JP2006032723A - Heat/electricity direct converter - Google Patents

Heat/electricity direct converter Download PDF

Info

Publication number
JP2006032723A
JP2006032723A JP2004210516A JP2004210516A JP2006032723A JP 2006032723 A JP2006032723 A JP 2006032723A JP 2004210516 A JP2004210516 A JP 2004210516A JP 2004210516 A JP2004210516 A JP 2004210516A JP 2006032723 A JP2006032723 A JP 2006032723A
Authority
JP
Japan
Prior art keywords
heat
direct conversion
thermal
temperature side
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004210516A
Other languages
Japanese (ja)
Other versions
JP4528571B2 (en
Inventor
Osamu Tsuneoka
治 常岡
Naruhito Kondo
成仁 近藤
Naokazu Iwanade
直和 岩撫
Kazuki Tateyama
和樹 舘山
Takahiro Sogo
敬寛 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004210516A priority Critical patent/JP4528571B2/en
Publication of JP2006032723A publication Critical patent/JP2006032723A/en
Application granted granted Critical
Publication of JP4528571B2 publication Critical patent/JP4528571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat/electricity direct converter capable of inhibiting the progress of a deterioration due to the oxidation or the like of a component, and capable of excellently maintaining a conversion efficiency for a prolonged term. <P>SOLUTION: The heat/electricity direct converter 1a is constituted while having heat/electricity direct conversion semiconductors 2 and 3 directly converting a thermal energy to an electrical energy or the electrical energy to the thermal energy, and an airtight box body 30 interrupting the heat/electricity direct conversion semiconductors 2 and 3 from the outside air. In the heat/electricity direct converter 1a, the airtight box body 30 has a metallic cover 20 covering a high-temperature side substrate 7 joined with the high-temperature side ends of the heat/electricity direct conversion semiconductors 2 and 3, a metallic frame 21 surrounding the peripheries of the heat/electricity direct conversion semiconductors 2 and 3, and a means for extracting a current to the outside of the airtight box body 30. Further, the converter is composed of a low-temperature side substrate 22 joined with the low-temperature side ends of the heat/electricity direct conversion semiconductors 2 and 3. In the converter 1a, the inside of the airtight box body 30 is adjusted in a vacuum or an inert-gas atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱−電気直接変換装置に係り、特に変換装置の構成部材の酸化等による劣化の進行を抑止し、長期にわたって変換効率を良好に維持できる熱−電気直接変換装置に関する。   The present invention relates to a thermal-electrical direct conversion device, and more particularly to a thermal-electrical direct conversion device capable of suppressing the progress of deterioration due to oxidation or the like of components of the conversion device and maintaining good conversion efficiency over a long period of time.

近年、人類が消費するエネルギ量が歴史的に例を見ない速度で急増した結果、炭酸ガス(CO)などの温室効果ガスによる地球温暖化の問題が浮上しており、地球環境を保全するためにCO発生を可及的に抑制可能なエネルギ源の開発が全世界的に渇望されている。このような状況の中で、主として省エネルギの観点から、大規模な廃熱の利用が従来から進行し、現在では中小規模の廃熱まで、その再利用が注目されつつある。 In recent years, the amount of energy consumed by mankind has rapidly increased at an unprecedented rate. As a result, the problem of global warming due to greenhouse gases such as carbon dioxide (CO 2 ) has emerged, and the global environment is preserved. Therefore, development of an energy source capable of suppressing CO 2 generation as much as possible is craved all over the world. Under such circumstances, mainly from the viewpoint of energy saving, the use of large-scale waste heat has been progressing conventionally, and at present, the reuse of medium-scale waste heat has been attracting attention.

ところが、中小規模廃熱については、たとえその廃熱の質が高くとも、熱量規模自体が比較的小さいことから、たとえば蒸気タービンなどの大規模廃熱用の発電装置では、熱量に対して大掛りな装置が必要となる結果、発電効率が極めて低く、既存設備の改造や保守・補修コストに見合う電気量が得られないという問題があった。   However, with regard to medium- and small-scale waste heat, even if the quality of the waste heat is high, the amount of heat itself is relatively small. For example, in a power generator for large-scale waste heat such as a steam turbine, the amount of heat is large. As a result, the power generation efficiency is extremely low, and there is a problem that the amount of electricity corresponding to the modification of existing facilities and the maintenance / repair cost cannot be obtained.

また、その熱量規模が小さいことから、温水利用などの熱利用も見送られている場合が多く、全世界的に中小規模廃熱の利用は進捗し難い状況にある。そのため、これら中小規模の廃熱のエネルギから電気エネルギを簡易かつ小型の装置システムで変換できる熱−電気直接変換装置の開発実用化が待望されている。   In addition, due to the small amount of heat, the use of heat, such as the use of hot water, is often forgotten, and the use of medium- and small-scale waste heat is difficult to progress worldwide. Therefore, the development and practical application of a direct heat-electricity conversion device that can convert electric energy from the energy of waste heat of medium and small scales with a simple and small device system is awaited.

このような技術的要請に対処するため、半導体を用いて熱エネルギを直接電気エネルギに変換する熱−電気直接変換装置の開発が従来から進められている(例えば特許文献1及び非特許文献1参照)。   In order to cope with such technical demands, development of a direct thermal-electric conversion device that converts thermal energy directly into electrical energy using a semiconductor has been in progress (see, for example, Patent Document 1 and Non-Patent Document 1). ).

一般に、この種の熱−電気直接変換装置は、トムソン効果、ペルチェ効果、ゼーベック効果などの熱電効果を利用したp型およびn型の熱−電気直接変換半導体(熱伝変換素子)を組み合わせて構成される。一般的な構造を図2に示す。すなわち、従来の熱−電気直接変換装置1は、p型熱−電気直接変換半導体チップ2およびn型熱−電気直接変換半導体チップ3が、高温側電極5を有する高温側絶縁板(高温側基板)7と、低温側電極6を有する低温側絶縁板(低温側基板)8に挟まれた構造を有する。上記p型熱−電気直接変換半導体チップ2およびn型熱−電気直接変換半導体チップ3は、熱−電気直接変換半導体対4を形成し、変換装置全体では電気的及び熱的に多くの熱−電気直接変換半導体対が接続される。   In general, this type of direct heat-electric conversion device is composed of a combination of p-type and n-type direct heat-electric conversion semiconductors (thermoconduction elements) that use thermoelectric effects such as the Thomson effect, Peltier effect, and Seebeck effect. Is done. A general structure is shown in FIG. That is, the conventional thermo-electric direct conversion device 1 includes a p-type thermo-electric direct conversion semiconductor chip 2 and an n-type thermo-electric direct conversion semiconductor chip 3 having a high temperature side insulating plate (high temperature side substrate) having a high temperature side electrode 5. ) 7 and a low temperature side insulating plate (low temperature side substrate) 8 having the low temperature side electrode 6. The p-type thermal-electrical direct conversion semiconductor chip 2 and the n-type thermal-electrical direct conversion semiconductor chip 3 form a thermal-electrical direct conversion semiconductor pair 4, and a large amount of heat is electrically and thermally generated in the entire conversion device. An electrical direct conversion semiconductor pair is connected.

p型熱−電気直接変換半導体チップ2およびn型熱−電気直接変換半導体チップ3は、高温側電極5と高温側電極−半導体チップ接合部11を介して接合され、さらにp型熱−電気直接変換半導体チップ2およびn型熱−電気直接変換半導体チップ3は、低温側電極6と低温側電極−半導体チップ接合部12を介して接合されている。   The p-type heat-electric direct conversion semiconductor chip 2 and the n-type heat-electric direct conversion semiconductor chip 3 are joined via the high-temperature side electrode 5 and the high-temperature side electrode-semiconductor chip junction 11, and further p-type heat-electric direct The conversion semiconductor chip 2 and the n-type thermal-electrical direct conversion semiconductor chip 3 are joined via the low temperature side electrode 6 and the low temperature side electrode-semiconductor chip junction 12.

上記のように構成された熱−電気直接変換装置1において、高温側電極5に熱流13が供給されると、熱は高温側電極−半導体チップ接合部11を介してp型熱−電気直接変換半導体チップ2およびn型熱−電気直接変換半導体チップ3に伝達され、半導体チップ2,3を通過する熱流14に沿って、p型熱−電気直接変換半導体チップ2の内部では半導体キャリアである正孔16が、またn型熱−電気直接変換半導体チップ3の内部では半導体キャリアである電子17が、p型熱−電気直接変換半導体チップ2あるいはn型熱−電気直接変換半導体チップ3に低温側電極−半導体チップ接合部12を介して接合されている低温側電極6に向かって移動する。   In the heat-electrical direct conversion device 1 configured as described above, when the heat flow 13 is supplied to the high temperature side electrode 5, the heat is directly converted to the p-type heat-electricity via the high temperature side electrode-semiconductor chip junction 11. The semiconductor carrier 2 and the n-type direct thermal-electric conversion semiconductor chip 3 are transferred to the semiconductor chip 2 and 3 and pass through the semiconductor chip 2, 3. The holes 16 and the electrons 17 which are semiconductor carriers inside the n-type heat-electric direct conversion semiconductor chip 3 are transferred to the p-type heat-electric direct conversion semiconductor chip 2 or the n-type heat-electric direct conversion semiconductor chip 3 on the low temperature side. It moves toward the low temperature side electrode 6 joined via the electrode-semiconductor chip junction 12.

一方半導体チップ2,3を通過する熱流14は、低温側電極6を通過して低温側電極から放出される熱流15となる。ここで熱−電気直接変換装置1の外部に、適当な電気的負荷19が、熱−電気直接変換装置1に設置されている電極−電流手段との取合手段9と、それに接続された電流取出手段10とを介して、熱−電気直接変換装置1に電気的に接続されることにより、前記半導体キャリアの移動は電流の流れ18として熱−電気直接変換装置1の外部に取出し利用することができる。   On the other hand, the heat flow 14 that passes through the semiconductor chips 2 and 3 becomes a heat flow 15 that passes through the low temperature side electrode 6 and is released from the low temperature side electrode. Here, an appropriate electrical load 19 is connected to the electrode-current means installed in the heat-electricity direct conversion device 1 outside the heat-electricity direct conversion device 1, and the current connected thereto. By being electrically connected to the thermal-electrical direct conversion device 1 via the extraction means 10, the movement of the semiconductor carrier is taken out of the thermal-electrical direct conversion device 1 as a current flow 18 and used. Can do.

このように熱-電気直接変換装置は、高温側電極と低温側電極との温度差を、熱−電気直接変換半導体を用いて、直接電気に変換し装置外部に電力として取出すことができるものであるが、図示していない外部から電流を与えることにより、低温側から高温側あるいは高温側から低温側に熱の移動を行うこともできる。
特開2004−119833号公報 「熱電変換工学−基礎と応用−」リアライズ社p.349−363(2001).
In this way, the thermal-electrical direct conversion device can convert the temperature difference between the high-temperature side electrode and the low-temperature side electrode directly into electricity using a thermal-electrical direct conversion semiconductor and take it out as power outside the device. However, heat can also be transferred from the low temperature side to the high temperature side or from the high temperature side to the low temperature side by applying an electric current from the outside not shown.
JP 2004-1119833 A "Thermoelectric conversion engineering-basics and applications-" Realize p. 349-363 (2001).

このように、熱−電気直接変換装置に温度差を加えて熱を電気に変換する際には、熱−電気直接変換装置の高温側電極温度は高いほど、また低温側電極温度は低いほど、すなわち電極間の温度差が大きいほど、熱の変換効率は大きい。また熱−電気直接変換装置に電流を加え、電気を熱に変換する際にも、熱−電気直接変換装置の高温側温度あるいは低温側温度は、印加する電流が大きいほど高くなる。このため、図1に示した構成を有する従来の熱−電気直接変換装置では、大気中で使用していると、電極や半導体チップなどの構成部材が酸化や窒化などにより劣化し易く、熱から電気へ、あるいは電気から熱へ変換する能力が経時的に低下し、長期間に亘って良好な変換性能を確保することが困難であるという問題があった。   Thus, when a heat difference is added to the thermo-electric direct conversion device to convert heat into electricity, the higher the high temperature side electrode temperature and the lower the low temperature side electrode temperature of the thermo-electric direct conversion device, That is, the greater the temperature difference between the electrodes, the greater the heat conversion efficiency. In addition, when a current is applied to the thermal-electrical direct conversion device to convert electricity into heat, the higher temperature or lower temperature of the thermal-electrical direct conversion device increases as the applied current increases. For this reason, in the conventional direct thermal-electric conversion device having the configuration shown in FIG. 1, when used in the atmosphere, components such as electrodes and semiconductor chips are likely to deteriorate due to oxidation, nitridation, etc. There was a problem that the ability to convert electricity or electricity to heat decreased with time, and it was difficult to ensure good conversion performance over a long period of time.

上記問題点を解決するために、本発明者らは例えば図1に示す構成を有する従来の熱−電気直接変換装置をそのまま金属やセラミックスから成る筐体に封じ込めることにより、大気から遮断でき装置構成部品の酸化による劣化を防止できる構成を実現している。しかしながら、装置に供給される熱流は半導体チップだけでなく、筐体をも通過することになるので変換の対象となる熱の割合が減少し、熱から電気へ、あるいは電気から熱へ変換する能力が大幅に低下することが明白となった。   In order to solve the above problems, the present inventors can shut off the conventional thermal-electric direct conversion device having the configuration shown in FIG. 1 from the atmosphere by enclosing it in a casing made of metal or ceramics as it is. A configuration that can prevent deterioration of parts due to oxidation is realized. However, since the heat flow supplied to the device passes not only through the semiconductor chip but also through the housing, the rate of heat to be converted is reduced, and the ability to convert from heat to electricity or from electricity to heat It became clear that there was a significant drop.

本発明は上述した課題を解決するためになされたものであり、構成部材の酸化等による劣化の進行を抑止し、長期にわたって変換効率を良好に維持できる熱−電気直接変換装置を提供することを目的とする。また、半導体チップに熱流を集中的に流すことを容易にでき、高い変換効率を維持できる気密型の熱−電気直接変換装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a direct thermal-electric conversion device capable of suppressing the progress of deterioration due to oxidation or the like of constituent members and maintaining good conversion efficiency over a long period of time. Objective. It is another object of the present invention to provide a hermetic heat-electrical direct conversion device that can easily flow heat flow to a semiconductor chip and maintain high conversion efficiency.

上記目的を達成するために、本発明に係る熱−電気直接変換装置は、熱エネルギを電気エネルギに、あるいは電気エネルギを熱エネルギに直接変換する熱−電気直接変換半導体と、その熱−電気直接変換半導体を外気から遮断する気密筐体とを備えて構成され、上記気密筐体は上記熱−電気直接変換半導体の高温側端部に接合される高温側基板を覆う金属蓋と、上記熱−電気直接変換半導体の周囲を取り囲む金属枠と、電流を気密筐体外部に取出す手段を具備し、熱−電気直接変換半導体の低温側端部に接合される低温側基板とから構成されており、上記気密筐体内部は真空もしくは不活性ガス雰囲気に調整されていることを特徴とする。   In order to achieve the above object, a thermal-electrical direct conversion device according to the present invention includes a thermal-electrical direct conversion semiconductor that directly converts thermal energy into electrical energy or electrical energy into thermal energy, and the thermal-electrical direct thereof. An airtight housing that shields the conversion semiconductor from outside air, the airtight housing covering a high temperature side substrate joined to a high temperature side end of the thermal-electrical direct conversion semiconductor, and the heat- It is composed of a metal frame that surrounds the periphery of the electrical direct conversion semiconductor, and a low temperature side substrate that is provided with means for taking out the current outside the hermetic housing and is joined to the low temperature side end of the thermal direct electrical conversion semiconductor. The inside of the airtight housing is adjusted to a vacuum or an inert gas atmosphere.

上記熱−電気直接変換装置によれば、高温側基板を覆う金属蓋と、上記熱−電気直接変換半導体の周囲を取り囲む金属枠と、熱−電気直接変換半導体の低温側端部に接合される低温側基板とから構成される気密筐体によって熱−電気直接変換半導体が外気から遮断され、かつ上記気密筐体内部は真空もしくは不活性ガス雰囲気に調整されているため、半導体等の構成部品が酸化等により劣化することが効果的に防止でき長期にわたって高い変換効率を維持できる熱−電気直接変換装置が得られる。   According to the thermal-electrical direct conversion device, the metal lid that covers the high-temperature side substrate, the metal frame that surrounds the periphery of the thermal-electrical direct conversion semiconductor, and the low-temperature side end of the thermal-electrical direct conversion semiconductor are joined. The heat-electricity direct conversion semiconductor is cut off from the outside air by an airtight housing composed of a low temperature side substrate, and the inside of the airtight housing is adjusted to a vacuum or an inert gas atmosphere, so that components such as semiconductors It is possible to obtain a direct thermal-electric conversion device that can effectively prevent deterioration due to oxidation or the like and maintain high conversion efficiency over a long period of time.

また、上記熱−電気直接変換装置において、前記金属蓋は、少なくとも前記気密筐体に内蔵されている高温側基板と接触する部分が周縁部分より高く入熱方向に突出するように形成されていることが好ましい。   Further, in the above direct heat-electric conversion device, the metal lid is formed such that at least a portion in contact with the high temperature side substrate incorporated in the hermetic casing is higher than the peripheral portion and protrudes in the heat input direction. It is preferable.

上記のように、少なくとも気密筐体に内蔵されている高温側基板と接触する金属蓋部分が、その周縁部分より高く入熱方向に突出するように形成することにより、突出した金属蓋と接触した高温側基板に入熱が集中的に伝播するために、半導体チップに熱が集中し易くなり熱−電気変換効率を高めることが可能になる。一方、金属蓋の周縁部分が受ける熱量は中央部分と比較して相対的に減少するために、金属枠を経由して無駄に放散される熱量が減少する。   As described above, at least the metal lid portion that comes into contact with the high temperature side substrate built in the hermetic casing is formed so as to protrude higher in the heat input direction than the peripheral portion, thereby contacting the protruding metal lid. Since heat input is intensively propagated to the high temperature side substrate, heat is easily concentrated on the semiconductor chip, and the heat-electric conversion efficiency can be increased. On the other hand, the amount of heat received by the peripheral portion of the metal lid is relatively reduced as compared with the central portion, and thus the amount of heat dissipated wastefully through the metal frame is reduced.

さらに、上記熱−電気直接変換装置において、前記金属蓋のうち、前記気密筐体に内蔵されている高温側基板と接触していない部分に、金属蓋自体およびそれに接続されている金属枠の熱膨張を吸収する熱膨張吸収手段を備えることが好ましい。   Further, in the thermal-electrical direct conversion device, the metal lid itself and the heat of the metal frame connected to the metal lid itself are formed on a portion of the metal lid that is not in contact with the high-temperature side substrate built in the hermetic casing. It is preferable to provide thermal expansion absorbing means for absorbing expansion.

上記のように、気密筐体に内蔵されている高温側基板と接触していない金属蓋の部分に熱膨張吸収手段を設けることにより、金属蓋自体およびそれに接続されている金属枠の熱膨張を効果的に吸収することが可能になり、熱応力が効果的に緩和され、耐久性に優れた変換装置が得られる。特に、上記熱膨張吸収手段は、気密筐体に内蔵されている高温側基板と接触していない金属蓋の部分に備えられているために、熱膨張が発生して金属蓋が変位した場合においても、金属蓋が半導体チップと干渉する恐れは少ない。   As described above, by providing the thermal expansion absorbing means in the portion of the metal lid that is not in contact with the high temperature side substrate built in the hermetic housing, the thermal expansion of the metal lid itself and the metal frame connected thereto is suppressed. It becomes possible to absorb effectively, a thermal stress is relieved effectively, and the converter excellent in durability is obtained. In particular, since the thermal expansion absorbing means is provided in a portion of the metal lid that is not in contact with the high temperature side substrate built in the airtight housing, the thermal expansion occurs and the metal lid is displaced. However, there is little possibility that the metal lid interferes with the semiconductor chip.

また、上記熱−電気直接変換装置において、前記金属蓋から金属枠を経由して低温側基板へ至る熱伝達経路を長くするフランジ機構を上記金属蓋および金属枠の少なくとも一方に配設することが好ましい。   Further, in the thermal-electrical direct conversion device, a flange mechanism that lengthens a heat transfer path from the metal lid to the low-temperature side substrate via the metal frame may be disposed on at least one of the metal lid and the metal frame. preferable.

上記のように、フランジ機構を熱伝達経路に設けることにより、前記金属蓋から金属枠を経由して低温側基板へ至る熱伝達経路(熱パス)を長くすることが可能であり、気密筐体、特に金属枠における伝熱抵抗を高くして熱通過量を抑止し、相対的に半導体チップを通過し熱-電気変換に関与する熱量を高めることができる。したがって、半導体チップにおける熱-電気変換効率を高めることができる。   As described above, by providing the flange mechanism in the heat transfer path, it is possible to lengthen the heat transfer path (heat path) from the metal lid to the low temperature side substrate via the metal frame, and the airtight housing In particular, the heat transfer resistance in the metal frame can be increased to suppress the amount of heat passing, and the amount of heat involved in the heat-electric conversion can be increased relatively through the semiconductor chip. Therefore, the thermal-electric conversion efficiency in the semiconductor chip can be increased.

さらに、上記熱−電気直接変換装置において、前記金属枠の外周面の少なくとも一部が曲面状に形成されていることが好ましい。   Furthermore, in the said thermo-electric direct conversion apparatus, it is preferable that at least one part of the outer peripheral surface of the said metal frame is formed in the curved surface form.

上記のように、金属枠の外周面の少なくとも一部を曲面状に形成することにより、例えば四角筒状に形成されていた金属枠の各角部にアール加工を施して曲面状に形成することにより、金属枠の断面積を小さくすることが可能となり、金属枠における通過熱量を小さくできる一方、半導体チップを通過し熱-電気変換に関与する熱量を高めることができる。したがって、半導体チップにおける熱-電気変換効率を高めることができる。   As described above, by forming at least a part of the outer peripheral surface of the metal frame into a curved shape, for example, each corner of the metal frame that has been formed into a rectangular tube shape is rounded to form a curved shape. This makes it possible to reduce the cross-sectional area of the metal frame and reduce the amount of heat passing through the metal frame, while increasing the amount of heat that passes through the semiconductor chip and participates in the heat-electrical conversion. Therefore, the thermal-electric conversion efficiency in the semiconductor chip can be increased.

また、上記熱−電気直接変換装置において、前記金属枠の高さ方向に金属枠の熱膨張を吸収する熱膨張吸収手段を備えていることが好ましい。この熱膨張吸収手段の具体的な構成例としては、金属枠の断面が屈曲した部位を1段または2段以上組み合わせた構造が採用できる。上記屈曲部位は、平面が折れ曲がった形状でも良いが、円弧状に折り曲げた形状でも良い。   Moreover, it is preferable that the thermal-electrical direct conversion device includes a thermal expansion absorbing unit that absorbs thermal expansion of the metal frame in the height direction of the metal frame. As a specific configuration example of the thermal expansion absorbing means, a structure in which one or two or more stages where the cross section of the metal frame is bent can be adopted. The bent portion may have a shape in which a plane is bent, or may have a shape bent in an arc shape.

上記のように、金属枠の高さ方向に熱膨張吸収手段を設けることにより、金属枠の熱膨張を効果的に吸収することができ、熱応力が効果的に緩和され、気密筐体の熱応力による疲労破壊を効果的に防止することができ、耐久性が優れた変換装置が得られる。   As described above, by providing the thermal expansion absorbing means in the height direction of the metal frame, the thermal expansion of the metal frame can be effectively absorbed, the thermal stress is effectively relieved, and the heat of the airtight housing is reduced. Fatigue failure due to stress can be effectively prevented, and a converter having excellent durability can be obtained.

さらに、上記熱−電気直接変換装置において、前記金属蓋と金属枠とは溶接されているか、あるいは一体に成形されている一方、前記低温側基板と前記金属枠とは溶接、ハンダ付け、もしくはロウ付け、拡散接合、あるいは接着剤により接合されていることが好ましい。   Furthermore, in the thermal-electrical direct conversion device, the metal lid and the metal frame are welded or integrally formed, while the low temperature side substrate and the metal frame are welded, soldered, or brazed. Bonding, diffusion bonding, or bonding with an adhesive is preferable.

金属蓋、金属枠および低温側基板の接合方法としては、特に限定されるものではないが、上記接合方法によれば、接合操作が簡略な上に十分な接合強度が得られる。特に、金属蓋と金属枠とを一体に成形することにより、装置部品点数が減少し装置の組立てが容易になる。   The joining method of the metal lid, the metal frame, and the low temperature side substrate is not particularly limited, but according to the joining method, the joining operation is simple and sufficient joining strength can be obtained. In particular, by integrally molding the metal lid and the metal frame, the number of device parts is reduced and the device can be easily assembled.

また、上記熱−電気直接変換装置において、気密筐体内の不活性ガス雰囲気は、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンから選択される少なくとも1種の気体から成ることが好ましい。   In the thermal-electrical direct conversion device, the inert gas atmosphere in the hermetic casing is preferably composed of at least one gas selected from nitrogen, helium, neon, argon, krypton, and xenon.

上記非酸化性の気体を気密筐体内に封入し、内部雰囲気を非活性とすることにより、半導体チップ等の構成部品が酸化等により劣化することが効果的に防止でき長期にわたって高い変換効率を維持できる熱−電気直接変換装置が得られる。   By sealing the non-oxidizing gas in an airtight housing and deactivating the internal atmosphere, it is possible to effectively prevent components such as semiconductor chips from deteriorating due to oxidation, etc., and maintain high conversion efficiency over a long period of time. A direct heat-electric conversion device is obtained.

さらに、上記熱−電気直接変換装置において、前記不活性ガス雰囲気の圧力が、常温で外気圧より低く設定されていることが好ましい。   Furthermore, in the thermal-electrical direct conversion device, it is preferable that the pressure of the inert gas atmosphere is set to be lower than the external pressure at room temperature.

上記のように、気密筐体内の不活性ガス雰囲気の圧力を外気圧より低く設定することにより、気密筐体内の不活性ガス雰囲気中に水分が残留することが効果的に防止でき、水分による半導体チップの劣化損傷を効果的に抑止できる。また、気密筐体内のガス雰囲気における熱伝導性が低下するために、半導体チップから金属枠方向に熱が放散することが防止でき、熱-電気変換効率を高めることができる。   As described above, by setting the pressure of the inert gas atmosphere in the hermetic casing to be lower than the external pressure, it is possible to effectively prevent moisture from remaining in the inert gas atmosphere in the hermetic casing. Chip degradation damage can be effectively suppressed. Further, since the thermal conductivity in the gas atmosphere in the hermetic casing is lowered, it is possible to prevent heat from being dissipated from the semiconductor chip in the direction of the metal frame, and to improve the heat-electric conversion efficiency.

また、上記熱−電気直接変換装置において、前記金属蓋および金属枠は熱−電気直接変換装置の高温側温度に耐えられる耐熱金属もしくは耐熱合金から構成することが好ましい。具体的には、上記耐熱合金は、ニッケルもしくはニッケル基合金、炭素鋼、ステンレス鋼から選択される鉄基合金、クロムを含む鉄基合金、シリコンを含む鉄基合金、コバルトを含有する合金、銅を含有する合金のいずれかであることが好ましい。   In the thermal-electric direct conversion device, the metal lid and the metal frame are preferably made of a heat-resistant metal or a heat-resistant alloy that can withstand the high temperature side temperature of the heat-electric direct conversion device. Specifically, the heat-resistant alloy includes nickel or a nickel-base alloy, an iron-base alloy selected from carbon steel and stainless steel, an iron-base alloy containing chromium, an iron-base alloy containing silicon, an alloy containing cobalt, copper It is preferable that it is either of the alloys containing.

上記耐熱金属もしくは耐熱合金から構成された金属蓋および金属枠によれば、高温度使用環境においても劣化することが少なく優れた耐久性を発揮させることができる。   According to the metal lid and metal frame made of the above heat-resistant metal or heat-resistant alloy, excellent durability can be exhibited with little deterioration even in a high temperature use environment.

さらに、上記熱−電気直接変換装置において、前記低温側基板はセラミック板と、このセラミック板の少なくとも一方の表面に接合された金属板とから成り、この金属板は銅、銀、アルミニウム、錫、鉄基合金、ニッケル、ニッケル基合金、チタン、チタン基合金から選択される少なくとも1種から成ることが好ましい。   Furthermore, in the thermal-electrical direct conversion device, the low-temperature side substrate includes a ceramic plate and a metal plate bonded to at least one surface of the ceramic plate, and the metal plate includes copper, silver, aluminum, tin, It is preferably made of at least one selected from iron-based alloys, nickel, nickel-based alloys, titanium, and titanium-based alloys.

上記のように、セラミック板の少なくとも一方の表面に金属板を接合した低温側基板を用いることにより、低温側電極としての金属板が予め絶縁基板に接合された低温側基板が得られ、変換装置の組立てが容易になる。セラミック板と金属板との接合強度が高く、両者の密着度も高いため、耐久性に優れた変換装置が得られる。   As described above, by using the low temperature side substrate in which the metal plate is bonded to at least one surface of the ceramic plate, the low temperature side substrate in which the metal plate as the low temperature side electrode is bonded to the insulating substrate in advance is obtained, and the conversion device Assembling becomes easy. Since the bonding strength between the ceramic plate and the metal plate is high and the degree of adhesion between the two is also high, a converter having excellent durability can be obtained.

また、上記熱−電気直接変換装置において、前記低温側基板に使用されているセラミック板は、アルミナもしくはアルミナを含有するセラミック、アルミナ粉末を分散含有する金属、窒化珪素もしくは窒化珪素を含有するセラミック、窒化アルミニウムもしくは窒化アルミニウムを含有するセラミック、ジルコニアもしくはジルコニアを含有するセラミック、イットリアもしくはイットリアを含有するセラミック、シリカあるいはシリカを含有するセラミック、ベリリアもしくはベリリアを含有するセラミックから選択される少なくとも1種から構成されることが好ましい。   Further, in the direct thermal-electric conversion device, the ceramic plate used for the low-temperature side substrate is alumina or ceramic containing alumina, metal containing alumina powder dispersedly, silicon nitride or ceramic containing silicon nitride, Consists of at least one selected from aluminum nitride or ceramic containing aluminum nitride, ceramic containing zirconia or zirconia, yttria or ceramic containing yttria, silica or ceramic containing silica, beryllia or ceramic containing beryllia It is preferred that

上記各セラミック板から成る低温側基板によれば、絶縁耐性が安定して優れているために高い熱電効果を長期間に亘って発揮し得る信頼性が高い熱−電気直接変換装置が得られる。   According to the low temperature side substrate made of the above ceramic plates, since the insulation resistance is stable and excellent, a highly reliable thermo-electric direct conversion device capable of exhibiting a high thermoelectric effect over a long period of time can be obtained.

さらに、上記熱−電気直接変換装置において、前記熱−電気直接変換半導体はp型の半導体とn型の半導体とから成り、これら半導体は、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、コバルト、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウム、マグネシウムから選択される少なくとも3種の元素から構成される熱−電気直接変換半導体であることが好ましい。   Furthermore, in the thermal-electrical direct conversion device, the thermal-electrical direct conversion semiconductor comprises a p-type semiconductor and an n-type semiconductor, and these semiconductors are rare earth elements, actinoids, cobalt, iron, rhodium, ruthenium, palladium. At least 3 selected from platinum, nickel, antimony, titanium, zirconium, hafnium, nickel, tin, cobalt, silicon, manganese, zinc, boron, carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium, magnesium A thermal-electric direct conversion semiconductor composed of seed elements is preferred.

上記少なくとも3種の元素から構成される熱−電気直接変換半導体によれば、良好な熱電効果を長期間に亘って発揮することが可能であり、熱電変換効率が高い熱−電気直接変換装置が得られる。   According to the thermo-electric direct conversion semiconductor composed of the at least three elements, a thermo-electric direct conversion device that can exhibit a good thermoelectric effect over a long period of time and has high thermoelectric conversion efficiency is provided. can get.

また、上記熱−電気直接変換装置において、前記p型もしくはn型の熱−電気直接変換半導体の結晶構造がスクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造、クラスレート構造のうちのいずれかであることが好ましい。   Further, in the thermo-electric direct conversion device, the crystal structure of the p-type or n-type thermo-electric direct conversion semiconductor is a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, or a clathrate structure. It is preferable that any one of them.

上記各結晶構造を有する半導体チップによれば、熱電効果が良好であり、熱電変換効率が高い熱−電気直接変換装置が得られる。   According to the semiconductor chip having each of the above crystal structures, a thermoelectric direct conversion device having a good thermoelectric effect and high thermoelectric conversion efficiency can be obtained.

本発明に係る熱−電気直接変換装置によれば、高温側基板を覆う金属蓋と、上記熱−電気直接変換半導体の周囲を取り囲む金属枠と、熱−電気直接変換半導体の低温側端部に接合される低温側基板とから構成される気密筐体によって熱−電気直接変換半導体が外気から遮断され、かつ上記気密筐体内部は真空もしくは不活性ガス雰囲気に調整されているため、半導体等の構成部品が酸化等により劣化することが効果的に防止でき長期にわたって高い変換効率を維持できる熱−電気直接変換装置が得られる。   According to the thermal-electrical direct conversion device according to the present invention, the metal lid that covers the high-temperature side substrate, the metal frame that surrounds the thermal-electrical direct conversion semiconductor, and the low-temperature side end of the thermal-electrical direct conversion semiconductor The heat-electrical direct conversion semiconductor is cut off from the outside air by an airtight housing composed of a low temperature side substrate to be joined, and the inside of the airtight housing is adjusted to a vacuum or an inert gas atmosphere. It is possible to effectively prevent the component parts from being deteriorated due to oxidation or the like and to obtain a thermal-electric direct conversion device capable of maintaining high conversion efficiency over a long period of time.

次に本発明を実施するための形態について添付図面を参照し、以下の実施例に基づいて説明する。   Next, modes for carrying out the present invention will be described based on the following embodiments with reference to the accompanying drawings.

(実施例1)
図1は半導体チップを外気から遮断する気密筐体を用いた本発明に係る熱−電気直接変換装置の一実施例を示す図であり、図1(a)は本発明に係る熱−電気直接変換装置の一実施例の構成を示す斜視図であり、図1(b)は図1(a)に示す熱-電気直接変換装置(熱電気直接変換モジュール)のB-B矢視断面図である。
Example 1
FIG. 1 is a view showing an embodiment of a direct heat-electric conversion device according to the present invention using an airtight housing that cuts off a semiconductor chip from the outside air, and FIG. 1A is a direct view of heat-electric direct according to the present invention. It is a perspective view which shows the structure of one Example of a converter, FIG.1 (b) is BB arrow sectional drawing of the thermoelectric direct conversion apparatus (thermoelectric direct conversion module) shown to Fig.1 (a). is there.

図1に示すように、本実施例に係る熱-電気直接変換装置1aは、熱エネルギを電気エネルギに、あるいは電気エネルギを熱エネルギに直接変換する熱−電気直接変換半導体4と、その熱−電気直接変換半導体4を外気から遮断する気密筐体30とを備えて構成され、上記気密筐体30は上記熱−電気直接変換半導体4の高温側端部に接合される高温側基板7を覆う金属蓋20と、上記熱−電気直接変換半導体4の周囲を取り囲む金属枠21と、電流を気密筐体外部に取出す手段10を具備し、熱−電気直接変換半導体の低温側端部に接合される低温側基板8とから構成されており、上記気密筐体30の内部は真空もしくは不活性ガス雰囲気に調整されて構成されている。   As shown in FIG. 1, a thermal-electrical direct conversion device 1a according to this embodiment includes a thermal-electrical direct conversion semiconductor 4 that directly converts thermal energy into electrical energy or electrical energy into thermal energy, and its thermal- The airtight housing 30 is configured to block the electric direct conversion semiconductor 4 from the outside air, and the airtight housing 30 covers the high temperature side substrate 7 joined to the high temperature side end of the heat-electrical direct conversion semiconductor 4. A metal lid 20, a metal frame 21 surrounding the heat-electric direct conversion semiconductor 4, and a means 10 for taking out current from the hermetic casing are joined to the low-temperature end of the heat-electric direct conversion semiconductor. The inside of the airtight housing 30 is adjusted to a vacuum or an inert gas atmosphere.

上記熱−電気直接変換半導体4は、スクッテルダイト構造を有するp型熱-電気直接変換半導体チップ2とn型熱-電気直接変換半導体チップ3とが対となって構成されている。また、低温側基板8および高温側基板7はアルミナ(Al)から構成されている一方、低温側基板8はAlN基材のセラミックス基板で構成されている。さらに、気密筐体30を形成する構成する金属蓋20および金属枠21はニッケル基合金で形成されている。 The thermo-electric direct conversion semiconductor 4 is constituted by a pair of a p-type thermo-electric direct conversion semiconductor chip 2 and an n-type thermo-electric direct conversion semiconductor chip 3 having a skutterudite structure. The low temperature side substrate 8 and the high temperature side substrate 7 are made of alumina (Al 2 O 3 ), while the low temperature side substrate 8 is made of an AlN base ceramic substrate. Further, the metal lid 20 and the metal frame 21 constituting the hermetic casing 30 are made of a nickel-based alloy.

上記のように構成された熱−電気直接変換装置に熱を供給し入出力端部に温度差を加えて熱を電気に変換する際には、熱−電気直接変換装置の高温側温度を高くするほど、また低温側温度を低くするほど、すなわち入出力端部の温度差を大きくすることにより、熱―電気の変換効率を高めることができる。すなわち、変換効率を大きくするためには、熱−電気直接変換装置の入力端部を高温度条件下で運転することが有効である。   When heat is converted into electricity by supplying heat to the heat-electric direct conversion device configured as described above and adding a temperature difference to the input / output ends, the high temperature side temperature of the heat-electric direct conversion device is increased. The lower the temperature on the lower temperature side, that is, the larger the temperature difference between the input and output ends, the higher the thermal-electric conversion efficiency. That is, in order to increase the conversion efficiency, it is effective to operate the input end of the thermo-electric direct conversion device under a high temperature condition.

しかしながら、上記熱−電気直接変換装置を大気中の高温度条件下で運転した場合には、電極や半導体チップなどの構成部材が酸化されたり窒化されたりして劣化が進行し易い。これらの構成部材の劣化進行を抑止し、熱から電気へ、あるいは電気から熱への変換効率の低下を抑止し、長期間に亘って良好な変換性能を確保するためには、本実施例に示すように熱−電気直接変換装置を外気から遮断する気密筐体を用いることが有効である。   However, when the direct thermal-electric conversion device is operated under high temperature conditions in the atmosphere, components such as electrodes and semiconductor chips are easily oxidized and nitrided, and deterioration is likely to proceed. In order to suppress the progress of deterioration of these structural members, suppress the decrease in conversion efficiency from heat to electricity, or from electricity to heat, and ensure good conversion performance over a long period, As shown, it is effective to use an airtight casing that shields the thermal-electrical direct conversion device from outside air.

図1に示すように、本実施例に係る熱−電気直接変換装置においては、p型熱-電気直接変換半導体チップ2とn型熱-電気直接変換半導体チップ3とから成る複数の熱−電気直接変換半導体対4の低温側端部が、低温側電極−半導体チップ接合部23を介して低温側基板22に接合される一方、その高温側端部が高温側電極−半導体チップ接合部11を介して高温側基板(高温側絶縁板)7に機械的に接続されている。   As shown in FIG. 1, in the thermal-electric direct conversion device according to the present embodiment, a plurality of thermal-electrical units composed of a p-type thermal-electrical direct conversion semiconductor chip 2 and an n-type thermal-electrical direct conversion semiconductor chip 3. The low temperature side end of the direct conversion semiconductor pair 4 is bonded to the low temperature side substrate 22 via the low temperature side electrode-semiconductor chip junction 23, while the high temperature side end connects the high temperature side electrode-semiconductor chip junction 11. And mechanically connected to a high-temperature side substrate (high-temperature side insulating plate) 7.

上記熱電気直接変換装置は、廃熱が供給された側の金属蓋20と低温側基板22との温度差を直接電気に変換し装置外部に電力として取り出したり、または、外部から装置入力端部に電流を供給し低温側系統から高温側系統に熱の移動を生起させたりする。熱が供給された装置内部の金属蓋20に接する部分は高温度となるために高温環境下での酸化から半導体チップ等の変換素子及び電極を保護することが必要になる。   The thermoelectric direct conversion device directly converts the temperature difference between the metal lid 20 on the side to which waste heat is supplied and the low temperature side substrate 22 into electricity and takes it out of the device as power, or the device input end from the outside Current is supplied to the heat source to cause heat transfer from the low temperature side system to the high temperature side system. Since the portion in contact with the metal lid 20 inside the apparatus to which heat is supplied becomes high temperature, it is necessary to protect the conversion element such as a semiconductor chip and the electrode from oxidation under a high temperature environment.

そこで、本実施例では装置内部に窒素等の耐酸化ガスを充填し装置内部を封止するために、上記金属蓋20および金属枠21を低温側基板22に一体に接合固定して、気密な筐体30を形成している。この気密筐体30の外側には、内部の封止性を維持し、外部との電気的な取り合いを行う電流取出手段10が設けられている、電極−電流取出手段10との取合手段9により、装置内部の電極5,6と外部とが電気的に接続されている。   Therefore, in this embodiment, in order to fill the inside of the apparatus with an oxidation-resistant gas such as nitrogen and seal the inside of the apparatus, the metal lid 20 and the metal frame 21 are integrally bonded and fixed to the low-temperature side substrate 22 so as to be airtight. A housing 30 is formed. On the outside of the hermetic casing 30, there is provided a current extraction means 10 that maintains an internal sealing property and performs electrical connection with the outside. The connection means 9 with the electrode-current extraction means 10. Thus, the electrodes 5 and 6 inside the apparatus are electrically connected to the outside.

図1において、筐体30の外側に設けた電流取出手段10が薄板形状の端子である場合を例示したが、端子部分を外力から保護するために、薄板以外の形状とすることも可能である。   Although the case where the current extraction means 10 provided outside the housing 30 is a thin plate-shaped terminal is illustrated in FIG. 1, in order to protect the terminal portion from external force, it is possible to have a shape other than the thin plate. .

本実施例に係る熱−電気直接変換装置によれば、電極6,7や半導体チップ対4などの構成部材が設置されている筐体30内部を気密に保持し、内部を真空もしくは不活性ガス雰囲気に維持することが可能になる。これにより、高温環境下で運転された場合においても、熱−電気直接変換装置の筐体内部に設置された構成部材の酸化や窒化などによる劣化の進行を効果的に抑止することが可能となる。   According to the thermal-electrical direct conversion device according to the present embodiment, the inside of the housing 30 in which the constituent members such as the electrodes 6 and 7 and the semiconductor chip pair 4 are installed is kept airtight, and the inside is vacuum or inert gas. It becomes possible to maintain the atmosphere. Thereby, even when operated in a high temperature environment, it is possible to effectively suppress the progress of deterioration due to oxidation, nitridation, or the like of the constituent members installed inside the casing of the thermal-electrical direct conversion device. .

(実施例2)
図3に、熱−電気直接変換装置の金属蓋20の高温側絶縁板7と接触する部分を他の部分より高くすることにより、金属枠21を通過する熱量を低減し、変換性能を向上させた熱−電気直接変換装置の一実施例を示す。
(Example 2)
In FIG. 3, the amount of heat passing through the metal frame 21 is reduced and the conversion performance is improved by making the portion in contact with the high temperature side insulating plate 7 of the metal lid 20 of the thermo-electric direct conversion device higher than the other portions. 1 shows an embodiment of a thermal-electrical direct conversion device.

すなわち、本実施例に係る熱−電気直接変換装置は、前記実施例1の構成に加えて、さらに前記金属蓋20は、少なくとも前記気密筐体30に内蔵されている高温側基板7と接触する部分が周縁部分より高く入熱方向に突出するように形成されている。   That is, in the thermal-electrical direct conversion device according to the present embodiment, in addition to the configuration of the first embodiment, the metal lid 20 is in contact with at least the high temperature side substrate 7 built in the hermetic housing 30. The part is formed so as to protrude in the heat input direction higher than the peripheral part.

本実施例に係る熱−電気直接変換装置によれば、金属蓋20から金属枠21を経由して低温側基板22に至るまでの熱伝達経路を、金属蓋20の高温側絶縁板7と接触する部分を他の部分の高さと同等とした場合に比較して、長くすることができると共に、装置に供給する熱を金属蓋20の中央部で集中的に受けることができ、熱−電気直接変換半導体対4に熱を集中的に導入することが可能となり、熱電変換効率を高めることができる。特に、上記熱伝達経路を長くでき、この経路の伝熱抵抗を相対的に増加させることができる構造であるために、金属蓋20から高温側絶縁板7と高温側電極5と熱−電気直接半導体対4と低温側電極6とを経由して低温側基板22に至る熱の通過量を多くでき、熱−電気直接変換装置の性能を向上させることが可能となる。   According to the thermal-electrical direct conversion device according to the present embodiment, the heat transfer path from the metal lid 20 to the low temperature side substrate 22 via the metal frame 21 is brought into contact with the high temperature side insulating plate 7 of the metal lid 20. Compared to the case where the height of the other portion is equal to the height of the other portion, the length can be made longer, and the heat supplied to the apparatus can be received intensively at the central portion of the metal lid 20, so that the heat-electricity direct Heat can be intensively introduced into the conversion semiconductor pair 4 and the thermoelectric conversion efficiency can be increased. In particular, since the heat transfer path can be lengthened and the heat transfer resistance of the path can be relatively increased, the high temperature side insulating plate 7, the high temperature side electrode 5, and the thermo-electric direct The amount of heat passing through the semiconductor pair 4 and the low temperature side electrode 6 to the low temperature side substrate 22 can be increased, and the performance of the direct thermoelectric conversion device can be improved.

なお、上記金属蓋20から金属枠21を経由して低温側基板22に至る熱伝達経路は、図3および図6(a)に示すように金属蓋20の周縁部に段差状の経路31のみに限定されるものではない。例えば、図6(b)に示すように、金属蓋20の周縁部に円弧状の経路32を設けた構造や、その円弧状の経路を多段に形成した構造や、図6(c)に示すように、金属蓋20の周縁部にV字形断面を有する曲折部33を形成した構造や、図6(d)に示すように多段に曲折部34を形成した構造を採用することも可能である。上記段差状の経路31、円弧状の経路32および曲折部33、34は、金属蓋20が熱膨張した場合においても、その変位を吸収して熱応力の発生を抑制する熱応力吸収機構としても働くので有用である。   The heat transfer path from the metal lid 20 to the low temperature side substrate 22 via the metal frame 21 is only a step-shaped path 31 at the peripheral edge of the metal lid 20 as shown in FIGS. 3 and 6A. It is not limited to. For example, as shown in FIG. 6B, a structure in which an arc-shaped path 32 is provided in the peripheral edge of the metal lid 20, a structure in which the arc-shaped path is formed in multiple stages, or a structure shown in FIG. Thus, it is also possible to adopt a structure in which the bent portion 33 having a V-shaped cross section is formed on the peripheral portion of the metal lid 20 or a structure in which the bent portions 34 are formed in multiple stages as shown in FIG. . The step-shaped path 31, the arc-shaped path 32, and the bent portions 33, 34 are also a thermal stress absorbing mechanism that absorbs the displacement and suppresses the generation of thermal stress even when the metal lid 20 is thermally expanded. Useful because it works.

(実施例3)
図4に、熱−電気直接変換装置の金属蓋20の高温側絶縁板(高温側基板)7と接触していない部分に、金属蓋20自体やそれに接続されている金属枠21の熱膨張を吸収する手段を備えることにより、金属蓋20および金属枠21に発生する熱応力を緩和する機構を設けた熱−電気直接変換装置の一実施例を示す。
Example 3
FIG. 4 shows the thermal expansion of the metal lid 20 itself and the metal frame 21 connected to the portion not in contact with the high temperature side insulating plate (high temperature side substrate) 7 of the metal lid 20 of the thermal-electrical direct conversion device. An embodiment of a direct thermal-electric conversion device provided with a mechanism for relaxing thermal stress generated in the metal lid 20 and the metal frame 21 by providing means for absorbing is shown.

すなわち、図4に示す本実施例に係る熱−電気直接変換装置は、前記実施例1の構成に加えて、さらに前記金属蓋20のうち、前記気密筐体30に内蔵されている高温側基板7と接触していない部分に、金属蓋20自体およびそれに接続されている金属枠21の熱膨張を吸収する熱膨張吸収手段35を備えて構成される。   That is, in the direct thermal-electric conversion device according to the present embodiment shown in FIG. 4, in addition to the configuration of the first embodiment, the high temperature side substrate built in the hermetic casing 30 of the metal lid 20 is further included. 7 is provided with a thermal expansion absorbing means 35 that absorbs thermal expansion of the metal lid 20 itself and the metal frame 21 connected to the metal lid 20 itself.

本実施例に係る熱−電気直接変換装置では、金属蓋20ならびに金属蓋20に接続されている金属枠21に発生する熱応力やそれらの応力によって他の部位に発生する応力を緩和するために、金属蓋20の高温側絶縁板7と接触していない部分にV字形断面を有する熱膨張吸収手段35を設けることにより、金属蓋20ならびに金属蓋20に接続されている金属枠21に発生する熱膨張および熱変形の吸収が可能になる。   In the thermal-electrical direct conversion device according to this embodiment, in order to relieve the thermal stress generated in the metal lid 20 and the metal frame 21 connected to the metal lid 20 and the stress generated in other parts due to those stresses. By providing the thermal expansion absorbing means 35 having a V-shaped cross section in a portion of the metal lid 20 that is not in contact with the high temperature side insulating plate 7, the metal lid 20 and the metal frame 21 connected to the metal lid 20 are generated. Thermal expansion and thermal deformation can be absorbed.

なお、上記熱膨張吸収手段35の断面形状は、図4および図6(c)に示すV字形断面を有するものの他に、図6(b)に示すように円弧状断面を有するものやそれを多段に形成したもの、または図6(d)に示すようにV字形断面を2段以上に多段に形成したものを採用することが可能であり、いずれも構成部材の熱膨張および熱変形を効果的に吸収できる。   In addition to the V-shaped cross section shown in FIG. 4 and FIG. 6 (c), the cross section of the thermal expansion absorbing means 35 has an arc cross section as shown in FIG. It is possible to adopt a multi-stage or a V-shaped cross section formed in two or more stages as shown in FIG. 6 (d), both of which are effective for thermal expansion and thermal deformation of the constituent members. Can be absorbed.

(実施例4)
図5に、熱−電気直接変換装置の金属蓋20から金属枠21を経由して低温側基板22に至る熱伝達経路を長くする手段を備えることにより金属枠21における熱通過量を抑止し、金属枠21を設けたことによる熱−電気直接半導体対の熱通過量の低下を抑止し、熱電変換性能を向上させた熱−電気直接変換装置の一実施例を示す。
Example 4
In FIG. 5, the amount of heat passing through the metal frame 21 is suppressed by providing means for extending the heat transfer path from the metal lid 20 of the thermo-electric direct conversion device to the low temperature side substrate 22 via the metal frame 21, An embodiment of a thermo-electric direct conversion device that suppresses a decrease in the amount of heat passing through the thermo-electric direct semiconductor pair due to the provision of the metal frame 21 and improves the thermoelectric conversion performance will be described.

すなわち、図5に示す本実施例に係る熱−電気直接変換装置は、前記実施例1の構成に加えて、さらに前記金属蓋20から金属枠21を経由して低温側基板に至る熱伝達経路を長くするフランジ機構36を上記金属蓋20および金属枠21の少なくとも一方に配設して構成される。   In other words, in addition to the configuration of the first embodiment, the heat-electric direct conversion device according to the present embodiment shown in FIG. 5 further includes a heat transfer path from the metal lid 20 to the low temperature side substrate via the metal frame 21. A flange mechanism 36 for increasing the length of the metal cover 20 is provided on at least one of the metal lid 20 and the metal frame 21.

上記図5に示す実施例に係る熱−電気直接変換装置では、熱伝達経路を長くとる手段として、金属蓋20から金属枠21を経由して低温側基板22に至る熱伝達経路の途中にフランジ機構36を設けた場合の例である。本実施例では、金属蓋20の外周縁から外方に延出するフランジ36aと金属枠21の上端から外方に延出するフランジ36bとを組み合わせてフランジ機構36としている。そして、金属枠21に設けたフランジ36bと、金属蓋20に設けたフランジ36aとをシール溶接し接合部位をフランジの外周側とすることにより、金属蓋20と金属枠21の間の熱伝達経路長をフランジの距離(幅)に相当する分だけ増加させている。   In the thermal-electrical direct conversion device according to the embodiment shown in FIG. 5, as means for taking a long heat transfer path, a flange is provided in the middle of the heat transfer path from the metal lid 20 to the low temperature side substrate 22 via the metal frame 21. This is an example where a mechanism 36 is provided. In this embodiment, a flange mechanism 36 is formed by combining a flange 36 a extending outward from the outer peripheral edge of the metal lid 20 and a flange 36 b extending outward from the upper end of the metal frame 21. Then, the flange 36b provided on the metal frame 21 and the flange 36a provided on the metal lid 20 are sealed and welded so that the joining portion is on the outer peripheral side of the flange, whereby the heat transfer path between the metal lid 20 and the metal frame 21 is achieved. The length is increased by an amount corresponding to the distance (width) of the flange.

この構造を用いることにより、金属蓋20から金属枠21を経由して低温側基板22に至る熱伝達経路長が長くなり、伝熱抵抗が増加して熱が伝播しにくくなる一方、金属蓋20から高温側絶縁板7と高温側電極5と熱−電気直接半導体対4と低温側電極6を経由して低温側基板22に至る熱伝達経路の熱通過量を相対的に増加させることができ、熱−電気直接変換装置における熱電変換性能を向上させることができる。   By using this structure, the heat transfer path length from the metal lid 20 to the low temperature side substrate 22 via the metal frame 21 is increased, and the heat transfer resistance is increased to make it difficult for heat to propagate. The amount of heat passing through the heat transfer path from the high temperature side insulating plate 7, the high temperature side electrode 5, the thermoelectric direct semiconductor pair 4 and the low temperature side electrode 6 to the low temperature side substrate 22 can be relatively increased. The thermoelectric conversion performance in the direct thermo-electric converter can be improved.

なお、上記熱伝達経路を長く確保する他の手段として、金属蓋20の周縁部の形状を図6(b)に示すように円弧状にした構造、その円弧状の経路を多段にした構造、図6(c)に示すようにV字形断面を有する経路構造、図6(d)に示すようにV字形断面を有する経路を多段に形成した構造を採用することにより熱伝達経路を長くとることも可能である。   In addition, as another means for ensuring the heat transfer path long, a structure in which the shape of the peripheral edge of the metal lid 20 is arcuate as shown in FIG. 6B, a structure in which the arcuate path is multi-staged, By adopting a path structure having a V-shaped cross section as shown in FIG. 6C and a structure in which a path having a V-shaped cross section is formed in multiple stages as shown in FIG. 6D, the heat transfer path is made longer. Is also possible.

また、熱伝達経路を長く確保するその他の手段として、金属枠21を図8(a)に示すように断面がV字状に屈折した屈曲部を形成した金属枠21を採用しても良い。また、図8(b)に示すように、断面がV字状に屈折した屈曲部を2段以上に多段に形成した金属枠21を採用しても良い。さらに、図8(c)に示すように、円弧状の断面を有する屈曲部を設けた金属枠21を採用しても良い。また、図8(d)に示すように、円弧状の断面を有する屈曲部を2段以上に多段に形成した金属枠21を採用しても良い。さらに、図8(e)に示すようにS字状の断面を有する屈曲部を設けた金属枠21を採用しても良い。上記いずれの場合においても、熱伝達経路を長く確保することが可能である。   Further, as another means for ensuring a long heat transfer path, a metal frame 21 having a bent portion whose section is bent in a V shape as shown in FIG. Further, as shown in FIG. 8B, a metal frame 21 in which a bent portion whose section is refracted into a V-shape is formed in two or more stages may be adopted. Furthermore, as shown in FIG. 8C, a metal frame 21 provided with a bent portion having an arc-shaped cross section may be employed. Further, as shown in FIG. 8D, a metal frame 21 in which bent portions having an arcuate cross section are formed in two or more stages may be employed. Furthermore, a metal frame 21 provided with a bent portion having an S-shaped cross section as shown in FIG. In either case, it is possible to ensure a long heat transfer path.

(実施例5)
図7に、金属枠21における通過熱量を少なくするために、金属枠21の横断面における四隅部を曲面状に形成して断面積を低減した熱−電気直接変換装置の一実施例を示す。
(Example 5)
FIG. 7 shows an embodiment of a direct heat-electric conversion device in which the cross-sectional area is reduced by forming the four corners of the cross section of the metal frame 21 into a curved surface in order to reduce the amount of heat passing through the metal frame 21.

すなわち、図7に示す本実施例に係る熱−電気直接変換装置は、前記実施例1の構成に加えて、さらに前記金属枠21の外周面の少なくとも一部が曲面状に形成されていることを特徴とする。   That is, in the thermo-electric direct conversion device according to the present embodiment shown in FIG. 7, in addition to the configuration of the first embodiment, at least a part of the outer peripheral surface of the metal frame 21 is formed in a curved shape. It is characterized by.

本実施例に係る熱−電気直接変換装置においては、図7(a)に示すように、金属蓋20と金属枠21と低温側基板22とが一体的に接合されて気密筐体30が形成されている。しかしながら、金属枠21の断面形状については図7(b)左側に示すように従来一般的な矩形断面を有する金属枠21の状態から、同図右側に示すように4つの隅部に曲面加工(R加工)を施した金属枠21を使用している。   In the thermal-electrical direct conversion device according to the present embodiment, as shown in FIG. 7A, the metal lid 20, the metal frame 21, and the low-temperature side substrate 22 are integrally joined to form an airtight casing 30. Has been. However, with respect to the cross-sectional shape of the metal frame 21, from the state of the metal frame 21 having a conventional general rectangular cross section as shown on the left side of FIG. The metal frame 21 subjected to (R processing) is used.

本実施例に係る熱−電気直接変換装置によれば、曲面部がない矩形断面を有する従来の金属枠と比較して金属枠21の断面積を小さくすることができ、金属枠21における熱通過量を減少させることが可能となるので、金属蓋20から高温側絶縁板7と高温側電極5と熱−電気直接半導体対4と低温側電極6とを経由して低温側基板22に至る熱通過量を相対的に増加させることができ、熱−電気直接変換装置における熱電変換性能を向上させることができる。   According to the direct thermal-electric conversion device according to the present embodiment, the cross-sectional area of the metal frame 21 can be reduced as compared with a conventional metal frame having a rectangular cross section without a curved surface portion, and heat passing through the metal frame 21 is achieved. Since the amount can be reduced, heat from the metal lid 20 to the low temperature side substrate 22 via the high temperature side insulating plate 7, the high temperature side electrode 5, the thermoelectric direct semiconductor pair 4 and the low temperature side electrode 6. The amount of passage can be increased relatively, and the thermoelectric conversion performance in the thermo-electric direct conversion device can be improved.

金属枠21の横断面の断面積を低減する他の手段として、横断面における4つの隅部に面取り加工を実施することも可能である。また、一定の曲率を有する曲面ではなく、曲率が連続的に変化する曲面を有するように加工することによって金属枠21の断面積を低減しても良い。   As another means for reducing the cross-sectional area of the cross section of the metal frame 21, it is possible to perform chamfering at four corners in the cross section. Moreover, you may reduce the cross-sectional area of the metal frame 21 by processing so that it may have the curved surface which a curvature changes continuously instead of the curved surface which has a fixed curvature.

(実施例6)
次に、熱−電気直接変換装置の金属枠21の熱膨張を吸収する手段を備え、金属蓋20および金属枠21に発生する熱応力を緩和する機構を設けた熱−電気直接変換装置の一実施例を図8に示す。
(Example 6)
Next, there is provided a means for absorbing thermal expansion of the metal frame 21 of the thermal-electrical direct conversion device, and one of the thermal-electrical direct conversion devices provided with a mechanism for relaxing the thermal stress generated in the metal lid 20 and the metal frame 21. An embodiment is shown in FIG.

すなわち、図8に示す本実施例に係る熱−電気直接変換装置は、前記実施例1の構成に加えて、さらに前記金属枠21の高さ方向に金属枠21の熱膨張を吸収する熱膨張吸収手段37を備えていることを特徴とする。   That is, in the thermal-electrical direct conversion device according to the present embodiment shown in FIG. 8, in addition to the configuration of the first embodiment, the thermal expansion further absorbs the thermal expansion of the metal frame 21 in the height direction of the metal frame 21. The absorption means 37 is provided.

本実施例では、金属蓋20ならびに金属蓋20に接続されている金属枠21に発生する熱応力を緩和するために、図8(a)に示すように金属枠21に断面がV字状の屈曲部を設け熱膨張吸収手段37としている。この断面がV字状の屈曲部を有する熱膨張吸収手段37により、金属蓋20ならびに金属蓋20に接続されている金属枠21に発生する熱膨張および熱変形が容易に吸収される。上記熱膨張吸収手段37の断面形状は、図8(b)に示すようにV字状の屈曲部を二段以上に多段に設けた構造としてもよい。また、図8(c)に示すように円弧状の屈曲部を設けた構造とすることもできる。さらに、図8(d)および図8(e)に示すように円弧状の屈曲部を多段に設けた構造としても良い。   In this embodiment, in order to relieve the thermal stress generated in the metal lid 20 and the metal frame 21 connected to the metal lid 20, the metal frame 21 has a V-shaped cross section as shown in FIG. A bent portion is provided as the thermal expansion absorbing means 37. The thermal expansion absorbing means 37 having a bent portion having a V-shaped cross section easily absorbs thermal expansion and thermal deformation generated in the metal lid 20 and the metal frame 21 connected to the metal lid 20. The cross-sectional shape of the thermal expansion absorbing means 37 may be a structure in which V-shaped bent portions are provided in two or more stages as shown in FIG. Moreover, as shown in FIG.8 (c), it can also be set as the structure which provided the circular-arc-shaped bending part. Furthermore, as shown in FIG. 8D and FIG. 8E, arc-shaped bent portions may be provided in multiple stages.

さらに、実施例2に示す通過熱量低減機構、実施例3に示す応力緩和機構、実施例4に示すフランジ機構、さらには実施例5に示す金属枠形状と適宜組み合わせて熱膨張吸収手段を構成することも可能である。   Further, the thermal expansion absorbing means is configured by appropriately combining with the passing heat amount reducing mechanism shown in Example 2, the stress relaxation mechanism shown in Example 3, the flange mechanism shown in Example 4, and the metal frame shape shown in Example 5. It is also possible.

(実施例7)
金属蓋20と金属枠21との接合構造例および金属枠21と低温側基板22との接合構造例を図9に示す。図9(a)は、金属蓋20と金属枠21とを溶接により接合した状態を示す一方、図9(b)は金属蓋20と金属枠21とを一体成形した実施例を示している。一方、金属枠21と低温側基板22とは、低温基板−金属枠接合部25を介して接合される。接合操作は、溶接、ハンダ付け、もしくはロウ付け、拡散接合、あるいは接着剤による接合方法で実施される。
(Example 7)
An example of a joining structure between the metal lid 20 and the metal frame 21 and an example of a joining structure between the metal frame 21 and the low temperature side substrate 22 are shown in FIG. FIG. 9A shows a state in which the metal lid 20 and the metal frame 21 are joined by welding, while FIG. 9B shows an embodiment in which the metal lid 20 and the metal frame 21 are integrally formed. On the other hand, the metal frame 21 and the low temperature side substrate 22 are bonded via a low temperature substrate-metal frame bonding portion 25. The joining operation is performed by welding, soldering or brazing, diffusion joining, or a joining method using an adhesive.

上記接合方法によれば、接合操作が簡略な上に十分な接合強度が得られる。特に、金属蓋と金属枠とを一体に成形することにより、装置部品点数が減少し装置の組立てが容易になる。   According to the above joining method, the joining operation is simple and sufficient joining strength can be obtained. In particular, by integrally molding the metal lid and the metal frame, the number of device parts is reduced and the device can be easily assembled.

実施例1に係る熱−電気直接変換装置の構成を示し、(a)は装置の外観を示す斜視図であり、(b)は図1(a)におけるB−B矢視断面図。The structure of the thermoelectric direct conversion apparatus which concerns on Example 1 is shown, (a) is a perspective view which shows the external appearance of an apparatus, (b) is BB arrow sectional drawing in Fig.1 (a). 従来の熱−電気直接変換装置の構成例を示す斜視図および要部を拡大して示す模式図。The perspective view which shows the structural example of the conventional thermoelectric direct conversion apparatus, and the schematic diagram which expands and shows the principal part. 実施例2に係る熱−電気直接変換装置の要部の断面図。Sectional drawing of the principal part of the thermoelectric direct conversion apparatus which concerns on Example 2. FIG. 実施例3に係る熱−電気直接変換装置の要部の断面図。Sectional drawing of the principal part of the thermoelectric direct conversion apparatus which concerns on Example 3. FIG. 実施例4に係る熱−電気直接変換装置の要部の断面図。Sectional drawing of the principal part of the thermoelectric direct conversion apparatus which concerns on Example 4. FIG. 実施例5に係る熱−電気直接変換装置の要部の断面図であり、(a)は段差状の経路を設けた構成例を示し、(b)は円弧状の経路を設けた構成例を示し、(c)は曲折部を設けた構成例を示し、(d)は曲折部を多段に設けた構成例を示す断面図。It is sectional drawing of the principal part of the thermoelectric direct conversion apparatus which concerns on Example 5, (a) shows the structural example which provided the step-shaped path | route, (b) showed the structural example which provided the circular arc-shaped path | route. (C) shows the example of composition which provided the bent part, and (d) is a sectional view showing the example of composition which provided the bent part in multiple stages. 実施例6に係る熱−電気直接変換装置を示し、(a)は装置の外観を示す斜視図であり、(b)は金属枠の断面形状を示す平断面図。The thermal-electrical direct conversion apparatus which concerns on Example 6 is shown, (a) is a perspective view which shows the external appearance of an apparatus, (b) is a plane sectional view which shows the cross-sectional shape of a metal frame. 実施例7に係る熱−電気直接変換装置の要部の断面図であり、(a)はV字状断面を有する曲折部を熱膨張吸収手段として金属枠に形成した構成例を示し、(b)は曲折部を多段に形成した熱膨張吸収手段を金属枠に形成した構成例を示し、(c)は円弧状の断面を有する曲折部を熱膨張吸収手段として金属枠に形成した構成例を示し、(d)は円弧状の断面を有する曲折部を2段に形成して熱膨張吸収手段とした構成例を示し、(e)は円弧状の断面を有する曲折部をS字状に結合して熱膨張吸収手段とした構成例を示断面図。It is sectional drawing of the principal part of the thermoelectric direct conversion apparatus which concerns on Example 7, (a) shows the structural example which formed the bending part which has a V-shaped cross section in the metal frame as a thermal expansion absorption means, (b ) Shows a configuration example in which a thermal expansion absorbing means having multiple bent portions formed on a metal frame is formed on the metal frame, and (c) shows a configuration example in which a bent portion having an arc-shaped cross section is formed on the metal frame as a thermal expansion absorbing means. (D) shows a configuration example in which a bent portion having an arc-shaped cross section is formed in two steps to form a thermal expansion absorbing means, and (e) shows a bent portion having an arc-shaped cross section coupled in an S shape. FIG. 5 is a cross-sectional view showing a configuration example of a thermal expansion absorbing unit. 実施例8に係る熱−電気直接変換装置の要部を示す断面図であり、(a)は、金属蓋20と金属枠21とを溶接により接合した状態を示す断面図であり、(b)は金属蓋20と金属枠21とを一体成形した実施例を示す断面図。It is sectional drawing which shows the principal part of the thermoelectric direct conversion apparatus which concerns on Example 8, (a) is sectional drawing which shows the state which joined the metal lid | cover 20 and the metal frame 21 by welding, (b). FIG. 3 is a cross-sectional view showing an embodiment in which a metal lid 20 and a metal frame 21 are integrally formed.

符号の説明Explanation of symbols

1、1a 熱−電気直接変換装置
2 p型熱−電気直接変換半導体チップ
3 n型熱−電気直接変換半導体チップ
4 熱−電気直接変換半導体対
5 高温側電極
6 低温側電極
7 高温側絶縁板(高温側基板)
8 低温側絶縁板(低温側基板)
9 電極−電流取出手段との取合手段
10 電流取出手段
11 高温側電極−半導体チップ接合部
12 低温側電極−半導体チップ接合部
13 高温側電極に供給される熱流
14 半導体チップを通過する熱流
15 低温側電極から放出される熱流
16 正孔
17 電子
18 電流の流れ
19 電気的負荷
20 金属蓋
21 金属枠
22 低温側基板
23 低温側電極−低温側絶縁板接合部
24 低温側系統への熱放出部
25 低温基板−金属枠接合部
26 電流取出部絶縁手段
30 気密筐体
31 段差状経路
32 円弧状経路
33 曲折部
34 多段曲折部
35 熱膨張吸収手段
36 フランジ機構
36a、36b フランジ
37 熱膨張吸収手段
DESCRIPTION OF SYMBOLS 1, 1a Thermal-electrical direct conversion apparatus 2 P-type thermal-electrical direct conversion semiconductor chip 3 N-type thermal-electrical direct conversion semiconductor chip 4 Thermal-electrical direct conversion semiconductor pair 5 High temperature side electrode 6 Low temperature side electrode 7 High temperature side insulating plate (High temperature side substrate)
8 Low temperature side insulating plate (low temperature side substrate)
9 Electrode-Means with Current Extraction Means 10 Current Extraction Means 11 High Temperature Side Electrode-Semiconductor Chip Junction 12 Low Temperature Side Electrode-Semiconductor Chip Junction 13 Heat Flow 14 Supplyed to High Temperature Side Electrode 14 Heat Flow 15 Passing through Semiconductor Chip Heat flow emitted from the low temperature side electrode 16 Hole 17 Electron 18 Current flow 19 Electrical load 20 Metal lid 21 Metal frame 22 Low temperature side substrate 23 Low temperature side electrode-low temperature side insulating plate junction 24 Heat release to the low temperature side system Part 25 low temperature substrate-metal frame joint part 26 current extraction part insulation means 30 airtight housing 31 stepped path 32 arcuate path 33 bent part 34 multi-stage bent part 35 thermal expansion absorbing means 36 flange mechanisms 36a, 36b flange 37 thermal expansion absorption means

Claims (15)

熱エネルギを電気エネルギに、あるいは電気エネルギを熱エネルギに直接変換する熱−電気直接変換半導体と、その熱−電気直接変換半導体を外気から遮断する気密筐体とを備えて構成され、上記気密筐体は上記熱−電気直接変換半導体の高温側端部に接合される高温側基板を覆う金属蓋と、上記熱−電気直接変換半導体の周囲を取り囲む金属枠と、電流を気密筐体外部に取出す手段を具備し、熱−電気直接変換半導体の低温側端部に接合される低温側基板とから構成されており、上記気密筐体内部は真空もしくは不活性ガス雰囲気に調整されていることを特徴とする熱−電気直接変換装置。 A heat-electric direct conversion semiconductor that directly converts thermal energy into electrical energy or electric energy into thermal energy, and an airtight housing that blocks the heat-electrical direct conversion semiconductor from outside air. The body takes out a metal lid that covers the high-temperature side substrate joined to the high-temperature side end of the thermo-electric direct conversion semiconductor, a metal frame that surrounds the thermo-electric direct conversion semiconductor, and current out of the hermetic casing. And a low-temperature side substrate bonded to the low-temperature side end of the thermoelectric direct conversion semiconductor, and the inside of the hermetic casing is adjusted to a vacuum or an inert gas atmosphere. A direct heat-electric conversion device. 前記金属蓋は、少なくとも前記気密筐体に内蔵されている高温側基板と接触する部分が周縁部分より高く入熱方向に突出するように形成されていることを特徴とする請求項1記載の熱−電気直接変換装置。 2. The heat according to claim 1, wherein the metal lid is formed such that at least a portion in contact with a high temperature side substrate built in the hermetic casing is higher than a peripheral portion and protrudes in a heat input direction. -Electric direct conversion device. 前記金属蓋のうち、前記気密筐体に内蔵されている高温側基板と接触していない部分に、金属蓋自体およびそれに接続されている金属枠の熱膨張を吸収する熱膨張吸収手段を備えていることを特徴とする請求項1または請求項2記載の熱−電気直接変換装置。 Of the metal lid, a thermal expansion absorbing means for absorbing thermal expansion of the metal lid itself and a metal frame connected to the metal lid itself is provided in a portion not in contact with the high temperature side substrate built in the hermetic casing. The thermal-electrical direct conversion device according to claim 1 or 2, wherein the thermal-electrical direct conversion device is provided. 前記金属蓋から金属枠を経由して低温側基板へ至る熱伝達経路を長くするフランジ機構を上記金属蓋および金属枠の少なくとも一方に配設したことを特徴とする請求項1乃至請求項3のいずれかに記載の熱−電気直接変換装置。 4. A flange mechanism for elongating a heat transfer path from the metal lid to a low temperature side substrate through a metal frame is disposed on at least one of the metal lid and the metal frame. The thermal-electrical direct conversion apparatus in any one. 前記金属枠の外周面の少なくとも一部が曲面状に形成されていることを特徴とする請求項1乃至請求項4のいずれかに記載の熱−電気直接変換装置。 5. The direct thermoelectric conversion device according to claim 1, wherein at least a part of an outer peripheral surface of the metal frame is formed in a curved shape. 前記金属枠の高さ方向に金属枠の熱膨張を吸収する熱膨張吸収手段を備えていることを特徴とする請求項1乃至請求項5のいずれかに記載の熱−電気直接変換装置。 6. The thermal-electrical direct conversion device according to claim 1, further comprising thermal expansion absorption means for absorbing thermal expansion of the metal frame in a height direction of the metal frame. 前記金属蓋と金属枠とは溶接されているか、あるいは一体に成形されている一方、前記低温側基板と前記金属枠とは溶接、ハンダ付け、もしくはロウ付け、拡散接合、あるいは接着剤により接合されていることを特徴とする請求項1乃至請求項6のいずれかに記載の熱−電気直接変換装置。 The metal lid and the metal frame are welded or integrally formed, while the low-temperature side substrate and the metal frame are bonded by welding, soldering, brazing, diffusion bonding, or an adhesive. The thermal-electrical direct conversion device according to any one of claims 1 to 6, wherein the thermal-electrical direct conversion device is provided. 前記不活性ガス雰囲気は、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンから選択される少なくとも1種の気体から成ることを特徴とする請求項1乃至請求項7のいずれかに記載の熱−電気直接変換装置。 The thermo-electricity according to any one of claims 1 to 7, wherein the inert gas atmosphere comprises at least one gas selected from nitrogen, helium, neon, argon, krypton, and xenon. Direct conversion device. 前記不活性ガス雰囲気の圧力は、常温で外気圧より低く設定されていることを特徴とする請求項1乃至請求項8のいずれかに記載の熱−電気直接変換装置。 9. The direct thermoelectric conversion device according to claim 1, wherein a pressure of the inert gas atmosphere is set to be lower than an external pressure at normal temperature. 前記金属蓋および金属枠は熱−電気直接変換装置の高温側温度に耐えられる耐熱金属もしくは耐熱合金から構成されていることを特徴とする請求項1乃至請求項9のいずれかに記載の熱−電気直接変換装置。 10. The heat-of any one of claims 1 to 9, wherein the metal lid and the metal frame are made of a heat-resistant metal or heat-resistant alloy that can withstand a high temperature side temperature of a heat-electrical direct conversion device. Electric direct conversion device. 前記耐熱合金は、ニッケルもしくはニッケル基合金、炭素鋼、ステンレス鋼から選択される鉄基合金、クロムを含む鉄基合金、シリコンを含む鉄基合金、コバルトを含有する合金、銅を含有する合金のいずれかであることを特徴とする請求項10記載の熱−電気直接変換装置。 The heat-resistant alloy is an iron-based alloy selected from nickel or a nickel-based alloy, carbon steel, and stainless steel, an iron-based alloy containing chromium, an iron-based alloy containing silicon, an alloy containing cobalt, and an alloy containing copper. The direct thermal-electric conversion device according to claim 10, which is any one of the above. 前記低温側基板はセラミック板と、このセラミック板の少なくとも一方の表面に接合された金属板とから成り、この金属板は銅、銀、アルミニウム、錫、鉄基合金、ニッケル、ニッケル基合金、チタン、チタン基合金から選択される少なくとも1種から成ることを特徴とする請求項1乃至請求項11のいずれかに記載の熱−電気直接変換装置。 The low-temperature side substrate comprises a ceramic plate and a metal plate bonded to at least one surface of the ceramic plate. The metal plate is copper, silver, aluminum, tin, iron-base alloy, nickel, nickel-base alloy, titanium. The thermal-electrical direct conversion device according to any one of claims 1 to 11, wherein the thermal-electric direct conversion device comprises at least one selected from titanium-based alloys. 前記低温側基板に使用されているセラミック板は、アルミナもしくはアルミナを含有するセラミック、アルミナ粉末を分散含有する金属、窒化珪素もしくは窒化珪素を含有するセラミック、窒化アルミニウムもしくは窒化アルミニウムを含有するセラミック、ジルコニアもしくはジルコニアを含有するセラミック、イットリアもしくはイットリアを含有するセラミック、シリカあるいはシリカを含有するセラミック、ベリリアもしくはベリリアを含有するセラミックから選択される少なくとも1種から成ることを特徴とする請求項12記載の熱−電気直接変換装置。 The ceramic plate used for the low temperature side substrate is alumina or a ceramic containing alumina, a metal containing alumina powder dispersedly, a ceramic containing silicon nitride or silicon nitride, a ceramic containing aluminum nitride or aluminum nitride, zirconia 13. The heat according to claim 12, comprising at least one selected from zirconia-containing ceramics, yttria or yttria-containing ceramics, silica or silica-containing ceramics, beryllia or beryllia-containing ceramics. -Electric direct conversion device. 前記熱−電気直接変換半導体はp型の半導体とn型の半導体とから成り、これら半導体は、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、コバルト、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウム、マグネシウムから選択される少なくとも3種の元素から構成される熱−電気直接変換半導体であることを特徴とする請求項1乃至請求項13のいずれかに記載の熱−電気直接変換装置。 The thermal-electrical direct conversion semiconductor comprises a p-type semiconductor and an n-type semiconductor, and these semiconductors are rare earth elements, actinoids, cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, titanium, zirconium, Thermo-electric direct composed of at least three elements selected from hafnium, nickel, tin, cobalt, silicon, manganese, zinc, boron, carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium, magnesium The thermal-electrical direct conversion device according to any one of claims 1 to 13, wherein the thermal-electrical direct conversion device is a conversion semiconductor. 前記p型もしくはn型の熱−電気直接変換半導体の結晶構造がスクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造、クラスレート構造のうちのいずれかであることを特徴とする請求項14記載の熱−電気直接変換装置。

The crystal structure of the p-type or n-type direct thermal-electric conversion semiconductor is any one of a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, and a clathrate structure. The thermal-electrical direct conversion apparatus of Claim 14.

JP2004210516A 2004-07-16 2004-07-16 Direct heat-electric converter Expired - Fee Related JP4528571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210516A JP4528571B2 (en) 2004-07-16 2004-07-16 Direct heat-electric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210516A JP4528571B2 (en) 2004-07-16 2004-07-16 Direct heat-electric converter

Publications (2)

Publication Number Publication Date
JP2006032723A true JP2006032723A (en) 2006-02-02
JP4528571B2 JP4528571B2 (en) 2010-08-18

Family

ID=35898689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210516A Expired - Fee Related JP4528571B2 (en) 2004-07-16 2004-07-16 Direct heat-electric converter

Country Status (1)

Country Link
JP (1) JP4528571B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266102A (en) * 2006-03-27 2007-10-11 Toshiba Corp Thermoelectric conversion module
JP2009246193A (en) * 2008-03-31 2009-10-22 Komatsu Ltd Thermoelectric module
JP2011109837A (en) * 2009-11-18 2011-06-02 Toshiba Corp Thermoelectric generator
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
WO2012056411A1 (en) 2010-10-27 2012-05-03 Basf Se Thermoelectric module and process for production thereof
WO2016041690A1 (en) * 2014-09-18 2016-03-24 Mahle International Gmbh Thermoelectric device, especially thermoelectric generator, for a motor vehicle
WO2016159591A1 (en) * 2015-03-27 2016-10-06 엘지이노텍 주식회사 Thermoelectric element, thermoelectric module and heat conversion apparatus comprising same
CN112802954A (en) * 2019-11-13 2021-05-14 银河制版印刷有限公司 Thermoelectric power generation device and manufacturing method thereof
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components
US11469361B2 (en) 2017-12-07 2022-10-11 Lg Innotek Co., Ltd. Thermoelectric module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4118988Y1 (en) * 1966-02-03 1966-09-05
JPH08321635A (en) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd Peltier module
JPH08321637A (en) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd Peltier module
JPH11257789A (en) * 1998-03-10 1999-09-24 Hitachi Ltd Thermoelectric cooler and structure using it
JPH11287876A (en) * 1998-04-02 1999-10-19 Seiko Instruments Inc Electronic watch
JPH11330568A (en) * 1998-05-12 1999-11-30 Nissan Motor Co Ltd Thermoelectric power generation device and its manufacture
JP2002289929A (en) * 2001-03-26 2002-10-04 Toshiba Corp Thermoelectric conversion module and heat exchanger using the same
JP2003142739A (en) * 2001-11-02 2003-05-16 Yamaha Corp Thermoelectric device
JP2004119647A (en) * 2002-09-26 2004-04-15 Toshiba Corp Thermoelectric conversion material and thermoelectric conversion element using it
JP2004172481A (en) * 2002-11-21 2004-06-17 Toshiba Corp Thermoelectric conversion unit
JP2006049872A (en) * 2004-07-06 2006-02-16 Central Res Inst Of Electric Power Ind Thermoelectric conversion module

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4118988Y1 (en) * 1966-02-03 1966-09-05
JPH08321635A (en) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd Peltier module
JPH08321637A (en) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd Peltier module
JPH11257789A (en) * 1998-03-10 1999-09-24 Hitachi Ltd Thermoelectric cooler and structure using it
JPH11287876A (en) * 1998-04-02 1999-10-19 Seiko Instruments Inc Electronic watch
JPH11330568A (en) * 1998-05-12 1999-11-30 Nissan Motor Co Ltd Thermoelectric power generation device and its manufacture
JP2002289929A (en) * 2001-03-26 2002-10-04 Toshiba Corp Thermoelectric conversion module and heat exchanger using the same
JP2003142739A (en) * 2001-11-02 2003-05-16 Yamaha Corp Thermoelectric device
JP2004119647A (en) * 2002-09-26 2004-04-15 Toshiba Corp Thermoelectric conversion material and thermoelectric conversion element using it
JP2004172481A (en) * 2002-11-21 2004-06-17 Toshiba Corp Thermoelectric conversion unit
JP2006049872A (en) * 2004-07-06 2006-02-16 Central Res Inst Of Electric Power Ind Thermoelectric conversion module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266102A (en) * 2006-03-27 2007-10-11 Toshiba Corp Thermoelectric conversion module
JP2009246193A (en) * 2008-03-31 2009-10-22 Komatsu Ltd Thermoelectric module
JP2011109837A (en) * 2009-11-18 2011-06-02 Toshiba Corp Thermoelectric generator
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
WO2012056411A1 (en) 2010-10-27 2012-05-03 Basf Se Thermoelectric module and process for production thereof
WO2016041690A1 (en) * 2014-09-18 2016-03-24 Mahle International Gmbh Thermoelectric device, especially thermoelectric generator, for a motor vehicle
WO2016159591A1 (en) * 2015-03-27 2016-10-06 엘지이노텍 주식회사 Thermoelectric element, thermoelectric module and heat conversion apparatus comprising same
US10340436B2 (en) 2015-03-27 2019-07-02 Lg Innotek Co., Ltd. Thermoelectric element, thermoelectric module, and heat conversion apparatus including the same
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components
US11469361B2 (en) 2017-12-07 2022-10-11 Lg Innotek Co., Ltd. Thermoelectric module
CN112802954A (en) * 2019-11-13 2021-05-14 银河制版印刷有限公司 Thermoelectric power generation device and manufacturing method thereof

Also Published As

Publication number Publication date
JP4528571B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4686171B2 (en) Thermal-electrical direct conversion device
US20080163916A1 (en) Thermoelectric conversion module and thermoelectric conversion apparatus
JP4901350B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP4528571B2 (en) Direct heat-electric converter
US20080023057A1 (en) Thermoelectric Conversion Module, and Thermoelectric Power Generating Device and Method, Exhaust Heat Recovery System, Solar Heat Utilization System, and Peltier Cooling and Heating System, Provided Therewith
JP4490765B2 (en) Direct heat-electric converter
JP5443947B2 (en) Thermoelectric generator
CN107706296B (en) Thermoelectric device with integrated packaging structure and preparation method thereof
JP5105718B2 (en) Thermal-electrical direct conversion device
US8648246B2 (en) Thermoelectric module and power generation apparatus
JP5498192B2 (en) Thermoelectric converter and thermoelectric conversion method
JP4969793B2 (en) Thermal-electrical direct conversion device
JP2003309294A (en) Thermoelectric module
JP2005277206A (en) Thermoelectric converter
JP5159264B2 (en) Thermoelectric device and thermoelectric module
JP2006049736A (en) Thermoelectric module
EP2660888A1 (en) Thermoelectric conversion member
JP2009081178A (en) Method of manufacturing thermoelectric conversion module
JP2008177356A (en) Thermoelectric power generation element
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
JP2014049713A (en) Thermoelectric conversion module and manufacturing method thereof
JP5049533B2 (en) Thermoelectric converter
JP5075707B2 (en) Thermoelectric device and thermoelectric module
JP2003304006A (en) Thermoelectric conversion module and heat exchanger using the same
JP5988827B2 (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4528571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees