電池缶内に封入されている。負極および正極はそれぞれリチウムイオンの担持体として作用する。充電時にはリチウムイオンが負極中に吸蔵され、放電時には負極からリチウムイオンが脱離する電池機構によっている。本発明のリチウムイオン二次電池は、本発明の負極を用いること以外は特に限定されず、他の構成要素については一般的なリチウムイオン二次電池の要素に準じる。
The present invention is described in further detail below.
(Lithium ion secondary battery)
A lithium ion secondary battery (also simply referred to as a secondary battery) usually includes a negative electrode, a positive electrode, and a nonaqueous electrolyte as main components, and these components are enclosed in, for example, a battery can. The negative electrode and the positive electrode each act as a lithium ion carrier. It is based on a battery mechanism in which lithium ions are occluded in the negative electrode during charging, and lithium ions are desorbed from the negative electrode during discharging. The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode of the present invention is used, and other constituent elements conform to the elements of a general lithium ion secondary battery.

(負極)
本発明のリチウムイオン二次電池用負極は、集電体の表面に、金属含有層と、該金属含有層の上に炭素材料層とを有する構造である。
(Negative electrode)
The negative electrode for a lithium ion secondary battery of the present invention has a structure having a metal-containing layer on the surface of a current collector and a carbon material layer on the metal-containing layer.

(集電体)
負極に用いる集電体の材質は、銅、ステンレス、ニッケル、鉄などの金属であり、特に好ましいのは銅である。集電体の形状は、特に限定されないが、箔状、またはメッシュ、エキスパンドメタルなどの網状のものなどが用いられる。集電体の厚さは、箔状の場合、2〜50μm、特に5〜20μmであることが好ましい。集電体の大きさは、リチウムイオン二次電池の大きさにより決められる。
(Current collector)
The material of the current collector used for the negative electrode is a metal such as copper, stainless steel, nickel, or iron, and copper is particularly preferable. The shape of the current collector is not particularly limited, but a foil or a net-like material such as a mesh or expanded metal is used. In the case of a foil, the thickness of the current collector is preferably 2 to 50 μm, particularly preferably 5 to 20 μm. The size of the current collector is determined by the size of the lithium ion secondary battery.

(金属含有層)
金属含有層は、炭素材料と、該炭素材料100質量部に対して1〜100質量部のリチウムと合金化可能な金属とを含有する。金属含有層に含有されるリチウムと合金化可能な金属の量が1質量部未満であると二次電池の放電容量の向上効果が小さく、逆に100質量部超であると充電時の金属の体積膨張が大きくなり、二次電池のサイクル特性が低下する。リチウムと合金化可能な金属の含有量は、該炭素材料100質量部に対して3〜80質量部であることが好ましく、5〜60質量部であることがより好ましい。該金属含有層の金属の含有量は、EPMA(電子線プローブマイクロアナライザー)を用いて、特性X線スペクトルから存在する元素を同定した後、ZAF定量分析法により求めることができる。金属含有層の厚みは20〜70μmである。好ましくは30〜50μmである。金属含有層の厚みが20μm未満では、放電容量の向上効果が小さく、70μm超であると負極の内部抵抗が上昇して二次電池のサイクル特性が低下する。
(Metal-containing layer)
The metal-containing layer contains a carbon material and a metal that can be alloyed with 1 to 100 parts by mass of lithium with respect to 100 parts by mass of the carbon material. If the amount of metal that can be alloyed with lithium contained in the metal-containing layer is less than 1 part by mass, the effect of improving the discharge capacity of the secondary battery is small, and conversely if it exceeds 100 parts by mass, The volume expansion increases, and the cycle characteristics of the secondary battery deteriorate. The content of the metal that can be alloyed with lithium is preferably 3 to 80 parts by mass, and more preferably 5 to 60 parts by mass with respect to 100 parts by mass of the carbon material. The metal content of the metal-containing layer can be determined by a ZAF quantitative analysis method after identifying an element present from a characteristic X-ray spectrum using EPMA (electron probe microanalyzer). The thickness of the metal-containing layer is 20 to 70 μm. Preferably it is 30-50 micrometers. When the thickness of the metal-containing layer is less than 20 μm, the effect of improving the discharge capacity is small, and when it exceeds 70 μm, the internal resistance of the negative electrode is increased and the cycle characteristics of the secondary battery are deteriorated.

(リチウムと合金化可能な金属)
金属含有層にリチウムと合金化可能な金属と、炭素材料とを含有する負極は、該金属を配合していない黒鉛からなる負極に比べて高放電容量の二次電池を得ることができる。リチウムと合金化可能な金属は、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどである。本発明においては、特に放電容量が高く、入手が容易なSiおよび/またはSnが好ましく、最も好ましいのはSiである。該金属は結晶質であっても、非晶質であってもよい。該金属の2種以上の合金であってもよい。該金属または該合金はさらに、その他の元素を含有していても、一部が酸化物、窒化物、炭化物を形成していてもよい。該金属の平均粒子径は、金属含有層の厚みの範囲内であればよいが、好ましくは10μm以下、より好ましくは0.1〜5μmである。平均粒子径が10μm超であると二次電池のサイクル特性の向上効果が小さい場合がある。平均粒子径とは、レーザー回折式粒度計で測定される累積度数が体積百分率で50%となる粒子径を意味する。該金属の形状は格別問わないが、粒状、球状、板状、鱗片状、針状、糸状であることが好ましい。
(Metal that can be alloyed with lithium)
A negative electrode containing a metal that can be alloyed with lithium and a carbon material in a metal-containing layer can provide a secondary battery having a higher discharge capacity than a negative electrode made of graphite not containing the metal. Metals that can be alloyed with lithium include Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, B, Au, Pt, Pd, Sb, Ge, Ni, and the like. In the present invention, Si and / or Sn, which have a particularly high discharge capacity and are easily available, are preferred, and Si is most preferred. The metal may be crystalline or amorphous. Two or more alloys of the metals may be used. The metal or the alloy may further contain other elements, or a part thereof may form an oxide, a nitride, or a carbide. Although the average particle diameter of this metal should just be in the range of the thickness of a metal containing layer, Preferably it is 10 micrometers or less, More preferably, it is 0.1-5 micrometers. If the average particle diameter is more than 10 μm, the effect of improving the cycle characteristics of the secondary battery may be small. The average particle diameter means a particle diameter at which the cumulative frequency measured with a laser diffraction particle size meter is 50% by volume. The shape of the metal is not particularly limited, but is preferably granular, spherical, plate-like, scale-like, needle-like, or thread-like.

