JP2006025336A - Piezoelectric oscillator and adjustment method thereof - Google Patents

Piezoelectric oscillator and adjustment method thereof Download PDF

Info

Publication number
JP2006025336A
JP2006025336A JP2004203365A JP2004203365A JP2006025336A JP 2006025336 A JP2006025336 A JP 2006025336A JP 2004203365 A JP2004203365 A JP 2004203365A JP 2004203365 A JP2004203365 A JP 2004203365A JP 2006025336 A JP2006025336 A JP 2006025336A
Authority
JP
Japan
Prior art keywords
terminal
switching means
piezoelectric
piezoelectric vibrator
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004203365A
Other languages
Japanese (ja)
Inventor
Yasuhisa Maruyama
泰央 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004203365A priority Critical patent/JP2006025336A/en
Publication of JP2006025336A publication Critical patent/JP2006025336A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of sacrificing a fault diagnostic function because there is no space margin for a package of a piezoelectric oscillator the downsizing of which is a requirement resulting in that provision of a measurement terminal exclusively for a crystal vibrator is impossible and of a low manufacturing efficiency because data of the piezoelectric oscillator single body cannot be confirmed after the mount of the crystal vibrator due to the absence of the measurement terminal resulting in that adjustment procedures of writing temperature compensation data to the oscillator are complicated. <P>SOLUTION: The piezoelectric oscillator is provided with: a piezoelectric vibrator; an oscillation circuit; a package including input output terminals and an adjustment terminal; first switching means inserted between the piezoelectric vibrator and the oscillation circuit; and second switching means inserted between the piezoelectric vibrator and the input output terminals. The first switching means set the connection between the piezoelectric vibrator and the oscillation circuit to either an interruption state or a conductive state on the basis of a selection signal, and the second switching means set the connection between the piezoelectric vibrator and the input output terminals to either a conductive state or an interruption state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電発振器とその調整方法に関するものである。   The present invention relates to a piezoelectric oscillator and a method for adjusting the same.

水晶発振器は圧電素子に水晶振動子を用いた圧電発振器であり、高安定な基準周波数の発振源として広く使われている。
なかでも、内部に温度補償回路を備え周波数温度特性の安定化を図った温度補償型水晶発振器(TCXO)の需要は特に高い。近年、温度補償型水晶発振器(TCXO)に対する小型化の要求から、水晶振動子以外の温度補償回路や周辺回路を全て一つのICに集積したもの(IC化TCXO)が主流になってきている。
A crystal oscillator is a piezoelectric oscillator that uses a crystal resonator as a piezoelectric element, and is widely used as an oscillation source having a highly stable reference frequency.
In particular, the demand for a temperature-compensated crystal oscillator (TCXO) having a temperature compensation circuit therein and stabilizing frequency temperature characteristics is particularly high. In recent years, due to a demand for miniaturization of a temperature compensated crystal oscillator (TCXO), an IC (TC-integrated TCXO) in which a temperature compensation circuit other than a crystal resonator and peripheral circuits are all integrated into one IC has become mainstream.

従来、温度補償型水晶発振器は温度補償データを書き込む調整を必要とするが、一般的には以下のような調整手順を備えている。まず、パッケージへの実装前に水晶振動子単体を恒温槽に入れ、周波数温度特性のデータを取得する。次に、前記水晶振動子単体の周波数温度特性データから温度補償データを作成し、水晶振動子をICと共にパッケージ内に実装してパッケージを封止する。そして、パッケージの書込端子から前記温度補償データを書き込み、水晶発振器を恒温槽に入れ周波数温度特性を確認し調整を完了する。   Conventionally, a temperature-compensated crystal oscillator requires adjustment for writing temperature compensation data, but generally includes the following adjustment procedure. First, before mounting on a package, a crystal unit is placed in a thermostatic chamber, and frequency temperature characteristic data is acquired. Next, temperature compensation data is created from the frequency temperature characteristic data of the single crystal unit, the crystal unit is mounted in a package together with an IC, and the package is sealed. Then, the temperature compensation data is written from the write terminal of the package, the crystal oscillator is put in a thermostatic chamber, the frequency temperature characteristic is confirmed, and the adjustment is completed.

ここで、パッケージへの実装前後で水晶振動子単体の周波数温度特性が変化する場合があるので、パッケージに水晶振動子のみを実装しこれを恒温槽に入れて単体のデータを取得しておき、単体のデータから温度補償データを作成し、後でICを実装するという場合もある。しかしながら、一旦水晶振動子とICとをパッケージに実装してしまうと、これらが互いに電気的に接続されてしまうので、この状態で水晶振動子単体のデータを取得したり、或いは故障診断を目的として水晶振動子単体の特性を確認することは出来ない。
従って、故障等なんらかの不具合が水晶発振器に発生すると、その原因が水晶振動子側にあるのか、或いは周辺回路側にあるのかを簡単に切り分けることが困難になる。
また、近年の水晶発振器の小型化に伴い、水晶振動子をパッケージから取りはずして故障診断を実施することが非常に時間がかかり困難な作業を伴うようになった。そこで、水晶振動子を実装した状態のまま、これを交換せずに即座に水晶振動子単体の特性を確認でき故障診断を行うものが、特開平9−246868号公報に開示されている。
Here, since the frequency temperature characteristics of the crystal unit itself may change before and after mounting on the package, only the crystal unit is mounted on the package and this is placed in a thermostat to acquire the single unit data. In some cases, temperature compensation data is created from single data and an IC is mounted later. However, once the crystal unit and the IC are mounted on the package, they are electrically connected to each other. Therefore, in this state, the data of the crystal unit or the fault diagnosis is obtained. The characteristics of a single crystal unit cannot be confirmed.
Therefore, when some trouble such as a failure occurs in the crystal oscillator, it is difficult to easily determine whether the cause is on the crystal oscillator side or on the peripheral circuit side.
In addition, with the recent miniaturization of crystal oscillators, it has become very time consuming and difficult to perform fault diagnosis by removing the crystal resonator from the package. Japanese Laid-Open Patent Publication No. 9-246868 discloses a method for performing fault diagnosis by immediately confirming the characteristics of a crystal unit without replacing the crystal unit while it is mounted.

