JP2011109837A - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP2011109837A
JP2011109837A JP2009263390A JP2009263390A JP2011109837A JP 2011109837 A JP2011109837 A JP 2011109837A JP 2009263390 A JP2009263390 A JP 2009263390A JP 2009263390 A JP2009263390 A JP 2009263390A JP 2011109837 A JP2011109837 A JP 2011109837A
Authority
JP
Japan
Prior art keywords
medium flow
flow path
temperature medium
thermoelectric
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009263390A
Other languages
Japanese (ja)
Other versions
JP5443952B2 (en
Inventor
Hirotake Tajima
博丈 田嶋
Naruhito Kondo
成仁 近藤
Osamu Tsuneoka
治 常岡
Hiroya Mitsuishi
浩哉 三石
Kimiaki Nakano
公昭 中野
Tsutomu Wada
努 和田
Yasushi Yoshino
靖 吉野
Shiro Fujishima
史郎 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
T Rad Co Ltd
Original Assignee
Toshiba Corp
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, T Rad Co Ltd filed Critical Toshiba Corp
Priority to JP2009263390A priority Critical patent/JP5443952B2/en
Publication of JP2011109837A publication Critical patent/JP2011109837A/en
Application granted granted Critical
Publication of JP5443952B2 publication Critical patent/JP5443952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric generator which allows a number of thermoelectric modules to be pressed and fixed with few low temperature cooling medium blocks and fastening members and allows a number of thermoelectric modules to be easily fastened/held between high temperature medium channel tubes and cooling medium channel blocks at few fastening spots in a properly pressed condition. <P>SOLUTION: An even number of high temperature medium channels 14 are arranged radially relative to a high temperature medium flow direction. Thermoelectric modules 3 are arranged on both sides of the high temperature medium channels 14. Low temperature medium channels 15 are arranged such that the thermoelectric modules 3 are held between the low temperature medium channels and the high temperature medium channels 14 adjacent thereto. Fastening members are put through the low temperature medium channels 15 counter to each other in a direction crossing the high temperature medium flow direction to hold/fix the thermoelectric modules 3 between the high temperature medium channels 14 and the low temperature medium channels 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電変換素子を用いて温度差により熱エネルギを電気エネルギに変換する熱電発電装置に係り、特に熱源として流体を適用する熱電発電装置に関するものである。   The present invention relates to a thermoelectric power generation apparatus that converts thermal energy into electrical energy by a temperature difference using a thermoelectric conversion element, and more particularly to a thermoelectric power generation apparatus that applies a fluid as a heat source.

近年、人類のエネルギ消費量は、産業や科学技術の発達に伴い、歴史的に例を見ないほど加速された。その結果、CO等の温室効果ガスによる地球温暖化の問題が浮上している。温室効果ガスの発生をできるだけ抑制するために、現在ガス焼却炉や火力プラント等各種産業を始めとして、自動車等の内燃機関から未利用のまま廃棄されている高温の熱エネルギを、可能な限り電気エネルギとして回収する発電装置の製品化が期待されている。 In recent years, the energy consumption of mankind has accelerated unprecedentedly with the development of industry and science and technology. As a result, the problem of global warming due to greenhouse gases such as CO 2 has emerged. In order to suppress the generation of greenhouse gases as much as possible, the high-temperature heat energy that is currently discarded from internal combustion engines such as automobiles, as well as various industries such as gas incinerators and thermal power plants, is used as much as possible. The production of power generators that recover energy is expected.

熱エネルギを電気エネルギとして回収する発電装置として、熱電発電素子を用いた発電技術がよく知られている。この熱電発電素子は、金属あるいは半導体の両端に温度差を与え、高温部と低温部との間に電位差を生じさせるというゼーベック効果を利用したものであり、温度差が大きいほど発電量も大きくなるという特徴がある。通常、複数の熱電発電素子を組み込んだ熱電モジュールという形態で使用されることが多い。   A power generation technique using a thermoelectric power generation element is well known as a power generation apparatus that recovers thermal energy as electric energy. This thermoelectric power generation element utilizes the Seebeck effect that gives a temperature difference between both ends of a metal or a semiconductor and generates a potential difference between a high temperature part and a low temperature part. The larger the temperature difference, the larger the power generation amount. There is a feature. Usually, it is often used in the form of a thermoelectric module incorporating a plurality of thermoelectric power generation elements.

従来では、このような熱電モジュールを利用した熱電発電装置として、例えば、内燃機関の排気熱エネルギを電気エネルギに変換することを目的として、熱電モジュールをバンド等で締付けることにより押圧状態とし、熱電モジュールの高温の面と低温の面とに高温媒体流路と冷却媒体流路をそれぞれ接触させ、熱エネルギを電気エネルギに変換する構成としたものが種々提案されている(例えば、特許文献1参照)。   Conventionally, as a thermoelectric power generation apparatus using such a thermoelectric module, for example, for the purpose of converting exhaust heat energy of an internal combustion engine into electric energy, the thermoelectric module is brought into a pressed state by tightening with a band or the like, and the thermoelectric module Various configurations have been proposed in which a high-temperature medium flow path and a low-temperature surface are respectively brought into contact with a high-temperature surface and a low-temperature surface to convert thermal energy into electrical energy (see, for example, Patent Document 1). .

特開2007−6619号公報JP 2007-6619 A

上述した熱電発電装置を始めとして、従来提案されている熱電発電装置においては、熱源である高温流体を装置の中心部に備えた伝熱管に流通させ、その周囲から複数の熱電モジュールをバンド等で纏めて締付けることにより伝熱管表面に押圧状態で固定する構成に関するものがほとんどであり、熱電モジュール等の設置位置やバンドの締付け具合によっては、高温熱源と熱電モジュールと冷却媒体流路との接触面の面圧が不均一となり、性能に影響を及ぼすことが多かった。   In the conventionally proposed thermoelectric generators including the above-described thermoelectric generators, a high-temperature fluid as a heat source is circulated through a heat transfer tube provided at the center of the device, and a plurality of thermoelectric modules are banded from the periphery. Most of them are related to the structure that is fixed to the heat transfer tube surface in a pressed state by tightening them together. Depending on the installation position of the thermoelectric module and the band tightening condition, the contact surface between the high-temperature heat source, the thermoelectric module, and the cooling medium flow path In many cases, the surface pressure was uneven and the performance was affected.

