JP2006050029A - 光無線伝送装置 - Google Patents

光無線伝送装置 Download PDF

Info

Publication number
JP2006050029A
JP2006050029A JP2004224939A JP2004224939A JP2006050029A JP 2006050029 A JP2006050029 A JP 2006050029A JP 2004224939 A JP2004224939 A JP 2004224939A JP 2004224939 A JP2004224939 A JP 2004224939A JP 2006050029 A JP2006050029 A JP 2006050029A
Authority
JP
Japan
Prior art keywords
optical
optical axis
light
receiver
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004224939A
Other languages
English (en)
Other versions
JP4513057B2 (ja
Inventor
Hidetoshi Naruki
秀敏 成木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004224939A priority Critical patent/JP4513057B2/ja
Publication of JP2006050029A publication Critical patent/JP2006050029A/ja
Application granted granted Critical
Publication of JP4513057B2 publication Critical patent/JP4513057B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 光伝送路の瞬断などの異常状態に対して不必要な再光軸調整を防止する。
【解決手段】 4分割PDの各々により受光されたレベルの差が概略無くなるように初期光軸位置合わせをし、初期光軸位置合わせが終了した後、4分割PDの受光レベルの合計の変化が所定時間以上継続したか否かを判断して、継続しない場合には再光軸位置合わせを行わず、継続した場合には4分割PDの各々により受光されたレベルに基づいて再光軸位置合わせが必要か否かを判断して、必要と判断した場合に再光軸位置合わせを行う。
【選択図】 図13

Description

本発明は、光無線による送信側と受信側の光軸を簡単に合わせることが可能な光無線伝送装置に関する。
従来より、光を用いて情報の空間伝送を行う光無線伝送技術がある。この光無線伝送技術には、一般に赤外光が用いられ、その発光素子としては、発光ダイオードやレーザダイオードなどの半導体発光素子が用いられている。このような光無線伝送において、送受信間距離を十分にとりたい場合は、受信装置側に十分な光レベルを入射させるように、送信装置より発する光ビームの出射角を鋭く、すなわち狭く絞る(指向性を高くする)必要がある。そこで、送信装置及び受信装置の光軸を合わせておかなくてはいけないのであるが、指向性の高い(出射角の狭い)光ビームを用いることや、光ビームが目に見えない赤外光を用いることなどから、光無線伝送装置の光軸合わせは、大変煩わしい作業となる。そこで、従来より、この光軸合わせを容易に行えるような光無線伝送装置の提案がされている。
その1つの例として、送信装置から可視光をピンポイントに絞って信号伝送用の赤外光と同一光軸、あるいは平行光軸にして一緒に送り、受信装置側に設けた可視光反射手段に当て、その可視光反射手段により反射させられた可視光を操作者が見ながら送信装置の光軸調整を行う光無線伝送装置が下記の特許文献1により開示されている。また、この他の技術としては送信装置に照準機を設置して、その照準機を見ながら光軸を合わせる光無線伝送装置や、受信装置側に受光レベル検出用測定機を接続して操作者が2人一組で光軸合わせを行う光無線伝送装置もある。また、下記の特許文献2で開示されるような、受信機側に光軸調製用の光源を用いて、送信機からの送信光の受信レベル情報を折り返し、それに応じて光軸を合わせるものもある。
さらに、下記の特許文献3には、送信機が受信機から送られてくるパイロット光を4分割PDで受光してレベル差に基づいて粗光軸合わせを行い、次いで受信機から送られてくる受光レベル情報に基づいて密光軸合わせを行う方法も提案されている。
特開昭62−110339号公報(第1図、第2図) 特開平7−131422号公報(要約書) 特開2004−135326号公報(要約書)
しかしながら、上述の特許文献1で開示されたような光無線伝送装置は、送信装置に光無線伝送の目的以外に使用する可視光を発生させる構成を必要としている。送受信装置間の距離を十分にとりたい場合などは、この可視光の発光出力を十分大きいものにしなくてはならず、また、その構成を追加する必要があるため、送信装置のコストアップとなってしまう上に、装置が大型になってしまう。これは、送信装置に照準機を設置する場合も同じである。また、可視光の光軸や、照準機の照準と、信号伝送用の赤外光の光軸とを厳密に合わせておく必要があることも、コストアップとなる。また、受光レベル検出用測定機を受信装置に接続して二人一組で行う場合においても、受光レベル検出用測定機を用意する必要があったり、人手を要するなどの欠点があった。このように、従来の光無線伝送装置は、光軸合わせを簡単化しようとすると、送受信装置のコストアップや、大型化を招いたり、送受信装置のコストダウンや、小型化を行おうとすると、光軸合わせの作業に手間が掛かるなどの欠点を有していた。
また、特許文献2では上述した問題点の解決を図っているが、受信機に取付けられた光軸調整用の光送信素子からの送信光を受信する、送信機に搭載した単一の受光素子での受光レベルと、送信機からの送信信号光の受信機での受信レベルのみを基に光軸を調整しているので、人がこの情報を基にレベル表示装置などを用いて光軸を調整する場合には十分その手間を簡単化できるが、自動で光軸を調整する上では不要な動作が多くなってしまう。
その理由は、単純に単一の受光素子で得られる光軸調整用の送信光のレベルだけでは上下左右どちらに受信機が有るかを判別することはできない。そのため、自動で光軸を調整するためには必ず一度やみくもに動き、前位置での受光レベルと比較して自身の動いた方向が正しいかを判定しなくてはならず、動いてみてから判断しなければならない。これでは、無駄な動きが多くなってしまい、メカ駆動に要する時間を考えると、高速な自動光軸合わせの足かせとなってしまう問題がある。
また、以上のようなことを考慮した特許文献3のような、粗光軸合わせの段階では4分割PDなどの素子を用いて大まかな方向へ調整した後、受信機が受信レベル情報を基に光軸を合わせるようなものもある。しかし、このような光軸を自動で正確に合わせ設置できるようにしたシステムにおいても、例えば図1に示す光伝送システムのような一般的な生活空間での利用を主としているシステムにおいては、送信機1が振動・衝撃などによって移動してしまったり、あるいは、掃除などのために移動させなければならないケースが多々発生し、いったん合わせた光軸がしばしばずれることが容易に想像され、その都度、ユーザが光軸調整機能を働かせなければならないのでは、使い勝手の悪い非常に不便なものとなってしまう。
また、上記した特許文献3のように受信機が受光レベル情報を送信機に返信することで光軸調整を行うような機能を備えた装置においても、一般的な生活空間内での利用を主としているシステムでは、その光伝送路が遮光され瞬断されることが予想されるが、そのような光伝送路の瞬断によって受信機側での受光状態が変動することにより受光レベル情報に変化が発生し、そのため正しい制御が困難になることが予想される。このように生活空間での利用が想定されるシステムでは、軸ズレが発生した際にいかに速やかにその軸を自動で修正し、さらに、遮光などによる光回線の瞬断などの異常事態に対して不用意に光軸調整動作に入らないようにするかが必要となる。
そこで、本発明は上記の点に着目してなされたものであり、光伝送路の瞬断などの異常状態に対して不必要な再光軸調整を防止して使い勝手の良い自動光軸調整機能を要する光無線伝送装置を提供することを目的とする。
本発明は上記目的を達成するために、放射角度が比較的狭い第1の光信号を送信する第1の光学送信手段を有する送信機と、前記第1の光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
前記受信機は、
放射角度が比較的広い第2の光信号を送信する第2の光学送信手段を有し、
前記送信機は、
前記第2の光信号を各々が前記受信機の方向に応じたレベルで受光可能な第2の複数の光学受信手段と、
前記第1の光学送信手段及び前記第2の複数の光学受信手段を一体で前記受信機の方向に移動させて位置合わせを行うための駆動手段と、
前記第2の複数の光学受信手段の各々により受光されたレベルの差が概略無くなるように前記駆動手段を制御して初期光軸位置合わせをし、前記初期光軸位置合わせが終了した後、前記第2の複数の光学受信手段の各々により受光されたレベルの合計の変化が所定時間以上継続したか否かを判断して、継続しない場合には、再光軸位置合わせを行わず、継続した場合には、前記第2の複数の光学受信手段の各々により受光されたレベルに基づいて再光軸位置合わせが必要か否かを判断して、必要と判断した場合に、再光軸位置合わせを行う光軸位置合わせ手段とを有する。
また、前記第2の複数の光学受信手段は、水平・垂直方向に共に2個、合計4個の光電変換素子により構成され、
前記光軸位置合わせ手段は、左側に配置された2個の前記光電変換素子の各レベルの合計と右側に配置された2個の前記光電変換素子の各レベルの合計の差が概略無くなるようにして水平方向の光軸位置合わせを行うとともに、上側に配置された2個の前記光電変換素子の各レベルの合計と下側に配置された2個の前記光電変換素子の各レベルの合計の差が概略無くなるようにして垂直方向の光軸位置合わせを行うことを特徴とする。
また、前記光軸位置合わせ手段は、前記差の変化が所定時間以上継続したか否かを判断して、継続しない場合には、再光軸位置合わせが不要と判断して再光軸位置合わせを行わず、継続した場合には、再光軸位置合わせが必要と判断して再光軸位置合わせを行うことを特徴とする。
本発明によれば、システムの設置後、最初の光軸調整を行なった後に、振動や衝撃などによって送信機の位置(向き)がずれ、送信機と受信機の間での光伝送路が正常な状態でなくなってしまい、正確なデータ伝送に支障が生じた場合、送信機が受信機からの第2の光信号の受信状態を監視することで、送信機の位置ズレなどによる光伝送路の光軸ズレが起こっているのか、障害物が横切るなどして光伝送路が遮断(遮光)されたのかを見極め、送信機の位置ズレなどの光軸ズレの発生時のみ再度光軸ズレを自動的に修正することが可能となる。このことによって、単に人が横切っただけの光伝送路の瞬断時には、送信機はそのまま遮光物が排除されることを待機することになり、遮光物が無くなった時点で、速やかに光伝送路の復帰を可能とし、さらに、送信機の位置ズレなどの光軸ズレを高速に判定・検知することで速やかに光軸を自動修正することが可能となり、ユーザの手を煩わせることをなくし、使い勝手の良い光無線伝送装置を提供できる。
以下、本発明の好ましい実施の形態について添付図面を参照しながら詳細に説明する。まず、本発明が使われると想定される光伝送システムのイメージの一例を図1に示す。この図1の例は、映像表示装置61(例えばプラズマ・ディスプレイ・パネル(PDP)テレビのような高品位表示装置)側に設置された受信機20に対して、映像表示装置61が表示するデジタル映像信号データを光無線により伝送する光無線映像伝送装置である。この装置は映像表示装置61に接続(設置)された受信機20に対して、チューナなどの映像制御装置60に設置された送信機1よりデジタル映像信号を光無線により伝送する。
この光伝送システムは送信機1から放たれる送信光(第1の光信号)19によって受信機20へデータを伝送するものであり、限られた光パワーで高効率にデータを伝送するために、この送信光19は狭い放射角度を有すものであり、この送信光19が受信機20へ正確に当たることが重要な伝送条件となっている。これによって、このような送信光19を受信機20へ合わせることが要求される光伝送システムでは光軸調整と言う概念(機能)が求められる。
