JP2006040652A - Storage element - Google Patents

Storage element Download PDF

Info

Publication number
JP2006040652A
JP2006040652A JP2004216774A JP2004216774A JP2006040652A JP 2006040652 A JP2006040652 A JP 2006040652A JP 2004216774 A JP2004216774 A JP 2004216774A JP 2004216774 A JP2004216774 A JP 2004216774A JP 2006040652 A JP2006040652 A JP 2006040652A
Authority
JP
Japan
Prior art keywords
plate
current collector
negative electrode
current collecting
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216774A
Other languages
Japanese (ja)
Inventor
Kiyomi Kouzuki
きよみ 神月
Seiichi Uemoto
誠一 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004216774A priority Critical patent/JP2006040652A/en
Publication of JP2006040652A publication Critical patent/JP2006040652A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high power storage element with a high production yield. <P>SOLUTION: A manufacturing method of the storage element comprises the following steps of: inserting an electrode group, which is formed by winding a strip-like positive and negative electrode sheets, and a separator, into a bottom-closed can; sealing the opening of the bottom-closed can with a sealing plate; forming a collector exposure portion continuously in a longitudinal direction on an electrode sheet of at least either one of a positive or negative electrode on which an electrode sheet is not stuck; welding together the collector exposure portion and a collecting terminal plate; disposing the collecting terminal plate onto the bottom inside of the bottom-closed can; and electrically connecting the collecting terminal plate and the sealing plate having a terminal with a collecting lead wire. As a result, respective terminals and collecting lead wire are welded before the electrode group is inserted into the bottom-closed can, thereby enabling the maintenance appropriately by checking with eyes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高出力に好適な蓄電素子に関するものであり、より詳しくは内部抵抗を低減しつつ工程不良の判別が容易な集電構造に関する。   The present invention relates to a power storage element suitable for high output, and more particularly to a current collection structure that can easily determine a process failure while reducing internal resistance.

蓄電素子、とりわけリチウムイオン電池やニッケル水素電池などの二次電池は、携帯電話を始めとする各種コードレス機器の主電源として用いられている。しかし近年、電気自動車や電動工具などの駆動用電源としての実用化検討が活発化する中、高エネルギー密度に加え軽量なリチウムイオン電池が注目されている。コードレス機器の主電源に用いられる二次電池は、一般的に図1のような構造を有する。すなわち、正極集電体に正極材料を塗着し、その長尺方向の一端に集電用リード1aを溶接した帯状の正極板1と、負極集電体に負極合剤を塗着し、その長尺方向の一端に集電用リード2aを溶接した帯状の負極板2とを、セパレータ3を介して渦巻状に捲回して極板群とした後、この電極群を有底缶に挿入し、正極集電用リード1aを、開口部側に配置された封口板の端子に溶接し、負極集電用リード2aを、端子を兼ねた有底缶の底部に溶接した後、封口するというものである(例えば特許文献1)。この方法は簡便であり、製造コストを低減できるという利点を有している一方、正負極とも集電用リードのみで電子伝導性を確保するため集電効率が低く、内部抵抗が高くなるという課題を有する。   Power storage elements, particularly secondary batteries such as lithium ion batteries and nickel metal hydride batteries, are used as main power sources for various cordless devices such as mobile phones. However, in recent years, as lithium ion batteries that are light in addition to high energy density are attracting attention, as practical studies for driving power sources for electric vehicles and electric tools are activated. A secondary battery used for a main power source of a cordless device generally has a structure as shown in FIG. That is, a positive electrode material is applied to a positive electrode current collector, a strip-like positive electrode plate 1 having a current collecting lead 1a welded to one end in the longitudinal direction, and a negative electrode mixture is applied to the negative electrode current collector, A strip-shaped negative electrode plate 2 having a current collecting lead 2a welded to one end in the longitudinal direction is wound in a spiral shape through a separator 3 to form an electrode plate group, and then this electrode group is inserted into a bottomed can. The positive electrode current collecting lead 1a is welded to the terminal of the sealing plate disposed on the opening side, and the negative electrode current collecting lead 2a is welded to the bottom of the bottomed can that also serves as the terminal, and then sealed. (For example, Patent Document 1). While this method is simple and has the advantage that the manufacturing cost can be reduced, both positive and negative electrodes have low current collection efficiency and high internal resistance because electron conductivity is ensured only with current collecting leads. Have

そこで電動工具用などの高出力を必要とする二次電池は、集電効率を高めるため、図4のような構造に改良されている。すなわち、正極集電体に正極材料を塗着し、その長尺方向に極板材料が付着されていない集電体露出部1bを連続的に設けた帯状の正極板1と、負極集電体に負極合剤を塗着し、その長尺方向に極板材料が付着されていない集電体露出部2bを連続的に設けた帯状の負極板2とを、セパレータ3を介して渦巻状に捲回し、一方から正極板1の集電体露出部1bを、他方から負極板2の集電体露出部2bを突出させて極板群とした後、集電体露出部1bおよび2bと集電端子板4とを集合溶接し、この極板群を有底缶に挿入した。底部側の集電端子板4と一体化された負極集電用リード2aを、端子を兼ねた有底缶の底部に溶接し、開口部側の集電端子板4と一体化された正極集電用リード1aを、封口板の端子に溶接した後、封口するというものである(例えば特許文献2)。この集電構造は電極の各部位から電子を取り出せるため、図1の構造と比べて集電効率が向上しており、高出力用途に適している。
実開昭63−26973号公報 特開2000−294222号公報
Therefore, a secondary battery that requires a high output, such as for a power tool, has been improved to have a structure as shown in FIG. 4 in order to increase current collection efficiency. That is, a strip-like positive electrode plate 1 in which a positive electrode material is applied to a positive electrode current collector, and a current collector exposed portion 1b to which no electrode plate material is attached is continuously provided in the longitudinal direction, and a negative electrode current collector A strip-shaped negative electrode plate 2 provided with a current collector exposed portion 2b continuously coated with a negative electrode mixture and having no electrode plate material attached in the longitudinal direction thereof is spirally formed with a separator 3 interposed therebetween. After winding, the current collector exposed portion 1b of the positive electrode plate 1 from one side and the current collector exposed portion 2b of the negative electrode plate 2 projecting from the other to form an electrode plate group, and then the current collector exposed portions 1b and 2b and The electric terminal plate 4 was collectively welded, and this electrode plate group was inserted into a bottomed can. The negative electrode current collecting lead 2a integrated with the current collecting terminal plate 4 on the bottom side is welded to the bottom of the bottomed can which also serves as a terminal, and the positive current collecting integrated with the current collecting terminal plate 4 on the opening side The electric lead 1a is welded to a terminal of a sealing plate and then sealed (for example, Patent Document 2). Since this current collection structure can extract electrons from each part of the electrode, the current collection efficiency is improved as compared with the structure shown in FIG. 1, and it is suitable for high output applications.
Japanese Utility Model Publication No. 63-26973 JP 2000-294222 A

しかしながら特許文献2の構造では、上述したように、電極群を有底缶に挿入した後で底部側の集電端子板と有底缶の底部とを溶接せざるを得ない。このような場合、溶接時のスパークによるセパレータの溶融など、工程管理の不十分が原因で起こる不具合を目視で判別できないため、溶接工程の管理に気付かぬまま、後工程である短絡検査(電圧測定)にて相当量の不良電池を排出するという課題を有していた。
そこで本発明は、上述した課題を解決し、溶接工程での不良品を目視判別することにより生産歩留が向上でき、かつ高い集電効率を有する、高出力用蓄電素子を提供することを目的とする。
However, in the structure of Patent Document 2, as described above, the current collector terminal plate on the bottom side and the bottom of the bottomed can must be welded after the electrode group is inserted into the bottomed can. In such a case, defects caused by insufficient process management, such as melting of the separator due to sparks during welding, cannot be visually determined, so the short-circuit inspection (voltage measurement) is a subsequent process without noticing the management of the welding process. ) Has a problem of discharging a considerable amount of defective batteries.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems and to provide a high-output power storage device that can improve production yield by visually determining defective products in a welding process and has high current collection efficiency. And

前記の課題を解決するために、本発明の請求項1は、帯状の正極板および負極板とセパレータとを捲回して構成される電極群を有底缶に挿入し、開口部を封口板にて封口してなる蓄電素子について、正極板あるいは負極板のいずれか一方の電極板の長尺方向に極板材料が付着されていない集電体露出部を連続的に設け、この集電体露出部と集電端子板とを集合溶接し、この集電端子板を有底缶の底側に配置し、集電用リードによりこの集電端子板と端子を有する封口板とを電気的に接続することを特徴とする。
また本発明の請求項4は、帯状の正極板および負極板とセパレータとを捲回して構成される電極群を有底缶に挿入し、開口部を封口板にて封口してなる蓄電素子について、正極板および負極板の長尺方向に極板材料が付着されていない集電体露出部を連続的に設け、この集電体露出部と集電端子板とを集合溶接し、有底缶の底部側の集電端子板を集電用リードにより端子を有する封口板と電気的に接続し、この封口板と接続された集電用リードを電極群の外縁に沿って配置したことを特徴とする。
有底缶に挿入する前に、集電体露出部と集電端子板とを集合溶接しうる構造を採ることにより、高出力を維持しつつ生産歩留の高い蓄電素子を提供することができる。
In order to solve the above-mentioned problem, the present invention provides a first aspect in which an electrode group constituted by winding a belt-like positive electrode plate and a negative electrode plate and a separator is inserted into a bottomed can, and the opening is used as a sealing plate. For the electricity storage device that is sealed, a current collector exposed portion to which no electrode plate material is attached is continuously provided in the longitudinal direction of either the positive electrode plate or the negative electrode plate. The current collector terminal plate and the current collecting terminal plate are welded together, and this current collecting terminal plate is arranged on the bottom side of the bottomed can, and the current collecting terminal plate and the sealing plate having the terminals are electrically connected by a current collecting lead. It is characterized by doing.
According to a fourth aspect of the present invention, there is provided an electricity storage device in which an electrode group formed by winding a belt-like positive electrode plate and negative electrode plate and a separator is inserted into a bottomed can and the opening is sealed with a sealing plate. A collector exposed portion to which no electrode plate material is attached is continuously provided in the longitudinal direction of the positive electrode plate and the negative electrode plate, and the collector exposed portion and the current collector terminal plate are collectively welded to form a bottomed can The current collecting terminal plate on the bottom side of the electrode is electrically connected to a sealing plate having a terminal by a current collecting lead, and the current collecting lead connected to the sealing plate is arranged along the outer edge of the electrode group. And
By adopting a structure in which the current collector exposed portion and the current collector terminal plate can be collectively welded before being inserted into the bottomed can, it is possible to provide a power storage element with a high production yield while maintaining a high output. .

本発明によれば、高出力用途に適した蓄電素子を、高い生産歩留で提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrical storage element suitable for a high output use can be provided with a high production yield.

ここでは蓄電素子の一例として、リチウムイオン電池についての詳細な形態および構成手順を、図1および図2を用いて示す。   Here, as an example of the storage element, a detailed form and a configuration procedure of a lithium ion battery will be described with reference to FIGS.

正極活物質には一般式LiMO2あるいはLiM24で表されるリチウム複合酸化物を用いることができる。上記一般式におけるMにはコバルト、ニッケル、マンガンなどの遷移金属元素を、1種あるいは数種を複合して選択できる。また遷移金属元素の一部をアルミニウム、マグネシウムなどの典型金属元素に置換することもできる。 As the positive electrode active material, a lithium composite oxide represented by a general formula LiMO 2 or LiM 2 O 4 can be used. M in the above general formula can be selected from one or more transition metal elements such as cobalt, nickel, and manganese. Further, a part of the transition metal element can be replaced with a typical metal element such as aluminum or magnesium.

これら正極活物質を、導電剤(正極電位下で安定な黒鉛・カーボンブラック・金属粉末などが用いられる)および結着剤(正極電位下で安定なポリフッ化ビニリデン(PVDF)・ポリテトラフルオロエチレン(PTFE)などが用いられる)と混練し、集電体(アルミニウムの箔・穿孔体などが用いられる)に塗着することにより帯状の正極板1が作製される。   These positive electrode active materials are mixed with a conductive agent (graphite, carbon black, metal powder, etc. stable under the positive electrode potential) and a binder (polyvinylidene fluoride (PVDF), polytetrafluoroethylene (stable under the positive electrode potential) ( PTFE) or the like is used, and is applied to a current collector (aluminum foil or perforated body is used) to produce a strip-like positive electrode plate 1.

負極活物質としては、天然黒鉛、人造黒鉛、アルミニウムやそれを主体とする種々の合金、酸化スズなどの金属酸化物、金属窒化物を用いることができる。これら負極活物質を、導電剤(負極電位下で安定な黒鉛・カーボンブラック・金属粉末などが用いられる)および結着剤(負極電位下で安定なスチレン−ブタジエン共重合体ゴム(SBR)・カルボキシメチルセルロース(CMC)などが用いられる)と混練し、集電体(銅箔・銅穿孔体などが用いられる)に塗着することにより帯状の負極板2が作製される。   As the negative electrode active material, natural graphite, artificial graphite, aluminum, various alloys mainly composed thereof, metal oxides such as tin oxide, and metal nitrides can be used. These negative electrode active materials are made of a conductive agent (graphite, carbon black, metal powder, etc. stable under negative electrode potential) and a binder (styrene-butadiene copolymer rubber (SBR) / carboxy stable under negative electrode potential). A belt-like negative electrode plate 2 is produced by kneading with methylcellulose (CMC) or the like and applying it to a current collector (a copper foil, a copper perforated body or the like is used).

ここで帯状の正負極板1あるいは2の少なくとも一方は、本願の集電構造を成立させるため、長尺方向に極板材料が付着されていない集電体露出部1bあるいは2bが連続的に設けられている必要がある。この集電体露出部1bあるいは2bは、集電端子板4と集合溶接される。集合溶接の方法としては、接触抵抗低減の観点からレーザー溶接や抵抗溶接を用いることが好ましい。   Here, at least one of the strip-like positive and negative electrode plates 1 or 2 is provided with a current collector exposed portion 1b or 2b in which no electrode plate material is adhered in the longitudinal direction in order to establish the current collecting structure of the present application. Need to be. The current collector exposed portion 1b or 2b is collectively welded to the current collector terminal plate 4. As a method of collective welding, it is preferable to use laser welding or resistance welding from the viewpoint of reducing contact resistance.

ここで図1のように一方の電極板(ここでは負極板2)のみに集電体露出部2bを設ける場合、集電端子板4は有底缶の底側に配置され、この集電端子板4と一体化された負極集電用リード2aが、電極群の外縁または電極群の捲回中心部に存在する空間に沿って開口部に向かうよう配置される。正極板1からは、集電用リード1aのみが開口部に向かうよう配置される。これら集電用リード1aおよび2aは各々封口板に設けられた端子と溶接された後、有底缶に挿入され、封口されることにより本願の蓄電素子となる。
仮に集電端子板4を正極板1の集電体露出部1bと集合溶接し、有底缶の開口部側に配置した場合、図5のように負極板2の集電用リード2aを、封口板の端子と溶接させるために長くする必要がある。負極板2は集電端子板4を用いていないため正極板1よりも集電効率が低い上に、集電用リード2aが延長されることにより、さらに集電効率が低下するので好ましくない。
Here, when the current collector exposed portion 2b is provided only on one electrode plate (here, the negative electrode plate 2) as shown in FIG. 1, the current collector terminal plate 4 is disposed on the bottom side of the bottomed can. The negative electrode current collecting lead 2a integrated with the plate 4 is arranged so as to go to the opening along the space existing at the outer edge of the electrode group or the winding center part of the electrode group. From the positive electrode plate 1, only the current collecting lead 1 a is arranged to face the opening. The current collecting leads 1a and 2a are each welded to a terminal provided on a sealing plate, and are then inserted into a bottomed can and sealed to form the power storage device of the present application.
If the current collector terminal plate 4 is collectively welded to the current collector exposed portion 1b of the positive electrode plate 1 and disposed on the opening side of the bottomed can, the current collecting lead 2a of the negative electrode plate 2 as shown in FIG. It is necessary to lengthen in order to weld the terminal of the sealing plate. Since the negative electrode plate 2 does not use the current collecting terminal plate 4, the current collecting efficiency is lower than that of the positive electrode plate 1, and the current collecting efficiency is further lowered by extending the current collecting lead 2 a, which is not preferable.

また図2のように両方の電極板に集電体露出部1bおよび2bを設ける場合、有底缶の底側に配置された方の集電端子板4と一体化された負極集電用リード2aは、電極群の外縁に沿って開口部に向かうよう配置され、集電端子板4と一体化された正極集電用リード1aともども、封口板に設けられた端子と溶接された後、有底缶に挿入され、封口されることにより本願の蓄電素子となる。   Further, when the collector exposed portions 1b and 2b are provided on both electrode plates as shown in FIG. 2, the negative electrode current collecting lead integrated with the current collecting terminal plate 4 arranged on the bottom side of the bottomed can. 2a is disposed so as to face the opening along the outer edge of the electrode group, and the positive electrode current collecting lead 1a integrated with the current collecting terminal plate 4 is welded to the terminal provided on the sealing plate. By being inserted into the bottom can and sealed, the power storage element of the present application is obtained.

上述した極板群に含浸させる非水電解液は、溶質と非水溶媒とからなる。溶質として、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などのリチウム塩が挙げられる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネートなどの鎖状カーボネート類などが好ましいが、これらに限定されない。非水溶媒は、1種を単独で用いてもよいが、2種以上を組み合わせてもよい。また、添加剤としては、ビニレンカーボネート、シクロヘキシルベンゼン、ジフェニルエーテルなどが挙げられる。 The nonaqueous electrolytic solution impregnated in the electrode plate group described above is composed of a solute and a nonaqueous solvent. Examples of the solute include lithium salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ). As the non-aqueous solvent, cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable, but not limited thereto. The non-aqueous solvent may be used alone or in combination of two or more. Examples of the additive include vinylene carbonate, cyclohexyl benzene, and diphenyl ether.

なお上述したのはリチウムイオン電池の形態および構成手順であったが、ニッケル水素蓄電池やニッケルカドミウム蓄電池などの二次電池や、電気二重層キャパシタなどを構成する場合も、一般的に用いられる材料を駆使することにより、上述内容と同様に本発明の効果を活用することができる。さらに図1〜2では負極板の方を有底缶の底部になるよう配置したが、正極板と負極板の配置を逆転させても、同様の効果が得られる。   In addition, although what was mentioned above was a form and structure procedure of a lithium ion battery, also when constructing secondary batteries, such as a nickel metal hydride storage battery and a nickel cadmium storage battery, or an electric double layer capacitor, the material generally used is used. By making full use, the effects of the present invention can be utilized in the same manner as described above. Further, in FIGS. 1 and 2, the negative electrode plate is arranged to be the bottom of the bottomed can, but the same effect can be obtained even if the arrangement of the positive electrode plate and the negative electrode plate is reversed.

以下に、本発明の実施例を具体的に示す。
《実施例1》
(正極板の作製)
コバルト酸リチウム粉末85重量部、導電剤として炭素粉末10重量部、結着剤としてPVDF5重量部を、溶媒としてN−メチル−2−ピロリドン(以下NMPと記す)を用いて混合した。この混合物を厚み15μmのアルミニウム箔集電体に塗布、乾燥した後、厚みが100μmとなるよう圧延し、長尺方向の一端に集電用リード1aを溶接して帯状の正極板1を作製した。
(負極板の作製)
人造黒鉛粉末95重量部、結着剤としてPVDF5重量部を、NMPを用いて混合した。この混合物を厚み10μmの銅箔集電体に塗布、乾燥した後、厚みが110μmとなるよう圧延し、長尺方向の一方に極板材料が付着されていない集電体露出部2bを連続的に設けて帯状の負極板2を作製した。
(電池の作製)
セパレータ3として厚み25μmのポリプロピレン樹脂製微多孔フィルムを用い、図1に示す電極群を構成した。集電用リード1aおよび2aを封口板の端子にそれぞれ溶接した後、この電極群を有底缶に挿入した。この有底缶に、非水電解液としてエチレンカーボネートとエチルメチルカーボネートを体積比1:1で混合した非水溶媒に、六フッ化リン酸リチウム(LiPF6)が1mol/Lになるように溶解させたものを注入し、封口板を有底缶の開口部に嵌め込むことにより、直径26mm、高さ95mm、理論容量3000mAhの円筒形リチウムイオン電池を作製した。これを実施例1の電池とする。
《実施例2》
正極板1の長尺方向の一方に極板材料が付着されていない集電体露出部1bを連続的に設けて、図2に示す構造とした以外は、実施例1と同様の電池を作製した。これを実施例2の電池とする。
《比較例1》
負極板2の長尺方向の一端に集電用リード2aを溶接して、図3に示す構造とした以外は、実施例1と同様の電池を作製した。これを比較例1の電池とする。
《比較例2》
正極板1の長尺方向の一方に極板材料が付着されていない集電体露出部1bを連続的に設けて、図4に示す構造とした以外は、実施例1と同様の電池を作製した。これを比較例2の電池とする。
《比較例3》
正極板1の長尺方向の一方に極板材料が付着されていない集電体露出部1bを連続的に設け、かつ負極板2の長尺方向の一端に集電用リード2aを溶接して、図5に示す構造とした以外は、実施例1と同様の電池を作製した。これを比較例3の電池とする。
Examples of the present invention are specifically shown below.
Example 1
(Preparation of positive electrode plate)
85 parts by weight of lithium cobaltate powder, 10 parts by weight of carbon powder as a conductive agent, 5 parts by weight of PVDF as a binder, and N-methyl-2-pyrrolidone (hereinafter referred to as NMP) as a solvent were mixed. This mixture was applied to an aluminum foil current collector having a thickness of 15 μm, dried, then rolled to a thickness of 100 μm, and a current collecting lead 1a was welded to one end in the longitudinal direction to produce a belt-like positive electrode plate 1. .
(Preparation of negative electrode plate)
95 parts by weight of artificial graphite powder and 5 parts by weight of PVDF as a binder were mixed using NMP. This mixture is applied to a copper foil current collector having a thickness of 10 μm, dried, and then rolled to have a thickness of 110 μm, so that the current collector exposed portion 2b having no electrode plate material attached to one side in the longitudinal direction is continuously formed. A belt-like negative electrode plate 2 was prepared.
(Production of battery)
As the separator 3, a polypropylene resin microporous film having a thickness of 25 μm was used to constitute the electrode group shown in FIG. 1. The current collecting leads 1a and 2a were welded to the terminals of the sealing plate, and the electrode group was inserted into a bottomed can. In this bottomed can, lithium hexafluorophosphate (LiPF 6 ) was dissolved in a non-aqueous solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 as a non-aqueous electrolyte so as to be 1 mol / L. A cylindrical lithium ion battery having a diameter of 26 mm, a height of 95 mm, and a theoretical capacity of 3000 mAh was produced by injecting the prepared material and fitting a sealing plate into the opening of the bottomed can. This is referred to as the battery of Example 1.
Example 2
A battery similar to that of Example 1 was prepared except that a current collector exposed portion 1b to which no electrode plate material was attached was continuously provided on one side in the longitudinal direction of the positive electrode plate 1 to obtain the structure shown in FIG. did. This is referred to as the battery of Example 2.
<< Comparative Example 1 >>
A battery was prepared in the same manner as in Example 1 except that the current collecting lead 2a was welded to one end in the longitudinal direction of the negative electrode plate 2 to obtain the structure shown in FIG. This is referred to as the battery of Comparative Example 1.
<< Comparative Example 2 >>
A battery similar to that of Example 1 was produced except that a current collector exposed portion 1b to which no electrode plate material was attached was continuously provided on one side in the longitudinal direction of the positive electrode plate 1 to obtain the structure shown in FIG. did. This is referred to as the battery of Comparative Example 2.
<< Comparative Example 3 >>
A current collector exposed portion 1b to which no electrode plate material is attached is continuously provided on one side in the longitudinal direction of the positive electrode plate 1, and a current collecting lead 2a is welded to one end in the longitudinal direction of the negative electrode plate 2 A battery similar to that of Example 1 was produced except that the structure shown in FIG. This is referred to as the battery of Comparative Example 3.

以上の電池に対し、以下に示す評価を行った。結果を(表1)に示す。
(溶接検査)
溶接用の銅製電極の先端に、酸化銅の粉末を被覆することにより、溶接工程における不具合が故意に起こるようにした。この状態で正負極の集電用リード1aおよび2aを各々の端子に溶接した。溶接時のスパークによるセパレータの溶融を目視で確認できた場合、銅製電極の先端を研磨し、溶接を再開した。このようにして、各実施例・比較例当り100個の電池を連続して作製し、目視確認できた不具合電池を排除した。
(短絡検査)
上述した溶接不良検査を通過した電池について、300mAで電圧が4.1Vに達するまで充電し、初期の開回路電圧V1を測定した。さらにこの電池を45℃環境下で7日間放置し、放置後の開回路電圧V2を測定した。この開回路電圧差(V1−V2)が0.3Vを上回った電池を、短絡不良電池として排除した。
(放電特性)
上述した短絡検査を通過した電池から5個を抜き取り、一旦300mAで電圧が3Vに達するまで放電した。続いて300mAで電圧が4.2Vに達するまで充電した後、300mAで電圧が3Vに達するまで放電し、低電流放電容量A1を得た。さらに300mAで電圧が4.2Vに達するまで充電した後、3000mAで電圧が3Vに達するまで放電し、高電流放電容量A2を得た。こうして得られた低電流放電容量と高電流放電容量の比率(A2/A1)の平均値を求めた。
The following evaluation was performed with respect to the above battery. The results are shown in (Table 1).
(Welding inspection)
By coating the tip of the copper electrode for welding with copper oxide powder, defects in the welding process occurred intentionally. In this state, positive and negative current collecting leads 1a and 2a were welded to the respective terminals. When melting of the separator due to spark during welding could be visually confirmed, the tip of the copper electrode was polished and welding was resumed. In this way, 100 batteries were continuously produced for each example and comparative example, and defective batteries that could be visually confirmed were excluded.
(Short-circuit inspection)
The battery that passed the above-described welding failure inspection was charged at 300 mA until the voltage reached 4.1 V, and the initial open circuit voltage V 1 was measured. Further, this battery was allowed to stand for 7 days in a 45 ° C. environment, and the open circuit voltage V 2 after the standing was measured. A battery in which the open circuit voltage difference (V 1 −V 2 ) exceeded 0.3 V was excluded as a short circuit defective battery.
(Discharge characteristics)
Five batteries were extracted from the battery that passed the short-circuit inspection described above, and discharged at 300 mA until the voltage reached 3V. Subsequently, the battery was charged at 300 mA until the voltage reached 4.2 V, and then discharged at 300 mA until the voltage reached 3 V to obtain a low current discharge capacity A 1 . The battery was further charged at 300 mA until the voltage reached 4.2 V, and then discharged at 3000 mA until the voltage reached 3 V to obtain a high current discharge capacity A 2 . The average value of the ratio (A 2 / A 1 ) between the low current discharge capacity and the high current discharge capacity thus obtained was determined.

Figure 2006040652
比較例1〜2は、溶接検査で不良として排出された電池がゼロであった。これは溶接不良が発生しなかったからではなく、有底缶内でスパークが起こったため目視できなかったためである。したがって適切なメンテナンスができないまま溶接を続行したため、その後の短絡検査において、セパレータの溶融に端を発する顕著な短絡(電圧降下)を起こす電池が多発した。
Figure 2006040652
In Comparative Examples 1 and 2, the batteries discharged as defects in the welding inspection were zero. This is not because no welding failure occurred, but because the spark occurred in the bottomed can and was not visible. Therefore, welding was continued without proper maintenance, and in subsequent short-circuit inspections, many batteries caused a remarkable short-circuit (voltage drop) that started with the melting of the separator.

一方、本願の発明である実施例1〜2、および比較例3は、有底缶に挿入する前の、目視可能な状態で溶接検査が行えたため、溶接不良(溶接時のスパークによるセパレータの溶融)を排除し、さらに適切なメンテナンス(銅製電極の先端研磨)を行った後に溶接を再開することができた。よってその後の溶接不良を抑止できたため、短絡不良を発生させることなく、高い歩留を確保できた。   On the other hand, in Examples 1 and 2 and Comparative Example 3 which are the inventions of the present application, since welding inspection was performed in a visible state before being inserted into the bottomed can, welding failure (melting of the separator due to spark during welding) was performed. ), And after proper maintenance (polishing of the copper electrode tip), welding could be resumed. Therefore, since subsequent welding defects could be suppressed, a high yield could be secured without causing short circuit defects.

ただし比較例3については、集電端子板4を用いていない負極板2の集電用リード2aが相当に長いため、集電効率の低下に伴う放電特性の劣化が認められた。よって本願発明の主幹である、溶接後に電極群を有底缶に挿入する構造を採るためには、底部から集電用リードを取り出す側の電極板は、集電端子板の活用とこれに応じた電極板構造の採用(集電体露出部の連続的な設置)が不可欠であることがわかった。   However, in Comparative Example 3, since the current collecting lead 2a of the negative electrode plate 2 not using the current collecting terminal plate 4 was considerably long, the deterioration of the discharge characteristics due to the decrease in current collecting efficiency was observed. Therefore, in order to adopt a structure in which the electrode group is inserted into the bottomed can after welding, which is the main trunk of the present invention, the electrode plate on the side where the lead for current collection is taken out from the bottom is used in accordance with the utilization of the current collector terminal plate. It was found that the adoption of an electrode plate structure (continuous installation of the current collector exposed part) was indispensable.

以上のように、本願発明の集電構造を活用することにより、高出力な蓄電素子を高い歩留で提供することができる。本発明による蓄電素子は、大電流充放電を要する電気自動車や電動工具などの駆動電源に好適である。   As described above, by using the current collecting structure of the present invention, a high-output power storage element can be provided with a high yield. The power storage device according to the present invention is suitable for a drive power source such as an electric vehicle or a power tool that requires large current charge / discharge.

本発明の実施例1のリチウムイオン電池における電極群の概略図Schematic of the electrode group in the lithium ion battery of Example 1 of the present invention 本発明の実施例2のリチウムイオン電池における電極群の概略図Schematic of the electrode group in the lithium ion battery of Example 2 of the present invention 比較例1のリチウムイオン電池における電極群の概略図Schematic of the electrode group in the lithium ion battery of Comparative Example 1 比較例2のリチウムイオン電池における電極群の概略図Schematic of the electrode group in the lithium ion battery of Comparative Example 2 比較例3のリチウムイオン電池における電極群の概略図Schematic of the electrode group in the lithium ion battery of Comparative Example 3

符号の説明Explanation of symbols

1 正極板
1a 正極集電用リード
1b 正極集電体露出部
2 負極板
2a 負集電用リード
2b 負極集電体露出部
3 セパレータ
4 集電端子板

DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode collector lead 1b Positive electrode collector exposed part 2 Negative electrode plate 2a Negative collector lead 2b Negative electrode collector exposed part 3 Separator 4 Current collector terminal board

Claims (4)

正極集電体に正極材料を付着させた帯状の正極板と、負極集電体に負極材料を付着させた帯状の負極板と、セパレータとを捲回して構成される電極群を、有底缶に挿入し、開口部を封口板にて封口してなる蓄電素子であって、
(i)前記正極板あるいは前記負極板のいずれか一方の電極板は、長尺方向に極板材料が付着されていない集電体露出部が連続的に設けられており、
(ii)前記集電体露出部は、集電端子板と集合溶接されており、
(iii)前記集電端子板は、前記有底缶の底側に配置されており、
(iv)前記集電端子板は、集電用リードを介して端子を有する前記封口板と電気的に接続されていることを特徴とする蓄電素子。
An electrode group formed by winding a strip-like positive electrode plate with a positive electrode material attached to a positive electrode current collector, a belt-like negative electrode plate with a negative electrode material attached to a negative electrode current collector, and a separator, Is an electricity storage element that is inserted into the opening and sealed with a sealing plate,
(I) Either one of the positive electrode plate or the negative electrode plate is continuously provided with a collector exposed portion to which no electrode plate material is attached in the longitudinal direction;
(Ii) The current collector exposed portion is collectively welded to the current collector terminal plate,
(Iii) The current collector terminal plate is disposed on the bottom side of the bottomed can,
(Iv) The electricity storage element, wherein the current collecting terminal plate is electrically connected to the sealing plate having a terminal through a current collecting lead.
前記集電端子板と接続された集電用リードが、前記電極群の外縁に沿って配置されている請求項1記載の蓄電素子。 The power storage element according to claim 1, wherein a current collecting lead connected to the current collecting terminal plate is disposed along an outer edge of the electrode group. 前記集電端子板と接続された集電用リードが、前記電極群の捲回中心部に存在する空間に沿って配置されている請求項1記載の蓄電素子。 The power storage element according to claim 1, wherein a current collecting lead connected to the current collecting terminal plate is disposed along a space existing in a winding center portion of the electrode group. 正極集電体に正極材料を付着させた帯状の正極板と、負極集電体に負極材料を付着させた帯状の負極板と、セパレータとを捲回して構成される電極群を、有底缶に挿入し、開口部を封口板にて封口してなる蓄電素子であって、
(i)前記正極板および前記負極板は、長尺方向に極板材料が付着されていない集電体露出部が連続的に設けられており、
(ii)前記集電体露出部は、集電端子板と集合溶接されており、
(iii)前記有底缶の底部に配置された側の前記集電端子板は、集電用リードを介して端子を有する前記封口板と電気的に接続されており、
(iv)前記封口板と接続された集電用リードが、前記電極群の外縁に沿って配置されていることを特徴とする蓄電素子。

An electrode group configured by winding a strip-like positive electrode plate with a positive electrode material attached to a positive electrode current collector, a belt-like negative electrode plate with a negative electrode material attached to a negative electrode current collector, and a separator, Is an electricity storage element that is inserted into the opening and sealed with a sealing plate,
(I) The positive electrode plate and the negative electrode plate are continuously provided with a current collector exposed portion to which no electrode plate material is attached in the longitudinal direction,
(Ii) The current collector exposed portion is collectively welded to the current collector terminal plate,
(Iii) The current collector terminal plate disposed on the bottom of the bottomed can is electrically connected to the sealing plate having a terminal through a current collecting lead,
(Iv) A power storage element, wherein a current collecting lead connected to the sealing plate is disposed along an outer edge of the electrode group.

JP2004216774A 2004-07-26 2004-07-26 Storage element Pending JP2006040652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216774A JP2006040652A (en) 2004-07-26 2004-07-26 Storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216774A JP2006040652A (en) 2004-07-26 2004-07-26 Storage element

Publications (1)

Publication Number Publication Date
JP2006040652A true JP2006040652A (en) 2006-02-09

Family

ID=35905423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216774A Pending JP2006040652A (en) 2004-07-26 2004-07-26 Storage element

Country Status (1)

Country Link
JP (1) JP2006040652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018473A1 (en) * 2011-07-29 2013-02-07 古河電気工業株式会社 Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
CN110465761A (en) * 2019-07-11 2019-11-19 惠州市多科达科技有限公司 A kind of column type battery capillary machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124696A (en) * 1992-08-24 1994-05-06 Sony Corp Cylindrical battery
JP2002075322A (en) * 2000-08-31 2002-03-15 Yuasa Corp Sealed battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124696A (en) * 1992-08-24 1994-05-06 Sony Corp Cylindrical battery
JP2002075322A (en) * 2000-08-31 2002-03-15 Yuasa Corp Sealed battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018473A1 (en) * 2011-07-29 2013-02-07 古河電気工業株式会社 Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
CN110465761A (en) * 2019-07-11 2019-11-19 惠州市多科达科技有限公司 A kind of column type battery capillary machine

Similar Documents

Publication Publication Date Title
JP5082256B2 (en) Sealed storage battery
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
JP4453049B2 (en) Manufacturing method of secondary battery
JP4960326B2 (en) Secondary battery
JP2005353519A (en) Electrochemical element
JP2010118175A (en) Secondary battery
JP2006310010A (en) Lithium ion secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2007200795A (en) Lithium ion secondary battery
JP2010108732A (en) Lithium secondary battery
KR101707335B1 (en) Nonaqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
KR20070076485A (en) Non-aqueous electrolyte battery and power supply
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
JP2007149507A (en) Nonaqueous secondary battery
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4639883B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101858334B1 (en) Non-aqueous electrolyte secondary battery
JP2003243036A (en) Cylindrical lithium secondary battery
JP2006040652A (en) Storage element
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
JP2007166698A (en) Charging type power unit
JP4736329B2 (en) Lithium ion secondary battery
JP4576891B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405