図5は特開平9−246868号公報において開示された水晶発振器のブロック図を示したものである。図5に示した従来の水晶発振器は、発振回路1と水晶振動子2と電源端子3と接地端子4と出力端子5と接続端子6、7、8とを有し全体が金属ケースに封止された水晶発振モジュール9と、アナログスイッチ10と、前記水晶振動子2と同一の特性を有する水晶振動子11と、前記水晶発振モジュール9とアナログスイッチ10と第2の水晶振動子11を実装するプリント基板12とを備えている。
ここで、前記プリント基板12にはこれらの部品を実装し接続するための配線パターン13a、13b、13c、13dが形成されている。
FIG. 5 shows a block diagram of the crystal oscillator disclosed in Japanese Patent Laid-Open No. 9-246868. The conventional crystal oscillator shown in FIG. 5 has an oscillation circuit 1, a crystal resonator 2, a power supply terminal 3, a ground terminal 4, an output terminal 5, and connection terminals 6, 7, and 8 and is entirely sealed in a metal case. The crystal oscillator module 9, the analog switch 10, the crystal oscillator 11 having the same characteristics as the crystal oscillator 2, the crystal oscillator module 9, the analog switch 10, and the second crystal oscillator 11 are mounted. And a printed circuit board 12.
Here, wiring patterns 13a, 13b, 13c, and 13d for mounting and connecting these components are formed on the printed circuit board 12.

図5に示した従来の水晶発振器は次のように動作する。
まず、図5に示した水晶発振器が何らかの原因で故障(例えば発振の停止等)したものとする。そこで、選択信号をアナログスイッチ10の端子11bと11cとの間が導通するように設定すると、接続端子6と接続端子8との接続が断となって水晶振動子2は発振回路1から分離されると共に、水晶振動子11が前記アナログスイッチ10を介して発振回路1に接続される。
そこで、出力端子5に出力される信号を確認し、所定の発振信号が前記出力端子5から出力されていれば発振停止の原因が水晶振動子2側にあり、発振が停止したままの状態であれば発振停止の原因が発振回路1側にあると診断することができる。
The conventional crystal oscillator shown in FIG. 5 operates as follows.
First, it is assumed that the crystal oscillator shown in FIG. 5 has failed for some reason (for example, the oscillation is stopped). Therefore, when the selection signal is set so that the terminals 11b and 11c of the analog switch 10 are conducted, the connection between the connection terminal 6 and the connection terminal 8 is cut off, and the crystal resonator 2 is separated from the oscillation circuit 1. In addition, the crystal unit 11 is connected to the oscillation circuit 1 through the analog switch 10.
Therefore, the signal output to the output terminal 5 is checked, and if a predetermined oscillation signal is output from the output terminal 5, the cause of the oscillation stop is on the crystal resonator 2 side, and the oscillation is stopped. If there is, it can be diagnosed that the cause of the oscillation stop is the oscillation circuit 1 side.

ここで、水晶振動子11は故障の診断のみに必要な部品であり、プリント基板12に実装用の配線パターンのみを形成しておき、故障が発生した場合にのみこれを実装してもよい。例えば、水晶振動子11を実装しない状態において、アナログスイッチ10の端子11bと11cとの間が導通するように設定し、水晶振動子2が周辺部品から分離された状態にする。そこで、接続端子7、8にネットワークアナライザ等の測定装置を接続すれば水晶振動子2単体の特性を確認することができる。
なお、これを温度補償型水晶発振器として製造する場合は、先述した例と同様に、水晶振動子2単体の周波数温度特性データを取得し、前記水晶振動子2単体の周波数温度特性データから温度補償データを作成し、これを発振回路1に書き込むといった調整が必要であるが、接続端子7、8を利用することにより、水晶振動子2を実装した後でも単体の周波数温度特性データを取得できるという利点を備えている。
特開平9−246844号公報
Here, the crystal unit 11 is a component necessary only for failure diagnosis, and only a wiring pattern for mounting may be formed on the printed circuit board 12, and this may be mounted only when a failure occurs. For example, in a state where the crystal resonator 11 is not mounted, the terminals 11b and 11c of the analog switch 10 are set to be conductive, and the crystal resonator 2 is separated from the peripheral components. Therefore, if a measuring device such as a network analyzer is connected to the connection terminals 7 and 8, the characteristics of the crystal unit 2 alone can be confirmed.
When this is manufactured as a temperature-compensated crystal oscillator, the frequency temperature characteristic data of the single crystal unit 2 is acquired and the temperature compensation is performed from the frequency temperature characteristic data of the single crystal unit 2 as in the above-described example. It is necessary to make adjustments such as creating data and writing it to the oscillation circuit 1, but by using the connection terminals 7 and 8, it is possible to acquire single frequency temperature characteristic data even after the crystal resonator 2 is mounted. Has advantages.
Japanese Patent Laid-Open No. 9-246844

ところが、図5に示した従来の水晶発振器は以下のような問題点がある。
すなわち、この水晶発振器は水晶振動子2を実装した後でも接続端子7、8にネットワークアナライザ等の測定装置を接続すれば水晶振動子単体のデータを確認、或いは取得できるという利点を備えているが、小型化を要求された場合(特にIC化TCXO)はパッケージに余裕なスペースがないので、このような接続端子を設けることはできない。よって、小型化を図ろうとすると水晶振動子単体の特性を確認する機能を犠牲にせざるを得ない。
However, the conventional crystal oscillator shown in FIG. 5 has the following problems.
That is, this crystal oscillator has the advantage that even after the crystal resonator 2 is mounted, the data of the crystal resonator alone can be confirmed or acquired by connecting a measuring device such as a network analyzer to the connection terminals 7 and 8. When downsizing is required (especially IC TCXO), there is no room in the package, and thus such connection terminals cannot be provided. Therefore, in order to reduce the size, the function of confirming the characteristics of the crystal unit alone must be sacrificed.

また、小型化を要求された従来のIC化TCXO(水晶発振器)は、水晶振動子単体を恒温槽に収容し周波数温度特性のデータを取得する調整作業と、前記データから温度補償データを作成する調整作業と、水晶振動子やIC等を水晶発振器のパッケージに実装する組立作業と、温度補償データを水晶発振器に書き込む調整作業とを順番に実行せざるを得ないため、調整作業が途中で中断し製造効率が悪くなってしまう。また、水晶振動子単体を恒温槽に収容し単体の周波数温度特性データを取得するための設備と、温度補償データを書き込んだ後に水晶発振器を恒温槽に収容し周波数温度特性を確認するための設備とを別々に用意する必要があるので、工場の製造スペースを余分に占有することになり製造上好ましくない。   In addition, a conventional IC TCXO (quartz oscillator) that is required to be miniaturized prepares temperature compensation data from the adjustment work of acquiring a frequency temperature characteristic data by storing a crystal unit alone in a thermostatic chamber. Because adjustment work, assembly work for mounting crystal units and ICs in the crystal oscillator package, and adjustment work for writing temperature compensation data to the crystal oscillator must be executed in sequence, the adjustment work is interrupted However, the production efficiency will deteriorate. In addition, equipment for storing a crystal unit in a thermostat and acquiring frequency temperature characteristic data for the single unit, and equipment for storing a crystal oscillator in a thermostat after writing temperature compensation data and checking the frequency temperature characteristics Since it is necessary to prepare these separately, the manufacturing space of the factory is occupied, which is not preferable in manufacturing.

本発明は、上記課題を解決するためになされたものであって、製造効率が良い調整手順を有し、且つ不具合発生時にも簡単に水晶振動子単体を分離して特性を確認でき、小型化が可能な圧電発振器を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, has an adjustment procedure with high manufacturing efficiency, and can easily separate a single crystal unit and check its characteristics even when a defect occurs, and can be downsized. An object of the present invention is to provide a piezoelectric oscillator capable of satisfying the requirements.

上記課題を解決するため、請求項1記載の発明においては、圧電振動子と、発振回路と、信号を入力或いは出力する入出力端子と調整端子とを有し前記圧電振動子と前記発振回路とを収容するパッケージと、前記圧電振動子と前記発振回路との間に挿入された第1の切替手段と、前記圧電振動子と前記入出力端子との間に挿入された第2の切替手段とを備えた圧電発振器であって、前記第1の切替手段は、前記調整端子に入力した選択信号に基づき前記圧電振動子と前記発振回路との接続を断状態、あるいは導通状態のいずれかに設定するものであり、前記第2の切替手段は、該選択信号に基づき前記圧電振動子と前記入出力端子との接続を導通状態、或いは断状態のいずれかに設定するものである。   In order to solve the above-mentioned problem, in the invention described in claim 1, the piezoelectric vibrator, the oscillation circuit, an input / output terminal for inputting or outputting a signal, and an adjustment terminal are provided. A first housing that is inserted between the piezoelectric vibrator and the oscillation circuit, and a second switching means that is inserted between the piezoelectric vibrator and the input / output terminal. Wherein the first switching means sets the connection between the piezoelectric vibrator and the oscillation circuit to a disconnected state or a conductive state based on a selection signal input to the adjustment terminal. The second switching means sets the connection between the piezoelectric vibrator and the input / output terminal to either a conductive state or a disconnected state based on the selection signal.

また、請求項2記載の発明においては、請求項1記載の圧電発振器において、前記第2の切替手段は、前記第1の切替手段と前記入出力端子との間に挿入したものであり、前記選択信号に基づき前記第1の切替手段を介して前記圧電振動子と前記入出力端子との接続を導通状態、或いは断状態のいずれかに設定するものである。また、請求項3記載の発明においては、請求項1、または請求項2記載の圧電発振器において、前記入出力端子は電源端子、接地端子、周波数制御端子、或いは発振信号出力端子のいずれかとしたものである。   According to a second aspect of the present invention, in the piezoelectric oscillator according to the first aspect, the second switching means is inserted between the first switching means and the input / output terminal, Based on a selection signal, the connection between the piezoelectric vibrator and the input / output terminal is set to either a conductive state or a disconnected state via the first switching means. According to a third aspect of the present invention, in the piezoelectric oscillator according to the first or second aspect, the input / output terminal is any one of a power supply terminal, a ground terminal, a frequency control terminal, and an oscillation signal output terminal. It is.

また、請求項4記載の発明においては、請求項1、請求項2、または請求項3記載の圧電発振器において、前記発振回路と圧電振動子と前記第1の切替手段と前記第2の切替手段とをICチップ内に集積したものである。また、請求項5記載の発明においては、請求項1、請求項2、請求項3、または請求項4記載の圧電発振器において、前記発振回路は、温度補償データを記憶するための記憶手段と、前記記憶手段に保存された前記温度補償データに基づく温度補償を行う温度補償回路とを備えたものである。   According to a fourth aspect of the present invention, in the piezoelectric oscillator according to the first, second, or third aspect, the oscillation circuit, the piezoelectric vibrator, the first switching unit, and the second switching unit. Are integrated in an IC chip. According to a fifth aspect of the present invention, in the piezoelectric oscillator according to the first, second, third, or fourth aspect, the oscillation circuit includes storage means for storing temperature compensation data; And a temperature compensation circuit for performing temperature compensation based on the temperature compensation data stored in the storage means.

また、請求項6記載の発明においては、請求項5記載の圧電発振器において、前記パッケージは、外部から前記温度補償データを入力し前記記憶手段に書き込むための書込端子を備えたものである。   According to a sixth aspect of the present invention, in the piezoelectric oscillator according to the fifth aspect, the package includes a write terminal for inputting the temperature compensation data from the outside and writing it into the storage means.

また、請求項7記載の発明においては、請求項6記載の圧電発振器において、前記圧電振動子を恒温槽に収納する調整ステップと、前記調整端子に選択信号を入力し前記第1の切替手段を断状態とすると共に前記第2の切替手段を導通状態にする調整ステップと、前記入出力端子に測定装置を接続すると共に前記恒温槽内の温度を変化し前記圧電振動子単体の周波数温度特性データを取得する調整ステップと、前記取得した圧電振動子単体の周波数温度特性データから温度補償データを作成する調整ステップと、該温度補償データを前記書込端子へ入力しこれを前記記憶手段に書き込む調整ステップとを備えたものである。   According to a seventh aspect of the present invention, in the piezoelectric oscillator according to the sixth aspect, an adjustment step of storing the piezoelectric vibrator in a thermostatic chamber, a selection signal is input to the adjustment terminal, and the first switching means is An adjustment step for setting the second switching means to the conductive state, and connecting the measuring device to the input / output terminal and changing the temperature in the thermostat to change the temperature-temperature characteristic data of the piezoelectric vibrator alone An adjustment step of acquiring temperature compensation data from the acquired frequency temperature characteristic data of the single piezoelectric vibrator, and an adjustment of inputting the temperature compensation data to the write terminal and writing it to the storage means And a step.

本発明の圧電発振器は、圧電振動子と、発振回路と、入出力端子を有するパッケージと、圧電振動子と発振回路との間に挿入された第1の切替手段と、前記圧電振動子と前記入出力端子との間に挿入された第2の切替手段とを備えた圧電発振器であって、前記第1の切替手段は、入力した選択信号に基づき前記圧電振動子と前記発振回路との接続を断状態、あるいは導通状態のいずれかに設定するものであり、前記第2の切替手段は、該選択信号に基づき前記圧電振動子と前記入出力端子との接続を導通状態、或いは断状態のいずれかに設定するものである。したがって、本発明は圧電振動子を実装した後に圧電振動子単体の周波数温度特性の確認とデータ取得が可能であり、また不具合発生時にも実装状態で圧電振動子単体の特性を簡単に確認でき、短時間で故障診断ができ、製造効率の良い小型化可能な圧電発振器を提供することを目的とする。   The piezoelectric oscillator according to the present invention includes a piezoelectric vibrator, an oscillation circuit, a package having an input / output terminal, a first switching means inserted between the piezoelectric vibrator and the oscillation circuit, the piezoelectric vibrator and the front And a second switching unit inserted between the input output terminal and the first switching unit. The first switching unit connects the piezoelectric vibrator and the oscillation circuit based on the input selection signal. The second switching means sets the connection between the piezoelectric vibrator and the input / output terminal based on the selection signal in a conductive state or a disconnected state. It is set to either. Therefore, according to the present invention, it is possible to check the frequency temperature characteristics and data of the piezoelectric vibrator alone after mounting the piezoelectric vibrator, and to easily check the characteristics of the piezoelectric vibrator alone in the mounted state even when a failure occurs. An object of the present invention is to provide a piezoelectric oscillator capable of performing failure diagnosis in a short time and having good manufacturing efficiency and capable of being downsized.

本発明を図面に示した実施の形態に基づいて説明する。
図1は本発明に係わる圧電発振器の第1の実施例のブロック図を示したものである。
図1において本発明の圧電発振器は、電源端子14と周波数制御端子15と接地端子16と出力端子17と書込端子18と調整端子19とを有するパッケージ20と、水晶振動子21と、温度補償回路を有する発振回路22と、前記書込端子18から入力した温度補償データを記憶する記憶手段23と、前記水晶振動子21と前記発振回路22との間に挿入され前記調整端子19に入力した選択信号に基づき接続を切り替える第1の切替手段24a、24bと、前記水晶振動子21と前記電源端子14、前記周波数制御端子15との間に挿入され該選択信号に基づき接続を切り替える第2の切替手段25a、25bとを備え、前記発振回路22と前記記憶手段23と前記第1の切替手段24a、24bと前記第2の切替手段25a、25bはIC26に集積されている。また、前記IC26と前記水晶振動子21はパッケージ20に実装され、パッケージ20全体が封止されている。
The present invention will be described based on the embodiments shown in the drawings.
FIG. 1 shows a block diagram of a first embodiment of a piezoelectric oscillator according to the present invention.
1, the piezoelectric oscillator of the present invention includes a power supply terminal 14, a frequency control terminal 15, a ground terminal 16, an output terminal 17, a write terminal 18, and an adjustment terminal 19, a package 20, a crystal resonator 21, and a temperature compensation. An oscillation circuit 22 having a circuit, storage means 23 for storing temperature compensation data input from the write terminal 18, and inserted between the crystal resonator 21 and the oscillation circuit 22 and input to the adjustment terminal 19 First switching means 24a and 24b for switching connection based on a selection signal, and a second switching unit which is inserted between the crystal resonator 21 and the power supply terminal 14 and the frequency control terminal 15 to switch connection based on the selection signal. Switching means 25a, 25b, the oscillation circuit 22, the storage means 23, the first switching means 24a, 24b, and the second switching means 25a, 25b, It is integrated in the C26. Further, the IC 26 and the crystal resonator 21 are mounted on a package 20, and the entire package 20 is sealed.

図1に示した圧電発振器は次のように動作する。
まず、調整端子19に選択信号としてCMOSインタフェースのHiの電圧を入力する。(以下、この状態を「発振器モード」と言う。)このとき、第1の切替手段24a、24bは前記選択信号に従い図2(A)に示す接続となり水晶振動子21と発振回路22が接続された状態となる。また、前記選択信号に従い第2の切替手段25a、25bが図2(A)に示す接続となり、発振回路22、記憶手段23に電源端子14が接続され電源が供給された状態となると共に、周波数制御端子15が発振回路22に接続された状態となる。
よって、この状態において発振回路22が起動し出力端子17には発振信号が出力される。なお、通常はこの状態で使用し、周波数制御端子15は前記発振信号の周波数を制御するために、直流電圧或いは周波数変調信号を入力するための端子として使用する。
The piezoelectric oscillator shown in FIG. 1 operates as follows.
First, the Hi voltage of the CMOS interface is input to the adjustment terminal 19 as a selection signal. (This state is hereinafter referred to as “oscillator mode”.) At this time, the first switching means 24a and 24b are connected as shown in FIG. 2A in accordance with the selection signal, and the crystal resonator 21 and the oscillation circuit 22 are connected. It becomes a state. Further, according to the selection signal, the second switching means 25a and 25b are connected as shown in FIG. 2A, the power supply terminal 14 is connected to the oscillation circuit 22 and the storage means 23, and power is supplied. The control terminal 15 is connected to the oscillation circuit 22.
Therefore, in this state, the oscillation circuit 22 is activated and an oscillation signal is output to the output terminal 17. In general, it is used in this state, and the frequency control terminal 15 is used as a terminal for inputting a DC voltage or a frequency modulation signal in order to control the frequency of the oscillation signal.

次に、調整端子19に選択信号としてCMOSインタフェースのLoの電圧を入力する。
(以下、この状態を「振動子モード」と言う。)このとき、第1の切替手段24a、24bは前記選択信号に従い図2(B)に示す接続となり水晶振動子21と発振回路22との接続が断となる。また、前記選択信号に従い第2の切替手段25a、25bが図2(B)に示す接続となり、発振回路22、記憶手段23と電源端子14との接続が断となると共に、水晶振動子21は電源端子14及び周波数可変端子15に接続された状態となる。つまり、水晶振動子21が発振回路22から切り離され、電源端子14と周波数制御端子15に接続された状態になる。
そこで、電源端子14、周波数制御端子15にネットワークアナライザ等の測定装置を接続し、水晶振動子21単体のデータを確認する。なお、電源端子14に電源を供給しないと第1の切替手段24a、24b及び第2の切替手段25a、25bが作動しないので、電源端子14と前記測定装置との間にはバイアスT回路等を挿入し電源を供給できる状態にしておく。
Next, the Lo voltage of the CMOS interface is input to the adjustment terminal 19 as a selection signal.
(Hereinafter, this state is referred to as “vibrator mode”.) At this time, the first switching means 24 a and 24 b are connected as shown in FIG. The connection is broken. Further, according to the selection signal, the second switching means 25a, 25b are connected as shown in FIG. 2B, the connection between the oscillation circuit 22, the storage means 23 and the power supply terminal 14 is cut off, and the crystal resonator 21 is The power supply terminal 14 and the frequency variable terminal 15 are connected. That is, the crystal resonator 21 is disconnected from the oscillation circuit 22 and connected to the power supply terminal 14 and the frequency control terminal 15.
Therefore, a measurement device such as a network analyzer is connected to the power supply terminal 14 and the frequency control terminal 15 to check the data of the crystal unit 21 alone. Since the first switching means 24a, 24b and the second switching means 25a, 25b do not operate unless power is supplied to the power supply terminal 14, a bias T circuit or the like is provided between the power supply terminal 14 and the measuring device. Insert it so that it can supply power.

このように、調整端子19に所定の選択信号を入力し「発振器モード」から「振動子モード」に設定を変更することで、水晶振動子21は発振回路22から簡単に切り離され、水晶振動子21の測定用端子として電源端子14と周波数制御端子15を使うことができる。また、故障診断用に水晶振動子専用の接続端子をパッケージ20に別途設ける必要がなくなり、小型化を図ることが可能となる。なお、水晶振動子21の測定用端子として、電源端子14と周波数制御端子15とを使用するようにしているが、本願発明はこれに限らず。例えば、接地端子16や出力端子17を測定用端子として接続する様にしても良いし、或いは、配線パターンを考慮した上で、これらの入出力端子のなかで測定用端子として最適なものを二つ選択しても良いであろう。
また、IC26内部において調整端子19に接続する配線パターンを抵抗を介して電源へプルアップしても良い。このようにすると、調整端子19を開放状態にすると本発明の圧電発振器は「発振器モード」となり、また、接地状態にすると「振動子モード」となるので故障診断時の設定が簡単になることは言うまでもない。
In this way, by inputting a predetermined selection signal to the adjustment terminal 19 and changing the setting from the “oscillator mode” to the “vibrator mode”, the crystal resonator 21 can be easily disconnected from the oscillation circuit 22 and the crystal resonator The power supply terminal 14 and the frequency control terminal 15 can be used as the 21 measurement terminals. Further, it is not necessary to separately provide a connection terminal dedicated to the crystal unit for failure diagnosis in the package 20, and it is possible to reduce the size. Although the power supply terminal 14 and the frequency control terminal 15 are used as the measurement terminals of the crystal resonator 21, the present invention is not limited to this. For example, the ground terminal 16 and the output terminal 17 may be connected as measurement terminals, or two of these input / output terminals that are optimal as measurement terminals are considered in consideration of the wiring pattern. You may choose one.
Further, a wiring pattern connected to the adjustment terminal 19 in the IC 26 may be pulled up to a power source through a resistor. In this way, when the adjustment terminal 19 is opened, the piezoelectric oscillator of the present invention enters the “oscillator mode”, and when the adjustment terminal 19 is grounded, the “oscillator mode” is entered. Needless to say.

次に、本発明に係る圧電発振器の第2の実施例について説明する。
図3は本発明に係る圧電発振器の第2の実施例のブロック図を示したものである。
図3に示した圧電発振器は第2の切替手段25a、25bの配置のみが図1に示した第1の実施例のものと異なるだけであり、その他の構成は全く同じである。図3に示した第2の実施例において、第2の切替手段25aは第1の切替手段24aと電源端子14との間に挿入され、第2の切替手段25bは第1の切替手段25bと周波数制御端子15との間に挿入されている。前述した第1の実施例と動作は全く同じであるため詳細な説明は省略するが、調整端子19にCMOSインタフェースのHiの電圧を入力するか、或いは開放状態とすると第1の切替手段24a、24bと第2の切替手段25a、25bは図4(A)に示す接続となり「発振器モード」に設定される。また、調整端子19にCMOSインタフェースのLoの電圧を入力するか、或いは接地状態とすると第1の切替手段24a、24bと第2の切替手段25a、25bは図4(B)に示す接続となり「振動子モード」に設定される。以上、説明した第1の実施例と第2の実施例において、第1、第2の切替手段の配置とそれらの接続状態を示したが、水晶振動子21を発振回路22から切り離し、これを入出力端子に接続するものであれば、前記第1、第2切替手段の配置や、切替手段の数や、切替手段相互の接続はどのようなものであってもかまわない。
Next, a second embodiment of the piezoelectric oscillator according to the present invention will be described.
FIG. 3 shows a block diagram of a second embodiment of the piezoelectric oscillator according to the present invention.
The piezoelectric oscillator shown in FIG. 3 is different from that of the first embodiment shown in FIG. 1 only in the arrangement of the second switching means 25a and 25b, and the other configurations are completely the same. In the second embodiment shown in FIG. 3, the second switching means 25a is inserted between the first switching means 24a and the power supply terminal 14, and the second switching means 25b is connected to the first switching means 25b. It is inserted between the frequency control terminal 15. Since the operation is the same as that of the first embodiment described above, a detailed description is omitted. However, if the Hi voltage of the CMOS interface is input to the adjustment terminal 19 or is opened, the first switching means 24a, 24b and the second switching means 25a, 25b are connected as shown in FIG. 4A and are set to the “oscillator mode”. When the voltage of Lo of the CMOS interface is input to the adjustment terminal 19 or is grounded, the first switching means 24a and 24b and the second switching means 25a and 25b are connected as shown in FIG. “Transducer mode” is set. As described above, in the first and second embodiments described above, the arrangement of the first and second switching means and the connection state thereof are shown. The crystal resonator 21 is separated from the oscillation circuit 22, As long as it is connected to the input / output terminal, the arrangement of the first and second switching means, the number of switching means, and the connection between the switching means may be any.

次に、本発明の圧電発振器に温度補償データを書き込む調整方法について説明する。
なお、前記第1、第の実施例のいずれについても調整方法は全く同じなので、ここでは第1の実施例を使って説明する。
まず、圧電発振器を恒温槽に収容し電源端子14、周波数制御端子15にネットワークアナライザ等の測定装置を接続し、出力端子17にスペクトラムアナライザ等の測定装置を接続しておく。そこで、調整端子19にCMOSインタフェースのLoの電圧を入力するか或いは接地状態とし、圧電発振器を「振動子モード」の状態とする。次に、前記恒温槽内の温度を変化させ前記ネットワークアナライザ等の測定装置にて水晶振動子21単体の周波数温度特性のデータを取得する。次に、前記水晶振動子21単体の周波数温度特性のデータから温度補償データを作成する。
Next, an adjustment method for writing temperature compensation data in the piezoelectric oscillator of the present invention will be described.
Note that the adjustment method is exactly the same in both the first and second embodiments, and therefore, the first embodiment will be described here.
First, a piezoelectric oscillator is housed in a thermostat, a measuring device such as a network analyzer is connected to the power supply terminal 14 and the frequency control terminal 15, and a measuring device such as a spectrum analyzer is connected to the output terminal 17. Therefore, the Lo voltage of the CMOS interface is input to the adjustment terminal 19 or the ground state is set, and the piezoelectric oscillator is set in the “vibrator mode”. Next, the temperature in the thermostat is changed, and the frequency temperature characteristic data of the crystal unit 21 alone is acquired by the measuring device such as the network analyzer. Next, temperature compensation data is created from the frequency temperature characteristic data of the crystal unit 21 alone.

次に、調整端子19にCMOSインタフェースのHiの電圧を入力するか或いは開放状態とし、圧電発振器を「発振器モード」の状態とする。そこで、書込端子18に前記温度補償データを入力しこれを記憶手段23に書き込み保存する。次に、恒温槽内の温度を変化させ、出力端子17に出力した発振信号の周波数温度特性を前記スペクトラムアナライザ等の測定装置で確認し調整を完了する。なお、前記書込端子19は3線式のシリアルインタフェースを用いることが多いので、SCLK(シリアルクロック入力)端子、DIO(データ入出力)端子、CS(チップセレクト)端子といった複数の端子を備えるのが通常である。
従って、これらの端子に入力する信号の組み合わせによって前記選択信号をIC26内部で作成し、これを前記第1、第2の切替手段に与えるようにしてもよい。このようにすれば、調整端子を複数の書込端子で兼用することができるので、更に小型化を図る上で有効な手段となる。
Next, the Hi voltage of the CMOS interface is input to the adjustment terminal 19 or is opened, and the piezoelectric oscillator is set to the “oscillator mode”. Therefore, the temperature compensation data is input to the writing terminal 18 and written and stored in the storage means 23. Next, the temperature in the thermostatic chamber is changed, and the frequency temperature characteristic of the oscillation signal output to the output terminal 17 is confirmed with a measuring device such as the spectrum analyzer, thereby completing the adjustment. Since the write terminal 19 often uses a three-wire serial interface, it has a plurality of terminals such as an SCLK (serial clock input) terminal, a DIO (data input / output) terminal, and a CS (chip select) terminal. Is normal.
Therefore, the selection signal may be created inside the IC 26 by a combination of signals inputted to these terminals, and this may be given to the first and second switching means. In this way, the adjustment terminal can be shared by a plurality of write terminals, which is an effective means for further miniaturization.

以上説明したように、本発明の圧電発振器は組み立てが完了した状態でこれを恒温槽に収容し、水晶振動子単体の特性の取得から温度補償データの書き込みまでを一つの測定設備でまとめて行うことができ、水晶振動子単体を恒温槽に収容する作業を不要とするので製造効率が格段にアップする。また、調整端子19を接地することで水晶振動子21を発振回路22から簡単に切り離すことができ専用の測定端子をパッケージに設ける必要がないので、故障診断が簡単に行え、且つ小型化が可能な圧電発振器を提供する上で絶大な効果を発揮する。 As described above, the piezoelectric oscillator according to the present invention is housed in a thermostatic chamber in a state where the assembly is completed, and the process from acquisition of the characteristics of the crystal unit alone to writing of temperature compensation data is performed by one measurement facility. This eliminates the need for housing the crystal unit alone in a thermostatic chamber, thus greatly improving production efficiency. In addition, the crystal resonator 21 can be easily separated from the oscillation circuit 22 by grounding the adjustment terminal 19 and there is no need to provide a dedicated measurement terminal on the package, so that failure diagnosis can be easily performed and the size can be reduced. It provides a tremendous effect in providing a simple piezoelectric oscillator.

本発明に係る圧電発振器の第1の実施例を示すブロック図。1 is a block diagram showing a first embodiment of a piezoelectric oscillator according to the present invention. 本発明に係る圧電発振器の第1の実施例を示すブロック図。1 is a block diagram showing a first embodiment of a piezoelectric oscillator according to the present invention. 本発明に係る圧電発振器の第2の実施例を示すブロック図。The block diagram which shows the 2nd Example of the piezoelectric oscillator which concerns on this invention. 本発明に係る圧電発振器の第2の実施例を示すブロック図。The block diagram which shows the 2nd Example of the piezoelectric oscillator which concerns on this invention. 従来の水晶発振器のブロック図。The block diagram of the conventional crystal oscillator.

符号の説明Explanation of symbols

1、22・・発振回路
2、11、21・・水晶振動子
3、14・・電源端子
4、16・・接地端子
5、17・・出力端子
6、7、8・・接続端子
9・・水晶発振モジュール
10・・アナログスイッチ
12・・プリント基板
15・・周波数制御端子
18・・書込端子
19・・調整端子
20・・パッケージ
23・・記憶手段
24a、24b・・第1の切替手段
25a、25b・・第2の切替手段
26・・IC

1, 2... Oscillation circuits 2, 11, 21... Crystal oscillators 3 and 14... Power supply terminals 4 and 16 .. Ground terminals 5 and 17. Crystal oscillation module 10 .. Analog switch 12. Printed circuit board 15. Frequency control terminal 18. Write terminal 19. Adjustment terminal 20 Package 23 Storage means 24a, 24b First switching means 25a 25b, second switching means 26, IC

Claims (7)

圧電振動子と、発振回路と、信号を入力或いは出力する入出力端子と調整端子とを有し前記圧電振動子と前記発振回路とを収容するパッケージと、前記圧電振動子と前記発振回路との間に挿入された第1の切替手段と、前記圧電振動子と前記入出力端子との間に挿入された第2の切替手段とを備えた圧電発振器であって、前記第1の切替手段は、前記調整端子に入力した選択信号に基づき前記圧電振動子と前記発振回路との接続を断状態、あるいは導通状態のいずれかに設定するものであり、前記第2の切替手段は、該選択信号に基づき前記圧電振動子と前記入出力端子との接続を導通状態、或いは断状態のいずれかに設定するものであることを特徴とする圧電発振器。   A package including a piezoelectric vibrator, an oscillation circuit, an input / output terminal for inputting or outputting a signal, and an adjustment terminal, and housing the piezoelectric vibrator and the oscillation circuit; and A piezoelectric oscillator comprising a first switching means inserted between and a second switching means inserted between the piezoelectric vibrator and the input / output terminal, wherein the first switching means The connection between the piezoelectric vibrator and the oscillation circuit is set to either a disconnected state or a conductive state based on a selection signal input to the adjustment terminal, and the second switching means includes the selection signal. The piezoelectric oscillator is characterized in that the connection between the piezoelectric vibrator and the input / output terminal is set to either a conductive state or a disconnected state. 前記第2の切替手段は、前記第1の切替手段と前記入出力端子との間に挿入したものであり、前記選択信号に基づき前記第1の切替手段を介して前記圧電振動子と前記入出力端子との接続を導通状態、或いは断状態のいずれかに設定するものであることを特徴とする
請求項1記載の圧電発振器。
The second switching means is inserted between the first switching means and the input / output terminal, and based on the selection signal, the piezoelectric vibrator and the input are connected via the first switching means. 2. The piezoelectric oscillator according to claim 1, wherein the connection with the output terminal is set to either a conductive state or a disconnected state.
前記入出力端子は電源端子、接地端子、周波数制御端子、或いは発振信号出力端子のいずれかであることを特徴とする請求項1、または請求項2のいずれかに記載の圧電発振器。   3. The piezoelectric oscillator according to claim 1, wherein the input / output terminal is any one of a power supply terminal, a ground terminal, a frequency control terminal, and an oscillation signal output terminal. 前記発振回路と圧電振動子と前記第1の切替手段と前記第2の切替手段とをICチップ内に集積したことを特徴とする請求項1、請求項2、または請求項3のいずれかに記載の圧電発振器。   4. The oscillating circuit, the piezoelectric vibrator, the first switching unit, and the second switching unit are integrated in an IC chip. The piezoelectric oscillator as described. 前記発振回路は、温度補償データを記憶するための記憶手段と、前記記憶手段に保存された前記温度補償データに基づく温度補償を行う温度補償回路とを備えたことを特徴とする請求項1、請求項2、請求項3、または請求項4のいずれかに記載の圧電発振器。   The oscillation circuit includes storage means for storing temperature compensation data, and a temperature compensation circuit that performs temperature compensation based on the temperature compensation data stored in the storage means. The piezoelectric oscillator according to claim 2, claim 3, or claim 4. 前記パッケージは、外部から前記温度補償データを入力し前記記憶手段に書き込むための書込端子を備えたことを特徴とする請求項5記載の圧電発振器。   6. The piezoelectric oscillator according to claim 5, wherein the package includes a write terminal for inputting the temperature compensation data from the outside and writing the data into the storage means. 前記圧電振動子を恒温槽に収納する調整ステップと、前記調整端子に選択信号を入力し前記第1の切替手段を断状態とすると共に前記第2の切替手段を導通状態にする調整ステップと、前記入出力端子に測定装置を接続すると共に前記恒温槽内の温度を変化し前記圧電振動子単体の周波数温度特性データを取得する調整ステップと、前記取得した圧電振動子単体の周波数温度特性データから温度補償データを作成する調整ステップと、該温度補償データを前記書込端子へ入力しこれを前記記憶手段に書き込む調整ステップとを備えていることを特徴とする請求項6記載の圧電発振器を調整する方法。


An adjustment step of storing the piezoelectric vibrator in a thermostatic chamber; an adjustment step of inputting a selection signal to the adjustment terminal to turn off the first switching means and to turn on the second switching means; From the adjustment step of connecting the measuring device to the input / output terminal and changing the temperature in the thermostatic chamber to acquire the frequency temperature characteristic data of the piezoelectric vibrator alone, and from the acquired frequency temperature characteristic data of the piezoelectric vibrator alone 7. The piezoelectric oscillator according to claim 6, further comprising: an adjustment step of creating temperature compensation data; and an adjustment step of inputting the temperature compensation data to the write terminal and writing the data to the storage means. how to.


JP2004203365A 2004-07-09 2004-07-09 Piezoelectric oscillator and adjustment method thereof Withdrawn JP2006025336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203365A JP2006025336A (en) 2004-07-09 2004-07-09 Piezoelectric oscillator and adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203365A JP2006025336A (en) 2004-07-09 2004-07-09 Piezoelectric oscillator and adjustment method thereof

Publications (1)

Publication Number Publication Date
JP2006025336A true JP2006025336A (en) 2006-01-26

Family

ID=35798259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203365A Withdrawn JP2006025336A (en) 2004-07-09 2004-07-09 Piezoelectric oscillator and adjustment method thereof

Country Status (1)

Country Link
JP (1) JP2006025336A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363821A (en) * 1989-08-02 1991-03-19 Nec Corp Microprogram controller
JP2008107324A (en) * 2006-09-27 2008-05-08 Citizen Holdings Co Ltd Detecting method of piezoelectric element, oscillator, and oscillation gyroscope
JP2009079094A (en) * 2007-09-25 2009-04-16 Toshiba Corp Phosphor and led lamp using it
JP2009201097A (en) * 2008-01-25 2009-09-03 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2009225123A (en) * 2008-03-17 2009-10-01 Seiko Npc Corp Oscillation circuit
JP2009267887A (en) * 2008-04-26 2009-11-12 Kyocera Kinseki Corp Temperature compensation type crystal oscillator
JP2010177852A (en) * 2009-01-28 2010-08-12 Oki Semiconductor Co Ltd Oscillator circuit
US8487330B2 (en) 2007-12-07 2013-07-16 Kabushiki Kaisha Toshiba Phosphor and LED light-emitting device using the same
JP2013232836A (en) * 2012-05-01 2013-11-14 Nippon Dempa Kogyo Co Ltd Oscillation device
CN104601113A (en) * 2013-10-30 2015-05-06 精工爱普生株式会社 Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
JP2015088931A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Oscillation circuit, oscillator, method of manufacturing oscillator, electronic apparatus, and moving body
JP2015088925A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Oscillation circuit, oscillator, method of manufacturing oscillator, electronic apparatus, and moving body
JP2015095709A (en) * 2013-11-11 2015-05-18 セイコーエプソン株式会社 Manufacturing method of oscillator, manufacturing method of semiconductor circuit device and semiconductor circuit device
US9306580B2 (en) 2013-11-07 2016-04-05 Seiko Epson Corporation Oscillation circuit, oscillator, electronic device, mobile object, and oscillator manufacturing method
JP2016167889A (en) * 2016-06-20 2016-09-15 日本電波工業株式会社 Oscillation device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363821A (en) * 1989-08-02 1991-03-19 Nec Corp Microprogram controller
JP2008107324A (en) * 2006-09-27 2008-05-08 Citizen Holdings Co Ltd Detecting method of piezoelectric element, oscillator, and oscillation gyroscope
JP2009079094A (en) * 2007-09-25 2009-04-16 Toshiba Corp Phosphor and led lamp using it
US9169436B2 (en) 2007-12-07 2015-10-27 Kabushiki Kaisha Toshiba Phosphor and LED light emitting device using the same
US8487330B2 (en) 2007-12-07 2013-07-16 Kabushiki Kaisha Toshiba Phosphor and LED light-emitting device using the same
US9660149B2 (en) 2007-12-07 2017-05-23 Kabushiki Kaisha Toshiba Phosphor and LED light emitting device using the same
JP2009201097A (en) * 2008-01-25 2009-09-03 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2009225123A (en) * 2008-03-17 2009-10-01 Seiko Npc Corp Oscillation circuit
CN101557197A (en) * 2008-03-17 2009-10-14 精工恩琵希株式会社 Oscillation circuit
CN101557197B (en) * 2008-03-17 2013-09-18 精工恩琵希株式会社 Oscillation circuit
JP2009267887A (en) * 2008-04-26 2009-11-12 Kyocera Kinseki Corp Temperature compensation type crystal oscillator
JP2010177852A (en) * 2009-01-28 2010-08-12 Oki Semiconductor Co Ltd Oscillator circuit
JP2013232836A (en) * 2012-05-01 2013-11-14 Nippon Dempa Kogyo Co Ltd Oscillation device
JP2015088930A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Oscillation circuit, oscillator, method of manufacturing oscillator, electronic apparatus, and moving body
JP2015088925A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Oscillation circuit, oscillator, method of manufacturing oscillator, electronic apparatus, and moving body
JP2015088931A (en) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 Oscillation circuit, oscillator, method of manufacturing oscillator, electronic apparatus, and moving body
CN104601113A (en) * 2013-10-30 2015-05-06 精工爱普生株式会社 Oscillation circuit, oscillator, manufacturing method of oscillator, electronic device, and moving object
US9306580B2 (en) 2013-11-07 2016-04-05 Seiko Epson Corporation Oscillation circuit, oscillator, electronic device, mobile object, and oscillator manufacturing method
JP2015095709A (en) * 2013-11-11 2015-05-18 セイコーエプソン株式会社 Manufacturing method of oscillator, manufacturing method of semiconductor circuit device and semiconductor circuit device
JP2016167889A (en) * 2016-06-20 2016-09-15 日本電波工業株式会社 Oscillation device

Similar Documents

Publication Publication Date Title
JP2006025336A (en) Piezoelectric oscillator and adjustment method thereof
CN102545782B (en) Crystal oscillation apparatus and semiconductor device
US20110087346A1 (en) Tuning and DAC Selection of High-Pass Filters for Audio Codecs
US20040085141A1 (en) Oscillator with tunable capacitor
JP2009164691A (en) Surface-mount type crystal oscillator
JP2006197564A (en) Signal selector circuit and real-time clock device
JP2006054269A (en) Ic for piezoelectric oscillator, and the piezoelectric oscillator using the same
CN108459876B (en) Method and apparatus for reduced area control register circuit
KR100215184B1 (en) Integrated circuit device
KR100483670B1 (en) Transceiver module
US20150130547A1 (en) Manufacturing method of oscillator, manufacturing method of circuit device and the circuit device
EP1132963B1 (en) Semiconductor integrated circuit
JP2798046B2 (en) Crystal oscillator
JP2001102869A (en) Surface mount package
JP3120352B2 (en) Clock supply system, real-time clock module, operation clock supply unit, and information processing device
JP2009081700A (en) Piezoelectric device, electronic apparatus and method of manufacturing piezoelectric device
CN219322374U (en) Power-on reset circuit without resetting after power failure
US7509545B2 (en) Method and system for testing memory modules
JP2007194940A (en) Field programmable gate array
JPS61228702A (en) Crystal oscillation circuit
JP2007324177A (en) Manufacturing method of semiconductor integrated circuit device
JP2006220452A (en) Device for evaluating electronic component
JP2009094853A (en) Temperature compensation type piezoelectric oscillator
JP2005167509A (en) Piezoelectric oscillator
JP4465865B2 (en) IC circuit and piezoelectric oscillator using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20070402

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

RD03 Notification of appointment of power of attorney

Effective date: 20070525

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Effective date: 20090721

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20090826

Free format text: JAPANESE INTERMEDIATE CODE: A761