(炭素材料)
金属含有層に炭素材料を配合することにより、導電性を維持しながら、前記金属を金属含有層に保持することができる。金属含有層が炭素材料を含有せず、金属のみからなる金属含有層の場合には、導電性が確保できず、初期充放電効率およびサイクル特性が劣化する。
炭素材料は炭素質物および/または黒鉛質物であり、導電性を有するものである。炭素材料はその一部が金属と接し、導電性を確保していればよく、その形状は球状、塊状、板状、鱗片状、繊維状などのいずれであってもよい。
(Carbon material)
By mix | blending a carbon material with a metal content layer, the said metal can be hold | maintained at a metal content layer, maintaining electroconductivity. In the case where the metal-containing layer does not contain a carbon material and is a metal-containing layer made of only metal, conductivity cannot be ensured, and initial charge / discharge efficiency and cycle characteristics deteriorate.
The carbon material is a carbonaceous material and / or a graphite material, and has conductivity. A part of the carbon material only needs to be in contact with the metal and ensure conductivity, and the shape may be any of spherical, lump, plate, scale, and fiber.

炭素質物はその前駆体を、600℃、好ましくは800℃以上の温度で熱処理して得ることができる。前駆体の種類は問わないが、タールピッチ類および/または樹脂類であることが好ましい。具体的には、石油系または石炭系のタールピッチ類としてコールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。樹脂類としては、ポリビニルアルコールなどの熱可塑性樹脂、フェノール樹脂、フラン樹脂などの熱硬化性樹脂が挙げられる。好ましい前駆体はコールタールピッチ、フェノール樹脂などである。   The carbonaceous material can be obtained by heat-treating the precursor at a temperature of 600 ° C., preferably 800 ° C. or higher. Although the kind of precursor is not ask | required, it is preferable that they are tar pitches and / or resin. Specifically, coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, heavy oil as petroleum or coal-based tar pitches Etc. Examples of the resins include thermoplastic resins such as polyvinyl alcohol, and thermosetting resins such as phenol resins and furan resins. Preferred precursors are coal tar pitch, phenol resin and the like.

炭素材料として黒鉛質物を用いることもできる。その一部または全部が黒鉛質物で構成されているもの、例えば、天然黒鉛や、タールピッチ類を最終的に1500℃以上の温度で熱処理してなる人造黒鉛が挙げられる。具体的には、易黒鉛化性炭素材料と呼ばれる石油系、石炭系のタールピッチ類を熱処理して重縮合させたメソフェーズ焼成体、メソフェーズ小球体、コークス類を1500℃以上、好ましくは2000〜3300℃の温度で黒鉛化処理して得ることができる。例えば、メソフェーズ小球体の黒鉛質物は、石炭系または石油系ピッチ類を350〜450℃の温度で熱処理した際に、ピッチ中に生成する光学的異方性小球体を、ピッチマトリクスから取り出し、不活性雰囲気の流動下、350〜600℃の温度で熱処理した後、最終的に1500℃以上、好ましくは2000〜3200℃の温度で熱処理して製造される。また、黒鉛質物は液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施した黒鉛質物であってもよい。   A graphite material can also be used as the carbon material. Part or all of which is composed of a graphite material, for example, natural graphite or artificial graphite obtained by finally heat treating tar pitches at a temperature of 1500 ° C. or higher. Specifically, mesophase fired bodies, mesophase spherules and cokes obtained by heat-treating and polycondensing petroleum-based and coal-based tar pitches called graphitizable carbon materials are 1500 ° C. or higher, preferably 2000-3300. It can be obtained by graphitization at a temperature of ° C. For example, the mesophase spherulitic graphite is obtained by removing from the pitch matrix the optically anisotropic spherules that form in the pitch when coal-based or petroleum pitches are heat-treated at a temperature of 350 to 450 ° C. It is manufactured by heat treatment at a temperature of 350 to 600 ° C. under the flow of an active atmosphere, and finally heat treatment at a temperature of 1500 ° C. or higher, preferably 2000 to 3200 ° C. The graphite material may be a graphite material that has been subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment, and the like.

炭素材料として、黒鉛化物と炭素質物とを併用することも可能である。例えば、黒鉛質物である鱗片状の天然黒鉛を炭素質物で被覆することによって、金属含有層と炭素材料層のいずれで使用する場合においても、初期充放電効率を向上させることができる。この場合、両者の比率に特に制限はないが、黒鉛化物100質量部に対して炭素質物が3質量部以上であることが好ましい。3質量部未満であると、例えば、天然黒鉛に対する被覆が不完全になるおそれがある。   It is also possible to use a graphitized material and a carbonaceous material in combination as the carbon material. For example, by coating scaly natural graphite, which is a graphite material, with a carbonaceous material, the initial charge / discharge efficiency can be improved when used in either a metal-containing layer or a carbon material layer. In this case, although there is no restriction | limiting in particular in both ratio, It is preferable that a carbonaceous material is 3 mass parts or more with respect to 100 mass parts of graphitized materials. If it is less than 3 parts by mass, for example, the coating on natural graphite may be incomplete.

(炭素材料層)
炭素材料層は、炭素材料を主成分とし、金属含有量に含有するリチウムと合金化可能な金属およびその他の金属を含有しない層である。炭素材料層により、金属含有層の集電体との密着性が低下せず、導電性を維持でき、放電容量と初期充放電効率が高く、優れたサイクル特性を有するリチウムイオン二次電池が得られる。例えば、金属含有層のみを有し、炭素材料層を有しない負極に、充放電を繰返すと、金属の体積膨張によって、金属含有層の層構造が破壊され、金属含有層の集電体との密着性の低下や、金属の剥離が生じる。
炭素材料層の厚みは5〜40μmであることが好ましく、10〜30μmであることがより好ましい。炭素材料層の厚みが5μm未満では、初期充放電効率が低下する場合があり、40μm超であると負極の内部抵抗が上昇して二次電池のサイクル特性が低下する場合がある。炭素材料層に用いる炭素材料として、金属含有層に用いる炭素材料(炭素質物および/または黒鉛質物)を用いることができる。炭素材料層に用いる炭素材料の平均粒子径は、好ましくは1〜30μm、特に好ましくは5〜15μmである。平均粒子径が1μm未満であると比表面積が大きく、初期充放電効率が低下するおそれがある。また、30μmを超えると、負極合剤ペーストを調製するとき、炭素材料粒子が沈降し、均一な濃度の負極合剤ペーストが得られないおそれがある。
(Carbon material layer)
The carbon material layer is a layer that contains a carbon material as a main component and does not contain a metal that can be alloyed with lithium contained in the metal content and other metals. The carbon material layer does not decrease the adhesion of the metal-containing layer to the current collector, can maintain conductivity, has a high discharge capacity and high initial charge / discharge efficiency, and provides a lithium ion secondary battery with excellent cycle characteristics. It is done. For example, when charging and discharging are repeated on a negative electrode that has only a metal-containing layer and does not have a carbon material layer, the layer structure of the metal-containing layer is destroyed by the volume expansion of the metal, and the metal-containing layer current collector Decrease in adhesion and peeling of metal occur.
The thickness of the carbon material layer is preferably 5 to 40 μm, and more preferably 10 to 30 μm. If the thickness of the carbon material layer is less than 5 μm, the initial charge / discharge efficiency may be reduced, and if it exceeds 40 μm, the internal resistance of the negative electrode may increase and the cycle characteristics of the secondary battery may be reduced. As the carbon material used for the carbon material layer, a carbon material (carbonaceous material and / or graphitic material) used for the metal-containing layer can be used. The average particle diameter of the carbon material used for the carbon material layer is preferably 1 to 30 μm, particularly preferably 5 to 15 μm. If the average particle size is less than 1 μm, the specific surface area is large, and the initial charge / discharge efficiency may be reduced. Moreover, when it exceeds 30 micrometers, when preparing a negative mix paste, carbon material particle | grains may settle, and there exists a possibility that the negative mix paste of a uniform density | concentration may not be obtained.

金属含有層の炭素材料と炭素材料層の炭素材料は、同じであっても、異っていても差し支えないが、炭素材料層は黒鉛質物を含む方が、初期充放電効率の向上効果が大きいので好ましい。特に、炭素材料層はメソフェーズ小球体の黒鉛化物を含むと初期充放電効率がさらに向上するので好ましい。また、金属含有層の炭素材料は天然黒鉛を含むと金属を保持しやすいので好ましい。   The carbon material of the metal-containing layer and the carbon material of the carbon material layer may be the same or different, but the effect of improving the initial charge / discharge efficiency is greater when the carbon material layer contains a graphite material. Therefore, it is preferable. In particular, it is preferable that the carbon material layer contains graphitized mesophase spherules because the initial charge and discharge efficiency is further improved. In addition, it is preferable that the carbon material of the metal-containing layer contains natural graphite because the metal is easily retained.

(負極の作製方法)
本発明のリチウムイオン二次電池用負極は、集電体の片面または両面に、炭素材料と、リチウムと合金化可能な金属とを含有する金属含有層を形成した後、金属含有層の上に、炭素材料層を形成することにより作製される。
本発明のリチウムイオン二次電池用負極の金属含有層、炭素材料層とも、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されるところがなく、通常の負極の作製方法に準じて作製される。負極材料(炭素材料、金属など)に結合剤を加えて、予め調製した負極合剤を用いる方法が好ましい。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いるのが好ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリエチレン、ポリビニルアルコール、さらにはカルボキシメチルセルロースなどが用いられる。これらを併用することもできる。
結合剤は通常、負極合剤の全量中の1〜20質量%程度の量で用いるのが好ましい。
(Production method of negative electrode)
The negative electrode for a lithium ion secondary battery of the present invention is formed on a metal-containing layer after forming a metal-containing layer containing a carbon material and a metal that can be alloyed with lithium on one or both surfaces of the current collector. It is produced by forming a carbon material layer.
The metal-containing layer and the carbon material layer of the negative electrode for a lithium ion secondary battery of the present invention are not limited in any way as long as the method can obtain a chemically and electrochemically stable negative electrode. Produced according to the production method. A method of using a negative electrode mixture prepared in advance by adding a binder to the negative electrode material (carbon material, metal, etc.) is preferred. As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, For example, carboxymethylcellulose is used. These can also be used together.
In general, the binder is preferably used in an amount of about 1 to 20% by mass in the total amount of the negative electrode mixture.

負極は、より具体的には、下記のように作製される。まず、負極材料を分級などにより所望の粒度に調整し、これと結合剤とを混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、負極材料と、結合剤を、水、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、負極合剤ペーストを調製する。
金属含有層を形成するには、負極材料として、所定の割合で炭素材料と金属とを混合して得たもの、例えば、前記負極合剤ペーストを用いることが好ましい。この場合、炭素材料と金属を混合したのち、加熱処理を行ってもよい。加熱温度は特に制限されないが、金属が炭素材料と反応する温度より低い温度で行うことが好ましい。例えば、Siの場合、1500℃以上の温度では炭素と反応して充放電能力を有しないSiCを生成するため、加熱処理温度は1500℃未満であることが好ましく、900〜1200℃であることが特に好ましい。
More specifically, the negative electrode is produced as follows. First, the negative electrode material is adjusted to a desired particle size by classification or the like, and a mixture obtained by mixing this with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste. That is, the slurry obtained by mixing the negative electrode material and the binder with a solvent such as water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, and the like is stirred and mixed using a known stirrer, mixer, kneader, kneader, or the like. Then, a negative electrode mixture paste is prepared.
In order to form the metal-containing layer, it is preferable to use a negative electrode material obtained by mixing a carbon material and a metal at a predetermined ratio, for example, the negative electrode mixture paste. In this case, heat treatment may be performed after mixing the carbon material and the metal. The heating temperature is not particularly limited, but is preferably performed at a temperature lower than the temperature at which the metal reacts with the carbon material. For example, in the case of Si, at a temperature of 1500 ° C. or higher, it reacts with carbon to produce SiC that does not have charge / discharge capability, so the heat treatment temperature is preferably less than 1500 ° C., and preferably 900 to 1200 ° C. Particularly preferred.

前記ペーストを、集電体の片面または両面に塗布し、乾燥することによって負極合剤層を形成することができる。負極合剤層を形成した後、プレス等の加圧を行なってもよい。金属含有層は金属を含有する負極合剤層であり、炭素材料層は金属が含有されていない負極合剤層であり、それぞれ前述した厚みとなるように調整する。また、本発明のリチウムイオン二次電池用負極として、前記した負極材料に、ポリエチレン、ポリビニルアルコールなどの粉末を乾式混合し、ホットプレス成形したものを用いることができる。   A negative electrode mixture layer can be formed by applying the paste to one or both sides of a current collector and drying. After forming the negative electrode mixture layer, pressurization such as pressing may be performed. The metal-containing layer is a negative electrode mixture layer containing a metal, and the carbon material layer is a negative electrode mixture layer containing no metal and is adjusted to have the thickness described above. In addition, as the negative electrode for a lithium ion secondary battery of the present invention, a material obtained by dry-mixing a powder of polyethylene, polyvinyl alcohol or the like into the above-described negative electrode material and hot pressing it can be used.

(正極)
正極は、例えば、正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。本発明のリチウムイオン二次電池に使用される正極材料(正極活物質)として、リチウム化合物が用いられるが、それは、充分量のリチウムを吸蔵・脱離し得るものであるのが好ましい。そのようなリチウム化合物は、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式Mx Mo6 8-Y (式中Mは遷移金属などの金属を表し、Xは0≦X≦4の数、Yは0≦Y≦1の数である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物はV2 5 、V6 13、V2 4 、V3 8 で示されるものなどである。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive agent to the surface of the current collector. As a positive electrode material (positive electrode active material) used in the lithium ion secondary battery of the present invention, a lithium compound is used, and it is preferable that it can absorb and desorb a sufficient amount of lithium. Such lithium compounds include lithium-containing transition metal oxides, transition metal chalcogenides, lithium-containing compounds such as vanadium oxides and lithium compounds thereof, general formula M x Mo 6 S 8-Y (where M is a transition metal, etc.) X is a number satisfying 0 ≦ X ≦ 4, and Y is a number satisfying 0 ≦ Y ≦ 1), activated carbon, activated carbon fiber, and the like. Examples of the vanadium oxide include those represented by V 2 O 5 , V 6 O 13 , V 2 O 4 , and V 3 O 8 .

リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶した複合酸化物であってもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM1 1-z 2 z 2 (式中M1 、M2 は少なくとも一種の遷移金属であり、Zは0≦Z≦1の数である)、またはLiM1 2-w2 w 4 (式中M1 、M2 は少なくとも一種の遷移金属であり、Wは0≦W≦2の数である)で示される。式中、M1 、M2 で示される遷移金属は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましい具体例はLiCoO2 、LiNiO2 、LiMnO2 、LiNi0.9 Co0.1 2 、LiNi0.5 Mn0.5 2 などである。
また、リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、塩類または水酸化物を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素含有雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a composite oxide in which lithium and two or more transition metals are dissolved. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-z M 2 z O 2 (wherein M 1 and M 2 are at least one transition metal, and Z is a number of 0 ≦ Z ≦ 1). Or LiM 1 2-w M 2 w O 4 (wherein M 1 and M 2 are at least one transition metal, and W is a number of 0 ≦ W ≦ 2). In the formula, transition metals represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn and the like, and preferred specific examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 and the like.
The lithium-containing transition metal oxide is, for example, lithium, a transition metal oxide, salt or hydroxide as a starting material, and these starting materials are mixed according to the composition of the desired metal oxide, and an oxygen-containing atmosphere It can be obtained by firing at a temperature of 600 to 1000 ° C. below.

本発明のリチウムイオン二次電池においては、正極活物質は上記化合物を単独で使用しても2種類以上併用してもよい。また、正極中に、炭酸リチウム等の炭酸塩を添加することもできる。また、正極を形成する際に、従来公知の導電剤や結着剤などの各種添加剤を適宜使用することができる。導電剤としては、黒鉛やカーボンブラックなどの公知のものを使用できる。
正極も、負極と同様に、正極合剤を溶媒中に分散させることで正極合剤ペーストにし、この正極合剤ペーストを集電体に塗布し、乾燥することによって正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス等の加圧を行ってもよい。これにより正極合剤層が均一かつ強固に集電体に接着される。
集電体の形状は特に限定されず、箔状、またはメッシュ、エキスパンダブルメタル等の網状のものが用いられる。集電体の材質は、例えば、アルミニウム箔、ステンレス箔、ニッケル箔などである。その厚さは10〜40μmであるのが好ましい。
In the lithium ion secondary battery of the present invention, the positive electrode active material may be used alone or in combination of two or more. Moreover, carbonates, such as lithium carbonate, can also be added in a positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent and a binder, can be used suitably. As the conductive agent, known materials such as graphite and carbon black can be used.
Similarly to the negative electrode, the positive electrode is made into a positive electrode mixture paste by dispersing the positive electrode mixture in a solvent, and this positive electrode mixture paste is applied to a current collector and dried to form a positive electrode mixture layer. Alternatively, after forming the positive electrode mixture layer, pressurization such as pressing may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
The shape of the current collector is not particularly limited, and a foil shape or a net shape such as a mesh or an expandable metal is used. Examples of the material of the current collector include aluminum foil, stainless steel foil, and nickel foil. The thickness is preferably 10 to 40 μm.

(非水電解質)
本発明のリチウムイオン二次電池に用いられる非水電解質は、通常の非水電解質溶液に使用される電解質塩を用いることができる。電解質塩としては、例えば、LiPF6 、LiBF4 、LiAsF6 、LiClO4 、LiB(C6 5 )、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiN(CF3 CH2 OSO2 2 、LiN(CF3 CF3 OSO2 2 、LiN(HCF2 CF2 CH2 OSO2 2 、LiN{(CF3 2 CHOSO2 2 、LiB{(C6 3 (CF3 2 4 、LiN(SO2 CF3 2 、LiC(SO2 CF3 3 、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 およびLiBF4 が酸化安定性の点から好ましい。電解質溶液中の電解質塩濃度は0.1〜5mol/l であるのが好ましく、0.5〜3.0mol/l であるのがより好ましい。
(Nonaqueous electrolyte)
As the nonaqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in a normal nonaqueous electrolyte solution can be used. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 3 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN {(CF 3 ) Lithium salts such as 2 CHOSO 2 } 2 , LiB {(C 6 H 3 (CF 3 ) 2 } 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 are used. In particular, LiPF 6 and LiBF 4 are preferred from the viewpoint of oxidation stability, and the electrolyte salt concentration in the electrolyte solution is preferably 0.1 to 5 mol / l, preferably 0.5 to 3.0 mol / l. More preferred .

電解質溶液とするための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソフラン、4−メチルー1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。   Solvents for preparing the electrolyte solution include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyl Tetrahydrofuran, γ-butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile, boron Trimethyl acid, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, bromide Nzoiru, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazoline, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite.

非水電解質を高分子固体電解質、高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解質溶液)でゲル化された高分子を用いる。該マトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのメタクリレート系高分子化合物、ポリアクリレートなどのアクリレート系高分子化合物、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が好ましい。これらを混合して使用することもできる。酸化還元安定性などの観点から、PVDFやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。   When the nonaqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, a polymer gelled with a plasticizer (nonaqueous electrolyte solution) is used as a matrix. Examples of the polymer compound constituting the matrix include ether polymer compounds such as polyethylene oxide and cross-linked products thereof, methacrylate polymer compounds such as polymethacrylate, acrylate polymer compounds such as polyacrylate, polyvinylidene fluoride ( Fluorine polymer compounds such as PVDF) and vinylidene fluoride-hexafluoropropylene copolymers are preferred. These can also be mixed and used. From the viewpoint of oxidation-reduction stability, a fluorine-based polymer compound such as PVDF or vinylidene fluoride-hexafluoropropylene copolymer is particularly preferable.

前記高分子固体電解質または高分子ゲル電解質には可塑剤が配合されるが、可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、非水電解質溶液中の可塑剤である電解質塩の濃度は0.1〜5mol/l であるのが好ましく、0.5〜2.0mol/l であるのがより好ましい。   A plasticizer is blended in the polymer solid electrolyte or the polymer gel electrolyte. As the plasticizer, the electrolyte salt and the non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt as a plasticizer in the nonaqueous electrolyte solution is preferably 0.1 to 5 mol / l, more preferably 0.5 to 2.0 mol / l. .

このような固体電解質の製造方法は特に制限されないが、例えば、マトリクスを構成する高分子化合物、リチウム塩および非水溶媒を混合し、加熱して高分子化合物を溶融・溶解する方法、有機溶剤に高分子化合物、リチウム塩および非水溶媒を溶解させた後、有機溶剤を蒸発させる方法、および高分子電解質の原料となる重合性モノマー、リチウム塩および非水溶媒を混合し、混合物に紫外線、電子線または分子線などを照射して重合させ高分子電解質を製造する方法などを挙げることができる。
また、前記固体電解質中の非水溶媒の添加率は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、成膜しにくくなる。
The method for producing such a solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent and heating to melt and dissolve the polymer compound, an organic solvent A method of dissolving an organic solvent after dissolving a polymer compound, a lithium salt, and a non-aqueous solvent, and a mixture of a polymerizable monomer, a lithium salt, and a non-aqueous solvent as a raw material of the polymer electrolyte, and mixing the mixture with ultraviolet rays, electrons Examples thereof include a method of producing a polymer electrolyte by polymerizing by irradiating a beam or a molecular beam.
Moreover, 10 to 90 mass% is preferable and, as for the addition rate of the nonaqueous solvent in the said solid electrolyte, 30 to 80 mass% is more preferable. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

(セパレータ)
本発明のリチウムイオン二次電池においては、セパレータを使用することができる。セパレータの材質は特に限定されないが、織布、不織布、合成樹脂製微多孔膜などが例示される。合成樹脂製微多孔膜が好適であるが、中でもポリオレフィン系微多孔膜が、膜厚、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
(Separator)
In the lithium ion secondary battery of the present invention, a separator can be used. Although the material of a separator is not specifically limited, A woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are illustrated. A synthetic resin microporous membrane is preferred, and among these, a polyolefin-based microporous membrane is preferred from the standpoints of film thickness, membrane strength, membrane resistance, and the like. Specifically, it is a microporous film made of polyethylene and polypropylene, or a microporous film in which these are combined.

本発明のリチウムイオン二次電池においては、初期充放電効率が高いことから、ゲル電解質を用いることができる。
ゲル電解質二次電池は、負極、正極およびゲル電解質を、例えば、負極、ゲル電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに負極と正極の外側にゲル電解質を配するようにしてもよい。特に本発明の負極にゲル電解質を用いる二次電池では、ゲル電解質にプロピレンカーボネートを含有することができる。一般にプロピレンカーボネートは黒鉛に対して電気的分解反応が激しいが、本発明の負極に対しては分解反応性が低いので、第一サイクルにおける不可逆な容量を小さく抑えることができる。
In the lithium ion secondary battery of the present invention, a gel electrolyte can be used because of high initial charge / discharge efficiency.
The gel electrolyte secondary battery is configured by laminating a negative electrode, a positive electrode, and a gel electrolyte in the order of, for example, a negative electrode, a gel electrolyte, and a positive electrode, and accommodating the stacked layers in a battery exterior material. Further, a gel electrolyte may be disposed outside the negative electrode and the positive electrode. In particular, in a secondary battery using a gel electrolyte for the negative electrode of the present invention, the gel electrolyte can contain propylene carbonate. In general, propylene carbonate has a strong electrolysis reaction with respect to graphite. However, since the decomposition reactivity with the negative electrode of the present invention is low, the irreversible capacity in the first cycle can be kept small.

さらに、本発明のリチウムイオン二次電池の構造は特に制限されず、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型のいずれの形状または形態のものでもよい。より安全性の高い密閉型非水電解質電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであるのが好ましい。高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Furthermore, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and is not particularly limited with respect to its shape and form, depending on the application, mounted equipment, required charge / discharge capacity, etc., cylindrical type, Any shape or form of a square shape, a coin shape, or a button shape may be used. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to provide means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharge occurs. In the case of a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure enclosed in a laminate film can also be used.

また、本発明は、前記リチウムイオン二次電池用負極を用いて形成されるリチウムイオン二次電池でもある。
本発明のリチウムイオン二次電池は、前記負極を用いること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じて、前記したように構成され、作製される。
Moreover, this invention is also a lithium ion secondary battery formed using the said negative electrode for lithium ion secondary batteries.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components are configured as described above according to the elements of a general lithium ion secondary battery, Produced.

以下に、本発明を実施例および比較例によって具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお実施例および比較例では、図1に示すような構成の評価用ボタン型二次電池を作製して評価した。実電池は、本発明の目的に基づき、公知の方法に準じて製造することができる。
なお、平均粒子径は、前述したようにレーザー回折式粒度分布計により測定した粒度分布の累積度数が体積百分率で50%となる粒子径とした。また、残炭率はJIS K2425−1983の固定炭素法に準拠し、コールタールピッチを800℃の温度に加熱し、実質的に全量が炭素化されたときの残分を言い、百分率で表したものである。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, an evaluation button type secondary battery having a configuration as shown in FIG. 1 was produced and evaluated. A real battery can be manufactured according to a well-known method based on the objective of this invention.
The average particle size was a particle size at which the cumulative frequency of the particle size distribution measured with a laser diffraction particle size distribution meter was 50% by volume as described above. Further, the residual carbon ratio is based on the fixed carbon method of JIS K2425-1983, and the coal tar pitch is heated to a temperature of 800 ° C., which means the residual when the entire amount is carbonized, expressed as a percentage. Is.

(実施例1)
(作用電極の作製)
コールタールピッチ(JFEケミカル(株)製、PK−QL、残炭率60質量%)にタール中油(溶媒)を混合し、コールタールピッチ溶液を得た。ついで、該コールタールピッチ溶液にSi粉末(高純度化学研究所(株)製、平均粒子径2μm)と天然黒鉛[(株)中越黒鉛工業所製、平均粒子径10μm]を加え、200℃で1時間混練した。その際、固形分質量比がSi:天然黒鉛:コールタールピッチ=10:70:33.3となるように調整した。混練後、真空にして該混練物からタール中油を除去した。得られた混練生成物を粗粉砕した後、1000℃で10時間焼成し、実質的に揮発分を含有しない炭素質物からなる複合化物を得た。該複合化物の平均粒子径は15μmであり、該複合化物のSi:炭素材料(天然黒鉛+コールタールピッチの炭素質物)=10:(70+20)=11:100であった。該複合化物90質量部と、結合剤ポリフッ化ビニリデン10質量部とを、N−メチルピロリドン溶媒に入れ、ホモミキサーを用いて2000rpm で30分間攪拌混合し、有機溶媒系負極合剤ペーストAを調製した。
Example 1
(Production of working electrode)
Coal tar pitch (manufactured by JFE Chemical Co., Ltd., PK-QL, residual carbon ratio 60 mass%) was mixed with tar oil (solvent) to obtain a coal tar pitch solution. Next, Si powder (manufactured by High Purity Chemical Laboratory Co., Ltd., average particle size 2 μm) and natural graphite [manufactured by Chuetsu Graphite Industries, Ltd., average particle size 10 μm] are added to the coal tar pitch solution at 200 ° C. Kneaded for 1 hour. At that time, the solid content mass ratio was adjusted to be Si: natural graphite: coal tar pitch = 10: 70: 33.3. After kneading, the oil in tar was removed from the kneaded product by vacuum. The obtained kneaded product was coarsely pulverized and then fired at 1000 ° C. for 10 hours to obtain a composite composed of a carbonaceous material containing substantially no volatile matter. The average particle diameter of the composite was 15 μm, and Si: carbon material of the composite (natural graphite + carbon material of coal tar pitch) = 10: (70 + 20) = 11: 100. 90 parts by mass of the composite and 10 parts by mass of a polyvinylidene fluoride binder are placed in an N-methylpyrrolidone solvent and stirred and mixed at 2000 rpm for 30 minutes using a homomixer to prepare an organic solvent-based negative electrode mixture paste A. did.

メソフェーズ小球体(JFEケミカル株式会社製、KMFC)を3000℃に加熱し、黒鉛化した後、該粉末を分級して、粒度調整し、平均粒子径が18μmの黒鉛質粒子粉末を得た。該黒鉛質粒子粉末90質量部と、結合剤ポリフッ化ビニリデン10質量部とを、N−メチルピロリドン溶媒に入れ、ホモミキサーを用いて2000rpm で30分間攪拌混合し、有機溶媒系負極合剤ペーストBを調製した。   Mesophase microspheres (manufactured by JFE Chemical Co., Ltd., KMFC) were heated to 3000 ° C. and graphitized, and then the powder was classified and the particle size was adjusted to obtain a graphite particle powder having an average particle size of 18 μm. 90 parts by mass of the graphitic particle powder and 10 parts by mass of the binder polyvinylidene fluoride are placed in an N-methylpyrrolidone solvent, and are stirred and mixed at 2000 rpm for 30 minutes using a homomixer to prepare an organic solvent-based negative electrode mixture paste B. Was prepared.

ペーストAを、集電体銅箔(厚さ16μm)上に塗布し、さらにその上に、ペーストBを塗布した。その後、真空中90℃で溶媒を揮発させ、乾燥し、負極合剤層をハンドプレスによって加圧し、金属含有層と、金属含有層の上に炭素材料層を形成した。これを直径15.5mmの円柱状に打抜いて、該集電体に保持された作用電極を作製した。加圧後の各層の断面(倍率1000倍)を前記したEPMAによるZAF定量分析法により、リチウムと合金化可能な金属の含有割合を求めた。断面は10視野を観察し、その平均値を採用した。また、各層の厚みは、SEM(走査型電子顕微鏡)により測定した10箇所の平均値とした。結果を表1に示した。   Paste A was applied on a current collector copper foil (thickness: 16 μm), and paste B was further applied thereon. Then, the solvent was volatilized and dried at 90 ° C. in vacuum, and the negative electrode mixture layer was pressurized by a hand press to form a metal-containing layer and a carbon material layer on the metal-containing layer. This was punched into a cylindrical shape with a diameter of 15.5 mm to produce a working electrode held by the current collector. The content ratio of the metal that can be alloyed with lithium was determined by the ZAF quantitative analysis method using EPMA for the cross section of each layer after pressing (1000 times magnification). As for the cross section, 10 visual fields were observed, and the average value was adopted. Moreover, the thickness of each layer was taken as the average value of 10 places measured with SEM (scanning electron microscope). The results are shown in Table 1.

(対極の作製)
リチウム金属箔をニッケルネットに押し付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体に密着したリチウム金属箔からなる対極を作製した。
(Production of counter electrode)
The lithium metal foil was pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm to produce a counter electrode made of a lithium metal foil in close contact with a current collector made of nickel net.

(電解質、セパレータ)
エチレンカーボネート33vol %とメチルエチルカーボネート67vol %を混合してなる混合溶媒に、LiPF6 を1mol/lとなる濃度で溶解させ、非水電解溶液を調製した。得られた非水電解溶液をポリプロピレン多孔質体(厚さ20μm)に含浸させ、電解液が含浸したセパレータを作製した。
(Electrolyte, separator)
LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent obtained by mixing 33 vol% ethylene carbonate and 67 vol% methyl ethyl carbonate to prepare a nonaqueous electrolytic solution. The obtained non-aqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

(評価電池)
評価電池として、図1に示すボタン型二次電池を作製した。
集電体7bに密着した作用電極2と、集電体7aに密着した対極4との間に、電解液を含浸させたセパレータ5を挟んで、積層した。その後、集電体7b側が外装カップ1内に、集電体7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に、絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。
(Evaluation battery)
A button-type secondary battery shown in FIG. 1 was produced as an evaluation battery.
The working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a were laminated with the separator 5 impregnated with the electrolyte interposed therebetween. Thereafter, the exterior cup 1 and the exterior can 3 were combined so that the current collector 7 b side was accommodated in the exterior cup 1 and the current collector 7 a side was accommodated in the exterior can 3. At that time, an insulating gasket 6 was interposed between the peripheral edges of the outer cup 1 and the outer can 3, and both peripheral edges were caulked and sealed.

(充放電試験)
評価電池について、25℃の温度下で以下のような充放電試験を行い、充放電容量、初期充放電効率およびサイクル特性を測定、計算した。評価結果を表1に示した。(放電容量、初期充放電効率)
0.9mAの電流値で回路電圧が0mVに達するまで定電流充電を行い、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に、0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次式から初期充放電効率を計算した。なお、この試験では、リチウムイオンを黒鉛質粒子へ吸蔵する過程を充電、脱離する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)
×100
(Charge / discharge test)
The evaluation battery was subjected to the following charge / discharge test at a temperature of 25 ° C., and the charge / discharge capacity, initial charge / discharge efficiency, and cycle characteristics were measured and calculated. The evaluation results are shown in Table 1. (Discharge capacity, initial charge / discharge efficiency)
The constant current charging was performed until the circuit voltage reached 0 mV at a current value of 0.9 mA. When the circuit voltage reached 0 mV, switching was made to constant voltage charging, and the charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 0.9 mA, and the discharge capacity was determined from the amount of current applied during this period. This was the first cycle. The initial charge / discharge efficiency was calculated from the following equation. In this test, the process of occluding lithium ions in the graphite particles was charged and the process of detaching was defined as discharge.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity)
× 100

放電容量および初期充放電効率を評価した評価電池とは別の評価電池を作製し、以下のような評価試験を行った。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に、4.0mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。この充放電を20回繰返し、得られた放電容量から、次式を用いてサイクル特性を計算した。
サイクル特性(%)=(第20サイクルの放電容量/第1サイクルの放電容量)
×100
An evaluation battery different from the evaluation battery that evaluated the discharge capacity and the initial charge / discharge efficiency was produced, and the following evaluation test was performed.
After 4.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 4.0 mA, and the discharge capacity was obtained from the energization amount during this period. This charging / discharging was repeated 20 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following equation.
Cycle characteristics (%) = (discharge capacity of 20th cycle / discharge capacity of 1st cycle)
× 100

(比較例1)
実施例1において、表2に示すように、ペーストAとペーストBの塗布順序を入替える以外は、実施例1と同様な方法と条件で、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表2に示した。
(Comparative Example 1)
In Example 1, as shown in Table 2, a negative electrode and an evaluation battery were produced under the same method and conditions as in Example 1 except that the application order of paste A and paste B was changed. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 2.

(比較例2)
実施例1において、表2に示すように、銅箔にペーストAを塗布し、厚さが40μmから50μmに変更された第一層を形成し、該層の上にシリコンをターゲットとしてスパッタリングを行い、第二層としてシリコン薄膜(厚さ5μm)を形成する以外は、実施例1と同様な方法と条件で負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表2に示した。
前記スパッタリングは、DC二極スパッタリング装置のアノード側ステージにペーストAを塗布した電極を配置し、カソードに純度99.999%の単結晶シリコーンターゲットを配置して、アルゴン雰囲気で、圧力0.5Pa、電圧600V、電流0.5Aの条件で2時間行った。
(Comparative Example 2)
In Example 1, as shown in Table 2, the paste A was applied to a copper foil to form a first layer whose thickness was changed from 40 μm to 50 μm, and sputtering was performed on the layer using silicon as a target. A negative electrode and an evaluation battery were prepared in the same manner and under the same conditions as in Example 1 except that a silicon thin film (thickness 5 μm) was formed as the second layer. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 2.
In the sputtering, an electrode coated with paste A is disposed on the anode side stage of a DC bipolar sputtering apparatus, a single crystal silicone target having a purity of 99.999% is disposed on the cathode, an argon atmosphere, a pressure of 0.5 Pa, The test was performed for 2 hours under conditions of a voltage of 600 V and a current of 0.5 A.

(比較例3)
実施例1において、表2に示すように、銅箔にシリコンをターゲットとしてスパッタリングを行い、第一層としてシリコン薄膜(厚さ5μm)を形成し、該薄膜の上にペーストAを塗布し、厚さが40μmから50μmに変更された第二層を形成し、さらにペーストBを塗布することにより第三層を形成する以外は、実施例1と同様な方法と条件で負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表2に示した。
前記スパッタリングは、DC二極スパッタリング装置のアノード側ステージに銅箔を配置し、カソードに純度99.999%の単結晶シリコーンターゲットを配置して、アルゴン雰囲気で、圧力0.5Pa、電圧600V、電流0.5Aの条件で2時間行なった。
(Comparative Example 3)
In Example 1, as shown in Table 2, sputtering was performed on a copper foil using silicon as a target, a silicon thin film (thickness 5 μm) was formed as a first layer, paste A was applied on the thin film, A negative electrode and an evaluation battery were produced in the same manner and under the same conditions as in Example 1 except that the second layer was changed from 40 μm to 50 μm and the third layer was formed by applying paste B. . The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 2.
In the sputtering, a copper foil is disposed on the anode side stage of a DC bipolar sputtering apparatus, a single crystal silicone target having a purity of 99.999% is disposed on the cathode, a pressure of 0.5 Pa, a voltage of 600 V, and a current in an argon atmosphere. This was carried out for 2 hours under the condition of 0.5 A.

(実施例2〜3)
実施例1において、金属含有層のシリコン粉末の含有量を表1に示すように変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表1に示した。
(Examples 2-3)
In Example 1, except that the content of silicon powder in the metal-containing layer was changed as shown in Table 1, a negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and the negative electrode and the evaluation battery were prepared. Produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 1.

(比較例4)
実施例1において、金属含有層のシリコン粉末の含有量を表2に示すように変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表2に示した。
(Comparative Example 4)
In Example 1, except that the content of the silicon powder in the metal-containing layer was changed as shown in Table 2, a negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and the negative electrode and the evaluation battery were prepared. Produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 2.

(実施例4〜6)
実施例1において、金属含有層の厚さを表1に示すように変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表1に示した。
(Examples 4 to 6)
In Example 1, except that the thickness of the metal-containing layer was changed as shown in Table 1, a negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and a negative electrode and an evaluation battery were produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 1.

(比較例5)
実施例1において、金属含有層の厚さを表2に示すように変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表2に示した。
(Comparative Example 5)
In Example 1, except that the thickness of the metal-containing layer was changed as shown in Table 2, a negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and a negative electrode and an evaluation battery were produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 2.

(実施例7〜10)
実施例1において、炭素材料層の厚さを表1に示すように変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表1に示した。
(Examples 7 to 10)
In Example 1, except that the thickness of the carbon material layer was changed as shown in Table 1, a negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and a negative electrode and an evaluation battery were produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 1.

(実施例11〜12)
実施例1において、Siの含有量を表1に示すように変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表1に示した。
(Examples 11 to 12)
In Example 1, except that the content of Si was changed as shown in Table 1, a negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and a negative electrode and an evaluation battery were produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 1.

(実施例13)
実施例1において、炭素材料層の炭素材料を天然黒鉛に変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表1に示した。
(Example 13)
In Example 1, except that the carbon material of the carbon material layer was changed to natural graphite, a negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and a negative electrode and an evaluation battery were produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 1.

(実施例14〜15)
実施例1において、金属含有層の炭素材料の作製時に、コールタールピッチをフェノール樹脂[昭和高分子(株)製、「APH−N3001」]またはフラン樹脂[リグナイト(株)製]に、タール中油をエタノールに、さらにシリコン粉末をスズ粉末に[Aldrici (株)製、平均粒子径10μm以下]に変更し、その炭素材料100質量部に対するスズ粉末の配合量を18質量部に変更する以外は、実施例1と同様な方法と条件で、負極合剤ペーストを調製し、負極および評価電池を作製した。該評価電池について、実施例1と同様に充放電試験を行い、放電容量、初期充放電効率およびサイクル特性を求めた。評価結果を表1に示した。
(Examples 14 to 15)
In Example 1, during the production of the carbon material of the metal-containing layer, the coal tar pitch was changed to a phenol resin [Showa Polymer Co., Ltd., “APH-N3001”] or a furan resin [manufactured by Lignite Co., Ltd.]. Is changed to ethanol and silicon powder to tin powder [Aldrici Co., Ltd., average particle size of 10 μm or less], and the amount of tin powder to 100 parts by mass of the carbon material is changed to 18 parts by mass, A negative electrode mixture paste was prepared by the same method and conditions as in Example 1, and a negative electrode and an evaluation battery were produced. The evaluation battery was subjected to a charge / discharge test in the same manner as in Example 1 to determine the discharge capacity, initial charge / discharge efficiency, and cycle characteristics. The evaluation results are shown in Table 1.

実施例1〜15の評価電池は、集電体の表面に炭素材料とリチウムと合金化可能な金属とを含有する金属含有層を有し、金属含有層の上に、炭素材料層を有する負極としたため、黒鉛の層の上に金属と黒鉛からなる層を設けた負極(比較例1)、金属と黒鉛からなる層の上に金属層を設けた負極(比較例2)、金属層の上に金属と黒鉛からなる層、さらに炭素材料層を設けた負極(比較例3)、金属含有層の金属の含有量が多い負極(比較例4)、金属含有層の厚さが厚い負極(比較例5)に比べて高い放電容量を維持しつつ、初期充放電効率が高く、かつサイクル特性に優れることがわかる。また、実施例7〜10の評価電池は、炭素材料層の厚さに好適範囲があることを示している。   The evaluation batteries of Examples 1 to 15 have a metal-containing layer containing a carbon material and a metal that can be alloyed with lithium on the surface of the current collector, and a negative electrode having a carbon material layer on the metal-containing layer Therefore, a negative electrode (Comparative Example 1) provided with a layer made of a metal and graphite on a graphite layer, a negative electrode (Comparative Example 2) provided with a metal layer on a layer made of metal and graphite, A negative electrode (Comparative Example 3) provided with a layer comprising a metal and graphite, and a carbon material layer, a negative electrode with a high metal content in the metal-containing layer (Comparative Example 4), and a negative electrode with a thick metal-containing layer (Comparative) It can be seen that the initial charge and discharge efficiency is high and the cycle characteristics are excellent while maintaining a high discharge capacity as compared with Example 5). Moreover, the evaluation battery of Examples 7-10 has shown that there exists a suitable range in the thickness of a carbon material layer.

Figure 2006059704
Figure 2006059704

Figure 2006059704
Figure 2006059704

充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button type evaluation battery for using for a charging / discharging test.

符号の説明Explanation of symbols

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a、7b 集電体
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Separator 6 Insulating gasket 7a, 7b Current collector

Claims (6)

集電体の表面に、炭素材料と、炭素材料100質量部に対して1〜100質量部のリチウムと合金化可能な金属とを含有する厚みが20〜70μmの金属含有層を有し、該金属含有層の上に、炭素材料層を有することを特徴とするリチウムイオン二次電池用負極。   The surface of the current collector has a metal-containing layer having a thickness of 20 to 70 μm containing a carbon material and 1 to 100 parts by mass of lithium and an alloyable metal with respect to 100 parts by mass of the carbon material, A negative electrode for a lithium ion secondary battery, comprising a carbon material layer on a metal-containing layer. 前記炭素材料層の厚みが5〜40μmである請求項1に記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to claim 1, wherein the carbon material layer has a thickness of 5 to 40 μm. 前記リチウムと合金化可能な金属がシリコンおよび/またはスズである請求項1または2に記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the metal that can be alloyed with lithium is silicon and / or tin. 前記金属含有層の炭素材料が天然黒鉛を含む請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the carbon material of the metal-containing layer contains natural graphite. 前記炭素材料層がメソフェーズ小球体の黒鉛化物を含む請求項1〜4のいずれか1項に記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the carbon material layer contains graphitized mesophase spherules. 請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用負極を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to any one of claims 1 to 5.
JP2004241047A 2004-08-20 2004-08-20 Negative electrode for lithium ion secondary battery and lithium ion secondary battery Active JP4723830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241047A JP4723830B2 (en) 2004-08-20 2004-08-20 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241047A JP4723830B2 (en) 2004-08-20 2004-08-20 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006059704A true JP2006059704A (en) 2006-03-02
JP4723830B2 JP4723830B2 (en) 2011-07-13

Family

ID=36106993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241047A Active JP4723830B2 (en) 2004-08-20 2004-08-20 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4723830B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
WO2009101815A1 (en) * 2008-02-14 2009-08-20 Panasonic Corporation Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and method for producing negative electrode for lithium secondary battery
JP2010165471A (en) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd Lithium secondary battery
JP2011222252A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Collector for all-solid-state secondary battery, electrode body for all-solid-state secondary battery and all-solid-state secondary battery
WO2015045385A1 (en) * 2013-09-26 2015-04-02 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP2015069711A (en) * 2013-09-26 2015-04-13 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2015069712A (en) * 2013-09-26 2015-04-13 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2015179575A (en) * 2014-03-18 2015-10-08 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2018225515A1 (en) * 2017-06-09 2018-12-13 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2019131195A1 (en) * 2017-12-27 2019-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019167581A1 (en) * 2018-02-28 2019-09-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery
CN115172666A (en) * 2022-07-28 2022-10-11 华中科技大学 Double-layer composite graphite cathode and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308207A (en) * 1997-05-08 1998-11-17 Matsushita Denchi Kogyo Kk Non-aqueous electrolyte secondary battery
JP2001283834A (en) * 2000-04-03 2001-10-12 Sanyo Electric Co Ltd Secondary battery
JP2002015729A (en) * 2000-06-30 2002-01-18 Toshiba Corp Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308207A (en) * 1997-05-08 1998-11-17 Matsushita Denchi Kogyo Kk Non-aqueous electrolyte secondary battery
JP2001283834A (en) * 2000-04-03 2001-10-12 Sanyo Electric Co Ltd Secondary battery
JP2002015729A (en) * 2000-06-30 2002-01-18 Toshiba Corp Nonaqueous electrolyte secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
JP4513822B2 (en) * 2007-03-30 2010-07-28 Tdk株式会社 Electrode and electrochemical device
WO2009101815A1 (en) * 2008-02-14 2009-08-20 Panasonic Corporation Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and method for producing negative electrode for lithium secondary battery
JP2010165471A (en) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd Lithium secondary battery
JP2011222252A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Collector for all-solid-state secondary battery, electrode body for all-solid-state secondary battery and all-solid-state secondary battery
JP2015069711A (en) * 2013-09-26 2015-04-13 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2015069712A (en) * 2013-09-26 2015-04-13 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2015045385A1 (en) * 2013-09-26 2015-04-02 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP2015179575A (en) * 2014-03-18 2015-10-08 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP7159156B2 (en) 2017-06-09 2022-10-24 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2018225515A1 (en) * 2017-06-09 2018-12-13 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US11824185B2 (en) 2017-06-09 2023-11-21 Panasonic Energy Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN110710030A (en) * 2017-06-09 2020-01-17 三洋电机株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2018225515A1 (en) * 2017-06-09 2020-04-09 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2019131195A1 (en) * 2017-12-27 2019-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2019131195A1 (en) * 2017-12-27 2020-12-17 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN111033823A (en) * 2017-12-27 2020-04-17 松下电器产业株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7241701B2 (en) 2017-12-27 2023-03-17 パナソニックホールディングス株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN111033823B (en) * 2017-12-27 2023-03-31 松下控股株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2019167581A1 (en) * 2018-02-28 2021-02-12 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US11527749B2 (en) 2018-02-28 2022-12-13 Panasonic Holdings Corporation Nonaqueous electrolyte secondary battery
WO2019167581A1 (en) * 2018-02-28 2019-09-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery
CN115172666A (en) * 2022-07-28 2022-10-11 华中科技大学 Double-layer composite graphite cathode and preparation method thereof

Also Published As

Publication number Publication date
JP4723830B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP3995050B2 (en) Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
WO2014007392A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries using same, and lithium ion secondary battery
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2013171985A1 (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JP2005310760A (en) Anode material for lithium ion secondary battery, manufacturing method of the same, anode of lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4723830B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4855696B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4986222B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2015110506A (en) Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5156195B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4785341B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004342548A (en) Positive electrode active material for lithium secondary battery, manufacturing method for same, positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery
CN112424118A (en) Method for producing monolithic mesophase graphitized article
JP5351990B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JP2008069016A (en) Mesocarbon microsphere graphitized product and method for producing the same, negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2007165293A (en) Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4723830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150