JP2006045586A - Steel for welded structure having excellent low temperature toughness - Google Patents

Steel for welded structure having excellent low temperature toughness Download PDF

Info

Publication number
JP2006045586A
JP2006045586A JP2004224152A JP2004224152A JP2006045586A JP 2006045586 A JP2006045586 A JP 2006045586A JP 2004224152 A JP2004224152 A JP 2004224152A JP 2004224152 A JP2004224152 A JP 2004224152A JP 2006045586 A JP2006045586 A JP 2006045586A
Authority
JP
Japan
Prior art keywords
steel
toughness
haz
content
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224152A
Other languages
Japanese (ja)
Inventor
博幸 ▲角▼
Hiroyuki Sumi
Yoshiaki Murakami
善明 村上
Satoshi Iki
聡 伊木
Toshifumi Kojima
敏文 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004224152A priority Critical patent/JP2006045586A/en
Publication of JP2006045586A publication Critical patent/JP2006045586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the low temperature toughness of HAZ including a Bond at a large heat input welded joint of ≥300 kJ/cm amount of heat input. <P>SOLUTION: The steel has a component composition composed of, by mass, 0.04 to 0.12% C, 0.01 to 0.5% Si, 0.5 to 2% Mn, 0.005 to 0.03% Ti, 0.001 to 0.003% B, 0.004 to 0.007% N and the balance essentially Fe, containing, when necessary, one or more elements among Cu, Ni, Cr, Mo, V and Nb, having an N-Ti-B balance satisfying inequality 0.9×IN≤N≤1.2×IN (wherein, IN=Ti/3.4+1.3B is satisfied; and N, Ti and B are numerical values representing their respective contents in ppm) and, further, satisfying a limiting equation consisting of the component composition and a cooling rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、海洋構造物、圧力容器、船舶、橋梁、建築およびラインパイプ等に用いられる溶接構造用鋼であって、特にBond部を含む大入熱溶接HAZ部の低温靭性に優れた鋼に関するものである。   The present invention relates to a steel for welded structures used for offshore structures, pressure vessels, ships, bridges, buildings, line pipes, etc., and particularly to a steel excellent in low temperature toughness of a high heat input weld HAZ part including a Bond part. Is.

近年、海洋構造物、圧力容器、船舶等の鋼構造物の大型化に伴い、使用される鋼材は厚肉化される傾向にある。厚肉材の場合、仮付け溶接等の小入熱溶接時の低温割れの防止とともに、溶接作業能率を向上させるためにエレクトロガス溶接(EGW)、サブマージアーク溶接(SAW)などの大入熱溶接が適用された際の溶接部の低温靭性の確保が課題とされている。   In recent years, as steel structures such as marine structures, pressure vessels, ships and the like increase in size, steel materials used tend to be thickened. In the case of thick materials, high heat input welding such as electrogas welding (EGW) and submerged arc welding (SAW) is required to prevent low temperature cracking during small heat input welding such as tack welding and to improve welding work efficiency. Ensuring the low temperature toughness of the welded part when the is applied is a problem.

そのため、厚肉材では、小入熱溶接時の低温割れ防止のため、低Ceq、低Pcm化するとともに、大入熱溶接HAZ部の靭性劣化を防止するような成分設計が行われている。しかしながら、近年、構造物によっては、従来よりも遥かに大きな入熱量(300kJ/cm以上)の溶接施工がなされるとともに、その溶接部に対して、例えば−40℃といった低温での靭性確保が求められるなど、その要求特性はより厳しくなる傾向にあり、成分設計の困難性は増大している。   Therefore, in the thick material, in order to prevent low-temperature cracking at the time of small heat input welding, component design is performed to reduce the Ceq and Pcm and prevent toughness deterioration of the high heat input HAZ part. However, in recent years, depending on the structure, welding is performed with a much larger heat input (300 kJ / cm or more) than before, and it is required to secure toughness at a low temperature of, for example, −40 ° C. for the welded portion. The required characteristics tend to become more severe, and the difficulty of component design is increasing.

大入熱溶接HAZ部の靭性向上に関して種々の技術が提案されているが、それらは主にHAZ部の組織を微細組織とするもので、その技術思想は、(1)析出物、介在物によるピンニング作用でオーステナイト粒の粗大化を防止する、(2)介在物などを析出サイトとして粒内フェライトを生成させ、実質的に微細粒とすることに大別される。   Various techniques have been proposed for improving the toughness of the high heat input welded HAZ part. However, these techniques mainly use the microstructure of the HAZ part as a fine structure, and the technical idea is (1) precipitates and inclusions. The pinning action prevents coarsening of austenite grains. (2) It is broadly divided into the formation of intragranular ferrite with inclusions as precipitation sites to make the grains substantially fine.

特許文献1、特許文献2は(1)に関するもので、特許文献1には微細なTiNを析出させオーステナイト結晶粒の粗大化を抑制することが記載されているが、1400℃を超える温度に達するHAZ部(特にBond部)では、TiNの大部分が溶解するため粗大組織となり、靭性は改善されない。   Patent Document 1 and Patent Document 2 relate to (1), and Patent Document 1 describes that fine TiN is precipitated to suppress coarsening of austenite crystal grains, but reaches a temperature exceeding 1400 ° C. In the HAZ part (particularly the Bond part), most of the TiN dissolves, so that it becomes a coarse structure and the toughness is not improved.

特許文献2には、微細なAl23析出物を多量に析出させ、オーステナイト粒を微細化させることが記載されているが、エレクトロガス溶接のように高温で長時間保持される大入熱溶接ではその効果は不十分である。 Patent Document 2 describes that a large amount of fine Al 2 O 3 precipitates are precipitated and austenite grains are refined, but a large heat input that is maintained at a high temperature for a long time as in electrogas welding. The effect of welding is insufficient.

特許文献3、特許文献4は(2)に関するもので、特許文献3にはTi酸化物粒子を核生成サイトとして粒内フェライトを生成させ微細なHAZ組織とすることが記載されているが、Ti酸化物を鋼中に微細に分散させるため、強脱酸元素のAlを0.007%以下とする特殊な成分組成であり、実製造においては鋼種編成が複雑になる。   Patent Document 3 and Patent Document 4 relate to (2), and Patent Document 3 describes that an intragranular ferrite is generated using Ti oxide particles as nucleation sites to form a fine HAZ structure. Since the oxide is finely dispersed in the steel, it has a special component composition in which Al, which is a strong deoxidizing element, is 0.007% or less, and the steel type organization becomes complicated in actual production.

特許文献4には、Ca酸化物やCaオキシサルファイドを核生成サイトとして粒内フェライトを生成させHAZ組織を微細化することが記載されているが、Ca酸化物を安定して確保するためOを0.0040%以下とし、強脱酸元素のAlを0.007%以下とするため、脱酸方法や成分元素の添加に精密な制御が必要で、更に併用する溶接材料によっては溶接金属の靭性が低下することも懸念される。   Patent Document 4 describes that intragranular ferrite is generated by using Ca oxide or Ca oxysulfide as a nucleation site to refine the HAZ structure. However, in order to stably secure Ca oxide, O is used. Because it is 0.0040% or less and Al of the strong deoxidizing element is 0.007% or less, precise control is required for the deoxidation method and addition of component elements, and depending on the welding material used in combination, the toughness of the weld metal There is also concern about the decline.

これらの技術を更に改善したものとして特許文献5、特許文献6がある。特許文献5には、N量をTi及びBの添加量に応じて添加することで、TiN、BNを微細に且つ多量に分散させ、溶接部の靭性を向上させることが記載されているが、その効果を最大限に活用するためにはN含有量を高くすることが必要であり、固定されない余剰なNにより1000〜1200℃となるHAZ部で脆化が生じることが懸念される。   Patent documents 5 and 6 are examples of further improving these techniques. Patent Document 5 describes that by adding N amount according to the addition amount of Ti and B, TiN and BN are finely dispersed in a large amount to improve the toughness of the welded portion. In order to make the best use of the effect, it is necessary to increase the N content, and there is a concern that embrittlement may occur in the HAZ part at 1000 to 1200 ° C. due to excess N that is not fixed.

特許文献6は、入熱量500〜1000kJ/cmの超大入熱溶接において、長い高温滞留時間の下でも溶解消滅しない大きさのTiNをBond部を含むHAZ部に確保し、このTiNを核に微細なBNを多量に析出させることで、−20℃の低温でのBond部靭性およびHAZ部靭性に優れた溶接構造用鋼板の製造方法が記載されている。
特公昭55−26164号公報 特許第2950076号公報 特開昭61−79745号公報 特開平5−287374号公報 特開平9−20955号公報 特許第2931065号公報
In Patent Document 6, in ultra-high heat input welding with a heat input of 500 to 1000 kJ / cm, TiN having a size that does not dissolve and disappear even under a long high-temperature residence time is secured in the HAZ part including the Bond part. A method for producing a steel sheet for welded structure having excellent Bond part toughness and HAZ part toughness at a low temperature of −20 ° C. by precipitating a large amount of BN is described.
Japanese Patent Publication No.55-26164 Japanese Patent No. 2950076 JP-A-61-79745 JP-A-5-287374 Japanese Patent Laid-Open No. 9-20955 Japanese Patent No. 2931065

上述したように、析出物を用いて大入熱溶接HAZ部を微細化する場合、析出物が溶解して十分なピンニング効果が得られなかったり、溶解し難い析出物を形成するためには特殊な成分組成や脱酸条件の精密化などが必要となるなど、母材製造条件に制約が生じていた。   As described above, when the high heat input weld HAZ part is made finer using precipitates, the precipitates dissolve to obtain a sufficient pinning effect or to form precipitates that are difficult to dissolve. The base material manufacturing conditions were limited, such as the need for precise component composition and precise deoxidation conditions.

例えば、特許文献6記載の技術ではTiNが入熱量500〜1000kJ/cmの超大入熱溶接部に特有の長い高温滞留時間でも溶解しないようにするために、鋳造凝固過程の冷却速度を5℃/分以下とすることが必要となる。このような制約は、例えば大型化の著しいコンテナ船用として多量の鋼板を製造する場合、生産性の観点から好ましいものではない。   For example, in the technique described in Patent Document 6, in order to prevent TiN from dissolving even at a long high-temperature residence time characteristic of an ultra-high heat input weld having a heat input of 500 to 1000 kJ / cm, the cooling rate of the casting solidification process is set to 5 ° C. / It is necessary to make it less than a minute. Such a restriction is not preferable from the viewpoint of productivity, for example, when a large amount of steel plate is manufactured for a container ship that is remarkably large.

また、いずれの特許文献においても、シャルピー衝撃値の変動幅に関する検討が十分なされているとは言い難く、構造物の局所脆化といった安全性の面で課題が残っている。   Further, in any of the patent documents, it is difficult to say that the study on the fluctuation range of the Charpy impact value is sufficient, and there remains a problem in terms of safety such as local embrittlement of the structure.

本発明は、生産性に優れ、且つ溶接直後の冷却過程における800〜500℃の冷却速度が2℃/s以下となるような入熱量が300kJ/cm以上の大入熱溶接部のBond部およびHAZ部のシャルピー衝撃試験において、シャルピー衝撃値(vE−40:試験温度−40℃)が、少なくとも100J以上となる鋼を提供することを目的とする。   The present invention is excellent in productivity and has a Bond portion of a high heat input weld portion having a heat input amount of 300 kJ / cm or more such that a cooling rate of 800 to 500 ° C. in a cooling process immediately after welding is 2 ° C./s or less In the Charpy impact test of the HAZ part, an object is to provide a steel having a Charpy impact value (vE-40: test temperature −40 ° C.) of at least 100 J or more.

本発明者らは、特許文献6記載の技術に関して詳細に検討を行った。その結果、鋼板の表面性状や清浄性を考慮してTi添加量を低く抑えた場合、B添加(BN析出)による靭性改善効果は安定して得られなかった。すなわち、−40℃のような低温におけるシャルピー衝撃試験では、その切欠位置によっては靭性値の変動が観察された。このように靭性値が安定しない原因としては、B添加による焼入れ性向上効果の方が強く作用したことによるものと推測される。   The present inventors have conducted a detailed study on the technique described in Patent Document 6. As a result, when the Ti content was kept low considering the surface properties and cleanliness of the steel sheet, the effect of improving toughness due to the addition of B (BN precipitation) was not stably obtained. That is, in the Charpy impact test at a low temperature such as −40 ° C., a change in toughness value was observed depending on the notch position. The reason why the toughness value is not stabilized in this way is presumed to be due to the fact that the effect of improving the hardenability by addition of B acts more strongly.

そこで本発明者らは、溶接部における焼入れ性(変態現象)と粒内フェライト生成による靭性改善効果との関係を把握すべく、種々の成分組成の鋼について、溶接直後の冷却過程を模擬したCCT曲線を用いて変態現象と粒内フェライトの生成状況を観察し、以下の知見を得た。   Therefore, the present inventors have studied CCT simulating the cooling process immediately after welding for steels having various compositional compositions in order to grasp the relationship between the hardenability (transformation phenomenon) in the weld zone and the toughness improving effect by the formation of intragranular ferrite. We observed the transformation phenomenon and the formation of intragranular ferrite using curves, and obtained the following knowledge.

1.粒内フェライト生成量が多いものは組織が微細となり、溶接部の低温靭性が良好になると予測される。   1. A large amount of intragranular ferrite is expected to have a fine structure and a good low temperature toughness of the weld.

2.粒内フェライト生成量が多いものは、少ないものより粒内フェライトの生成開始温度は高くなる。   2. When the amount of intragranular ferrite produced is large, the production start temperature of intragranular ferrite is higher than when the amount is small.

3.粒内フェライトの生成開始温度が同じであっても、成分組成によって常温で観察される粒内フェライトの生成量に差が生じる場合がある。   3. Even if the initiation temperature of intragranular ferrite is the same, there may be a difference in the amount of intragranular ferrite produced observed at room temperature depending on the component composition.

4.したがって、大入熱溶接部で粒内フェライトを生成させ微細組織とするためには、粒内フェライトの生成開始温度が高く生成量が多くなるように、成分組成の選定・成分元素相互の関係を規定することが有効である。   4). Therefore, in order to produce intragranular ferrite in a high heat input weld zone and obtain a fine structure, the selection of the component composition and the relationship between the component elements should be made so that the production start temperature of the intragranular ferrite is high and the production amount is increased. It is effective to specify.

また本発明者らは、鋼中のAl量、O量を適正化し、更にN量をTi、B量との関係において規定した場合、大入熱溶接部のHAZ部(Bond部を含む)で−40℃の低温靭性が優れていることも見出した。   In addition, when the present inventors optimize the amount of Al and O in steel and further define the amount of N in relation to the amounts of Ti and B, the HAZ portion (including the Bond portion) of the high heat input welded portion. It was also found that the low temperature toughness of -40 ° C was excellent.

本発明はこれらの知見に更に検討を加えて成されたものであり、すなわち本発明は、
1.質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2%、S:0.001〜0.01%、sol.Al:0.04〜0.08%、Ti:0.005〜0.03%、B:0.001〜0.003%、O:0.001〜0.005%、N:0.004〜0.007%を含み、残部が実質的にFeからなり、且つ、下記の(1)、(2)式を満足する溶接部の低温靭性に優れた溶接構造用鋼。
0.9×IN≦N≦1.2×IN (1)
ここで、IN=Ti/3.4+1.3B
N,Ti,Bは含有量をppmで表示した数値とする。
T=α+β×[1+exp{−γ(ln(1/2)−δ)}]−1≧670 (2)
ここで、α,β,γ,δは以下の式により求まる値とする。
The present invention was made by further studying these findings, that is, the present invention
1. In mass%, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, S: 0.001 to 0.01%, sol. Al: 0.04-0.08%, Ti: 0.005-0.03%, B: 0.001-0.003%, O: 0.001-0.005%, N: 0.004- A steel for welded structures including 0.007%, the balance being substantially made of Fe, and excellent in low temperature toughness of welds satisfying the following formulas (1) and (2).
0.9 × IN ≦ N ≦ 1.2 × IN (1)
Here, IN = Ti / 3.4 + 1.3B
N, Ti, and B are numerical values expressed in ppm.
T = α + β × [1 + exp {−γ (ln (1/2) −δ)}] −1 ≧ 670 (2)
Here, α, β, γ, and δ are values obtained by the following equations.

α=714−451×[C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5]
β=102+1.8×√[X]√[Y]
γ=2.5+0.5×√[X]√[Y]
δ=−0.6−0.025×√[X]√[Y]
但し、[X]はN−Ti/3.4で求められる値で、N−Ti/3.4<10の場合は[X]=0、N−Ti/3.4>50の場合は[X]=50とし、N−Ti/3.4が10〜50の場合は計算値とする。
[Y]はボロン(B)の含有量により規定される値で、ボロン(B)の含有量が18を超える場合は[Y]=18、ボロン(B)の含有量が10未満となる場合は[Y]=0とし、ボロン(B)の含有量が10〜18の場合はその含有量とする。ここで、N,Ti,Bは含有量をppmで表示した数値とする。また、C,Mn,Cu,Ni,Cr,Mo,Vはは含有量を質量%で表した数値とし、添加されないものは0とする。
α = 714-451 × [C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5]
β = 102 + 1.8 × √ [X] √ [Y]
γ = 2.5 + 0.5 × √ [X] √ [Y]
δ = −0.6−0.025 × √ [X] √ [Y]
However, [X] is a value obtained by N-Ti / 3.4. When N-Ti / 3.4 <10, [X] = 0, and when N-Ti / 3.4> 50, X] = 50, and when N-Ti / 3.4 is 10-50, the calculated value.
[Y] is a value defined by the content of boron (B). When the content of boron (B) exceeds 18, [Y] = 18 and the content of boron (B) is less than 10 Is [Y] = 0, and when the boron (B) content is 10 to 18, the content is taken. Here, N, Ti, and B are numerical values expressed in ppm. Further, C, Mn, Cu, Ni, Cr, Mo, and V are values expressed by mass%, and 0 is not added.

2.更に、質量%でCu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%の一種又は二種以上を含有することを特徴とする1記載の溶接部の低温靭性に優れた溶接構造用鋼。   2. Furthermore, one or two of Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% by mass%. The welded structural steel having excellent low temperature toughness of the welded portion according to 1, characterized by containing at least a seed.

本発明によれば、入熱量が300kJ/cm以上の大入熱溶接継手部において、優れた低温靭性が安定して確保できる溶接構造用鋼が得られ、産業上極めて有用である。   According to the present invention, a welded structural steel capable of stably securing excellent low temperature toughness in a high heat input welded joint having a heat input of 300 kJ / cm or more is obtained, which is extremely useful industrially.

本発明では、成分組成を規定する。   In the present invention, the component composition is defined.


Cは、鋼材の強度を確保するために添加するが、0.12%を超えて添加すると高炭素島状マルテンサイトが生成し、溶接HAZ部靭性を低下させる。一方、0.04%未満では十分な強度を確保するためには、その他の焼入れ性向上元素を多量に添加しなければならず、生産原価の上昇をもたらす。このため、0.04〜0.12%とする。
C
C is added in order to ensure the strength of the steel material, but if added over 0.12%, high carbon island martensite is generated and the weld HAZ toughness is lowered. On the other hand, if it is less than 0.04%, in order to ensure sufficient strength, other hardenability improving elements must be added in a large amount, resulting in an increase in production cost. For this reason, it is made into 0.04 to 0.12%.

Si
Siは、脱酸材として、また鋼材の強度を確保するため、0.01%以上添加する。一方、0.5%を超えて添加すると高炭素島状マルテンサイトの生成が容易となり、溶接HAZ靭性が低下するようになるため、0.01〜0.5%とする。
Si
Si is added in an amount of 0.01% or more as a deoxidizing material and in order to ensure the strength of the steel material. On the other hand, if added over 0.5%, the formation of high carbon island martensite becomes easy and the welded HAZ toughness is lowered, so 0.01 to 0.5%.

Mn
Mnは、鋼材の強度を確保するため、0.5%以上添加する。一方、2%を超えると焼入れ性が増大し、溶接性、HAZ部靭性を劣化させるため、0.5〜2%とする。
Mn
Mn is added in an amount of 0.5% or more to ensure the strength of the steel material. On the other hand, if it exceeds 2%, the hardenability increases and the weldability and the HAZ part toughness are deteriorated.


Sは、溶接HAZ部においてフェライトの核生成サイトとなるMnSを形成するため、0.001%以上含有させる。一方、0.01%を超えると、母材および溶接HAZ部の靭性が低下するため、0.001〜0.01%とする。
S
S forms 0.001% or more in order to form MnS which becomes a nucleation site of ferrite in the welded HAZ part. On the other hand, if it exceeds 0.01%, the toughness of the base metal and the welded HAZ part will decrease, so 0.001 to 0.01%.

Ti
Tiは、大入熱溶接HAZ部でのオーステナイト粒の粗大化を抑制し、フェライトの核生成サイトとなるTiNの形成に必要で、0.005%以上添加する。一方、0.03%を超えて添加すると、母材靭性および溶接HAZ部靭性に有害なTiCが析出し、鋼板の表面疵も多発するため、0.005〜0.03%とする。
Ti
Ti is necessary for the formation of TiN that suppresses the coarsening of austenite grains in the high heat input weld HAZ portion and becomes a nucleation site of ferrite, and is added in an amount of 0.005% or more. On the other hand, if added over 0.03%, TiC which is harmful to the base metal toughness and welded HAZ part toughness precipitates and the surface flaws of the steel sheet occur frequently, so 0.005 to 0.03%.


Bは、フェライトの核生成サイトとなるBNを生成するため、0.001%以上添加する。一方、0.003%を超えて添加すると溶接HAZ部靭性が低下するため、0.001〜0.003%とする。
B
B is added in an amount of 0.001% or more in order to generate BN that becomes a nucleation site of ferrite. On the other hand, if added over 0.003%, the weld HAZ toughness decreases, so 0.001 to 0.003%.

sol.Al
sol.Alは、脱酸および溶接HAZ部靭性に有害な固溶Nを低減させ、Al23析出物を生成させるため、0.04%以上とする。一方、0.08%を超えると、粗大なAl系介在物が生じ靭性が低下するため0.04〜0.08%とする。
sol. Al
sol. Al decreases to 0.04% or more in order to reduce solid solution N harmful to deoxidation and weld HAZ toughness and to generate Al 2 O 3 precipitates. On the other hand, if it exceeds 0.08%, coarse Al-based inclusions are produced and the toughness is lowered, so that the content is made 0.04 to 0.08%.

図1に、sol.Al量が本発明範囲内のものと本発明範囲外のものの大入熱溶接継手部のシャルピー衝撃試験結果を比較して示す。溶接は、入熱量が420kJ/cmのエレクトロガスアーク溶接で、シャルピー衝撃試験は切欠位置をBond、HAZ1mm、HAZ3mm、HAZ5mmとし、試験温度−40℃とした。ここで、HAZ1mmは切欠位置がBond部からHAZ側に1mmの位置での試験結果を表す。   In FIG. The Charpy impact test results of the high heat input welded joints having the Al amount within the range of the present invention and those outside the range of the present invention are shown in comparison. Welding was electrogas arc welding with a heat input of 420 kJ / cm, and in the Charpy impact test, the notch positions were Bond, HAZ 1 mm, HAZ 3 mm, HAZ 5 mm, and the test temperature was −40 ° C. Here, HAZ 1 mm represents the test result when the notch position is 1 mm from the Bond part to the HAZ side.

その結果、本発明鋼ではHAZ全域で優れたシャルピー衝撃値が得られることが確認された。なお、試験結果は3本の平均値を示す。   As a result, it was confirmed that the steel of the present invention can obtain an excellent Charpy impact value throughout the HAZ. In addition, a test result shows the average value of 3 pieces.

図2は、図1のシャルピー衝撃試験で切欠位置をHAZ1mmとした場合に得られた個々の衝撃値と平均値を示すもので、sol.Al量が本発明範囲外で低い供試鋼の場合、平均値とかけ離れた低い衝撃値が得られ、局所脆化による安全性の低下が懸念される試験結果となった。   FIG. 2 shows individual impact values and average values obtained when the notch position is HAZ 1 mm in the Charpy impact test of FIG. In the case of the test steel having a low Al content outside the range of the present invention, a low impact value far from the average value was obtained, and the test result was concerned that the safety could be lowered due to local embrittlement.

sol.Al量が低い供試鋼の場合、最高加熱温度がBond部より低いHAZ1mmの位置ではAlNが十分生成せず、TiやBと窒化物を形成しきれなかったNが鋼中に固溶し、フェライト地組織の靭性を劣化させたものと思われる。   sol. In the case of the test steel with a low amount of Al, AlN is not sufficiently produced at the position of HAZ 1 mm where the maximum heating temperature is lower than the Bond part, and N that could not form Ti and B and nitrides was dissolved in the steel, It seems to have deteriorated the toughness of the ferrite texture.


Nは、溶接HAZ部においてsol.AlとAlNを形成してオーステナイト粒の粗大化を抑制し、またフェライトの核生成サイトとなるBN、TiNを生成するため、0.004%以上添加する。一方、0.007%を超えるとAlNが形成しても固溶N量が溶接HAZ部靭性を低下させるようになるため、0.004〜0.007%とする。
N
N is sol. In order to suppress the coarsening of austenite grains by forming Al and AlN, and to produce BN and TiN that become nucleation sites of ferrite, 0.004% or more is added. On the other hand, if it exceeds 0.007%, even if AlN is formed, the amount of solid solution N decreases the toughness of the welded HAZ part, so 0.004 to 0.007%.


Oは、BN、TiNの析出サイトとなるAl23析出物を確保するため0.001%以上とする。一方、0.005%を超えると粗大介在物が生成しやすく靭性の劣化をもたらすため、0.001〜0.005%とする。
O
O is made 0.001% or more in order to secure Al 2 O 3 precipitates that will be the precipitation sites for BN and TiN. On the other hand, if it exceeds 0.005%, coarse inclusions are likely to be generated and the toughness is deteriorated, so 0.001 to 0.005%.

0.9×IN≦N≦1.2×IN (1)
ここで、IN=Ti/3.4+1.3Bであり、N,Ti,Bは含有量をppmで表示した数値とする。
0.9 × IN ≦ N ≦ 1.2 × IN (1)
Here, IN = Ti / 3.4 + 1.3B, and N, Ti, and B are numerical values expressed in ppm.

本パラメータ式(1)は、Nの含有量をTiおよびBとの関係で規定するもので、本パラメータ式を満足することにより、含有されるNの大部分がTiN、BNとなる。   This parameter formula (1) prescribes the N content in relation to Ti and B. By satisfying this parameter formula, most of N contained is TiN and BN.

残部が実質的にFeからなるとは、本発明の作用効果を損なわない範囲で、Pなどの不可避的不純物、その他の微量元素を含有することを意味する。   The balance being substantially made of Fe means containing inevitable impurities such as P and other trace elements as long as the effects of the present invention are not impaired.

図3は冷却速度を2℃/sとした場合のCCT曲線における変態現象と粒内フェライトの生成開始温度を示す図で、熱膨張計による変態点の測定結果を模式的に示している。
供試鋼1の成分組成は本発明範囲内のもの、供試鋼2は本発明範囲外のものである。
FIG. 3 is a diagram showing the transformation phenomenon and the formation start temperature of intragranular ferrite in the CCT curve when the cooling rate is 2 ° C./s, and schematically shows the measurement result of the transformation point by a thermal dilatometer.
The composition of the sample steel 1 is within the range of the present invention, and the sample steel 2 is out of the range of the present invention.

図において、AおよびAは粒界フェライトの生成開始温度を示し、TおよびTは熱膨張曲線上の極小点で粒内フェライトの生成開始温度を示す。鋼1と鋼2の熱膨張曲線を比較すると、粒界フェライトの生成開始温度A、Aは同じであるが、熱膨張曲線の極小点(変態点)を示す温度T、Tが相違する。 In the figure, A 1 and A 2 indicate the formation start temperature of the grain boundary ferrite, and T 1 and T 2 indicate the generation start temperature of the intragranular ferrite at the minimum point on the thermal expansion curve. Comparing the thermal expansion curves of Steel 1 and Steel 2, the formation start temperatures A 1 and A 2 of the grain boundary ferrite are the same, but the temperatures T 1 and T 2 indicating the minimum points (transformation points) of the thermal expansion curves are Is different.

つまり、鋼1の極小点Tは、鋼2の極小点Tよりも高くなっている。これは、鋼1ではBNの析出が十分なため粒界フェライトの生成開始後、速やかに粒内フェライトの生成が生じることを示しており、Tすなわち粒内フェライトの生成開始温度は670℃以上である。 That is, the minimum point T 1 of the steel 1 is higher than the minimum point T 2 of the steel 2. This is after generation start of the grain boundary ferrite due precipitate sufficient of BN in the steel 1, immediately indicates that the formation of intragranular ferrite occurs, generation starting temperature of T 1 i.e. intragranular ferrite 670 ° C. or higher It is.

Ti、B量を種々変えた鋼について同様の実験で求めた熱膨張曲線上の極小点(変態点)と大入熱溶接継手Bond部靭性の関係を求めたところ、図4に示すように、変態点が670℃以上の鋼で優れたシャルピー衝撃試験値の得られることが確認された。   When the relationship between the minimum point (transformation point) on the thermal expansion curve obtained in the same experiment and the toughness of the high heat input welded joint for the steel with various amounts of Ti and B was obtained, as shown in FIG. It was confirmed that an excellent Charpy impact test value was obtained with a steel having a transformation point of 670 ° C. or higher.

したがって、大入熱溶接HAZ部(Bond部含む)で粒内フェライトを生成させて微細組織として靭性改善を図るためには、溶接後の冷却過程における変態点(粒内フェライトの生成開始温度)が670℃以上となるように成分組成を調整することが必要である。   Therefore, in order to improve the toughness as a microstructure by generating intragranular ferrite in the high heat input welding HAZ part (including the Bond part), the transformation point (starting temperature of intragranular ferrite generation) in the cooling process after welding is It is necessary to adjust the component composition so as to be 670 ° C. or higher.

粒内フェライトの生成開始温度であるCCT曲線における変態点Tは、母材の成分組成と冷却速度により定まるものであり、本発明者らの検討によれば、下記(3)式で規定される。
T(v)=α+β×[1+exp{−γ(ln(1/v)−δ)}]−1 (2)
本パラメータ式(2)で、vはCCT曲線の冷却速度(℃/s)、α,β,γ,δは以下の式により求まる値とする。
The transformation point T in the CCT curve, which is the formation start temperature of intragranular ferrite, is determined by the composition of the base material and the cooling rate, and is determined by the following formula (3) according to the study by the present inventors. .
T (v) = α + β × [1 + exp {−γ (ln (1 / v) −δ)}] −1 (2)
In this parameter equation (2), v is the cooling rate (° C./s) of the CCT curve, and α, β, γ, and δ are values obtained by the following equations.

α=714−451×[C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5]
β=102+1.8×√[X]√[Y]
γ=2.5+0.5×√[X]√[Y]
δ=−0.6−0.025×√[X]√[Y]
但し、[X]はN−Ti/3.4で求められる値で、N−Ti/3.4<10の場合は[X]=0、N−Ti/3.4>50の場合は[X]=50とし、N−Ti/3.4が10〜50の場合は計算により求められた値とする。
α = 714-451 × [C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5]
β = 102 + 1.8 × √ [X] √ [Y]
γ = 2.5 + 0.5 × √ [X] √ [Y]
δ = −0.6−0.025 × √ [X] √ [Y]
However, [X] is a value obtained by N-Ti / 3.4. When N-Ti / 3.4 <10, [X] = 0, and when N-Ti / 3.4> 50, X] = 50, and when N-Ti / 3.4 is 10 to 50, the value is obtained by calculation.

[Y]はボロン(B)の含有量により規定される値で、ボロン(B)の含有量が18を超える場合は[Y]=18、ボロン(B)の含有量が10未満の場合は[Y]=0とし、ボロン(B)の含有量が10〜18の場合はその含有量とする。ここで、N,Ti,Bは含有量をppmで表示した数値とする。   [Y] is a value defined by the content of boron (B). When the content of boron (B) exceeds 18, [Y] = 18, and when the content of boron (B) is less than 10, When [Y] = 0 and the boron (B) content is 10 to 18, the content is determined. Here, N, Ti, and B are numerical values expressed in ppm.

尚、C,Mn,Cu,Ni,Cr,Mo,Vは含有量を質量%で表した数字とし添加されないものは0とする。   In addition, C, Mn, Cu, Ni, Cr, Mo, and V are numbers in which the content is expressed in mass%, and 0 is not added.

本発明で対象とする入熱量が300kJ/cmを超えるような大入熱溶接においては、溶接冷却過程の800〜500℃の冷却速度は2℃/s以下の非常に緩慢な冷却状態となる。このため、(3)式において冷却速度v=2とした時のT値が670以上を満足するように母材の成分組成を調整した鋼(すなわち、(2)式を満足する鋼)は、粒内フェライトが多く生成した微細組織となり、良好な溶接Bond部およびHAZ部靭性が得られる。   In the high heat input welding in which the heat input amount targeted by the present invention exceeds 300 kJ / cm, the cooling rate of 800 to 500 ° C. in the welding cooling process is a very slow cooling state of 2 ° C./s or less. For this reason, steel in which the composition of the base material is adjusted so that the T value when satisfying the cooling rate v = 2 in equation (3) satisfies 670 or more (that is, steel satisfying equation (2)) is A microstructure in which a large amount of intragranular ferrite is generated is obtained, and good weld bond and HAZ toughness is obtained.

本発明鋼は、上述した成分組成、パラメータ式を満足することにより優れた特性が得られるが、更にその特性を向上させるため、Cu、Ni、Cr、Mo、V、Nbの一種または二種以上を質量%で、Cu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%で添加することができる。   The steel of the present invention can obtain excellent characteristics by satisfying the above-described component composition and parameter formula, but in order to further improve the characteristics, one or more of Cu, Ni, Cr, Mo, V, and Nb are used. In mass%, Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% Can do.

本発明鋼は常法の鋳造冷却速度で鋳造することが可能であり、その後、所望する特性に応じて常法の圧延、熱処理にて厚鋼板とすることが可能で製造方法を限定しない。   The steel according to the present invention can be cast at a conventional casting cooling rate, and thereafter can be formed into a thick steel plate by conventional rolling and heat treatment according to desired characteristics, and the production method is not limited.

表1に示す成分組成の鋼を溶製し、連続鋳造法でスラブとした後、1100〜1250℃に加熱し、TMCP(制御圧延・制御冷却)またはDQ−T(直接焼入れ・焼き戻し)により板厚50〜70mmの鋼板とした。   After melting steel of the component composition shown in Table 1 and making it a slab by a continuous casting method, it is heated to 1100 to 1250 ° C. and is subjected to TMCP (controlled rolling / controlled cooling) or DQ-T (direct quenching / tempering). A steel plate having a thickness of 50 to 70 mm was used.

これらの鋼板に対して、板厚に応じて入熱量340〜530kJ/cmとなるエレクトロガスアーク溶接を実施し、作製した溶接継手から切り欠き位置がBond、BondからHAZ側に1mm、3mm、5mmとなるシャルピー衝撃試験片を採取し、試験温度−40℃でのシャルピー衝撃吸収エネルギ−値を求めた。   These steel plates were subjected to electrogas arc welding with a heat input of 340 to 530 kJ / cm depending on the plate thickness. The Charpy impact test piece obtained was collected, and the Charpy impact absorption energy value at a test temperature of −40 ° C. was determined.

表2に製造条件、母材の強度、靭性と溶接継手試験結果を示す。No.1〜14は本発明鋼で、母材の引張強度510N/mm2以上、−40℃でのシャルピー衝撃値200J以上であり、溶接部靭性についてもBond部を含むHAZ全域で−40℃のシャルピー衝撃値100J以上が得られている。 Table 2 shows manufacturing conditions, base metal strength, toughness, and welded joint test results. No. 1 to 14 are steels of the present invention, which have a base metal tensile strength of 510 N / mm 2 or more and a Charpy impact value of 200 J or more at -40 ° C. An impact value of 100 J or more is obtained.

一方、No.15〜30は比較鋼で、成分組成が本発明範囲外であったり、よしんば本発明範囲内であっても成分元素相互のバランス関係が悪いため(1)あるいは(2)式を満足しておらず、本発明鋼に対して溶接部靭性が劣っている。   On the other hand, no. 15 to 30 are comparative steels, and even if the component composition is outside the range of the present invention, or even within the range of the present invention, the balance relationship between the component elements is poor, so the formula (1) or (2) is not satisfied. However, the weld zone toughness is inferior to the steel of the present invention.

No.15、16、27は、Ti、BおよびNのバランスが悪く(1)式を満足していないため、Bond部およびHAZ1mmの靭性に著しく劣る。   No. Nos. 15, 16, and 27 have a poor balance of Ti, B, and N, and do not satisfy the formula (1).

No.20、25は、(1)式を満足するものの、BあるいはTiが低いため(2)式を満足せず、Bond部およびHAZ1mmでの靭性が劣る。   No. 20 and 25 satisfy the formula (1), but B or Ti is low, so the formula (2) is not satisfied, and the toughness at the Bond part and HAZ of 1 mm is inferior.

No.17、18、21、22、24は、sol.Al量が低いため、HAZ3mmでの靭性が劣っており、No.28はsol.Al量が高いため、Bond部およびHAZ1mmが劣っている。   No. 17, 18, 21, 22, 24 are sol. Since the amount of Al is low, the toughness at HAZ 3 mm is inferior. 28 is sol. Since the amount of Al is high, the Bond part and HAZ 1 mm are inferior.

No.23、30は、O量が本発明範囲外であるため、Bond部の靭性が本発明鋼に対して劣っている。   No. In Nos. 23 and 30, the amount of O is outside the range of the present invention, so the toughness of the Bond part is inferior to the steel of the present invention.

No.19、26は成分組成は本発明範囲内であるが、No.19は(1)式、No.26は(2)式をそれぞれ満足しておらず、Bond部靭性が劣っている。   No. Nos. 19 and 26 have component compositions within the scope of the present invention. 19 is the formula (1), No. 19; No. 26 does not satisfy the formula (2), and the Bond part toughness is inferior.

Figure 2006045586
Figure 2006045586

Figure 2006045586
Figure 2006045586

大入熱溶接継手部(切欠位置:Bond,HAZ1mm、3mm、5mm)のシャルピー衝撃試験結果におよぼすsol.Al量の影響を示す図。The effect on the Charpy impact test results of the large heat input welded joint (notch position: Bond, HAZ 1 mm, 3 mm, 5 mm). The figure which shows the influence of Al amount. 大入熱溶接継手HAZ部のシャルピー衝撃試験結果(切欠位置:HAZ1mm)における平均値と個々の衝撃値におよぼすsol.Al量の影響を示す図。The average value in the Charpy impact test result (notch position: HAZ 1 mm) of the high heat input welded joint HAZ and the sol. The figure which shows the influence of Al amount. 熱膨張曲線における変態点と粒内フェライ生成開始温度の関係を説明する図。The figure explaining the relationship between the transformation point in a thermal expansion curve, and the intragranular ferrite generation start temperature. 熱膨張曲線上の極小点(変態点)と大入熱溶接Bond部靭性(−40℃でのシャルピー衝撃吸収エネルギ−値)の関係を示す図。The figure which shows the relationship between the minimum point (transformation point) on a thermal expansion curve, and large heat-input welding Bond part toughness (Charpy impact absorption energy value in -40 degreeC).

Claims (2)

質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2%、S:0.001〜0.01%、sol.Al:0.04〜0.08%、Ti:0.005〜0.03%、B:0.001〜0.003%、O:0.001〜0.005%、N:0.004〜0.007%を含み、残部が実質的にFeからなり、且つ、下記の(1)、(2)式を満足する溶接部の低温靭性に優れた溶接構造用鋼。
0.9×IN≦N≦1.2×IN (1)
ここで、IN=Ti/3.4+1.3B
N,Ti,Bは含有量をppmで表示した数値とする。
T=α+β×[1+exp{−γ(ln(1/2)−δ)}]−1≧670 (2)
ここで、α,β,γ,δは以下の式により求まる値とする。
α=714−451×[C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5]
β=102+1.8×√[X]√[Y]
γ=2.5+0.5×√[X]√[Y]
δ=−0.6−0.025×√[X]√[Y]
但し、[X]はN−Ti/3.4で求められる値で、N−Ti/3.4<10の場合は[X]=0、N−Ti/3.4>50の場合は[X]=50とし、N−Ti/3.4が10〜50の場合は計算値とする。
[Y]はボロン(B)の含有量により規定される値で、ボロン(B)の含有量が18を超える場合は[Y]=18、ボロン(B)の含有量が10未満となる場合は[Y]=0とし、ボロン(B)の含有量が10〜18の場合はその含有量とする。ここで、N,Ti,Bは含有量をppmで表示した数値とする。また、C,Mn,Cu,Ni,Cr,Mo,Vは含有量を質量%で表した数値とし、添加されないものは0とする。
In mass%, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, S: 0.001 to 0.01%, sol. Al: 0.04-0.08%, Ti: 0.005-0.03%, B: 0.001-0.003%, O: 0.001-0.005%, N: 0.004- A steel for welded structures including 0.007%, the balance being substantially made of Fe, and excellent in low temperature toughness of welds satisfying the following formulas (1) and (2).
0.9 × IN ≦ N ≦ 1.2 × IN (1)
Here, IN = Ti / 3.4 + 1.3B
N, Ti, and B are numerical values expressed in ppm.
T = α + β × [1 + exp {−γ (ln (1/2) −δ)}] −1 ≧ 670 (2)
Here, α, β, γ, and δ are values obtained by the following equations.
α = 714-451 × [C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5]
β = 102 + 1.8 × √ [X] √ [Y]
γ = 2.5 + 0.5 × √ [X] √ [Y]
δ = −0.6−0.025 × √ [X] √ [Y]
However, [X] is a value obtained by N-Ti / 3.4. When N-Ti / 3.4 <10, [X] = 0, and when N-Ti / 3.4> 50, X] = 50, and when N-Ti / 3.4 is 10-50, the calculated value.
[Y] is a value defined by the content of boron (B). When the content of boron (B) exceeds 18, [Y] = 18 and the content of boron (B) is less than 10 Is [Y] = 0, and when the boron (B) content is 10 to 18, the content is taken. Here, N, Ti, and B are numerical values expressed in ppm. Further, C, Mn, Cu, Ni, Cr, Mo, and V are values in which the content is expressed by mass%, and 0 is not added.
更に、質量%でCu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%の一種又は二種以上を含有することを特徴とする請求項1記載の溶接部の低温靭性に優れた溶接構造用鋼。 Furthermore, one or two of Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% by mass%. The welded structural steel having excellent low-temperature toughness of the welded portion according to claim 1, comprising at least a seed.
JP2004224152A 2004-07-30 2004-07-30 Steel for welded structure having excellent low temperature toughness Pending JP2006045586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224152A JP2006045586A (en) 2004-07-30 2004-07-30 Steel for welded structure having excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224152A JP2006045586A (en) 2004-07-30 2004-07-30 Steel for welded structure having excellent low temperature toughness

Publications (1)

Publication Number Publication Date
JP2006045586A true JP2006045586A (en) 2006-02-16

Family

ID=36024517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224152A Pending JP2006045586A (en) 2004-07-30 2004-07-30 Steel for welded structure having excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP2006045586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017135179A1 (en) * 2016-02-03 2018-05-24 Jfeスチール株式会社 Steel material for large heat input welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017135179A1 (en) * 2016-02-03 2018-05-24 Jfeスチール株式会社 Steel material for large heat input welding
US11326238B2 (en) 2016-02-03 2022-05-10 Jfe Steel Corporation Steel material for high heat input welding

Similar Documents

Publication Publication Date Title
JP5110989B2 (en) Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP4681690B2 (en) Manufacturing method of thick high strength steel plate with excellent heat input heat affected zone toughness, and thick high strength steel plate with high heat input heat affected zone toughness
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP2008214652A (en) High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP2008111165A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP2008169429A (en) Steel having excellent ctod in weld heat-affected zone and method for producing the same
JP2008069380A (en) High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
JP2005171300A (en) High tensile steel for high heat input welding, and weld metal
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP2005307261A (en) Thick high strength steel plate having large heat input weld heat affected zone toughness
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2019104955A (en) Carbon steel slab and manufacturing method of the same
JP2009235458A (en) High strength thick steel plate having excellent high heat input weld zone toughness and brittle crack propagation stop property, and method for producing the same
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JP2006045585A (en) Steel for welded structure
JP2006045586A (en) Steel for welded structure having excellent low temperature toughness
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Effective date: 20070528

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A02