また、熱電モジュールを伝熱管の周囲に配置させることにより、装置全体寸法に対する熱交換量、すなわち熱交換密度を大きくできないだけでなく、組立が容易でなく量産化に向かない等の問題点があった。   In addition, by disposing the thermoelectric module around the heat transfer tube, not only can the heat exchange amount relative to the overall dimensions of the device, that is, the heat exchange density, be increased, but also the assembly is not easy and not suitable for mass production. It was.

そのため、例えば自動車等の内燃機関の排気管への適用については設置場所の制限を受け、要求される出力を満足する十分な数の熱電モジュールを適正な性能を満足する状態で設置することが難しく、また製作費の低減も困難であった。   Therefore, for example, application to an exhaust pipe of an internal combustion engine such as an automobile is limited in installation location, and it is difficult to install a sufficient number of thermoelectric modules satisfying the required output in a state satisfying appropriate performance. Also, it was difficult to reduce production costs.

本発明はこのような記事情に鑑みてなされたものであり、熱電モジュールを適正な押圧状態で設置することで、熱エネルギから電気エネルギへの効率よい変換を実現し、軽量かつ高性能の発電機能を得ることができるとともに、構造健全性および取付け、メンテナンス等の作業性にも優れた熱電発電装置を提供することを目的とする。   The present invention has been made in view of such articles, and by installing the thermoelectric module in an appropriate pressing state, it realizes efficient conversion from heat energy to electric energy, and achieves light weight and high performance power generation. An object of the present invention is to provide a thermoelectric generator capable of obtaining functions and having excellent structural soundness and workability such as attachment and maintenance.

前記の目的を達成するため、本発明では、高温媒体と低温媒体との温度差による熱エネルギを電気エネルギに変換する熱電変換素子を組み込んだ熱電モジュールと、前記高温媒体の熱エネルギを回収して前記熱電モジュールを加熱する高温媒体流路と、この高温媒体流路と交差する配置とされて前記低温媒体により除熱し前記熱電モジュールを冷却する低温媒体流路とを備え、前記熱電モジュールが前記高温媒体流路と前記冷却媒体流路との間に挟持される配置とされた熱電発電装置において、高温媒体流路を高温媒体流れ方向に対して放射状に配置し、前記高温媒体流路の両面に熱電モジュールを配置し、隣接する高温媒体流路との間に熱電モジュールを挟み込むように低温媒体流路を設置し、高温媒体流れ方向に対して交差する方向で対向する冷却媒体流路に締結部材を通して、前記熱電モジュールを高温媒体流路と低温媒体流路で挟み込んで固定したことを特徴とする熱電発電装置を提供する。   In order to achieve the above object, in the present invention, a thermoelectric module incorporating a thermoelectric conversion element that converts thermal energy due to a temperature difference between a high temperature medium and a low temperature medium into electric energy, and recovering the thermal energy of the high temperature medium. A high-temperature medium flow path for heating the thermoelectric module; and a low-temperature medium flow path arranged to intersect with the high-temperature medium flow path to remove heat by the low-temperature medium and cool the thermoelectric module. In the thermoelectric power generation apparatus arranged to be sandwiched between the medium flow path and the cooling medium flow path, the high temperature medium flow path is arranged radially with respect to the high temperature medium flow direction, and is disposed on both surfaces of the high temperature medium flow path. Place the thermoelectric module, install the low temperature medium flow path so that the thermoelectric module is sandwiched between the adjacent high temperature medium flow paths, and pair in the direction intersecting the high temperature medium flow direction. Through fastening member to the cooling medium flow path to provide a thermoelectric generator, characterized in that fixed by sandwiching the thermoelectric module at a high temperature medium flow path and the low temperature medium passage.

上記構成において、望ましくは、偶数の扁平な高温媒体流路チューブを高温媒体流れ方向に対して放射状に配置し、その扁平な高温媒体流路チューブの両面に熱電モジュールを配置し、隣接する前記扁平な高温媒体流路チューブとの間に熱電モジュールを挟み込むように冷却媒体流路ブロックを設置し、高温媒体流れ方向に対して交差する方向で対向する2個一組の冷却媒体流路ブロックに締結部材を通して、均等かつ十分な面圧で熱電モジュールを扁平な高温媒体流路チューブと冷却媒体流路ブロックとで挟み込んで固定する構成とする。   In the above configuration, desirably, even flat hot medium flow tubes are arranged radially with respect to the hot medium flow direction, thermoelectric modules are arranged on both sides of the flat hot medium flow tubes, and the adjacent flat A cooling medium flow block is installed so that the thermoelectric module is sandwiched between the high temperature medium flow tube and fastened to a pair of cooling medium flow blocks facing each other in a direction intersecting the high temperature medium flow direction. The thermoelectric module is sandwiched and fixed between the flat high-temperature medium flow tube and the cooling medium flow block with a uniform and sufficient surface pressure through the member.

なお、本発明に係る熱電発電装置において、前記冷却媒体流路ブロックは、冷却媒体の流れ方向に直交する断面形状がL型もしくはV型であり、伝熱面から離れた伝熱への寄与の少ない部位を省き、かつL型もしくはV型の頂点に対向する部位に締結部材支持面を設けることが望ましい。   In the thermoelectric generator according to the present invention, the cooling medium flow path block has an L-shaped or V-shaped cross section perpendicular to the flow direction of the cooling medium, and contributes to heat transfer away from the heat transfer surface. It is desirable to omit the few parts and to provide the fastening member support surface at the part facing the apex of the L-type or V-type.

なお、本発明に係る熱電発電装置において、前記冷却媒体流路ブロックの媒体入口側および媒体出口側において、配置された冷却媒体流路ブロックの内周側中心部の少なくとも一方において接続部品を設置し、前記接続部品を介して各冷却媒体流路ブロックを配管接続し、前記接続部品によって各冷却媒体流路ブロックに低温媒体を分流または合流させることが望ましい。   In the thermoelectric power generation device according to the present invention, a connection component is installed on at least one of the inner peripheral side central portions of the arranged cooling medium channel blocks on the medium inlet side and the medium outlet side of the cooling medium channel block. It is desirable that each cooling medium flow path block is connected by piping through the connection parts, and the low temperature medium is divided or merged into each cooling medium flow path block by the connection parts.

また、本発明に係る熱電発電装置として、前記冷却媒体流路ブロックの媒体入口側および媒体出口側において、配置された冷却媒体流路ブロックの外周側の少なくとも一方において各冷却媒体流路ブロックを環状もしくはC型に配管接続し、前記環状もしくはC型の配管によって各冷却媒体流路ブロックに低温媒体を分流または合流させることが望ましい。   Further, as the thermoelectric power generator according to the present invention, each cooling medium flow path block is annularly formed on at least one of the outer peripheral sides of the arranged cooling medium flow path blocks on the medium inlet side and the medium outlet side of the cooling medium flow path block. Alternatively, it is desirable to connect a pipe to a C-type, and to divert or join a low-temperature medium to each cooling medium flow path block by the annular or C-type pipe.

さらに、本発明に係る熱電発電装置として、前記熱電モジュールは、モジュール内部空間がモジュール外部空間と遮断されるよう気密封止されており、前記内部空間の雰囲気は不活性ガスもしくは真空であることが望ましい。   Furthermore, as the thermoelectric generator according to the present invention, the thermoelectric module is hermetically sealed so that the module internal space is blocked from the module external space, and the atmosphere of the internal space is an inert gas or a vacuum. desirable.

各冷却媒体流路ブロックは2つの押圧面を有し、少ない数の低温冷却媒体ブロックおよび締結部材で多くの熱電モジュールを押圧し固定することができる。   Each cooling medium channel block has two pressing surfaces, and many thermoelectric modules can be pressed and fixed with a small number of low-temperature cooling medium blocks and fastening members.

また、冷却媒体流路ブロックは、高温媒体流れ方向に対して直交する方向(径方向)で対向する2個一組を対として構成され互いに締結部材で締結されるが、ある組の締結部材の締め付けにより、他の組の冷却媒体流路ブロックの押圧が低下することはない。   In addition, the cooling medium flow path block is configured as a pair of two opposing each other in a direction (radial direction) orthogonal to the high-temperature medium flow direction, and is fastened by a fastening member. The pressing of the other coolant channel blocks is not reduced by tightening.

これらの結果、少ない締結箇所で多くの熱電モジュールを簡便に高温媒体流路チューブと冷却媒体流路ブロックとの間に挟みこんで適正な押圧状態で設置することができる。   As a result, a large number of thermoelectric modules can be simply sandwiched between the high-temperature medium flow path tube and the cooling medium flow path block and installed in an appropriate pressed state with few fastening points.

冷却媒体流路ブロックの冷却媒体の流れ方向に直交する断面形状はL型もしくはV型であり、伝熱面から離れた伝熱への寄与の少ない部位を省き、かつL型もしくはV型の頂点に対向する部位に締結部材支持面を設けた結果、冷却媒体流路ブロックの重量を軽減することが可能になるとともに、締結部材を支持するための別体の構造物は不要となり、しかも配置された冷却媒体流路ブロックよりも外周側に締結部材が突出することがなくなり、熱電発電装置を小さくかつ軽くすることができる。   The cross-sectional shape perpendicular to the flow direction of the cooling medium in the cooling medium flow path block is L-shaped or V-shaped, omits a portion that contributes less to the heat transfer away from the heat transfer surface, and apex of the L-shaped or V-shaped As a result of providing the fastening member support surface at the portion facing the cooling medium, the weight of the cooling medium flow path block can be reduced, and a separate structure for supporting the fastening member is not required and is disposed. In addition, the fastening member does not protrude to the outer peripheral side of the cooling medium flow path block, and the thermoelectric generator can be made small and light.

前記接続部品もしくは、前記環状もしくはC型の配管によって各冷却媒体流路ブロックに低温媒体を分流または合流させることにより、冷却媒体流路ブロックへの外部冷却設備からの媒体導入配管および外部冷却設備への媒体排出配管の接続本数は入口側および出口側に各1本で十分となり、配管の接続作業性が向上するとともに、各冷却媒体流路ブロックの間の配管に要する空間を小さくすることができる。   By dividing or joining a low temperature medium to each cooling medium flow path block by the connecting part or the annular or C-shaped pipe, the medium introduction pipe from the external cooling equipment to the cooling medium flow path block and the external cooling equipment The number of connected medium discharge pipes is sufficient for each of the inlet side and the outlet side, so that the pipe connection workability is improved and the space required for the pipes between the respective cooling medium flow path blocks can be reduced. .

前記熱電モジュールは、気密封止されており、前記内部空間の雰囲気は不活性ガスもしくは真空であることから、高温大気中においても内蔵される前記熱電変換素子に対する酸化などによる劣化の影響が防止されるため、高温使用時においても、軽量かつ高性能の発電機能を得ることができるとともに、構造健全性を確保することができる。   The thermoelectric module is hermetically sealed, and the atmosphere of the internal space is an inert gas or a vacuum, so that the thermoelectric conversion element incorporated therein can be prevented from being deteriorated due to oxidation or the like even in a high temperature atmosphere. Therefore, even when used at a high temperature, a light-weight and high-performance power generation function can be obtained, and structural soundness can be ensured.

本発明の第1実施形態による熱電発電装置の全体構成を示す斜視図。The perspective view which shows the whole structure of the thermoelectric power generator by 1st Embodiment of this invention. 本発明の第1実施形態による熱電発電装置の分解図。1 is an exploded view of a thermoelectric generator according to a first embodiment of the present invention. 本発明の第1実施形態による熱電発電装置の高温媒体の流れに垂直な面で切断した断面図(図1のIII−III線断面図)。Sectional drawing cut | disconnected by the surface perpendicular | vertical to the flow of the high temperature medium of the thermoelectric generator by 1st Embodiment of this invention (III-III sectional view taken on the line of FIG. 1). 本発明の第2実施形態による熱電発電装置の全体構成を示す斜視図。The perspective view which shows the whole structure of the thermoelectric power generator by 2nd Embodiment of this invention. 本発明の第2実施形態による熱電発電装置の高温媒体の流れに垂直な面で切断した断面図(図4のV−V線断面図)。Sectional drawing cut | disconnected by the surface perpendicular | vertical to the flow of the high temperature medium of the thermoelectric generator by 2nd Embodiment of this invention (VV sectional view taken on the line of FIG. 4).

以下、本発明に係る熱電発電装置の実施形態について図面を参照して説明する。   Hereinafter, embodiments of a thermoelectric generator according to the present invention will be described with reference to the drawings.

なお、以下の実施形態においては、例えば自動車搭載用の熱電発電装置を一例として説明するが、自動車以外の各種移動機器等に適宜搭載して実施することができる。   In the following embodiment, for example, a thermoelectric generator for mounting on a car will be described as an example, but the present invention can be implemented by appropriately mounting on various mobile devices other than a car.

[第1実施形態(図1〜図3)]
図1は、本発明の第1実施形態に係る熱電発電装置の全体構成を示す斜視図である。
[First Embodiment (FIGS. 1 to 3)]
FIG. 1 is a perspective view showing an overall configuration of a thermoelectric generator according to a first embodiment of the present invention.

図1に示すように、本実施形態の熱電発電装置1は主に、図示省略の熱源からの高温媒体が流入する扁平な高温媒体流路チューブ2、扁平な高温媒体流路チューブ2に一方の面を当接して受熱する熱電モジュール3、および図示省略の外部冷却設備から供給される低温媒体を内部の低温媒体流路に流通させて熱電モジュール3の他方の面を冷却する冷却媒体流路ブロック4によって構成される。すなわち、本実施形態では熱電発電装置1の内周側中心部において、冷却媒体流路ブロック4を配管接続している。   As shown in FIG. 1, the thermoelectric generator 1 of the present embodiment mainly includes a flat high-temperature medium flow tube 2 into which a high-temperature medium from a heat source (not shown) flows and one flat high-temperature medium flow tube 2. A thermoelectric module 3 that receives heat by contacting the surface, and a cooling medium channel block that cools the other surface of the thermoelectric module 3 by circulating a low-temperature medium supplied from an external cooling facility (not shown) through the internal low-temperature medium channel 4 is constituted. That is, in the present embodiment, the cooling medium flow path block 4 is connected by piping in the center portion on the inner peripheral side of the thermoelectric generator 1.

図2は熱電発電装置の分解図であり、図3は熱電発電装置の高温媒体の流れに垂直な面で切断した断面図(図1のIII−III線断面図)である。   2 is an exploded view of the thermoelectric generator, and FIG. 3 is a cross-sectional view taken along a plane perpendicular to the flow of the high-temperature medium of the thermoelectric generator (cross-sectional view taken along the line III-III in FIG. 1).

図1、図2および図3に示すように、本実施形態の熱電発電装置1は主に、図示省略の熱源からの高温媒体が流入する扁平な高温媒体流路チューブ2、扁平な高温媒体流路チューブ2に一方の面を当接して受熱する熱電モジュール3、および図示省略の外部冷却設備から供給される低温媒体を内部に流通させて熱電モジュール3の他方の面を冷却する冷却媒体流路ブロック4によって構成される。冷却媒体ブロック4には、低温媒体流路15が形成されている。   As shown in FIGS. 1, 2, and 3, the thermoelectric generator 1 of the present embodiment mainly includes a flat high-temperature medium flow tube 2 into which a high-temperature medium from a heat source (not shown) flows, a flat high-temperature medium flow A thermoelectric module 3 that receives heat by abutting one surface of the path tube 2 and a cooling medium flow path that cools the other surface of the thermoelectric module 3 by circulating a low-temperature medium supplied from an external cooling facility (not shown) inside Configured by block 4. A low temperature medium flow path 15 is formed in the cooling medium block 4.

偶数の扁平形状のチューブから成る扁平な高温媒体流路チューブ2が高温媒体流れ方向に対して放射状に配置されている。   Flat high-temperature medium flow path tubes 2 made of an even number of flat-shaped tubes are arranged radially with respect to the high-temperature medium flow direction.

扁平な高温媒体流路チューブ2の両面に熱電モジュール3が配置され、隣接する扁平な高温媒体流路チューブ2との間に熱電モジュール3を挟み込むように冷却媒体流路ブロック4が設置されている。   Thermoelectric modules 3 are arranged on both sides of the flat high temperature medium flow tube 2, and the cooling medium flow block 4 is installed so as to sandwich the thermoelectric module 3 between the adjacent flat high temperature medium flow tubes 2. .

高温媒体流れ方向に対して交差する方向で対向する2体一組の冷却媒体流路ブロック4に締結部材5を通して、均等かつ十分な面圧で熱電モジュール3を扁平な高温媒体流路チューブ2と冷却媒体流路ブロック4で挟み込んで固定した構成となっている。   The thermoelectric module 3 is connected to the flat high-temperature medium flow tube 2 with a uniform and sufficient surface pressure through the fastening member 5 through a pair of cooling medium flow-path blocks 4 facing each other in the direction intersecting the high-temperature medium flow direction. The cooling medium flow path block 4 is sandwiched and fixed.

そして、扁平な高温媒体流路チューブ2の熱応力を緩和するために、高温媒体流路の上流側もしくは下流側に、例えばベローズの熱膨張吸収機構6が設けてある。   In order to relieve the thermal stress of the flat high temperature medium flow tube 2, for example, a bellows thermal expansion absorbing mechanism 6 is provided upstream or downstream of the high temperature medium flow channel.

扁平な高温媒体流路チューブ2には、主に高温強度および熱伝導性が要求される。高温媒体が腐食性である場合には、さらに耐食性が要求される。そこで、本実施形態では扁平な高温媒体流路チューブ2の材質として、例えばステンレス鋼、銅合金、アルミニウム合金等を適用している。なお、扁平な高温媒体流路チューブ2の製法としては、例えば、ろう付け、溶接、円管の成形等が適用可能である。   The flat high temperature medium flow tube 2 is mainly required to have high temperature strength and thermal conductivity. When the high temperature medium is corrosive, further corrosion resistance is required. Therefore, in the present embodiment, for example, stainless steel, copper alloy, aluminum alloy or the like is applied as the material of the flat high temperature medium flow tube 2. In addition, as a manufacturing method of the flat high temperature medium flow path tube 2, brazing, welding, shaping | molding of a circular pipe, etc. are applicable, for example.

また、扁平な高温媒体流路チューブ2の内部には、伝熱促進および耐圧強度向上のためのフィンを設置することが有効である。   In addition, it is effective to install fins in the flat high-temperature medium flow tube 2 for promoting heat transfer and improving pressure resistance.

さらに、熱電モジュール3としては、板状をなす構成であればよく、その外形については、図に示した矩形状に限られない。   Furthermore, the thermoelectric module 3 may have a plate-like configuration, and the outer shape is not limited to the rectangular shape shown in the figure.

また、熱電モジュール3は、この熱電モジュール3に組み込まれている図示しない熱電変換素子を内包するモジュール内部の雰囲気が、不活性ガスもしくは真空であるよう気密封止されていてもよい。例えば、出願人によりすでに提案されているgigatopaz(登録商標)モジュール等が使用可能である。   Further, the thermoelectric module 3 may be hermetically sealed so that the atmosphere inside the module including a thermoelectric conversion element (not shown) incorporated in the thermoelectric module 3 is an inert gas or a vacuum. For example, a gigatopaz (registered trademark) module already proposed by the applicant can be used.

冷却媒体流路ブロック4には、主に熱伝導性、強度および軽量が要求される。冷却媒体流路ブロック4の材質としては、例えば、アルミニウム合金、ステンレス鋼、銅合金、樹脂等が使用可能である。冷却媒体流路ブロック4の製法としては、例えば、押出し、ろう付け、溶接等が適用可能である。締結部材5としては、例えば、ボルトおよびナット、ねじ等が使用可能である。   The cooling medium flow path block 4 is mainly required to have thermal conductivity, strength, and light weight. As a material of the cooling medium flow path block 4, for example, aluminum alloy, stainless steel, copper alloy, resin, or the like can be used. As a manufacturing method of the cooling medium flow path block 4, for example, extrusion, brazing, welding, or the like can be applied. As the fastening member 5, for example, bolts, nuts, screws, and the like can be used.

なお、本実施形態においては、扁平な高温媒体流路チューブ2の個数を4個としているが、扁平な高温媒体流路チューブ2の個数については、4以上の偶数であればよい。この構成において、低温媒体は高温媒体に対し、並行流もしくは対向流として冷却媒体流路ブロック14内を流れる。   In the present embodiment, the number of flat high-temperature medium flow tubes 2 is four, but the number of flat high-temperature medium flow tubes 2 may be an even number of 4 or more. In this configuration, the low temperature medium flows in the cooling medium flow path block 14 as a parallel flow or a counter flow with respect to the high temperature medium.

また、冷却媒体流路ブロック4の冷却媒体の流れ方向と直交する断面形状は、例えばL型もしくはV型としてある。そして、伝熱面から離れた伝熱への寄与の少ない部位を省き、かつL型もしくはV型の頂点に対向する部位に、締結部材支持面7が設けてある。この場合、締結部材支持面7の形状については、必ずしも平面である必要は無く種々の形状として実施することができる。   Moreover, the cross-sectional shape orthogonal to the flow direction of the cooling medium in the cooling medium flow path block 4 is, for example, L-shaped or V-shaped. And the fastening member support surface 7 is provided in the site | part which opposes the top of L type or V type, omitting the site | part with little contribution to the heat transfer away from the heat transfer surface. In this case, about the shape of the fastening member support surface 7, it does not necessarily need to be a plane and can be implemented as various shapes.

また、本実施形態では、扁平な高温媒体流路チューブ2、冷却媒体流路ブロック4および締結部材5の熱膨張による締結力の変化を吸収し抑制するため、締結部材5と締結部材支持面7との間に弾性体8を組み込む構成としてもよい。また、弾性体8としては、例えば、ばね座金、ゴム等の各種弾性材を適用することができる。   In the present embodiment, the fastening member 5 and the fastening member support surface 7 are used to absorb and suppress changes in fastening force due to thermal expansion of the flat high temperature medium passage tube 2, the cooling medium passage block 4 and the fastening member 5. It is good also as a structure which incorporates the elastic body 8 between. Moreover, as the elastic body 8, various elastic materials, such as a spring washer and rubber | gum, are applicable, for example.

なお、冷却媒体流路ブロック4の媒体入口側および媒体出口側において、配置された冷却媒体流路ブロック4の内周側中心部には、十字形の接続部品9が設置されている。この接続部品9を介して各冷却媒体流路ブロック4の配管接続がされている。そして、外部冷却設備からの媒体導入配管および外部冷却設備への媒体排出配管等の各1本を、媒体入口側および媒体出口側において、冷却媒体流路ブロック4に接続してある。また、入口側では、接続部品9によって各冷却媒体流路ブロック4に分流させ、出口側では各低温媒体を合流させる構成としてある。   A cross-shaped connecting component 9 is provided at the center on the inner peripheral side of the arranged cooling medium flow path block 4 on the medium inlet side and the medium outlet side of the cooling medium flow path block 4. The piping connection of each cooling medium flow path block 4 is made through this connection component 9. Each one of the medium introduction pipe from the external cooling facility and the medium discharge pipe to the external cooling facility is connected to the cooling medium flow path block 4 on the medium inlet side and the medium outlet side. In addition, on the inlet side, the cooling medium flow path block 4 is diverted by the connecting component 9 and the low temperature medium is merged on the outlet side.

この場合、接続部品9の接続部は例えば、凸型もしくは凹型とし、冷却媒体流路ブロック4に設けられた、例えば凹型、または凸型等の接続部に嵌め合わせ、Oリング等でシールする構成としてある。   In this case, the connection part of the connection component 9 is, for example, a convex type or a concave type, and is fitted to a connection part such as a concave type or a convex type provided in the cooling medium flow path block 4 and sealed with an O-ring or the like. It is as.

このような構成の本実施形態によれば、各冷却媒体流路ブロック4が2つの押圧面を有し、少ない数の低温冷却媒体ブロックおよび締結部材により多くの熱電モジュールを押圧して固定することが可能となる。   According to this embodiment having such a configuration, each cooling medium flow path block 4 has two pressing surfaces, and many thermoelectric modules are pressed and fixed by a small number of low-temperature cooling medium blocks and fastening members. Is possible.

また、冷却媒体流路ブロック4は、高温媒体流れ方向に対して直交する方向(径方向)で対向する2体を一組を対として構成され、互いに締結部材で締結されるが、一の組の締結部材の締め付けにより、他の組の冷却媒体流路ブロック4の押圧が低下することはない。   In addition, the cooling medium flow path block 4 is configured as a pair of two bodies facing each other in a direction (radial direction) orthogonal to the high-temperature medium flow direction, and is fastened by a fastening member. By pressing the fastening member, the pressure of the other coolant channel block 4 is not lowered.

このような構成および作用により、本実施形態においては、少ない締結箇所で多くの熱電モジュール3を簡便に扁平高温媒体流路チューブ2と冷却媒体流路ブロック4との間に挟み込み、適正な押圧状態で設置することができる。   With this configuration and action, in the present embodiment, a large number of thermoelectric modules 3 are simply sandwiched between the flat high-temperature medium flow tube 2 and the cooling medium flow block 4 at a small number of fastening points, and an appropriate pressing state is achieved. Can be installed at.

そして、冷却媒体流路ブロック4の冷却媒体の流れ方向に直交する断面形状は、例えばL型もしくはV型としてある。この構成によれば、伝熱面から離れた伝熱への寄与の少ない部位を省き、かつL型もしくはV型の頂点に対向する部位に締結部材支持面7を設けた結果、冷却媒体流路ブロック4の重量を軽減することが可能になるとともに、締結部材5を支持するための別体の構造物が不要となる。しかも、配置された冷却媒体流路ブロック4よりも外周側に締結部材5が突出することがなくなり、熱電発電装置1を小さくかつ軽くすることが可能になる。   And the cross-sectional shape orthogonal to the flow direction of the cooling medium in the cooling medium flow path block 4 is, for example, L-shaped or V-shaped. According to this configuration, as a result of providing the fastening member support surface 7 at the portion facing the apex of the L-type or the V-type while omitting the portion with little contribution to the heat transfer away from the heat transfer surface, the cooling medium flow path The weight of the block 4 can be reduced, and a separate structure for supporting the fastening member 5 is not necessary. In addition, the fastening member 5 does not protrude to the outer peripheral side of the arranged cooling medium flow path block 4, and the thermoelectric generator 1 can be made small and light.

また、本実施形態によれば、接続部品9、環状もしくはC型の配管によって各冷却媒体流路ブロック4に低温媒体を分流または合流させる結果、冷却媒体流路ブロック4への外部冷却設備からの媒体導入配管、および外部冷却設備への媒体排出配管の接続本数が入口側および出口側に各1本で十分となる。このため、配管の接続作業性を向上することができるとともに、各冷却媒体流路ブロック4の間の配管に要する空間を小さくすることが可能になる。   In addition, according to the present embodiment, as a result of dividing or joining the low-temperature medium to each cooling medium flow path block 4 by the connecting component 9, the annular or C-shaped piping, the cooling medium flow path block 4 from the external cooling facility The number of connections of the medium introduction pipe and the medium discharge pipe to the external cooling facility is sufficient for each of the inlet side and the outlet side. For this reason, it is possible to improve the connection workability of the pipes and to reduce the space required for the pipes between the cooling medium flow path blocks 4.

また、本実施形態による熱電モジュール3では気密封止構成とされて、内部空間の雰囲気が不活性ガスもしくは真空であることから、高温大気中においても内蔵される熱電変換素子に対する酸化などによる劣化の影響が防止される。したがって、高温使用時においても、軽量かつ高性能の発電機能を得ることができるとともに、構造健全性も確保することができる。   In addition, since the thermoelectric module 3 according to the present embodiment has a hermetically sealed configuration and the atmosphere in the internal space is an inert gas or a vacuum, deterioration due to oxidation or the like with respect to the thermoelectric conversion element incorporated in the high-temperature atmosphere is also achieved. Impact is prevented. Therefore, even when used at a high temperature, it is possible to obtain a light-weight and high-performance power generation function and to ensure structural soundness.

[第2実施形態(図4,図5)]
図4は本発明の第2実施形態による熱電発電装置の全体構成を示す斜視図であり、図5は図4のV−V線断面図(熱電発電装置の高温媒体の流れに垂直な面で切断した断面図)である。
[Second Embodiment (FIGS. 4 and 5)]
4 is a perspective view showing the overall configuration of the thermoelectric generator according to the second embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along the line V-V of FIG. 4 (on a plane perpendicular to the flow of the high-temperature medium of the thermoelectric generator). FIG.

なお、本実施形態において、上述の第1実施形態と同一の構成部分については、図4および図5に、第1実施形態と同一の符号を付して、重複する説明は省略する。   In the present embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals in FIGS. 4 and 5 as those in the first embodiment, and redundant description is omitted.

本実施形態では、冷却媒体流路ブロック4の媒体入口側および媒体出口側に配置された冷却媒体流路ブロック4の外周側で各冷却媒体流路ブロック4を、接続ホース10により環状もしくはC型に配管接続した構成としてある。   In the present embodiment, each cooling medium flow path block 4 is annularly or C-shaped by the connection hose 10 on the outer peripheral side of the cooling medium flow path block 4 disposed on the medium inlet side and the medium outlet side of the cooling medium flow path block 4. It is configured as a pipe connection.

そして、外部冷却設備からの媒体導入配管および外部冷却設備への媒体排出配管を、入口側および出口側の環状もしくはC型の配管11に各1本接続してある。そして、環状もしくはC型の配管11によって、入口側では各冷却媒体流路ブロック4に分流させ、出口側では各低温媒体13を合流させる構成としてある。   One medium introduction pipe from the external cooling facility and one medium discharge pipe to the external cooling facility are connected to the inlet-side and outlet-side annular or C-shaped pipes 11 respectively. And it is set as the structure which makes each cooling medium flow path block 4 flow-divide by the cyclic | annular or C type piping 11, and each low-temperature medium 13 joins by the exit side.

なお、接続ホース10の材質としては、低温媒体13の性質、温度等を考慮のうえ、例えばゴム、樹脂、金属等を適用することが可能である。   In addition, as a material of the connection hose 10, it is possible to apply rubber, resin, metal, etc., for example, considering the property, temperature, etc. of the low-temperature medium 13.

[他の実施形態]
本発明においては、上述した第1実施形態の構成と、第2実施形態の構成を組合せ、また適宜の付加部品を追加する等により、要旨を変更することなく種々の構成とすることができる。
[Other Embodiments]
In the present invention, various configurations can be made without changing the gist by combining the configuration of the first embodiment and the configuration of the second embodiment described above and adding appropriate additional parts.

例えば、低温媒体入口側に第1実施形態を適用し、低温媒体出口側に第2実施形態を適用することができ、さらに他の構成を加えることも可能である。   For example, the first embodiment can be applied to the cold medium inlet side, the second embodiment can be applied to the cold medium outlet side, and other configurations can be added.

また、外部冷却設備との配管接続部位に付いては,特に上述の各実施形態の構成に限定されるものではない。   Further, the pipe connection portion with the external cooling facility is not particularly limited to the configuration of each of the above-described embodiments.

例えば、第1実施形態において、外部冷却設備からの配管を接続部品9に直接、接続してもよく、さらに例えば第2実施形態において、外部冷却設備からの配管を冷却媒体流路ブロック4に接続してもよく、種々の構成変形が可能である。   For example, in the first embodiment, the pipe from the external cooling facility may be directly connected to the connection component 9, and for example, in the second embodiment, the pipe from the external cooling facility is connected to the cooling medium flow path block 4. It is also possible to make various structural modifications.

また、偶数の高温媒体流路を高温媒体流れ方向に対して放射状に配置し、高温媒体流路の両面に熱電モジュールを配置し、隣接する高温媒体流路との間に熱電モジュールを挟み込むように低温媒体流路を設置し、高温媒体流れ方向に対して交差する方向で対向する2個一組の冷却媒体流路に締結部材を通し、熱電モジュールを高温媒体流路と低温媒体流路で挟み込んで固定する要素に対し、他の各種部材を加えた構成として実施することができる。   Further, even-numbered hot medium flow paths are arranged radially with respect to the hot medium flow direction, thermoelectric modules are arranged on both sides of the hot medium flow path, and the thermoelectric modules are sandwiched between adjacent hot medium flow paths. A low temperature medium flow path is installed, a fastening member is passed through a pair of cooling medium flow paths facing each other in a direction crossing the high temperature medium flow direction, and the thermoelectric module is sandwiched between the high temperature medium flow path and the low temperature medium flow path. It can implement as a structure which added the other various members with respect to the element fixed by.

1 熱電発電装置
2 扁平な高温媒体流路チューブ
3 熱電モジュール
4 冷却媒体流路ブロック
5 締結部材
6 熱膨張吸収機構
7 締結部材支持面
8 弾性体
9 接続部品
10 接続ホース
11 配管
12 高温媒体
13 低温媒体
14 高温媒体流路
15 低温媒体流路
DESCRIPTION OF SYMBOLS 1 Thermoelectric power generation device 2 Flat high temperature medium flow path tube 3 Thermoelectric module 4 Cooling medium flow path block 5 Fastening member
6 Thermal expansion absorption mechanism 7 Fastening member support surface 8 Elastic body 9 Connection component 10 Connection hose 11 Pipe 12 High temperature medium 13 Low temperature medium 14 High temperature medium flow path 15 Low temperature medium flow path

Claims (5)

高温媒体と低温媒体との温度差による熱エネルギを電気エネルギに変換する熱電変換素子を組み込んだ熱電モジュールと、前記高温媒体の熱エネルギを回収して前記熱電モジュールを加熱する高温媒体流路と、この高温媒体流路と交差する配置とされて前記低温媒体により除熱し前記熱電モジュールを冷却する低温媒体流路とを備え、前記熱電モジュールが前記高温媒体流路と前記冷却媒体流路との間に挟持される配置とされた熱電発電装置において、
偶数の高温媒体流路を高温媒体流れ方向に対して放射状に配置し、前記高温媒体流路の両面に熱電モジュールを配置し、隣接する高温媒体流路との間に熱電モジュールを挟み込むように低温媒体流路を設置し、高温媒体流れ方向に対して交差する方向で対向する冷却媒体流路に締結部材を通して、前記熱電モジュールを高温媒体流路と低温媒体流路で挟み込んで固定したことを特徴とする熱電発電装置。
A thermoelectric module incorporating a thermoelectric conversion element that converts thermal energy due to a temperature difference between the high temperature medium and the low temperature medium into electrical energy; a high temperature medium flow path that recovers the thermal energy of the high temperature medium and heats the thermoelectric module; A low-temperature medium flow path that is disposed so as to intersect with the high-temperature medium flow path and removes heat by the low-temperature medium and cools the thermoelectric module, and the thermoelectric module is disposed between the high-temperature medium flow path and the cooling medium flow path. In the thermoelectric generator set to be sandwiched between
Even-numbered hot medium flow paths are arranged radially with respect to the hot medium flow direction, thermoelectric modules are arranged on both sides of the hot medium flow path, and the thermoelectric modules are sandwiched between adjacent hot medium flow paths. A medium flow path is installed, and the thermoelectric module is sandwiched and fixed between the high-temperature medium flow path and the low-temperature medium flow path by passing a fastening member through the cooling medium flow path facing in the direction intersecting the high-temperature medium flow direction. A thermoelectric generator.
前記低温媒体流路は、冷却媒体の流れ方向に直交する断面形状がL型もしくはV型であり、L型もしくはV型の頂点に対向する部位に締結部材支持面を設けた請求項1記載の熱電発電装置。 2. The low-temperature medium flow path according to claim 1, wherein a cross-sectional shape perpendicular to the flow direction of the cooling medium is L-shaped or V-shaped, and a fastening member support surface is provided at a portion facing the apex of the L-shaped or V-shaped. Thermoelectric generator. 前記低温媒体流路の媒体入口側および媒体出口側における低温媒体流路の内周側中心部の少なくとも一方に接続部品を設置し、前記接続部品を介して各冷却媒体流路を配管接続し、前記接続部品によって前記各低温媒体流路に前記低温媒体を分流または合流させる構成とした請求項1または請求項2記載の熱電発電装置。 A connecting component is installed on at least one of the center portion on the inner peripheral side of the low-temperature medium flow channel on the medium inlet side and the medium outlet side of the low-temperature medium flow channel, and each cooling medium flow channel is connected by piping through the connecting component, The thermoelectric generator according to claim 1 or 2, wherein the low temperature medium is divided or merged into the low temperature medium flow paths by the connecting parts. 前記低温媒体流路の媒体入口側および媒体出口側における低温媒体流路の外周側の少なくとも一方に各冷却媒体流路を環状もしくはC型に配管接続し、前記環状もしくはC型の配管によって前記各低温媒体流路に低温媒体を分流または合流させる構成とした請求項1または請求項2記載の熱電発電装置。 Each cooling medium flow path is connected to at least one of the outer side of the low temperature medium flow path on the medium inlet side and the medium outlet side of the low temperature medium flow path in a ring shape or a C shape, The thermoelectric power generator according to claim 1 or 2, wherein the low temperature medium is divided or joined to the low temperature medium flow path. 前記熱電モジュールは、前記熱電変換素子が組み込まれたモジュール内部空間がモジュール外部空間と遮断されるよう気密封止されており、前記内部空間内は不活性ガス雰囲気もしくは真空である請求項1乃至請求項4のいずれか一項記載の熱電発電装置。 The thermoelectric module is hermetically sealed so that a module internal space in which the thermoelectric conversion element is incorporated is cut off from a module external space, and the internal space is an inert gas atmosphere or a vacuum. Item 5. The thermoelectric power generator according to any one of items 4 to 5.
JP2009263390A 2009-11-18 2009-11-18 Thermoelectric generator Expired - Fee Related JP5443952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009263390A JP5443952B2 (en) 2009-11-18 2009-11-18 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009263390A JP5443952B2 (en) 2009-11-18 2009-11-18 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2011109837A true JP2011109837A (en) 2011-06-02
JP5443952B2 JP5443952B2 (en) 2014-03-19

Family

ID=44232702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009263390A Expired - Fee Related JP5443952B2 (en) 2009-11-18 2009-11-18 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP5443952B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033086A1 (en) * 2015-02-23 2016-08-26 Valeo Systemes Thermiques THERMO ELECTRIC DEVICE IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE
FR3033084A1 (en) * 2015-02-23 2016-08-26 Valeo Systemes Thermiques HYDRAULIC CONNECTION AND THERMO-ELECTRIC DEVICE, IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE, COMPRISING SUCH A HYDRAULIC CONNECTION
FR3033085A1 (en) * 2015-02-23 2016-08-26 Valeo Systemes Thermiques THERMO-ELECTRIC DEVICE, PARTICULARLY FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE
JP2019160889A (en) * 2018-03-09 2019-09-19 古河機械金属株式会社 Thermoelectric conversion device
US10629794B2 (en) 2015-09-16 2020-04-21 Denso Corporation Thermoelectric power generation device and method for manufacturing same
US11024787B2 (en) 2015-09-16 2021-06-01 Denso Corporation Thermoelectric power generation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057908A (en) * 2003-08-05 2005-03-03 Toyota Motor Corp Device for recovering exhaust heat energy
JP2006032723A (en) * 2004-07-16 2006-02-02 Toshiba Corp Heat/electricity direct converter
JP2006314180A (en) * 2005-05-09 2006-11-16 Toyota Motor Corp Thermal power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057908A (en) * 2003-08-05 2005-03-03 Toyota Motor Corp Device for recovering exhaust heat energy
JP2006032723A (en) * 2004-07-16 2006-02-02 Toshiba Corp Heat/electricity direct converter
JP2006314180A (en) * 2005-05-09 2006-11-16 Toyota Motor Corp Thermal power generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033086A1 (en) * 2015-02-23 2016-08-26 Valeo Systemes Thermiques THERMO ELECTRIC DEVICE IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE
FR3033084A1 (en) * 2015-02-23 2016-08-26 Valeo Systemes Thermiques HYDRAULIC CONNECTION AND THERMO-ELECTRIC DEVICE, IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE, COMPRISING SUCH A HYDRAULIC CONNECTION
FR3033085A1 (en) * 2015-02-23 2016-08-26 Valeo Systemes Thermiques THERMO-ELECTRIC DEVICE, PARTICULARLY FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE
WO2016135156A1 (en) * 2015-02-23 2016-09-01 Valeo Systemes Thermiques Hydraulic coupling and thermoelectric device, in particular for generating an electric current in a motor vehicle, comprising such a hydraulic coupling
WO2016135155A1 (en) * 2015-02-23 2016-09-01 Valeo Systemes Thermiques Thermoelectric device, in particular for generating an electric current in a motor vehicle
US10629794B2 (en) 2015-09-16 2020-04-21 Denso Corporation Thermoelectric power generation device and method for manufacturing same
US11024787B2 (en) 2015-09-16 2021-06-01 Denso Corporation Thermoelectric power generation device
JP2019160889A (en) * 2018-03-09 2019-09-19 古河機械金属株式会社 Thermoelectric conversion device

Also Published As

Publication number Publication date
JP5443952B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5443952B2 (en) Thermoelectric generator
JP4872741B2 (en) Thermoelectric generator
JP5864094B2 (en) Exhaust system with thermoelectric generator
US20130000285A1 (en) Internal combustion engine exhaust thermoelectric generator and methods of making and using the same
JP5443947B2 (en) Thermoelectric generator
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
JP2006214350A (en) Thermoelectric generator
JP5498192B2 (en) Thermoelectric converter and thermoelectric conversion method
JP2009088408A (en) Thermoelectric power generator
JP5040124B2 (en) Thermoelectric generator
JP2010245265A (en) Thermoelectric module
JP2008072775A (en) Exhaust heat energy recovery system
JP2008035595A (en) Thermal power generation equipment and its manufacturing method
KR101265145B1 (en) Thermoelectric generator of vehicle
JP5444787B2 (en) Thermoelectric generator
JP2008091453A (en) Thermoelectric power generator
JPH11340522A (en) Heat exchanger using thermoelectric module
JP2007149841A (en) Thermal power generating system
JP2011163304A (en) Duct seal structure and method for forming the same seal structure
JP2006211780A (en) Thermoelectric generator
JP2006002704A (en) Thermoelectric power generation device
JP4285144B2 (en) Waste heat energy recovery device
JP6350297B2 (en) Thermoelectric generator
JP2003348867A (en) Waste heat power generator
KR101637674B1 (en) Thermoelectric Generation Device for vehicle

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Ref document number: 5443952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees