JP2006049107A - 透明導電膜の形成方法及び透明導電膜 - Google Patents

透明導電膜の形成方法及び透明導電膜 Download PDF

Info

Publication number
JP2006049107A
JP2006049107A JP2004229008A JP2004229008A JP2006049107A JP 2006049107 A JP2006049107 A JP 2006049107A JP 2004229008 A JP2004229008 A JP 2004229008A JP 2004229008 A JP2004229008 A JP 2004229008A JP 2006049107 A JP2006049107 A JP 2006049107A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
plasma
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004229008A
Other languages
English (en)
Inventor
Noboru Kinoshita
暢 木下
Takashi Otsuka
剛史 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2004229008A priority Critical patent/JP2006049107A/ja
Publication of JP2006049107A publication Critical patent/JP2006049107A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

【課題】 塗布膜に酸化性雰囲気中にてプラズマまたは電磁波を照射することにより、低抵抗かつ可視光透過率の高い透明導電膜を形成することができ、さらに、塗工法を用いたことにより量産性及びコスト面で優れている透明導電膜の形成方法及び透明導電膜を提供する。
【解決手段】 本発明の透明導電膜の形成方法は、平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を含む塗布液をガラス基板、プラスチック基板等の基材11上に塗布して塗布膜12とし、この塗布膜12に酸化性雰囲気中にてプラズマPを照射することにより、基材11上に透明導電膜14を形成することを特徴とする。
【選択図】 図1

Description

本発明は、透明導電膜の形成方法及び透明導電膜に関し、更に詳しくは、プラズマディスプレイ(PDP)、液晶ディスプレイ(LCD)、エレクトロルミネッセントディスプレイ(EL)、ブラウン管(CRT)、プロジェクション(PJTV)等の画像表示装置の表示面等に低抵抗かつ可視光透過率の高い透明導電膜を形成することのできる技術に関するものである。
従来、プラズマディスプレイ(PDP)、液晶ディスプレイ(LCD)、エレクトロルミネッセントディスプレイ(EL)、ブラウン管(CRT)、プロジェクション(PJTV)等の画像表示装置の画像表示部では、ガラス基板、有機高分子フィルム等の透明な基材上に透明導電膜が形成されたフラットパネルが用いられている。
従来より、透明基材上に透明導電膜を形成する方法としては、乾式法と湿式法の二つの方法に大別できる。
乾式法は、真空蒸着法、イオンプレーティング法、スパッタリング法等により金属または金属酸化物からなる透明導電膜を透明基材上に成膜する方法である(例えば、非特許文献1、2参照)。
また、湿式法は、塗工法により透明導電膜を形成する方法であり、金属アルコキシドの加水分解と縮重合反応を利用するゾルゲル法により透明基材上に金属酸化物薄膜を形成する方法、金属粒子または金属酸化物粒子を有機溶媒に分散させた塗布液を透明基材上に塗布する方法等が知られている(例えば、特許文献1参照)。
この塗布液については、粒子の分散状態を安定化し、得られた膜の面内均一性を向上させるために、粒径がより小さい金属微粒子や金属酸化物微粒子を用いたものが提案されている(例えば、特許文献2参照)。
この透明導電膜に用いられる金属酸化物は、一般に、その金属酸化物内の酸素濃度によって導電性が変化することが知られている。特に、スズ添加酸化インジウム(ITO)、酸化亜鉛(ZnO)、アルミニウム添加酸化亜鉛(AZO)等の金属酸化物においては、化学量論的組成よりも酸素欠損状態の組成の方が導電性が向上するという特性がある。例えば、スズ添加酸化インジウム(Snを5%添加したITO)の場合、18wt%程度の酸素含有量を有する微粒子を含む分散溶液を使用することによって、1.5×10〜3.0×10Ω/□の表面抵抗を有する透明導電膜が得られている。
清村貴利、大木竜磨、星陽一、「スパッタビーム堆積法によるITO薄膜の低温成膜」、信学技報、社団法人電子情報通信学会、2000年10月、CPM2000−126(2000−10)、p.59−64 酒見俊之、牛神善博、栗井清、「イオンプレーティングによるITO成膜技術」、表面技術、社団法人表面技術協会、1999年9月、第50巻、第9号、p.782−785 特開昭60−220507号公報 特開平11−31417号公報
ところで、従来の乾式法では、高品位な成膜が可能であるが、比較的高い真空度を要するために、製造装置がかなり高価なものとなり、その結果、成膜のコストが高くなり、得られた透明導電膜が非常に高価なものになってしまうという問題点があった。また、バッチ式となるために1ロット当たりの生産個数が限られてしまい、生産性を上げることが難しいという問題点もあった。
一方、従来の湿式法では、塗膜装置が安価であることから、安価な透明導電膜が提供可能であり、また、連続生産が可能であるから生産性を上げることが容易という優れた点があるものの、所望の導電性を得るためには熱処理を必要とするために、透明基材に有機高分子フィルムを使用することが難しいという問題点があった。
例えば、ゾルゲル法の場合では、所望の導電性を得るためには、300〜400℃あるいはそれ以上の温度にて熱処理するのが一般的であるから、この様な温度に耐えられる有機高分子フィルムは現在のところ得られていない。
また、コーティング液としてのゾル状態の塗布液の反応性が高く、しかも、不安定であるために、この塗布液を用いた塗布膜の膜質の面内均一性が低下するという問題点もあった。さらに、金属アルコキシドが高価であるために、製造コストが高くなってしまうという問題点もあった。
また、金属微粒子や金属酸化物微粒子を用いた場合、乾式法のような粒子同士の繋がりが緻密ではないため、例えば250℃以上の加熱による微粒子の融着あるいは溶着が必要である。したがって、有機材料を用いた液晶ディスプレイ(LCD)や有機エレクトロルミネッセントディスプレイ(EL)等の分野においては、耐熱性の点で使用できないという問題点があった。
さらに、金属酸化物微粒子の酸素欠損量がより大きくなると、金属酸化物の結晶構造を保持することができなくなるために、透明導電膜の導電性が低下したり、あるいは金属酸化物自体が金属色を呈することにより可視光の透過率を低下させるという問題点があった。このように、湿式法においては、乾式法で得られる程度の電気伝導性を有する高品位な透明導電膜は得られていない。
本発明は、上記の課題を解決するためになされたものであって、塗布膜に酸化性雰囲気中にてプラズマまたは電磁波を照射することにより、低抵抗かつ可視光透過率の高い透明導電膜を形成することができ、さらに、塗工法を用いたことにより量産性及びコスト面で優れている透明導電膜の形成方法及び透明導電膜を提供することを目的とする。
本発明者等は、鋭意検討を行った結果、平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を含む塗布液を基材上に塗布して塗布膜とし、この塗布膜に酸化性雰囲気中にてプラズマを照射するか、またはレーザ光、紫外線等の電磁波を照射することにより、低抵抗かつ可視光透過率の高い透明導電膜を、生産性良く、しかも低コストで形成することができることを見出し、本発明を完成するに至った。
すなわち、本発明の透明導電膜の形成方法は、平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を含む塗布液を基材上に塗布して塗布膜とし、この塗布膜に酸化性雰囲気中にてプラズマまたは電磁波を照射することにより、前記基材上に透明導電膜を形成することを特徴とする。
前記プラズマまたは電磁波の照射は、大気圧下にて行うことが好ましい。
前記酸素欠損型金属酸化物は、インジウムとスズを含む酸化物であることが好ましい。
前記インジウムとスズを含む酸化物における酸素の含有量は、0.1重量%以上かつ17重量%以下であることが好ましい。
本発明の透明導電膜は、本発明の透明導電膜の形成方法により形成されたことを特徴とする。
本発明の透明導電膜の形成方法によれば、平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を含む塗布液を基材上に塗布して塗布膜とし、この塗布膜に酸化性雰囲気中にてプラズマまたは電磁波を照射することにより、前記基材上に透明導電膜を形成するので、低抵抗かつ可視光透過率の高い透明導電膜を容易に形成することができる。また、塗工法を用いて塗布液を基材上に塗布して塗布膜とするので、量産性及びコスト面で優れた透明導電膜が得られる。
本発明の透明導電膜によれば、本発明の透明導電膜の形成方法により形成したので、透明導電膜の低抵抗化及び高可視光透過率化を図ることができる。
また、平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を用いたので、膜厚が薄いにもかかわらず、膜の面内均一性が向上し、表面抵抗を低くかつ可視光透過率を高くすることができる。
本発明の透明導電膜の形成方法及び透明導電膜を実施するための最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
本発明の透明導電膜の形成方法は、平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を含む塗布液を基材上に塗布して塗布膜とし、この塗布膜に酸化性雰囲気中にてプラズマまたは電磁波を照射することにより、前記基材上に透明導電膜を形成する方法である。
「塗布液」
平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を水および/または有機溶媒からなる溶媒中に分散させた塗布液であり、酸素欠損型金属酸化物微粒子としては、酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化ガリウム(Ga)等の金属酸化物、または、これら酸化物に添加物を添加したスズ(Sn)添加酸化インジウム(ITO)、アンチモン(Sb)添加酸化スズ(ATO)、亜鉛(Zn)添加酸化インジウム(IZO)、アルミニウム(Al)添加酸化亜鉛(AZO)等の金属酸化物が好適に用いられる。
特に、透明導電膜を構成する金属酸化物としては、スズ添加酸化インジウム(ITO)、アンチモン添加酸化スズ(ATO)、亜鉛添加酸化インジウム(IZO)、アルミニウム添加酸化亜鉛(AZO)、酸化インジウム(In)、酸化スズ(SnO)等が好適に用いられる。
これらの金属酸化物は、化学量論的組成よりも酸素欠損の状態であることが必要である。
例えば、スズ添加酸化インジウム(ITO)の場合、酸素含有量は化学量論的組成における酸素含有量(18重量%)よりも酸素が欠損している状態となる0.1重量%以上かつ17重量%以下が好ましく、より好ましくは3重量%以上かつ16重量%以下、さらに好ましくは5重量%以上かつ15重量%以下である。
ここで、スズ添加酸化インジウム(ITO)の酸素含有量を0.1重量%以上かつ17重量%以下と限定した理由は、酸素含有量が0.1重量%未満であると、酸素欠陥に起因する光散乱因子が増加するために、透明導電膜の透明性が低下するからであり、また、酸素含有量が17重量%を超えると、微粒子同士の融着が阻害され、したがって、膜の焼結性が低下し、その結果、膜の緻密性が低下し、膜強度が低下するからである。
また、金属酸化物の平均一次粒子径は、1nm以上かつ200nm以下が好ましく、より好ましくは1nm以上かつ30nm以下である。
その理由は、金属酸化物の平均一次粒子径が1nm未満であると、透明導電膜の結晶性が低下し、その結果、膜の電気伝導性が低下する(表面抵抗が上昇する)からであり、また、200nmを超えると、透明導電膜の透明性、焼結性が低下するからである。
ここで、平均一次粒子径を1nm以上かつ30nm以下とすれば、粒子の酸化反応性、粒子内への酸素の拡散速度、粒子の表面エネルギーが向上し、塗布膜の緻密化が容易となるので、特に好ましい。
有機溶媒としては、使用する酸素欠損型金属酸化物微粒子によって適宜選択すればよく、特に限定されるものではないが、例えば、メタノール、エタノール、2−プロパノール、ブタノール等の一価アルコール類、エチレングリコール等の二価アルコール類、アセトン、メチルエチルケトン、ジエチルケトン等のケトン類、酢酸エチル、酢酸ブチル、酢酸ベンジル等のエステル類、メトキシエタノール、エトキシエタノール等のエーテルアルコール類、ジオキサン、テトラヒドロフラン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、トルエン、キシレン等の芳香族炭化水素類等を挙げることができる。
この水および/または有機溶媒からなる溶媒には、界面活性剤、pH調整剤、防腐剤等が含まれていてもよい。
この溶媒全体量に対する酸素欠損型金属酸化物微粒子の量は、使用する酸素欠損型金属酸化物微粒子に応じて、塗布し易く、かつ所望の膜厚を得ることができるように適宜調整すればよい。例えば、スズ添加酸化インジウム(ITO)の場合では、溶媒に対して微粒子が1〜15重量%である。
「塗布膜」
上記の塗布液を基材上に塗布して塗布膜とする。
基材としては、特に限定されず、ガラス基板、プラスチック基板(有機高分子基板)を挙げることができ、その形状としては、平板、フィルム、シート等であってもよい。プラスチック基板としては、透明プラスチックシートや透明プラスチックフィルム等が好ましい。
プラスチック基板の材質としては、特に限定されるものではないが、例えば、セルロースアセテート、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエーテル、ポリイミド、エポキシ、フェノキシ、ポリカーボネート(PC)、ポリフッ化ビニリデン、トリアセチルセルロース、ポリエーテルスルホン(PES)、ポリアクレリート等から適宜選択することができる。また、このプラスチック基板の厚みも特段限定されることなく、フィルムであれば通常50〜250μm、シートであれば10mm程度のものまでが使用可能である。
これらの基板は単独で用いてもよく、複数の基板を貼り合わせて一体化した積層構造の基板として用いてもよい。この基板は、塗布液を塗布する前に、純水や有機溶剤等の洗浄液を用いて洗浄することが好ましく、この洗浄の際に洗浄液に超音波を印加すれば、洗浄力が大幅に向上するので好ましい。
塗布方法としては、例えば、スピンコート法、スプレーコート法、インクジェット法、ディップ法、ロールコート法、スクリーン印刷法等を用いて上記の塗布液を基材上に塗布する方法が採られる。
基材上に塗布された塗布液は、溶媒を含んでいるので、塗布液を塗布した基材を室温、大気中にて乾燥するか、あるいは所定の温度、例えば、50℃〜80℃の温度にて乾燥することにより、塗布液に含まれる溶媒を散逸させ、塗布膜とする。
なお、溶媒の含有量が少なく、プラズマや電磁波を照射しても膜質が変化する虞が無ければ、乾燥工程を省略することができる。
「プラズマまたは電磁波の照射」
上記の塗布膜に、大気圧下かつ酸化性雰囲気下にてプラズマ、あるいは、レーザー光、紫外線等の電磁波を照射し、金属酸化物からなる透明導電膜を形成する。
ここでは、塗布膜にプラズマを照射する場合について説明する。
図1はプラズマ照射装置を示す断面図であり、図において、1は反応ガスを導入するガス導入管、2はガス導入管1の先端部の下方に設けられたプラズマ発生用電極、3はプラズマ発生用電極2を保護するためのガラス等からなる誘電体、4はプラズマPの発生領域を画成する誘電体、5はプラズマ発生用電極2、2に高周波電圧を印加する高周波電源である。
このプラズマ照射装置を用いて塗布膜12にプラズマPを照射するには、まず、ガラス基板等の基材11上に塗布膜12が形成された膜付基材13を作製し、この膜付基材13を塗布膜12を上にして、プラズマ発生用電極2、2の下方に配置する。
次いで、ガス導入管1によりプラズマ発生用電極2、2間に反応ガスgを導入すると共に、高周波電源5によりプラズマ発生用電極2、2間に高周波電圧を印加して大気圧下かつ酸化性雰囲気下にてアーク放電を発生させることにより、プラズマ発生用電極2、2間にプラズマPを発生させ、このプラズマPから電子、イオン、ラジカル、励起子等の中性粒子を放出する。
反応ガスgとしては、窒素(N)、ヘリウム(He)やアルゴン(Ar)等の希ガス、酸素(O)、オゾン(O)、水素(H)のうち少なくとも1種を含有するガスを用いる。また、有機金属成分を含有するガスを用いれば、膜の焼結性を向上させることができるので、緻密な膜を得るのに効果的である。
ここでは、プラズマPが塗布膜12に直接照射されるように、プラズマ発生用電極2、2と膜付基材13との距離d及びプラズマ出力を調整する。
このプラズマPを塗布膜12に照射することにより、この塗布膜12に含まれる酸素欠損型金属酸化物微粒子同士が融着して、低抵抗かつ可視光透過率の高い透明導電膜14となる。
図2はプラズマ照射装置の変形例を示す断面図であり、このプラズマ照射装置が上述したプラズマ照射装置と異なる点は、膜付基材13の下側に、電極21がガラス等からなる誘電体22により覆われた背面電極23を配置し、この背面電極23とプラズマ発生用電極2、2との間にバイアス電圧を印加する電源24を設けた点である。
この電源24としては、プラズマの照射条件により直流電源、交流電源、高周波電源のいずれかを選択使用すればよい。
このプラズマ照射装置では、電源24により背面電極23とプラズマ発生用電極2、2との間にバイアス電圧を印加し、このプラズマ電圧によりプラズマPを膜付基材13側に偏向させることにより、面内均一性に優れた低抵抗かつ可視光透過率の高い透明導電膜14となる。
プラズマの替わりにレーザ光や紫外線等の電磁波を照射することによっても、低抵抗かつ可視光透過率の高い透明導電膜14を得ることができる。
レーザ装置としては、最大瞬間エネルギーの大きいエキシマレーザ、YAGレーザが好ましい。これらのレーザ装置を用いる場合、照射エネルギーは10mJ/cm〜1000mJ/cmの範囲であることが好ましい。
その理由は、照射エネルギーが10mJ/cm未満では、微粒子の焼結が不十分になる虞があるからであり、また、1000mJ/cmを超えると、膜自体が破壊されてしまうために所望の特性が得られなくなるからである。
また、紫外線としては、膜中に残留する有機物の除去に効果のある1nm〜400nmの波長領域の紫外線が好ましい。
また、膜付基材13は、必要に応じて加熱してもよい。この場合、加熱温度は基材13の耐熱性を考慮して200℃以下とするのがよい。
以上説明した様に、この透明導電膜の形成方法によれば、平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を含む塗布液を基材11上に塗布して塗布膜12とし、この塗布膜12に大気圧下かつ酸化性雰囲気下にてプラズマP、あるいは、レーザー、紫外線等の電磁波を照射することにより、基材11上に透明導電膜14を形成するので、低抵抗かつ可視光透過率の高い透明導電膜14を、大気圧下かつ酸化性雰囲気下にて成膜することができる。
特に、スズ添加酸化インジウム(ITO)の酸素含有量を0.1重量%以上かつ17重量%以下と限定したので、一般的な透明導電膜材料である酸化スズ等の金属酸化物の場合よりも容易に焼結することができ、したがって、低抵抗かつ可視光透過率の高い透明導電膜を作製することができる。
以下、実施例1〜7及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例1]
Snを5%含むスズ添加酸化インジウム(ITO)微粒子(平均一次粒子径:30nm以下)を、900℃にて窒素ガス(N)による還元処理を行い、図3に示すITO粉末を得た。このITO粉末31は、化学量論的組成である酸素飽和型ITO微粒子32の表面がIn−Sn合金層33にて被覆された構造であった。また、還元処理後のITO粉末31の酸素含有量は16.0重量%であった。
次いで、このITO粉末31を濃度が5重量%となるように酢酸n−ブチルに分散して塗布液を調製した。
この塗布液をスピンコート法によりガラス基板上に塗布し、膜厚が約300nmの塗布膜を形成した。得られた塗布膜に、加熱装置を用いず、図1に示すプラズマ照射装置を用いて大気圧下にて出力100W/cmのプラズマを照射した。
ここでは、プラズマ発生用電極2、2と膜付基材13との距離dを5mmとし、反応ガスとして90%N−10%Oの混合ガスを用い、塗布膜の表面に対して垂直に照射した。
ここで、上記のプラズマ照射時間を3分、5分、10分の3通りに設定し、得られた透明導電膜に対して表面抵抗(シート抵抗:Ω/□)、可視光透過率(%)を測定した。
測定方法は以下の通りである。
表面抵抗(シート抵抗:Ω/□):ロレスタ(三菱化学社製)にて測定
可視光透過率:日本工業規格「JIS K 7105」に準じ、ヘイズメータ
(日本電色社製)にて測定
測定結果を表1に示す。
得られた透明導電膜は十分緻密化しており、表面抵抗も小さかった。また、可視光透過率も良好であることが分かった。
Figure 2006049107
[実施例2]
Snを5%含むスズ添加酸化インジウム(ITO)微粒子(平均一次粒子径:30nm以下)を、600℃にて90%N−10%Hの混合ガスによる還元処理を行い、酸素含有量が12.0重量%のITO粉末を得た。
次いで、このITO粉末を濃度が5重量%となるように酢酸n−ブチルに分散して塗布液を調製した。
この塗布液をスピンコート法によりガラス基板上に塗布し、膜厚が約300nmの塗布膜を形成した。得られた塗布膜に、加熱装置を用いず、図2に示すプラズマ照射装置を用いて大気圧下にて出力100W/cmのプラズマを照射した。
ここでは、プラズマ発生用電極2、2と膜付基材13との距離dを5mmとし、反応ガスとして90%N−10%Oの混合ガスを用い、塗布膜の表面に対して垂直に照射した。また、背面電極23へのバイアス電圧を5kVとした。
ここで、上記のプラズマ照射時間を3分、5分、10分の3通りに設定し、得られた透明導電膜に対して、実施例1に準じて表面抵抗(シート抵抗:Ω/□)、可視光透過率(%)を測定した。測定結果を表2に示す。
得られた透明導電膜は十分緻密化しており、表面抵抗も小さかった。また、可視光透過率も良好であることが分かった。
Figure 2006049107
[実施例3]
実施例1と同様にして膜厚が約300nmの塗布膜を形成した。
次いで、この塗布膜に、加熱装置を用いず、エキシマレーザを用いて波長308nm、エネルギー密度200mJ/cmの紫外線を照射した。照射パルス数は1パルス、3パルスの2種とした。
得られた透明導電膜に対して、実施例1に準じて表面抵抗(シート抵抗:Ω/□)、可視光透過率(%)を測定した。測定結果を表3に示す。
得られた透明導電膜は十分緻密化しており、表面抵抗も小さかった。また、可視光透過率も良好であることが分かった。
Figure 2006049107
[比較例]
実施例1及び2と同様にして膜厚が約300nmの塗布膜を形成した。
次いで、これらの塗布膜を、大気圧下、最高保持温度500℃にて30分間、焼成し、透明導電膜を得た。
得られた透明導電膜に対して、実施例1に準じて表面抵抗(シート抵抗:Ω/□)、可視光透過率(%)を測定した。測定結果を表4に示す。
Figure 2006049107
以上の測定結果によれば、実施例1〜3の透明導電膜は、比較例の透明導電膜と比べて表面抵抗(シート抵抗:Ω/□)が小さく、また可視光透過率が高いことが分かった。
また、実施例1〜3各々の塗布液に有機金属化合物、金属無機塩、金属有機塩の何れかを添加した場合においても、得られた塗布膜に大気圧下かつ酸化性雰囲気下にてプラズマ、あるいは、レーザー、紫外線等の電磁波を照射することにより、低抵抗かつ可視光透過率の高い透明導電膜を成膜することができることが確認された。
本発明の透明導電膜の形成方法は、塗布膜に酸化性雰囲気中にてプラズマまたは電磁波を照射することにより、低抵抗かつ可視光透過率の高い透明導電膜を形成することができるものであるから、プラズマディスプレイ(PD)、液晶ディスプレイ(LCD)、エレクトロルミネッセントディスプレイ(EL)、陰極線管(CRT)、プロジェクション(PJTV)等の各種表示装置に適用可能であることはもちろんのこと、自動車、建築物等の窓材等、様々な工業分野においても、その効果は大である。
本発明の一実施形態のプラズマ照射工程にて用いられるプラズマ照射装置を示す断面図である。 本発明の一実施形態のプラズマ照射工程にて用いられるプラズマ照射装置の変形例を示す断面図である。 本発明の実施例1の還元処理を行ったITO粉末の断面構造を示す模式図である。
符号の説明
1 ガス導入管
2 プラズマ発生用電極
3、4 誘電体
5 高周波電源
11 基材
12 塗布膜
13 膜付基材
14 透明導電膜
21 電極
22 誘電体
23 背面電極
24 電源
31 ITO粉末
32 酸素飽和型ITO微粒子
33 In−Sn合金層
g 反応ガス
P プラズマ

Claims (5)

  1. 平均一次粒子径が1nm以上かつ200nm以下の酸素欠損型金属酸化物微粒子を含む塗布液を基材上に塗布して塗布膜とし、この塗布膜に酸化性雰囲気中にてプラズマまたは電磁波を照射することにより、前記基材上に透明導電膜を形成することを特徴とする透明導電膜の形成方法。
  2. 前記プラズマまたは電磁波の照射は、大気圧下にて行うことを特徴とする請求項1記載の透明導電膜の形成方法。
  3. 前記酸素欠損型金属酸化物は、インジウムとスズを含む酸化物であることを特徴とする請求項1または2記載の透明導電膜の形成方法。
  4. 前記インジウムとスズを含む酸化物における酸素の含有量は、0.1重量%以上かつ17重量%以下であることを特徴とする請求項3記載の透明導電膜の形成方法。
  5. 請求項1ないし4のいずれか1項記載の透明導電膜の形成方法により形成されたことを特徴とする透明導電膜。
JP2004229008A 2004-08-05 2004-08-05 透明導電膜の形成方法及び透明導電膜 Pending JP2006049107A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229008A JP2006049107A (ja) 2004-08-05 2004-08-05 透明導電膜の形成方法及び透明導電膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229008A JP2006049107A (ja) 2004-08-05 2004-08-05 透明導電膜の形成方法及び透明導電膜

Publications (1)

Publication Number Publication Date
JP2006049107A true JP2006049107A (ja) 2006-02-16

Family

ID=36027414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229008A Pending JP2006049107A (ja) 2004-08-05 2004-08-05 透明導電膜の形成方法及び透明導電膜

Country Status (1)

Country Link
JP (1) JP2006049107A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241293A (ja) * 2007-03-26 2008-10-09 Univ Nagoya 原子分析装置
JP2010511970A (ja) * 2006-09-04 2010-04-15 ノヴァレッド・アクチエンゲゼルシャフト 有機発光素子およびその製造方法
US20120015147A1 (en) * 2010-07-14 2012-01-19 Maa Jer-Shen Solution Process for Fabricating a Textured Transparent Conductive Oxide (TCO)
JP2012094284A (ja) * 2010-10-25 2012-05-17 Central Japan Railway Co 透明導電膜の製膜方法
WO2012176817A1 (ja) * 2011-06-20 2012-12-27 旭硝子株式会社 透明導電性酸化物膜付き基体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511970A (ja) * 2006-09-04 2010-04-15 ノヴァレッド・アクチエンゲゼルシャフト 有機発光素子およびその製造方法
JP2008241293A (ja) * 2007-03-26 2008-10-09 Univ Nagoya 原子分析装置
US20120015147A1 (en) * 2010-07-14 2012-01-19 Maa Jer-Shen Solution Process for Fabricating a Textured Transparent Conductive Oxide (TCO)
US8404302B2 (en) * 2010-07-14 2013-03-26 Sharp Laboratories Of America, Inc. Solution process for fabricating a textured transparent conductive oxide (TCO)
JP2012094284A (ja) * 2010-10-25 2012-05-17 Central Japan Railway Co 透明導電膜の製膜方法
WO2012176817A1 (ja) * 2011-06-20 2012-12-27 旭硝子株式会社 透明導電性酸化物膜付き基体

Similar Documents

Publication Publication Date Title
JP5403293B2 (ja) 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
JP5700259B2 (ja) 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
TWI485070B (zh) 透明導電膜
JP5240532B2 (ja) 金属酸化物膜の製造方法
KR100968389B1 (ko) 투명전극의 제조 방법
TW200526797A (en) Transparent conductive oxides
JP2004084064A (ja) 透明導電膜形成用組成物、透明導電膜形成用溶液および透明導電膜の形成方法
CN102646759A (zh) 一种透明导电氧化物薄膜的制备方法
EP3364240B1 (en) Electrochromic element and method for manufacturing same
TWI427361B (zh) Liquid crystal display device, and liquid crystal display device
JP4730768B2 (ja) 透明導電膜の形成方法及び透明導電膜
JP2000327310A (ja) 金属酸化物、その薄膜及びこれを製造する方法
JP2009252437A (ja) 透明導電性フィルム
JP2009293097A (ja) スパッタリング複合ターゲット、これを用いた透明導電膜の製造方法及び透明導電膜付基材
JP2006049107A (ja) 透明導電膜の形成方法及び透明導電膜
JP2008218243A (ja) 透明導電性基板の製造方法及び透明導電性基板
JP2006236747A (ja) 透明電極及び透明電極の製造方法
JPWO2008044473A1 (ja) 透明導電膜の成膜方法及び透明導電膜基板
KR20170020602A (ko) 원적외선 히터 소자
JP2008108541A (ja) 透明導電膜の形成方法及び透明導電膜
JP2006047720A (ja) 透明導電膜の形成方法及び透明導電膜
JP2011028861A (ja) 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス
JP2006164800A (ja) 導電膜の形成方法及び導電膜
JP2008235098A (ja) 透明導電膜およびその製造方法
JP2006016273A (ja) 噴霧熱分解法による成膜装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20080225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701