さらに、このような実施の形態を想定すると、送信機1はチューナなどの映像制御装置60側に設置されるため、実用上、日常の掃除などによっても位置がずれたり、日常生活上での衝撃などによって光軸がずれてしまう可能性が高く、その度にユーザが精密な光軸調整を行うことはシステムの使用快適度を著しく妨げるものである。そこで、送信機1には自動的に光軸を調整する機能が付くことが望ましく、使用中に光軸ズレが生じても速やかに自動で再調整できることが望まれる。また、このような送信機1に自動光軸調整機能を持たせるためには、受信機20側には送信機1が光軸を調整するためのパイロット光(第2の光信号)33が装備されると考えられる。
<第1の実施の形態>
次に、図1のような本発明が用いられると想定される光伝送システムの光無線伝送装置の第1の実施の形態として、図2に送信機1及び受信機20の各構成ブロック図を併記して示す。図2に示すように、本発明に係る光無線伝送装置における受信機20は、送信機1の第1の光送信手段8によって空間伝送される第1の光信号19を受光するための比較的広い受光角の第1の光受信手段(例えばPDやAPD及び集光レンズなどで構成される)22によって受信し、電気信号処理回路21内の受光回路23で電気的に増幅するなどの処理を加え、ここでは記載されていない外部機器(例えば受像装置など)への送信のための信号処理を行う受信信号処理回路24を備えている。
加えて、受信機20は広い放射角度を持つ第2の光送信手段(例えばLED又はこれにレンズを加えたもの)32、及びその送信信号を発生する発信回路30、発光素子ドライバ31を持ち、送信機1へ受信機20自身の位置を示すため第2の光信号33(一般にこのような光をパイロット光などとも称している)を送信する。また、このような第1の光受信手段22及び第2の光送信手段32などを備えた受信機20は、設置の際にその向きを手動で送信機1の方向に調整して設置しやすくするために水平可動部37及び垂直可動部38などを備えている。
次に、図2に示した送信機1について説明する。送信機1は、ここには記載されていない外部のデータ発生機器から送られる信号(例えば映像信号)を受信し、光無線伝送を行うための処理を行う送信信号処理回路3によって処理された信号を発光素子ドライバ7を通して第1の光送信手段8を駆動して第1の光信号19によって光伝送する。
また、この送信機1は受信機20からの第2の光信号33を受信するための第2の光受信手段(複数の受光素子(例えばPD)で構成される)9を持ち、この第2の光受信手段9によって受信した各受光素子の受信信号を送信機電気信号処理部2内の受光回路10で電気的に増幅するなどの処理を加える。この受光回路10で処理された各受光素子からの受信信号は信号セレクト回路11を用いて制御部15からの制御によって特定の受信信号のみを選択し、受信レベル検出回路13でその受信レベルを検出し、制御部15へその結果を渡す。
ここで、制御部(例えば、MPUやDSPなど)15は、送信機1の光軸を受信機20へ合わせるために適時、信号セレクト回路11を用いて第2の光受信手段9による必要な受信信号を選択し、受信レベル検出回路13よって得られる各信号のレベルを比較して駆動制御部16を制御し、水平(パン)方向の駆動手段17及び垂直(チルト)方向の駆動手段18(例えば、ステッピングモータなど)を制御し、第1の光送信手段8及び第2の光受信手段9の向きを自動的に調整する。
<第2の実施の形態>
次に、本発明の第2の実施の形態として、図3に記載の光無線伝送装置における受信機20について説明する。受信機20は送信機1の第1の光送信手段8によって空間伝送される第1の光信号19を受光するための比較的広い指向角の第1の光受信手段(例えばPDやAPD及び集光レンズなどで構成される)22によって受信し、受光回路23で電気的に増幅するなどの処理を加え、二値化回路25によってデジタル信号化し、シンボル復号回路(例えば10B8B変換回路35)によって復号化を行い、ここでは記載されていない外部機器(例えば受像装置など)へ送信する。
この受信機20は送信機1が光軸を調整するために広い放射角度を持つ第2の光送信手段(例えばLED又はこれにレンズを加えたもの)32によって、送信機1に対して第2の光信号33を送信する。さらに、この第2の光送信手段32は、第1の光受信手段22で受信した信号の受信エラーレート情報を送信する目的も兼ね備えており、受信機20では、第1の光受信手段22で受信され、二値化回路25でデジタル化された第1の光信号19で伝送されたデータのエラー検出を行っている。
この図3の例では受信エラーの検出にシンボルエラー検出回路26を用いてデータ受信エラーを検出し、さらにエラー検出精度を高めるために、受信した第1の光信号19のデータに付加されたCRCCをCRCCチェック回路36においてチェックする。このシンボルエラー検出回路26で検出された結果とCRCCチェック回路36で検出された各エラー結果をエラーレート算出回路27において一定時間監視(カウント)し、その結果を第2の光送信手段32で伝送するためにエラーレートパケット生成回路28でパケット化を行い、このパケットに応じて変調回路29によって第2の光送信手段32への発光信号に変調を加え、発光素子ドライバ31に送ることで、第2の光信号33を用いて、送信機1から送られてくる第1の光信号19の受信機20での受信状態を送信機1に対して送っている。
また、この受信機20が受信した第1の光信号19のデータエラーを検出する際に、後で説明する送信機1がこの受信機20との間で光軸を調整する過程などにおいて第1の光信号19を一定レベル以上で受信していないときにはエラーレートの検出を見合わせ、送信機1の光軸調整制御処理への負荷を小さくして、より速やかな光軸調整を可能とするために、第1の光受信手段22及び受光回路23で受けた信号の受信レベルを信号レベル検出回路34によって監視し、エラーレートパケットの生成(送信)を停止させるようになっている。
次に、図3に示した送信機1について説明する。送信機1は、ここには記載されていない外部のデータ発生機器から送られる信号(例えば映像信号)を受信し、伝送後の受信機20側でデータの正誤を確認するためにCRCC付加回路4によって送信するデータを一定のサイズごとに分割し、それら分割された各々のデータにCRC符号を付加する。さらに光無線伝送を行うために、この信号を符号化回路(例えば8B10B変換回路5)によって符号化して、二値化回路6によって光送信可能な二値化デジタル信号に変換し、発光素子ドライバ7へ送る。発光素子ドライバ7は二値化された信号を光伝送するために第1の光送信手段(例えばLEDやLD及び集光レンズなどで構成される)8をドライブして、放射角度の狭い送信光19として受信機20へ向けてデータを空間伝送する。
また、この送信機1は受信機20の光軸調整用に搭載された第2の光送信手段32によって送信される第2の光信号33を受信するための第2の光受信手段(複数の受光素子(例えばPD)で構成される)9を持ち、この第2の光受信手段9によって受信された各受光素子(第2の光受信手段9)の受信信号を受光回路10で電気的に増幅するなどの処理をする。この受光回路10で処理された各受光素子からの受信信号は信号セレクト回路11を用いて制御部15によって特定の受信信号のみが選択され、受信レベル検出回路13でその受信レベルを検出し、制御部15へその結果を渡す。さらに、制御部15によって信号セレクト回路11で選択された受信信号は復調回路12によって復調され、受信機20側での第1の光信号19の受信エラーレート情報を得るためにパケット検出及び解析手段14において受信機20からの受信エラーレート情報を検出し、その結果を制御部15へ送る。
ここで、制御部(例えばMPUやDSPなど)15は、送信機1の光軸を受信機20へ合わせるために適時、信号セレクト回路11を用いて第2の光受信手段9による必要な受信信号を選択し、受信レベル検出回路13や受信機20から送られてくる受信エラーレート情報をパケット検出及び解析手段14によって得て、これらの情報を基に制御部15が駆動制御部16を制御し、水平方向の駆動手段17及び垂直方向の駆動手段18(例えばステッピングモータなど)を制御し、第1の光送信手段8及び第2の光受信手段9の向きを受信機20の方向へ向け、送信機1の第1の光送信手段8の送信光軸を受信機20の受信光軸と一致するよう調整する。また、制御部15は、受信レベル検出回路13からの情報を基に、光軸合わせ中に第1の光信号19を周辺に不用意に放出させることを防止するように発光素子ドライバ7を制御するなどの仕組みも備えている。
次に、上述した図2及び図3のような、第2の光送信手段32によって発光される第2の光信号33をパイロット光として、送信機1が第2の光受信手段9を用いて受信機20の方向を検出する基本的原理の一例を図4及び図5を用い説明する。まず、ここでは送信機1が備える第2の光受信手段9を図4に示すような4個のPD素子を1つのレンズで封入した受光素子(4分割PD)を用いた場合について説明する。図4によりこの4分割PDの原理を簡単に説明する。この図4に示すように、4分割PDとは4つのPD(受光素子:PD1、PD2、PD3、PD4)が1つの光学レンズの中に収められているものである。この受光素子は光の入射方向によって各受光素子(PD1、PD2、PD3、PD4)の受光レベルが変化するものであり、図4(a)(b)(c)はその原理を3つのパターンを例に示している。
図4(a)の場合は4分割PDに対して光源(図2、図3では第2の光送信手段)32が左側(PD1、PD3側)に位置している場合であり、この場合には各PDが封入されるレンズによって入射光は右側のPD2、PD4側へ集光することになり、その結果として各受光レベルはPD1<PD2、PD3<PD4の関係が得られる。図4(b)の場合には光源32が4分割PDの正面に位置する場合であり、この場合は各PDの位置する真中に集光されるため、その受信レベルの関係はPD1=PD2、PD3=PD4となる。図4(c)の場合は4分割PDに対して光源32が右側(PD2、PD4側)に位置している場合であり、この場合には各PDが封入されるレンズによって入射光は左側のPD1、PD3側へ集光することになり、その結果として各受光レベルはPD1>PD2、PD3>PD4の関係が得られる。
つまり、この4分割PDのような受光素子の特性を利用して光源32の位置する方向を受光素子の各受信レベルを比較することで知ることができる。このことを利用しての方向合わせについての動作例を図5及び図6を用いて説明する。この図5では送信機1が搭載する第2の光受信手段9を4つの受光素子(PD1、PD2、PD3、PD4)が図示のように配置されたものとし、この第2の光受信手段9から見て受信機20がどの方向にあるかを示したものである(図5中では、受信機20の位置を第2の光送信手段32の位置として「光源」として表記している)。
ここで、送信機1から見てこの図5に示す光源32の位置Aの方向に受信機20が位置している場合、送信機1の第2の光受信手段9のPD1の受信レベルをSL1、PD2の受信レベルをSL2、PD3の受信レベルをSL3、PD4の受信レベルをSL4とすると、図6に示すようにおおよそSL1=SL2<SL3=SL4の関係となる。このことから制御部15では、これら第2の光受信手段9から得られる受信レベルSL1〜SL4を比較し、SL1=SL2<SL3=SL4の関係が得られている場合は、受信機20が上方向にあると判断し、垂直方向の駆動手段18に第1の光送信手段8及び第2の光受信手段9が上を向くように制御信号を出す。同様に各位置B〜Hに受信機20がある場合には図6に示すような関係がSL1、SL2、SL3、SL4の間におおよそ発生し、制御部15はこの関係を調べながら、図6に示した各方向に第1の光送信手段8及び第2の光受信手段9が向くように制御し、このような制御を何回か繰り返していくことで、送信機1での第2の光信号33の各受信レベルSL1〜SL4がすべて同じ値にとなる位置まで動かすことになり、そのような状態になったところで送信機1は受信機20の位置をおおよそとらえたことになる。
しかしながら、実際のシステムにおいては上述したような第2の光受信手段9による第2の光信号33(パイロット光)の受光レベルを比較判定するだけでは、正確な光軸合わせを実現するためには、各受発光素子の発光軸及び受光軸が正確に平行となるよう取り付けられなくてはならず、その許容誤差は第1の光信号19の放射角が小さくなるほど高い精度が求められる。このため、データ伝送速度を高め、高速とし、かつ伝送距離を長く取りたい場合などでは、第1の光信号19の放射角を狭い角度にする必要があり、一層正確な光軸合わせが求められることとなり、それに見合った組み立て精度を簡単に出すことは難しく、量産時の組立調整などにおいて大きな負担を生じてしまう。
そのような場合では、図3の第2の実施の形態で示したように、受信機20側が送信機1からの第1の光信号19の受信状態を送達情報として折り返し返信することで送信機1が最終的にこの受信機20との光軸を一致させるような仕組みを持つことになる。つまり、送信機1は受信機20へ通信光軸を合わせるために、まず、パイロット光33の受信レベル情報によって素早く受信機20の方向へ向け、その後、受信機20から第1の光信号19の受信状況を知ることができる送達情報を頼りに、受信機20の第1の光受信手段22が第1の光信号19を正しく受信できるようになるまで受信機20との間の通信光軸を調整する。
以上のように、本発明の実施の形態として示した図2、図3の第1、第2の実施の形態においては、受信機20の放つ第2の光信号33をパイロット光として送信機1が第2の光受信手段9を用いてその光軸調整方向を判断しながら速やかに光軸調整を行うことになり、最終段階においてより正確な調整を要するシステム構成を持つ場合において、受信機20からの送達情報を頼りにより正確な光軸調整を行うこととなる。これは、受信機20からの送達情報のみで最初から光軸を調整することは、その調整方向などを知るすべが無いため、方向がかけ離れた位置からの調整では調整に多くの時間を費やすことになり、高速光軸調整が難しいことから、図5で説明したような送信機1が第2の光受信手段9によって得られる第2の光信号33(パイロット光)の受信レベルからその位置を見つけ出す手法が用いられる。
しかしながら、この手法においても、送信機1に搭載する第2の光受信手段9の取り付け精度により、その得られるレベルからの方向判定の精度あるいは判定処理工数に影響が出る。そこで、本発明では、図7に示すように比較的ラフに取り付けられた第2の光受信手段9においてもその取り付けバラツキなどの影響を少なくし、左右・上下の判定を第2の光受信手段9の受光素子の受光レベルから判定する。つまり、図7に示すように、送信機1の方向合わせのための水平方向回転軸49及び垂直方向回転軸48(以下単に軸とも言う)の各駆動軸に対して傾いて取り付けられてしまった第2の光受信手段9としたとき、各々の軸49、48を挟んだ左右あるいは上下において各複数の受光素子レベルの和を左右ズレあるいは上下ズレ判定に用いることで、第2の光受信手段9の組立時などに生じる駆動軸に対しての取り付けズレの影響を緩和する。
つまり、左右の判定には水平方向回転軸49を挟んで、PD1、PD3の各受信レベルSL1、SL3を加算処理42で足し合わせたSHL=SL1+SL3と、PD2、PD4の各受信レベルSL2、SL4を信号加算器43による加算処理で足し合わせたSHR=SL2+SL4を比較判定に用い、上下の判定には垂直方向回転軸48を挟んで、PD1、PD2の各受信レベルSL1、SL2を信号加算器40による加算処理で足し合わせたSVU=SL1+SL2と、PD3、PD4の各受信レベルSL3、SL4を信号加算器41による加算処理で足し合わせたSVD=SL3、SL4を比較判定に用いることで第2の光受信手段9の傾きの影響や各駆動方向への影響を抑えている。ここで、図7では図の表現上、水平方向回転軸49及び垂直方向回転軸48を第2の光受信手段9の中心として描いているが、厳密には、これらはそれぞれ水平方向回転軸49、垂直方向回転軸48と平行な第2の光受信手段9の中心を通る軸であればよい。
以上の説明からわかるように、送信機1から受信機20へ光無線伝送によって所望するデータを伝送するためには、図8(a)に示すように受信機20の第2の光送信手段32の発光軸を送信機1の第2の光受信手段9の第2の光信号受光軸(以下単に受光軸とも言う)52と合わせ、第1の光送信手段8の第1の光信号発光軸51が受信機20の第1の光受信手段22をとらえることで、送信機1から受信機20への光無線伝送路を確立するものである。ところが、冒頭でも説明したように本発明が利用されることが想定される光無線伝送装置は一般の生活空間などでの利用が期待されるものであり、そのため、当然のことながら、図8(b)に示すように確立された伝送路間を人などが横切ったりするなど、遮光物55が瞬時入り込むことがある。
当然、このような遮光物55が入り込めば、本システムのような光無線伝送装置ではその伝送路を切断されることになり、その瞬間は正しくデータが伝送できなくなってしまう。このことは、システムの伝送路の特徴上の問題であり、この問題を直接解決するためには、多くのデータ記憶手段などを搭載するなどの解決手段が有ると考えられ、コスト面とシステムのコンセプトなどとの兼ね合いによって解決できる問題である。しかしながら、このような遮光物55による光伝送路の瞬断は、自動光軸調整機能を持ち、さらに、設定後の軸ズレ自動修正機能などを搭載したシステムにおいては新たな問題を引き起こすことになり、本発明ではそれらの問題発生を阻止することを可能とするためのものである。
次に、上記で触れた、遮光時における本発明が着眼した問題点について説明する。本発明が適応されるような光軸を自動で調整する機能を持ち、主に生活空間での利用が想定されるシステムでは、使用中に振動や掃除などといったことによってその設置位置方向が微妙にずれてしまい、光軸ズレを生じ光伝送路の品質が低下してしまったり最悪の場合には光伝送路が切断されてしまうようなことが予想できる。そこで、このような場合でも簡単に光軸調整ができるのが自動光軸調整機能であるが、設置後に先に述べたような理由によって光軸がずれる度に一々ユーザが光軸調整を装置に指示しなくてはならないのでは、システムの使い勝手の面から考えてユーザに大きなストレスを与えることになってしまう。
そこで、このようなユーザへのストレスを軽減させるためには、設置後の装置が自動的に自身の光軸ズレ発生を検知して自動で光軸ズレを修正することが望ましい。そこで、装置(個々の実施の形態では送信機1)が光軸ズレを検知するためには光軸調整のときに行なった受信機20からの第2の光信号33の受信レベルを監視することで光軸ズレを検知することができると考えられる(第1、第2の実施の形態)。また、受信機20から第2の光信号33で送られる第1の光信号19の受信状態を示すデータ送達情報(エラー情報)を監視することによっても光軸ズレを検知できると考えられる(第2の実施の形態)。
そのような、光軸ズレ検知機能を考えたとき、問題となるのが、先に述べた光伝送路上を人などが横切ったりするなどして伝送光が遮光されるような場合が生じたときに問題が生じることになる。つまり、この装置では光伝送路が遮断されるということは、送信機1から受信機20への第1の光信号19が遮光されると同時に受信機20からの第2の光信号33も遮光されることが極めて高い確率で生じることになる。このことは、光軸ズレを第2の光信号33の受信レベル差で監視していた場合には、遮光が原因で生じる第2の光信号33の受信レベルの変化によって送信機1の位置が動いたことによる受光レベル変化と誤認してしまう。本来、遮光物が無くなるまでの間そのまま待機することが望ましいところを、特に瞬間的に光伝送路を遮られ瞬断したような場合には、この誤認によって、不必要な光軸調整動作を実施することになり、かえって長い時間、伝送路を途絶えた状態にしてしまいかねない。
また、光軸ズレを第2の光信号33の受光レベル差のみの監視でなく、受信機20からの送達状態情報(送達エラー情報など)によって検知する場合においても、単純にエラー発生情報を受信したことがすぐに、「光軸ズレ」となる判定では、遮光時による伝送路切断影響によるエラーを「光軸ズレ」と誤認してしまう。(瞬断時には送達情報を送る第2の光信号33も途絶えるのでその間は受信機20からの送達情報は送信機1へは届かないが、光伝送路を瞬断されたことによって受信機20の受信レベルが大きく振られることで、瞬断後も受信エラーを生じることがあり、このようなエラーの影響を受けてしまうことや、あるいは、光信号の受信からそのエラー検出結果を第2の光信号33へ送信するまでの処理の遅延などによってエラー有りの送達エラー情報を送信機1が受信してしまうことがある。
このような、送信機1の位置ズレと光伝送路の遮光との判定誤認による不必要な光軸ズレ調整動作を防止するために本発明は成された。ここで、本発明の着眼点を図9及び図10を用いて説明する。まず、図9(a)は、送信機1が受信機20の位置を判断するために第2の光受信手段9から得られる受信レベル信号(受光レベル)が瞬断時に受ける影響をイメージ化したものである。ここでは、各判定要の受信レベル信号を図7に準じてSVU、SVD、SHL、SHRを取り上げて示している。図9(a)に示すように光軸が正しく合っているときには一定のレベルV1ですべてのレベルが安定しているが、何かによって瞬断されると各レベルは急激に遮光状態レベルV0へ低下する。このとき、遮光されていた瞬間t0から遮光レベルV0へすべてのレベルが安定するまでのある程度の時間(t0−t1)が必要であり、この時間(t0−t1)やこの間の各レベルSVU、SVD、SHL、SHRの振る舞いは、第2の光受信手段9及び受光回路10などの特性に依存することや遮光のされ方などによって異なるため、受信レベル不安定領域となる。そのため、この図9(a)はイメージを示すものであり、必ずしもこのような変化を示すとは限らず、あくまで、遮光されるとレベル不安定領域を介して遮光レベルV0へ受光レベルSVU、SVD、SHL、SHRが下がるということを示している。
つまり、この遮光された際の受光レベル不安定時間領域(t0−t1)の受光レベルSVU、SVD、SHL、SHRを光軸ズレ判定に用いてしまうと、実際には光軸ズレしていないにもかかわらず光軸ズレ状態として誤認することになる。次に、図9(b)には図9(a)と同様に遮光時の第2の受信レベルの総和SLall=SL1+SL2+SL3+SL4の変化を示している。この場合も遮光されてからレベル不安定領域を介して遮光レベル安定状態へ変化している。
一方、図10(a)の角度θは第2の光受信手段である4分割PD9に対する光源32の位置(方向)を示したものである。図10(b)には図10(a)に示すような第2の光受信手段9に対して光源(第2の光送信手段)32のθの位置にある場合の、第2の光受信手段9を構成する受光素子(PD1、PD2、PD3、PD4)の受光レベルを基にした図7に準じた水平方向判定レベルSHL=SL1+SL3とSHR=SL2+SL4の光源32の方向(θ)に対する変化と、同様に、第2の光受信手段9の各受光素子で得られた受光レベルの総和SLall=SL1+SL2+SL3+SL4の変化をイメージ化して示している。この図10(b)に示すように、第2の光受信手段9は光源32が正面(θ=0°)のときにレベルがV1(=SHL=SHR)で一致し、受信レベルの総和SLallは、そのレベルVtotal1が最も大きくなる。ここで、このレベル総和SLallの変化を見てみると、光源32の位置がθ0〜θ1の間で移動した際にその変化幅はΔVmであることがわかり、上述の図9(b)での遮光時のレベル変化ΔVSとを比較すると、ΔVm>ΔVSの関係がある。
このことを利用して、光軸ズレと遮光による第2の光信号33の第2の光受信手段9での受光レベル変化を判別することを実現したのが本発明の主たるところであり、これによって光伝送路が瞬断されただけでは不用意な光軸調整処理を行わず、さらに、送信機1の移動などによる光軸ズレに対しては速やかに光軸を修正することを可能としている。以下に、その具体的な手段を判定ブロックの一例及び光軸調整フロー例を使って説明する。
図11には以上で説明した光軸ズレ及び遮光判定を行うための本発明におけるブロック構成図を制御部15に主点を置き示している。ただし、ここでは、制御部15のその他の機能については省略して示してある。この図11に示すように制御部15は第2の光受信手段9(及び第1の光送信手段8)の方向を第2の光信号33の第2の光受信手段9における各PD素子での受信レベルを基に方向調整して光軸を合せた後、通信光軸が正確に合っている状態での第2の光受信手段9の受信レベルを監視して光軸ズレを検出し、速やかに光軸を修正するためのものである。
設定時の光軸調整が終わった後に、制御部15は随時、受信信号セレクト制御部59によって信号セレクト回路11にセレクト制御信号を送り、順次第2の光受信手段9から得られる受信信号のレベルSL1〜SL4を受信レベル検出回路13においてレベル値として光軸確立基準レベル記録部56へ渡し、光軸調整直後の光軸が合っているときのトータル受光レベルSLallを計算して遮光判定基準値とし光軸確立基準レベル記録部56に記録し、さらにそのときの水平変動判定基準値としてSHL=SL1+SL3、SHR=SL2+SL4と、垂直変動判定基準値としてSVU=SL1+SL2、SVD=SL3+SL4を判定基準値として光軸確立基準レベル記録部56に記録する。
さらに、随時、判定処理部58において受信レベル検出回路13において得られる各信号のレベル値を光軸確立基準レベル記録部56に記録した各基準レベルと比較し、その差が生じた際にその差が生じている期間がどの程度継続しているかなどを判定するための繰り返し判定回数カウンタ(又はタイマ)57を設定し、その区間を計測する。この計測結果によって判定処理部58では光軸ズレが生じたための受信レベルの変動か、又は遮光されたことによる受信レベルの変動かを判定し、その結果によって駆動部を制御することで、光軸ズレを実際に生じている場合のみに適切な光軸ズレ修正処理(駆動)を行うことを可能にする。ここで、繰り返し判定回数カウンタ(又はタイマ)57は、図13で後述するように繰り返し遮光判定回数カウンタ(又はタイマ)57−1と繰り返し軸ズレ判定回数カウンタ(又はタイマ)57−2の2種類から成る。
次に、第1、第2の実施の形態においての光軸調整動作及び光軸ズレ判定動作、光軸ズレの修正に至る本発明に係る自動光軸調整の流れを図12から図15を用いて説明する。まず図12を用いて図2に示した第1の実施の形態の送信機1の動作を説明する。第1の実施の形態では、図12に示すように、まず、ステップS1として第2の光受信信号を順次セレクトし、ステップS2で一定レベル以上の受信信号があるかを判定する。これは、第2の光受信手段9の受光角内に受信機20があるか否かを判定することで、外乱光などのノイズ受信による誤判定を避けるためのものである。この判定で、一定レベルを超えた受信信号が無い場合には、ステップS3で第1の光送信手段8の発光を停止し、不必要な第1の光信号19の放出を避け、周辺外界への配慮をする。ステップS3で第1の光信号19を停止したら、ステップS4で第2の光受信手段9(及び第1の光送信手段8)の方向を移動させ、再度ステップS1からの処理を行う。
また、ステップS2において一定レベル以上の受信が確認された場合には、さらにステップS5においてこれらすべての第2の受信光レベルSVU、SVD、SHL、SHRが一致しているかを判定し、一致していない場合にはステップS4でこの各第2の受信光レベルSVU、SVD、SHL、SHRの大きさに応じて第2の光受信手段9(及び第1の光送信手段8)の方向を移動させ、再度ステップS1からの処理を行う。
もし、ステップS5においてすべてのレベルSVU、SVD、SHL、SHRが一致していた場合にはステップS14で第1の光送信手段8で第1の光信号19を受信機20へ送信開始し、設置時における初期光軸調整を完了し、以降の光軸監視状態へ進む。光軸監視状態では以前の光軸調整において光軸が合った時点での第2の光受信レベルV1(SVU、SVD、SHL、SHR)をステップS11において記録し、ステップS12において光軸一致時点での第2の光トータル受信レベルVtotal1を求め記録する。
これらステップS11及びステップS12において第2の光受信レベルV1、第2の光トータル受信レベルVtotal1を以後の判定基準値として記録した後、ステップS13で光軸ズレ及び揺動検知処理を行い、光軸ズレを検出した場合には光軸再調整を行う処理へ移る。ここでの例ではステップS2の第2の光信号33の受光レベル判定の処理へ戻ることで光軸の再調整処理をする形式を取っている。なお、ステップS13で光軸ズレが検出されていない場合にはこのステップS13の光軸ズレ監視処理を繰り返す。
ステップS13の光軸監視処理について図13を用いて詳細に説明をする。図13は、送信機1が設置時の初期光軸合わせを終え、送信機1及び受信機20間で第1の光信号19によって確立された光伝送路の状態(光軸ズレの発生)を監視し、遮光時における光伝送路の異常か光軸ズレによる異常かを判定し、光軸ズレの発生を検知し、光軸ズレ調整を送信機1が自動で行うための判定処理である。
この図13に示すように光軸ズレ発生判定処理は、遮光時と光軸ズレとを判別するものであり、まず、ステップS41において第2の光受信信号の現在の受信レベルを順次監視するために信号セレクト回路11を制御し、受信レベル検出回路13によって得られる第2の光受信手段9の全受光素子で受信されるトータル受光量(レベル)SLallの変化をステップS42において監視する。このトータル受光量SLallが大きく変化している場合にはステップS43においてこの変化が一定時間継続するかを見極めるために繰り返し遮光判定回数カウンタ57−1をセット(+1)する。次に、ステップS44でステップS43で設定しているカウンタ57−1をチェックして判定回数が一定回数N(タイマの場合には所定の継続時間)以上かを判定する。その結果、判定回数が規定の大きさに達していない場合にはステップS45において、繰り返し軸ズレ判定回数カウンタ57−2をリセット(クリア)し、ステップS41へ戻り光伝送路の監視を続ける。なお、ステップS45においてクリアされる繰り返し軸ズレ判定回数カウンタ57−2は後述する光軸ズレ判定の際に設定されるカウンタである。
なお、ステップS44において判定回数が規定の大きさNに達している場合には、ステップS42における第2の光受信手段9のトータル受光量SLallの急激な変化を遮光によるものと判断し、ステップS47及びステップS48で各々繰り返し軸ズレ判定回数カウンタ57−2、繰り返し遮光判定回数カウンタ57−1をクリアし、光軸再調整不要として次処理へ移る。
もし、ステップS42の監視判定で第2の光受信手段9のトータル受光量SLallに大きな変化が無い場合には、ステップS46において、第2の光受信手段9の各受光素子から得られるそれぞれの判定受信レベルV1をチェックして、すべての第2の受信光レベルが一致(厳密には、初期設定時に光軸を合わせたときの各レベルと一致)している場合には、光軸ズレが無いとして、ステップS47及びステップS48で各々繰り返し軸ズレ判定回数カウンタ57−2、繰り返し遮光判定回数カウンタ57−1をクリアし、光軸再調整不要として次処理へ移る。
一方、ステップS46において各判定受信レベルV1のすべてが一致しない状態になっていることを検知した場合には、ステップS49において、繰り返し軸ズレ判定回数カウンタ57−2をセット(+1)し、次の、ステップS50においてその判定回数をチェックする。この繰り返し軸ズレ判定回数カウンタ57−2の判定回数が一定回数Mより大きい場合、すなわち、ステップS46のレベル判定での比較的小さな受光レベル変化によるレベル不一致状態が規定時間以上継続している場合には、送信機1の位置ズレ(移動)などによる、光軸ズレが発生していると判断し、ステップS51及びステップS52で各々繰り返し軸ズレ判定回数カウンタ57−2、繰り返し遮光判定回数カウンタ57−1をクリアし、光軸再調整処理へ移る。また、ステップS50のカウンタの判定回数チェックにおいて規定の回数Mを超えていない場合にはステップS41に戻り監視を継続する。
このような送信機1の光軸調整の流れによって自動光軸調整及び自動光軸ズレ修正動作を実現する。なお、ここで説明している第1の実施の形態の受信機20側の動作については、電源投入後に第2の光信号33を送信機1へ向けて発光することが最低限の動作として要求されるが、それ以上の動作は先に述べた送信機1の光軸調整動作に対しては動作を求められないことから説明は省略する。
次に図3に示した第2の実施の形態の送信機1及び受信機20の動作を、それぞれ図14及び図15を用いて説明する。第2の実施の形態の送信機1は、図14に示すように、まずステップS1として制御部15が信号セレクト回路11を制御して、第2の光受信信号を順次選択し、ステップS2で受信レベル検出回路13において検出された第2の光受信信号のレベルをチェックし、このレベルが第1の判定レベル(受信機20からの第2の光信号33と判定できるレベル:例えば図10に記載のV0)を超えていない場合には受信機20の方を向いていないとしてステップS3において不必要な第1の光信号19の送信を停止し、周りの機器や人などの周辺環境への悪影響の発生を防ぎ、ステップS4において駆動手段17、18を制御して第1の光送信手段8及び第2の光受信手段9の方向を変え、ステップS1に戻って受信機20を探す。
ステップS2において一定の判定レベルを超えるものがある場合には、ステップS5でこれらすべての第2の光信号33の受信光レベルSVU、SVD、SHL、SHRが一致するか(実際にはノイズなどの影響で差があるため、ある一定の範囲内にあるか)を判定し、もし、一致しない場合にはステップS4において、第2の受信光の各レベルSVU、SVD、SHL、SHRに応じて駆動手段17、18を制御して第1の光送信手段8及び第2の光受信手段9の方向を変え、次いでステップS1に戻って再度、受信機20を探す。このステップS4での第1の光送信手段8及び第2の光受信手段9の向きをどちらの方向に駆動させるかは、既に図4〜図6を用いて説明した第2の光受光レベルを用いた光源32の方向判定方法の基本的原理に従って行う。
ステップS5で第2の光信号33の各受信光レベルSVU、SVD、SHL、SHRがすべて一致した場合には、ステップS6で送信データにCRCデータを付加し、ステップS7で8B10B変換され二値化処理された信号を第1の光信号19として送信を開始し、ステップS8において第2の光信号33で送られる受信機20側での第1の光信号19の送達エラー情報(エラーレート)を受信し、ステップS9において得られたエラー情報を解析し、もし、エラーが有りの情報を受けたならステップS10で第1の光送信手段8及び第2の光受信手段9の向きを任意の方向へ微動させ、再度受信機20からのエラーレート情報をステップS9で判定する。
もし、このステップS9でエラーが無いとの情報を受けたなら(実際には一定時間異常エラーなし状態が続いた場合に光軸が一致したエラーの光伝送路が確立されたとして次ステップへ移り)、設置時における初期光軸調整を完了し、以降の光軸監視状態へ進む。光軸監視状態では以前の光軸調整でにおいて光軸が合った時点での各受光素子によるそれぞれの第2の光受信レベルV1をステップS11において記録し、ステップS12において光軸一致時点での第2の光トータル受信レベルVtotal1を算出し記録する。
これらステップS11及びステップS12において第2の光受信レベルV1、第2の光トータル受信レベルVtotal1を以後の判定基準値として記録した後、ステップS13で光軸ズレを監視し、光軸ズレを検出した場合には光軸再調整を行う処理へ移る。ここでの例ではステップS2の第2の光信号33の受光レベル判定の処理へ戻ることで光軸の再調整処理をする形式を取っている。なお、ステップS13で光軸ズレが検出されていない場合にはこのステップS13の光軸ズレ監視処理を繰り返す。このような送信機1の光軸調整の流れによって自動光軸調整及び自動光軸ズレ修正動作を実現する。なお、図14の送信機1の動作の中で示した、ステップS13の光軸ズレ監視処理の詳細については図13を用いて説明したものと同じであるので説明は省略する。
次に、第2の実施の形態で示している受信機20の動作を図15を用いて説明する。受信機20はステップS21で第1の光受信手段22及び第2の光送信手段32を可動部37及び38を調整して送信機1の方向へ向ける。送信機1の方向へ向けられた受信機20はステップS22において第2の光送信手段32から送信機1に対してその位置を知らせるための第2の光信号(パイロット光)33を送信する。
次にステップS23で第1の光信号19の受信レベルがデータ伝送を可能なレベル付近になるまで待機する。ここで、第1の光信号19でデータが伝送できるある程度のレベルに受信レベルがなれば、ステップS24で受信した第1の光信号(第1の受信光)19によるデータを二値化及び10B8B変換(復号化)し、ステップS25において第1の光信号19で受信したデータのシンボルエラーを検出し、ステップS26で第1の受信データのCRCCを用いてエラーをチェックする。このステップS25及びステップS26で検出されるエラー数をステップS27で一定時間経過するまで数え、ステップS28でこの一定時間内に検出したエラー数からエラーレートを算出し、ステップS29でエラーの有無を判定し、エラーが無い場合にはステップS30でエラー無し情報をパケット化してエラー無しパケットを生成し、エラーがある場合にはステップS31でそのエラーレートをパケット化してエラーレートを示すエラーパケットを生成し、ステップS32においてこの生成されたパケットを第2の光信号33に変調して乗せて送信することで送信機1へ受信機20での第1の光信号19の受信状態を示す送達エラー情報を伝送する。
以上、示したような動作によって第1、第2の実施の形態の光無線伝送装置は送信機1と受信機20との間の光軸を合わせ、光伝送路を確立する。また、以上のような判定動作を行うことで、第2の光信号33の受光レベルを基にした光軸ズレ判定を速やかに実現し、送信機1が設置後の光軸ズレを自動的に修正することを可能としている。なお、上述の実施の形態において説明した光無線伝送装置の送信機1と受信機20の構成は、本発明の技術思想を説明するために示した一例であり、その構成及び動作フローは適宜変更可能である。
本発明が使われると想定される光伝送システムを示す構成図である。 本発明の第1の実施の形態の光無線伝送装置の送信機及び受信機を示すブロック図である。 本発明の第2の実施の形態の光無線伝送装置の送信機及び受信機を示すブロック図である。 光源位置と4分割PDの受信レベルの関係を示す説明図である。 光源位置と4分割PDの受信レベルの関係をさらに詳しく示す説明図である。 図5の光源位置における4分割PDの受信レベルの関係を示す説明図である。 第2の光受信手段の取り付けズレとレベル判定信号を示す説明図である。 光無線伝送装置の光軸及び光伝送路を示す説明図である。 遮光時の4分割PDの受光レベルの変化を示す説明図である。 4分割PDの受光レベルの光源方向に対する受信レベル変化例を示す説明図である。 光軸ズレ及び遮光判定をするための制御ブロックの一例を示すブロック図である。 第1の実施の形態の送信機の光軸調整動作の概略を示すフローチャートである。 図12の光軸ズレ及び遮光判定のための判定動作を詳しく示すフローチャートである。 第2の実施の形態の送信機の光軸調整動作の概略を示すフローチャートである。 第2の実施の形態の受信機の光軸調整動作の概略を示すフローチャートである。
符号の説明
1 送信機
2 送信機電気信号処理部
3 送信信号処理回路
4 CRCC付加回路
5 8B10B変換回路
6、25 二値化回路
7、31 発光素子ドライバ
8 第1の光送信手段
9 第2の光受信手段
10、23 受光回路
11 信号セレクト回路
12 復調回路
13 受信レベル検出回路
14 パケット検出及び解析手段
15 制御部
16 駆動制御部
17 水平方向の駆動手段
18 垂直方向の駆動手段
19 第1の光信号(送信光)
20 受信機
21 電気信号処理回路
22 第1の光受信手段、受光素子
24 受信信号処理回路
26 シンボルエラー検出回路
27 エラーレート算出回路
28 エラーレートパケット生成回路
29 変調回路
30 発信回路
32 第2の光送信手段、光源、発光素子
33 第2の光信号(パイロット光)
34 信号レベル検出回路
35 10B8B変換回路
36 CRCチェック回路
37 水平可動部
38 垂直可動部
40、41、42、43 信号加算器
48 垂直方向回転軸
49 水平方向回転軸
51 第1の光信号発光軸
52 第2の光信号受光軸
53 送信機電気回路基板
54 受信機電気回路基板
55 遮光物
56 光軸確立基準レベル記録部
57 繰り返し判定回数カウンタ(又はタイマ)
57−1 繰り返し遮光判定回数カウンタ(又はタイマ)
57−2 繰り返し軸ズレ判定回数カウンタ(又はタイマ)
58 判定処理部
59 受信信号セレクト制御部
60 映像制御装置
61 映像表示装置
PD1、PD2、PD3、PD4 第2の光受信手段を構成する受光素子
SL1、SL2、SL3、SL4 各第2の光受信手段で受光された信号

Claims (3)

  1. 放射角度が比較的狭い第1の光信号を送信する第1の光学送信手段を有する送信機と、前記第1の光信号を受信して電気信号に変換する第1の光学受信手段を有する受信機とを備えた光無線伝送装置であって、
    前記受信機は、
    放射角度が比較的広い第2の光信号を送信する第2の光学送信手段を有し、
    前記送信機は、
    前記第2の光信号を各々が前記受信機の方向に応じたレベルで受光可能な第2の複数の光学受信手段と、
    前記第1の光学送信手段及び前記第2の複数の光学受信手段を一体で前記受信機の方向に移動させて位置合わせを行うための駆動手段と、
    前記第2の複数の光学受信手段の各々により受光されたレベルの差が概略無くなるように前記駆動手段を制御して初期光軸位置合わせをし、前記初期光軸位置合わせが終了した後、前記第2の複数の光学受信手段の各々により受光されたレベルの合計の変化が所定時間以上継続したか否かを判断して、継続しない場合には、再光軸位置合わせを行わず、継続した場合には、前記第2の複数の光学受信手段の各々により受光されたレベルに基づいて再光軸位置合わせが必要か否かを判断して、必要と判断した場合に、再光軸位置合わせを行う光軸位置合わせ手段とを有する光無線伝送装置。
  2. 前記第2の複数の光学受信手段は、水平・垂直方向に共に2個、合計4個の光電変換素子により構成され、
    前記光軸位置合わせ手段は、左側に配置された2個の前記光電変換素子の各レベルの合計と右側に配置された2個の前記光電変換素子の各レベルの合計の差が概略無くなるようにして水平方向の光軸位置合わせを行うとともに、上側に配置された2個の前記光電変換素子の各レベルの合計と下側に配置された2個の前記光電変換素子の各レベルの合計の差が概略無くなるようにして垂直方向の光軸位置合わせを行うことを特徴とする請求項1に記載の光無線伝送装置。
  3. 前記光軸位置合わせ手段は、前記差の変化が所定時間以上継続したか否かを判断して、継続しない場合には、再光軸位置合わせが不要と判断して再光軸位置合わせを行わず、継続した場合には、再光軸位置合わせが必要と判断して再光軸位置合わせを行うことを特徴とする請求項2に記載の光無線伝送装置。
JP2004224939A 2004-07-30 2004-07-30 光伝送システム,光無線送信装置及び光伝送方法 Expired - Fee Related JP4513057B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224939A JP4513057B2 (ja) 2004-07-30 2004-07-30 光伝送システム,光無線送信装置及び光伝送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224939A JP4513057B2 (ja) 2004-07-30 2004-07-30 光伝送システム,光無線送信装置及び光伝送方法

Publications (2)

Publication Number Publication Date
JP2006050029A true JP2006050029A (ja) 2006-02-16
JP4513057B2 JP4513057B2 (ja) 2010-07-28

Family

ID=36028111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224939A Expired - Fee Related JP4513057B2 (ja) 2004-07-30 2004-07-30 光伝送システム,光無線送信装置及び光伝送方法

Country Status (1)

Country Link
JP (1) JP4513057B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2770565C1 (ru) * 2021-06-07 2022-04-18 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "КуРэйт" (ООО "КуРэйт") Способ и система передачи информации по оптическому каналу между приемником и передатчиком с помощью излучения лазера-маяка

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199440A (ja) * 1984-10-18 1986-05-17 Fujitsu Ltd ル−プバツクオン/オフ発振防止制御方式
JPH0637721A (ja) * 1992-07-20 1994-02-10 Kyocera Corp 光空間伝送装置
JPH07107038A (ja) * 1993-09-30 1995-04-21 Sony Corp コードレスヘッドホンシステム
JPH0837497A (ja) * 1994-05-20 1996-02-06 Fujitsu Ltd 光増幅器及び光送信装置
JPH08149076A (ja) * 1994-11-24 1996-06-07 Canon Inc 光空間通信装置
JPH1174845A (ja) * 1997-08-29 1999-03-16 Victor Co Of Japan Ltd 光無線通信システムにおける子機
JP2003188829A (ja) * 2001-12-19 2003-07-04 Canon Inc 光空間伝送装置
JP2004015134A (ja) * 2002-06-04 2004-01-15 Canon Inc 光空間通信装置
JP2004135326A (ja) * 2002-09-20 2004-04-30 Victor Co Of Japan Ltd 光無線伝送装置
JP2004172741A (ja) * 2002-11-18 2004-06-17 Koito Ind Ltd 伝送障害判定装置および光空間伝送装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199440A (ja) * 1984-10-18 1986-05-17 Fujitsu Ltd ル−プバツクオン/オフ発振防止制御方式
JPH0637721A (ja) * 1992-07-20 1994-02-10 Kyocera Corp 光空間伝送装置
JPH07107038A (ja) * 1993-09-30 1995-04-21 Sony Corp コードレスヘッドホンシステム
JPH0837497A (ja) * 1994-05-20 1996-02-06 Fujitsu Ltd 光増幅器及び光送信装置
JPH08149076A (ja) * 1994-11-24 1996-06-07 Canon Inc 光空間通信装置
JPH1174845A (ja) * 1997-08-29 1999-03-16 Victor Co Of Japan Ltd 光無線通信システムにおける子機
JP2003188829A (ja) * 2001-12-19 2003-07-04 Canon Inc 光空間伝送装置
JP2004015134A (ja) * 2002-06-04 2004-01-15 Canon Inc 光空間通信装置
JP2004135326A (ja) * 2002-09-20 2004-04-30 Victor Co Of Japan Ltd 光無線伝送装置
JP2004172741A (ja) * 2002-11-18 2004-06-17 Koito Ind Ltd 伝送障害判定装置および光空間伝送装置

Also Published As

Publication number Publication date
JP4513057B2 (ja) 2010-07-28

Similar Documents

Publication Publication Date Title
US8805192B2 (en) Method of directing an optical receiver toward a light source and an apparatus of practicing the method
JPH05218972A (ja) 自由空間レーザ通信装置及び方法
JP2007533239A (ja) 光ネットワークにおける受信に関する改善装置
JPH08204645A (ja) 双方向光空間伝送装置
US7203425B1 (en) Optical wireless link
JP4513057B2 (ja) 光伝送システム,光無線送信装置及び光伝送方法
US20040052465A1 (en) Receiver for a free space optics system which is able to evaluate the causes of a reduction of the received power
JP2005175842A (ja) 光検出装置及び光空間伝送装置
EP1496629B1 (en) Light transmitter-receiver apparatus
JP2007036940A (ja) 光無線伝送装置、光送信ユニット、及び光受信ユニット
JP2005026929A (ja) 光無線伝送装置
JP2005294899A (ja) 光送信機
US7379674B2 (en) Optical transmission device
JP2006039984A (ja) 防犯用センサ装置
US20040096224A1 (en) Optical wireless communication system
JP4379160B2 (ja) 光無線伝送装置
KR102424666B1 (ko) 오차 보정 기능을 구비한 라이다 시스템 및 그것의 오차 보정 방법
JP2004135326A (ja) 光無線伝送装置
JP2006042205A (ja) 光無線伝送装置
JP4599847B2 (ja) 光無線伝送装置
JP2007281992A (ja) 光空間通信装置
JP2007013536A (ja) リモコン方向検知装置および映像表示装置
JP2005277596A (ja) 光送信機
JP2007067843A (ja) 光空間通信装置及びその通信方法
JP4379161B2 (ja) 光送信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100429

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees