JP2006025328A - Transmission method and apparatus for spatial multiplex transmission - Google Patents

Transmission method and apparatus for spatial multiplex transmission Download PDF

Info

Publication number
JP2006025328A
JP2006025328A JP2004203200A JP2004203200A JP2006025328A JP 2006025328 A JP2006025328 A JP 2006025328A JP 2004203200 A JP2004203200 A JP 2004203200A JP 2004203200 A JP2004203200 A JP 2004203200A JP 2006025328 A JP2006025328 A JP 2006025328A
Authority
JP
Japan
Prior art keywords
transmission
weight
matrix
frequency band
coefficient matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004203200A
Other languages
Japanese (ja)
Other versions
JP4401881B2 (en
Inventor
Riichi Kudo
理一 工藤
Kentaro Nishimori
健太郎 西森
Taiji Takatori
泰司 鷹取
Koichi Tsunekawa
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004203200A priority Critical patent/JP4401881B2/en
Publication of JP2006025328A publication Critical patent/JP2006025328A/en
Application granted granted Critical
Publication of JP4401881B2 publication Critical patent/JP4401881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spatial multiplex/orthogonal frequency division multiplex transmission technique applicable even to an environment wherein a transfer function estimate error is high. <P>SOLUTION: A propagation environment estimate section 801 estimates an arrival wave direction in each propagation environment, the number of arrival waves, a level, and a delay on the basis of transfer coefficient matrices H1 to HF. A weight storage section 802 stores a plurality of weights corresponding to propagation environments in advance. A weight selection section 803 selects a weight from the weight storage section 802 on the basis of an estimate result by the propagation environment estimate section 801 and provides an output of the selected weight as a weight multiplied by a multi-beam forming apparatus. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はN個のアンテナ素子を用い、直交周波数分割多重を用いたF個の周波数多重と、L個の空間多重による送信を行う空間多重伝送用送信方法および装置に関する。   The present invention relates to a transmission method and apparatus for spatial multiplexing transmission that performs transmission by F frequency multiplexing using orthogonal frequency division multiplexing and L spatial multiplexing using N antenna elements.

直交波周波数分割多重送信装置は、直交性を利用し周波数軸上でのオーバーラップを許容することで中心周波数が異なる複数の搬送波を利用でき、高い周波数効率を実現する送信装置である。また、空間多重伝送用送信装置は、複数のアンテナ素子から異なる信号を送信することで、周波数帯域を増大することなしに高速伝送を実現する送信装置である。   An orthogonal wave frequency division multiplex transmission device is a transmission device that can use a plurality of carriers having different center frequencies by using orthogonality and allowing overlap on the frequency axis, thereby realizing high frequency efficiency. The spatial multiplexing transmission apparatus is a transmission apparatus that realizes high-speed transmission without increasing the frequency band by transmitting different signals from a plurality of antenna elements.

従来、非特許文献1に記載されるように、マルチビームを形成することで伝送品質を改善する空間多重伝送用送信装置がある。   Conventionally, as described in Non-Patent Document 1, there is a spatial multiplexing transmission apparatus that improves transmission quality by forming a multi-beam.

図7にこの種の従来の空間多重伝送用送信装置を示す。シリアル−パラレル変換装置700と、送信装置711〜71Lと、マルチビ−ム形成装置721〜72Lと、信号合成装置731〜73Nと、切替え装置741〜74Nと、送信用アンテナ素子751〜75Nと、重み決定装置760から構成される。   FIG. 7 shows a conventional spatial multiplexing transmission apparatus of this type. Serial-parallel conversion device 700, transmission devices 711-71L, multi-beam forming devices 721-72L, signal synthesis devices 731-73N, switching devices 741-74N, transmission antenna elements 751-75N, weights It is comprised from the determination apparatus 760.

送信信号はシリアル−パラレル変換器700によって複数の信号系列T1〜TLを生成し、送信装置711〜71LによってL系列の送信信号系列が形成され、マルチビ−ム形成装置721〜72Lによって各々重み決定装置760により決定された重みを用い、異なった指向性を形成するための各アンテナ素子への出力信号が形成され、信号合成装置731〜73Nにより同一のアンテナ素子に出力された信号を足し合わせ、切替え装置741〜74Nから送信用アンテナ素子751〜75Nに出力し、同一の時刻,同一の周波数で送信される。ここで重み決定装置760ではマルチビーム形成装置で送信信号にかける重みを以下のようにして決定する。   The transmission signal generates a plurality of signal sequences T1 to TL by the serial-parallel converter 700, L transmission signal sequences are formed by the transmission devices 711 to 71L, and weight determination devices are respectively formed by the multi-beam forming devices 721 to 72L. Using the weights determined by 760, output signals to the respective antenna elements for forming different directivities are formed, and the signals output to the same antenna elements by the signal synthesizers 731 to 73N are added and switched. The signals are transmitted from the devices 741 to 74N to the transmitting antenna elements 751 to 75N and transmitted at the same time and the same frequency. Here, the weight determination device 760 determines the weight applied to the transmission signal by the multi-beam forming device as follows.

まず伝達係数行列Hの特異値分解(H=UDV)を行い、ユニタリ行列V及び特異値√λを対角要素とする対角行列を求める。送信アンテナ数をN、受信アンテナ数をM、XをMとNのうち小さい方の数字とし、u〜uをM×1の列ベクトル、v〜vをN×1の列ベクトル、上添え字Hは共役転置を表するものとすると、伝達係数行列は以下の式で表される。

Figure 2006025328
ここで、伝達係数行列の要素Hijは送信アンテナjで送信され、受信アンテナiで受信したときの伝達係数となっている。 First, singular value decomposition (H = UDV H ) of the transfer coefficient matrix H is performed to obtain a diagonal matrix having the unitary matrix V and the singular value √λ as diagonal elements. The number of transmission antennas N, a number of smaller one of the number of receive antennas M, the X M and N, the column vector of u 1 ~u x a column vector of M × 1, v 1 ~v x a N × 1 Assuming that the superscript H represents conjugate transpose, the transfer coefficient matrix is represented by the following equation.
Figure 2006025328
Here, element Hij of the transmission coefficient matrix is a transmission coefficient when transmitted by transmission antenna j and received by reception antenna i.

次に特異値の大きい方からL個を選択し、各特異値に対応したユニタリ行列Vの列ベクトルv〜vを重みとして選択し、L個の信号T〜Tから各列ベクトルを用いて以下の式によって各アンテナ素子から送信する信号S〜Sを形成する。

Figure 2006025328
ユニタリ行列Vは、その複素共役転置行列Hと伝達係数行列Hとの積HHの固有ベクトルとなっている。 Next, L is selected from the larger singular values, the column vectors v 1 to v x of the unitary matrix V corresponding to the singular values are selected as weights, and each column vector is selected from the L signals T 1 to T L. Are used to form signals S 1 to S N to be transmitted from each antenna element according to the following equation.
Figure 2006025328
The unitary matrix V is an eigenvector of the product H H H of the complex conjugate transpose matrix H H and the transfer coefficient matrix H.

受信局では、例えば送信局で送信されたビームの数L以上の受信アンテナを用いて復号を行う。以下に受信アンテナ数をN、受信アンテナ数とビーム数をL(L≦N、L≦M、X=L)とした場合の復号方法の例を示す。受信局アンテナ素子において受信される信号をR〜R、各受信信号における雑音をn〜nとすると、空間多重伝送用送信装置によって信号を送信すると受信信号R〜Rは以下のようにあらわすことができる。

Figure 2006025328
In the receiving station, for example, decoding is performed using receiving antennas having a number L or more of beams transmitted from the transmitting station. An example of a decoding method when the number of reception antennas is N and the number of reception antennas and the number of beams is L (L ≦ N, L ≦ M, X = L) is shown below. Assuming that signals received at the receiving station antenna element are R 1 to R L , and noise in each received signal is n 1 to n L , the received signals R 1 to R L are as follows when a signal is transmitted by the spatial multiplexing transmission apparatus: It can be expressed as follows.
Figure 2006025328

したがって、受信装置では以下の演算を行うことによって、送信信号を復号することが可能となる。

Figure 2006025328
と表すことができる。ここでT´〜T´は受信装置で推定した送信信号である。 Therefore, the reception apparatus can decode the transmission signal by performing the following calculation.
Figure 2006025328
It can be expressed as. Here, T ′ 1 to T ′ L are transmission signals estimated by the receiving apparatus.

このようにすることによって、周波数帯域を増大せずにアンテナ数倍の伝送速度を実現することが可能であり、指向性利得が得られ、さらにN素子からLビームを形成する(N≧L)とすることによって良好なビームを選択できるためダイバーシチ効果も得ることができる。
Miyashita,K.;Nishimura,T.;Ohgane,T.;Ogawa,Y.;Takatori,Y.;KeizoCho;"Highdata-rate transmission with eigenbeam-space division multiplexing (E-SDM)in a MIMO channel," Vehicular Technology Conference,2002.Proceedings.VTC2002-Fall.2002 IEEE 56th ,Volume:3,24-28 Sept.2002 Pages:1302-1306 vol.3
By doing so, it is possible to realize a transmission speed that is several times the number of antennas without increasing the frequency band, to obtain a directivity gain, and to form an L beam from N elements (N ≧ L). Therefore, since a good beam can be selected, a diversity effect can also be obtained.
Miyashita, K.; Nishimura, T.; Ohgane, T.; Ogawa, Y.; Takatori, Y.; KeizoCho; "High data-rate transmission with eigenbeam-space division multiplexing (E-SDM) in a MIMO channel," Vehicular Technology Conference, 2002.Proceedings.VTC2002-Fall.2002 IEEE 56th, Volume: 3,24-28 Sept.2002 Pages: 1302-1306 vol.3

ただし、上記の従来の方法は推定した伝達係数行列のみによって形成されるため、伝達関数推定に誤差が生じると伝送品質の大きな劣化を招くという問題があり、伝達関数推定誤差の大きい環境には適用できない。また、固有ベクトルを求める演算は負荷が大きく、直交周波数分割多重の各周波数帯で求めると演算量が非常に大きくなるという問題がある。
本発明は、このような事情に鑑みてなされたもので、その目的は、伝搬環境の推定誤差による通信品質劣化を防ぎ、演算量を削減することにある。
However, since the above conventional method is formed only by the estimated transfer coefficient matrix, if there is an error in the transfer function estimation, there is a problem that the transmission quality is greatly degraded. Can not. In addition, there is a problem that the calculation for obtaining the eigenvector has a large load, and the calculation amount becomes very large when it is obtained in each frequency band of orthogonal frequency division multiplexing.
The present invention has been made in view of such circumstances, and an object thereof is to prevent communication quality deterioration due to propagation environment estimation error and to reduce the amount of calculation.

上述した課題を解決するために、本発明は、複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝搬環境を推定し、この推定された複数の周波数帯の伝搬環境情報に基づいてあらかじめ設定された複数の送信重みの中から、対応する周波数帯の送信重みを選択することを特徴とする空間多重伝送用送信方法を提供するものである。   In order to solve the above-described problem, the present invention includes a plurality of transmission / reception means, determines transmission weights suitable for the propagation environment, weights each transmission sequence, and performs orthogonal frequency division multiplexing for transmission. A method of performing orthogonal frequency division multiplexing demodulation on a received signal, estimating a propagation environment in each frequency band of orthogonal frequency division multiplexing, and setting in advance based on propagation environment information of the estimated plurality of frequency bands The present invention provides a transmission method for spatial multiplexing transmission, wherein a transmission weight of a corresponding frequency band is selected from a plurality of transmission weights.

また本発明は、複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、その平均を求めて得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法を提供するものである。 The present invention is also a method comprising a plurality of transmission / reception means, determining a transmission weight suitable for the propagation environment, weighting each transmission sequence, performing orthogonal frequency division multiplexing, and transmitting the received signal to the received signal. Perform orthogonal frequency division multiplexing demodulation, estimate transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, determine transmission weight of each signal sequence from transmission coefficient matrix of multiple frequency bands, and determine transmission weight In this case, the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix is obtained in each frequency band, and a plurality of the products are selected, and the eigenvector of the matrix obtained by calculating the average is obtained from the signal sequence of the frequency band. The present invention provides a transmission method for spatial multiplexing transmission characterized in that transmission weights are used.

また本発明は、複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、送信重みを決定しようとする周波数帯からの周波数差に対応する重みを前記積に乗算し、その和をとって得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法を提供するものである。   The present invention is also a method comprising a plurality of transmission / reception means, determining a transmission weight suitable for the propagation environment, weighting each transmission sequence, performing orthogonal frequency division multiplexing, and transmitting the received signal to the received signal. Perform orthogonal frequency division multiplexing demodulation, estimate transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, determine transmission weight of each signal sequence from transmission coefficient matrix of multiple frequency bands, and determine transmission weight First, obtain a product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix in each frequency band, select a plurality of those products, and determine the weight corresponding to the frequency difference from the frequency band for which the transmission weight is to be determined. Provided is a spatial multiplexing transmission method characterized in that an eigenvector of a matrix obtained by multiplying the product and taking the sum is used as a transmission weight of a signal sequence in the frequency band.

また本発明は、複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、それぞれの積に対応する重みを前記積に乗算し、その和をとって得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法を提供するものである。   The present invention is also a method comprising a plurality of transmission / reception means, determining a transmission weight suitable for the propagation environment, weighting each transmission sequence, performing orthogonal frequency division multiplexing, and transmitting the received signal to the received signal. Perform orthogonal frequency division multiplexing demodulation, estimate transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, determine transmission weight of each signal sequence from transmission coefficient matrix of multiple frequency bands, and determine transmission weight In this case, the complex conjugate transpose matrix of the transfer coefficient matrix and the product of the transfer coefficient matrix are obtained in each frequency band, a plurality of these products are selected, the weight corresponding to each product is multiplied by the product, and the sum is obtained. The spatial multiplexing transmission method is characterized in that the eigenvector of the matrix obtained in this way is used as the transmission weight of the signal sequence of the frequency band.

また本発明は、複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、それぞれの積に対応する重みは、送信重みを適用する当該周波数帯の伝達係数行列、または伝達係数行列から得られるパラメータと、選択した積の周波数帯の伝達係数行列、または伝達係数行列から得られるパラメータとの相関値により決定し、この重みを前記積に乗算し、その和をとって得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法を提供するものである。   The present invention is also a method comprising a plurality of transmission / reception means, determining a transmission weight suitable for the propagation environment, weighting each transmission sequence, performing orthogonal frequency division multiplexing, and transmitting the received signal to the received signal. Perform orthogonal frequency division multiplexing demodulation, estimate transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, determine transmission weight of each signal sequence from transmission coefficient matrix of multiple frequency bands, and determine transmission weight In this case, a product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix is obtained in each frequency band, and a plurality of these products are selected, and the weight corresponding to each product is the value of the frequency band to which the transmission weight is applied. It is determined by the correlation value between the transfer coefficient matrix or parameters obtained from the transfer coefficient matrix and the parameters obtained from the transfer coefficient matrix or transfer coefficient matrix of the selected product frequency band. Multiplied by the weight to the product, there is provided a spatial multiplexing transmission transmitting method characterized by the eigenvectors of the matrix obtained by taking the sum and the transmission weight of the signal sequence of the frequency band.

また本発明は、複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、上記空間多重伝送用送信方法に記載の送信重み、もしくは送信重みを決定するために必要となる情報を通信相手局からフィードバックすることで、当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法を提供するものである。   Further, the present invention is a method comprising a plurality of transmission / reception means, determining a transmission weight suitable for a propagation environment, weighting each transmission sequence, performing orthogonal frequency division multiplexing, and transmitting the spatial multiplexing Spatial multiplexing characterized in that the transmission weight described in the transmission method for transmission or the information necessary for determining the transmission weight is fed back from the communication partner station to be used as the transmission weight of the signal sequence in the frequency band. A transmission method for transmission is provided.

また本発明は、上記空間多重伝送用送信方法において、前記送信重みとして、複数の周波数帯で共通のものを用いることを特徴とする。   The present invention is also characterized in that, in the spatial multiplexing transmission method, a common transmission weight is used for a plurality of frequency bands.

また本発明は、N個のアンテナ素子を用い、直交波周波数分割多重を用いたF個の周波数多重と、L個の空間多重による送信を行う空間多重伝送装置において、前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え装置と、前記切り替え装置に接続され、受信時に切り替え装置から出力される信号を入力信号とし、入力信号にフーリエ変換を行い、それぞれF個の受信信号に変換するN個のフーリエ変換装置と、前記フーリエ変換装置の対応する周波数帯の受信信号を入力信号とし、その周波数帯での伝達係数行列を推定する伝達係数行列推定装置と、前記伝達係数行列推定手段において推定されたF個の伝達係数行列より複数の伝達係数行列を選び、対応する周波数帯におけるマルチビーム形成装置の送信重みを決定する送信重み決定装置と、前記フーリエ変換装置と、伝達係数行列推定装置と、送信重み決定装置を総称した送信重み決定ブロックと、送信する入力信号にシリアル−パラレル変換を行い、周波数分割多重数F×空間多重数Lに振り分けるシリアル−パラレル変換装置と、前記シリアル−パラレル変換装置の出力信号を入力信号とし、送信信号系をマルチビーム形成装置に出力するF×L個の送信装置と、前記送信装置から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定装置により決定された重み付けを行った後、N×F個の信号合成装置の対応するポ−トに出力を行うマルチビーム形成装置と、前記マルチビ−ム形成装置のうち対応するL個のマルチビーム形成装置からL個のポ−トに入力された信号を重ね合わせ、逆フーリエ変換装置の対応するポ−トに出力を行う信号合成装置と、前記信号合成装置から出力されたF個の信号に逆フーリエ変換を行い、前記切替え装置の他方のポ−トに出力を行うN個の逆フーリエ変換装置と、を備えたことを特徴とする空間多重伝送用送信装置を提供するものである。   Further, the present invention provides a spatial multiplexing transmission apparatus that uses N antenna elements, performs F frequency multiplexing using orthogonal frequency division multiplexing, and L spatial multiplexing, and is connected to each antenna element. , A switching device that switches between a received signal and a transmission signal, and a signal that is connected to the switching device and that is output from the switching device at the time of reception is an input signal, performs a Fourier transform on the input signal, and converts each into F received signals N Fourier transform apparatuses, a transfer coefficient matrix estimation apparatus for estimating a transfer coefficient matrix in the frequency band, using a received signal in a frequency band corresponding to the Fourier transform apparatus as an input signal, and the transfer coefficient matrix estimation means A plurality of transfer coefficient matrices are selected from the estimated F transfer coefficient matrices, and the transmission weight of the multi-beamforming apparatus in the corresponding frequency band is determined. A transmission weight determination device, a Fourier transform device, a transmission coefficient matrix estimation device, a transmission weight determination block generically referred to as a transmission weight determination device, and a serial-parallel conversion on an input signal to be transmitted, and a frequency division multiplexing number F A serial-parallel conversion device that distributes to a spatial multiplexing number L, an F × L transmission device that uses an output signal of the serial-parallel conversion device as an input signal and outputs a transmission signal system to a multi-beam forming device, and the transmission The signal input from the device is used as an input signal, divided into N signals, weighted by the transmission weight determining device, and then output to the corresponding ports of the N × F signal synthesizers And superimposing signals input to L ports from the corresponding L multi-beam forming apparatuses among the multi-beam forming apparatuses. A signal synthesizer that outputs to the corresponding port of the inverse Fourier transform device, and performs an inverse Fourier transform on the F signals output from the signal synthesizer, and outputs an output to the other port of the switching device. The present invention provides a spatial multiplexing transmission apparatus characterized by comprising N inverse Fourier transform apparatuses.

また本発明は、前記送信重み決定装置が、対応するt番目の周波数帯に前記マルチビーム形成装置で乗算する送信重みを、前記F個の伝達係数行列から選択したMt(≦F)個の伝達係数行列から、それぞれの複素共役転置行列と伝達係数行列との積を求め、Mt個の平均をとった行列の固有ベクトルとして出力することを特徴とする。   Further, the present invention provides Mt (≦ F) transmissions in which the transmission weight determining device selects a transmission weight by which the corresponding t-th frequency band is multiplied by the multibeam forming device from the F transmission coefficient matrices. A product of each complex conjugate transpose matrix and a transfer coefficient matrix is obtained from the coefficient matrix, and is output as an eigenvector of a matrix obtained by taking Mt averages.

また本発明は、前記送信重み決定装置が、対応するt番目の周波数帯に前記マルチビーム形成装置で乗算する送信重みを、前記F個の伝達係数行列から選択したMt個の伝達係数行列から、それぞれその複素共役転置行列と伝達係数行列との積を求め、得られたk番目の行列に重みwkを乗算し、和をとることで得られる行列の固有ベクトルとして出力することを特徴とする。   Further, the present invention provides the transmission weight determining device that multiplies the corresponding t-th frequency band by the multi-beam forming device from the Mt transfer coefficient matrices selected from the F transfer coefficient matrices. The product of each of the complex conjugate transpose matrix and the transfer coefficient matrix is obtained, the obtained k-th matrix is multiplied by the weight wk, and the result is output as an eigenvector of the matrix obtained by taking the sum.

また本発明は、前記送信重み決定装置が、対応するt番目の周波数帯に前記マルチビーム形成装置で乗算する送信重みを、前記F個の伝達係数行列から選択したMt個の伝達係数行列から、それぞれの複素共役転置行列と伝達係数行列との積を求め、それぞれの周波数帯に応じた重みwtkを乗算し、和をとることで得られる行列の固有ベクトルとして出力することを特徴とする。   According to the present invention, the transmission weight determining apparatus multiplies the corresponding t-th frequency band by the multi-beam forming apparatus from the Mt transmission coefficient matrices selected from the F transmission coefficient matrices. A product of each complex conjugate transpose matrix and a transfer coefficient matrix is obtained, multiplied by a weight wtk corresponding to each frequency band, and output as an eigenvector of a matrix obtained by taking the sum.

また本発明は、前記送信重み決定装置が、対応するt番目の周波数帯に前記マルチビーム形式装置で乗算する送信重みを、前記F個の伝達係数行列から選択したMt個の伝達係数行列から、それぞれの複素共役転置行列と伝達係数行列との積を求め、t番目の周波数帯の伝達係数行列との相関値に応じた重みwtkを乗算し、和をとることで得られる行列の固有ベクトルとして出力することを特徴とする。   According to the present invention, the transmission weight determining apparatus multiplies the corresponding t-th frequency band by the multi-beam format apparatus from Mt transmission coefficient matrices selected from the F transmission coefficient matrices. Obtain the product of each complex conjugate transpose matrix and the transfer coefficient matrix, multiply by the weight wtk according to the correlation value with the transfer coefficient matrix of the tth frequency band, and output as the eigenvector of the matrix obtained by taking the sum It is characterized by doing.

また本発明は、前記送信重み決定ブロックにおいて、受信時に切替え装置から出力される信号を入力信号とし、入力信号から、前記送信重みを決定するための演算の全て、もしくは一部を行った結果の情報を含むフィールドバック情報を抽出するフィードバック情報抽出装置と、前記フィードバック情報抽出装置の出力を入力信号とし、前記送信重みを決定する演算を行う送信重み決定装置と、を備えたことを特徴とする。
また本発明は、前記送信重み決定装置が、複数の周波数帯に共通の送信重みを出力することを特徴とする。
According to the present invention, in the transmission weight determination block, a signal output from the switching device at the time of reception is set as an input signal, and a result of performing all or a part of the calculation for determining the transmission weight from the input signal. A feedback information extraction device that extracts field-back information including information, and a transmission weight determination device that performs an operation to determine the transmission weight using an output of the feedback information extraction device as an input signal. .
Further, the present invention is characterized in that the transmission weight determination device outputs a transmission weight common to a plurality of frequency bands.

本発明によれば、直交波周波数分割多重を行う場合において、広い周波数帯の伝搬環境から重みを決定しマルチビ−ムによる送信を行うことで、伝搬環境推定誤差による伝送品質の劣化を低減することができ、また複数の周波数帯に同一の送信重みを適用すれば演算量を減らすことができる。   According to the present invention, when orthogonal frequency division multiplexing is performed, weights are determined from a propagation environment in a wide frequency band, and transmission is performed using multi-beams, thereby reducing transmission quality degradation due to propagation environment estimation errors. If the same transmission weight is applied to a plurality of frequency bands, the amount of calculation can be reduced.

以下、図1〜図3、図8、図9を参照しながら本発明の実施形態について詳細に説明する。
図1は、本発明の第1の実施形態におけるマルチビ−ムを形成する直交波周波数分割多重を用いた空間多重伝送用送信装置を示すブロック図である。この実施形態は、伝搬環境誤差が存在する環境において空間多重伝送の伝送品質の劣化を防ぐことを可能とする構成を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 3, 8, and 9.
FIG. 1 is a block diagram showing a spatial multiplexing transmission apparatus using orthogonal wave frequency division multiplexing forming a multi-beam in the first embodiment of the present invention. This embodiment shows a configuration that makes it possible to prevent deterioration in transmission quality of spatial multiplexing transmission in an environment where there is a propagation environment error.

同図において、符号100はシリアル−パラレル(S/P)変換装置、1111〜11LFは送信装置、1211〜12NFは逆フ−リエ変換装置、1311〜13NFは信号合成装置、1141〜14Nは逆フ−リエ変換装置、151〜15Nは切り替え装置、161〜16Nはアンテナ素子、171〜17Nはフ−リエ変換装置、181〜18Fは伝達係数行列推定装置、190は送信重み決定装置、001は送信重み決定ブロックである。   In the figure, reference numeral 100 is a serial-parallel (S / P) converter, 1111 to 11LF is a transmitter, 1211 to 12NF is a reverse Fourier converter, 1311 to 13NF is a signal synthesizer, and 1141 to 14N are reverse buffers. -Fourier transform device, 151 to 15N are switching devices, 161 to 16N are antenna elements, 171 to 17N are Fourier transform devices, 181 to 18F are transfer coefficient matrix estimation devices, 190 is a transmission weight determination device, and 001 is a transmission weight It is a decision block.

シリアル−パラレル変換装置100により、シリアル−パラレル変換され周波数分割多重数F×空間多重数Lに振り分けられた送信信号はそれぞれ送信装置1111〜11LFにより符号化され送信信号系列として1211〜12LFのマルチビ−ム形成装置にそれぞれ出力される。マルチビ−ム形成装置に入力された信号は送信重み決定装置により決定される送信重みVtk(t=1〜F,k=1〜L)をアナログ、もしくはデジタルで乗算され、F個ずつ逆フ−リエ変換装置141〜14Nに出力される。入力された信号は逆フ−リエ変換され、切り替え装置151〜15Nを介し、アンテナ素子161〜16Nから送信される。   The transmission signals serial-parallel converted by the serial-parallel conversion device 100 and distributed to the frequency division multiplexing number F × the spatial multiplexing number L are encoded by the transmission devices 1111 to 11LF, respectively, and 1211 to 12LF multi-bit signals are transmitted. Output to each of the image forming apparatuses. A signal input to the multi-beam forming apparatus is multiplied by analog or digital transmission weights Vtk (t = 1 to F, k = 1 to L) determined by the transmission weight determining apparatus, and F-numbers are inverted. It is output to the lie converters 141 to 14N. The input signal is subjected to inverse Fourier transform and transmitted from the antenna elements 161 to 16N via the switching devices 151 to 15N.

送信重み決定ブロック1は、フ−リエ変換装置171〜17Nと伝達係数行列推定装置181〜18Fと送信重み決定装置190から構成され、フ−リエ変換装置171〜17Nは切り替え装置151〜15Nの受信時の出力を入力信号としてフ−リエ変換を行い、周波数帯毎に分離し、伝達係数行列推定装置181〜18Fに出力する。また、伝達係数行列推定装置181〜18Fは、各周波数帯において伝達係数行列を算出し、送信重み決定装置190に出力する。送信重み決定装置190は推定された伝達係数行列から所定の伝送品質を満たす送信重みを決定する。   The transmission weight determination block 1 includes a Fourier transform device 171 to 17N, a transfer coefficient matrix estimation device 181 to 18F, and a transmission weight determination device 190. The Fourier transform devices 171 to 17N receive the switching devices 151 to 15N. The Fourier transform is performed using the output of the time as an input signal, separated for each frequency band, and output to the transfer coefficient matrix estimation devices 181 to 18F. Moreover, the transmission coefficient matrix estimation apparatuses 181 to 18F calculate a transmission coefficient matrix in each frequency band and output the transmission coefficient matrix to the transmission weight determination apparatus 190. The transmission weight determination device 190 determines a transmission weight that satisfies a predetermined transmission quality from the estimated transfer coefficient matrix.

ここで、N個のアンテナ素子を持つ送信装置と、M個のアンテナ素子数を持つ受信装置間において上りと下りの伝搬環境が同一と見なせる場合について、直交波周波数分割多重と空間多重を用いた通信を考える。   Here, orthogonal wave frequency division multiplexing and spatial multiplexing were used in the case where the transmission environment having N antenna elements and the reception apparatus having M antenna elements can be considered to have the same uplink and downlink propagation environments. Think about communication.

ある周波数帯に着目すると、送信装置はまず既知の信号T´(M×N行列)を受信し、前記伝達係数行列推定装置において得られた受信信号R´(N×N行列)からその周波数帯での上りの伝達係数行列G(N×M行列)を以下のように推定する。

Figure 2006025328
下りの伝達係数行列H(M×N行列)は上り伝達係数行列の転置をとることで
Figure 2006025328
として与えられる。Hijは送信装置のアンテナ素子#jから受信装置のアンテナ素子#i間の伝達係数の推定結果を表わしている。 When paying attention to a certain frequency band, the transmission apparatus first receives a known signal T ′ (M × N matrix), and from the received signal R ′ (N × N matrix) obtained by the transfer coefficient matrix estimation apparatus, the frequency band The uplink transmission coefficient matrix G (N × M matrix) at is estimated as follows.
Figure 2006025328
The downlink transmission coefficient matrix H (M × N matrix) is obtained by transposing the uplink transmission coefficient matrix.
Figure 2006025328
As given. H ij represents the estimation result of the transfer coefficient between the antenna element #j of the transmitting apparatus and the antenna element #i of the receiving apparatus.

図8は第1の実施形態における送信重み決定装置の概略を示すブロック図である。同図において伝搬環境推定部801は、例えば、1〜F番目の全周波数帯で得られた伝達係数行列Hk(k=1〜F)から、複数の伝達係数行列を各周波数帯において選択し、その伝搬環境の到来波方向、到来波数、レベル、遅延の推定を MUSIC 法(Multiple Signal Classification)やESPRIT法(Estimation of Signal Parameters via Rotational Invariance Techniques)(Paulaj et al, ESPRIT-a subspace rotation approach to signal parameter estimation' ,IEEE Proceeding,74(7),1044-1045,July 1986)を用いて推定するものである。   FIG. 8 is a block diagram showing an outline of the transmission weight determination apparatus in the first embodiment. In the figure, for example, the propagation environment estimation unit 801 selects a plurality of transfer coefficient matrices in each frequency band from the transfer coefficient matrices Hk (k = 1 to F) obtained in all the 1st to Fth frequency bands, Estimating the direction, number, level, and delay of the propagation environment of the propagation environment using MUSIC (Multiple Signal Classification) and ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) (Paulaj et al, ESPRIT-a subspace rotation approach to signal parameter estimation ', IEEE Proceeding, 74 (7), 1044-1045, July 1986).

重み格納部802は、複数の伝搬環境モデルに対応する重みを格納するものである。伝搬環境を類型化して各環境において所定の伝送品質の基準を最大とするような重みをあらかじめ設定しておき、この重み格納部803に格納している。重み選択部803は、伝搬環境推定部801の推定結果に基づいて、重み格納部802から重みを選択し、マルチビ−ム形成装置1211〜12LFにおいて乗算される重みとして出力する。   The weight storage unit 802 stores weights corresponding to a plurality of propagation environment models. The propagation environment is categorized and a weight that maximizes a predetermined transmission quality standard in each environment is set in advance and stored in the weight storage unit 803. The weight selection unit 803 selects a weight from the weight storage unit 802 based on the estimation result of the propagation environment estimation unit 801, and outputs the weight as a weight multiplied in the multi-beam forming apparatuses 1211 to 12LF.

次に本発明の第2の実施形態を説明する。図2は第2の実施形態における送信重み決定装置を示すブロック図である。同図に示すように第2の実施形態では、送信重み決定装置は、伝達係数行列演算装置211〜21Fと、選択分配装置220と、送信重み演算装置231〜23Fで構成される。その他の構成は第1の実施形態と同様である。   Next, a second embodiment of the present invention will be described. FIG. 2 is a block diagram showing a transmission weight determination apparatus in the second embodiment. As shown in the figure, in the second embodiment, the transmission weight determination device is composed of transfer coefficient matrix calculation devices 211 to 21F, a selective distribution device 220, and transmission weight calculation devices 231 to 23F. Other configurations are the same as those of the first embodiment.

上記構成において、伝達係数演算装置211〜21Fは、伝達係数行列推定装置から出力される対応するk番目(k=1〜F)の周波数帯の伝達係数行列Hから、例えば、伝達係数行列の複素共役転置行列と、伝達係数行列の積H を求め、選択配分装置に出力する。選択分配装置220は、F個の演算された行列を入力信号とし、t番目の周波数帯の送信重み演算装置23tに対し、F個の周波数帯で演算された行列の中からM個(1≦M≦F)の行列を選択し、出力する。また、送信重み演算装置231〜23Fは、入力された複数の行列の平均もしくは和を求め、得られた行列の固有ベクトルをt番目の周波数帯の送信重みとして適用する。このように重みを決定することで、伝播環境推定誤差による伝送品質の劣化を低減することができる。 In the above-described configuration, the transfer coefficient calculation devices 211 to 21F obtain, for example, the transfer coefficient matrix from the corresponding kth (k = 1 to F) frequency band transfer coefficient matrix H k output from the transfer coefficient matrix estimation device. A product H K H H K of the complex conjugate transpose matrix and the transfer coefficient matrix is obtained and output to the selective distribution device. The selective distribution device 220 receives F computed matrices as input signals, and transmits M t (1) out of matrices computed in the F frequency bands to the transmission weight computing device 23 t in the t th frequency band. ≦ M t ≦ F) is selected and output. Also, the transmission weight calculation devices 231 to 23F calculate the average or sum of the plurality of input matrices, and apply the obtained eigenvector of the matrix as the transmission weight of the t-th frequency band. By determining the weights in this way, it is possible to reduce deterioration in transmission quality due to propagation environment estimation errors.

次に本発明の第3の実施形態を説明する。図9は第3の実施形態における送信重み決定装置を示すブロック図である。この実施形態においては、選択分配装置900は、伝達係数行列演算装置から出力されたF個の演算された行列を入力信号とし、それぞれの周波数帯の送信重み演算装置23t(1≦t≦F)に対し、M個(1≦M≦F)の行列を選択し、それぞれk番目(1≦k≦M)の行列に対して重みwkを乗算し出力する。この他は第2の実施形態と同様である。   Next, a third embodiment of the present invention will be described. FIG. 9 is a block diagram showing a transmission weight determination apparatus in the third embodiment. In this embodiment, the selection / distribution device 900 uses the F calculated matrices output from the transfer coefficient matrix calculation device as input signals, and the transmission weight calculation device 23t (1 ≦ t ≦ F) for each frequency band. On the other hand, M (1 ≦ M ≦ F) matrices are selected, and the k-th (1 ≦ k ≦ M) matrix is multiplied by the weight wk and output. The rest is the same as in the second embodiment.

次に本発明の第4の実施形態を説明する。図3は第4の実施形態における送信重み決定装置を示すブロック図である。この実施形態においては、選択分配装置300は、伝達係数行列演算装置から出力されたF個の演算された行列を入力信号とし、t番目の周波数帯の送信重み演算装置23tに対し、F個の周波数帯で演算された行列の中からM個(1≦M≦F)の行列を選択し、k番目(1≦k≦M)の行列に対してそれぞれ重みwtkを乗算し出力する。 Next, a fourth embodiment of the present invention will be described. FIG. 3 is a block diagram showing a transmission weight determination apparatus in the fourth embodiment. In this embodiment, the selection / distribution device 300 uses the F calculated matrices output from the transfer coefficient matrix calculation device as input signals, and performs F number of transmission weight calculation devices 23t in the t-th frequency band. M t (1 ≦ M t ≦ F) matrices are selected from the matrices calculated in the frequency band, and the k-th (1 ≦ k ≦ M) matrix is multiplied by the weight w tk and output. .

ここで、選択された複数の周波数帯のH に乗算する重みwtkは、例えばH、もしくはHから得られる固有値、固有ベクトルなどのパラメ−タと、H、もしくはHから得られる固有値、固有ベクトルなどのパラメ−タとの相関値の大きさにより決定し、wtkH の和をとった行列の固有ベクトルをt番目の周波数帯の送信重みとして適用する。この他は第2の実施形態と同様である。 Here, the weight w tk multiplying the H K H H K of the plurality of frequency bands is selected, parameters of example H k or eigenvalues obtained from the H k,, etc. eigenvectors - and motor, H t or H t, The eigenvalues of the matrix obtained by summing w tk H K H H K are applied as transmission weights of the t-th frequency band. The rest is the same as in the second embodiment.

次に本発明の第5の実施形態を説明する。図4は第5の実施形態における空間多重伝送用送信装置を示すブロック図である。この実施形態は、下り伝達係数行列が送信装置において上り伝達係数行列から推定できない場合への対応である。この実施形態においては、送信重み決定ブロック1は、フィードバック情報抽出装置410と送信重み決定装置420で構成される。この他は第1の実施形態と同様である。ここで、伝達係数行列は通信相手局において推定することができ、送信装置にフィ−ドバックを行うものとする。   Next, a fifth embodiment of the present invention will be described. FIG. 4 is a block diagram showing a spatial multiplexing transmission apparatus according to the fifth embodiment. This embodiment corresponds to the case where the downlink transmission coefficient matrix cannot be estimated from the uplink transmission coefficient matrix in the transmission apparatus. In this embodiment, the transmission weight determination block 1 includes a feedback information extraction device 410 and a transmission weight determination device 420. The rest is the same as in the first embodiment. Here, it is assumed that the transfer coefficient matrix can be estimated in the communication partner station, and the transmission apparatus is fed back.

上記構成においてフィ−ドバック情報抽出装置410は、切替え装置151〜15Nの受信時の出力を入力信号として得られる信号系列から送信時にマルチビ−ム形成装置によって乗算する送信重みを決定するのに必要な情報を通信相手局から受け取り、送信重み決定装置に出力する。また、送信重み決定装置は前記した送信重みを求めるための情報を入力信号とし、前記した演算により送信重みを決定する。   In the above configuration, feedback information extraction apparatus 410 determines transmission weights to be multiplied by the multi-beam forming apparatus at the time of transmission from a signal sequence obtained by using outputs upon reception of switching apparatuses 151 to 15N as input signals. Information is received from the communication partner station and output to the transmission weight determination apparatus. Further, the transmission weight determining apparatus uses the information for obtaining the transmission weight as an input signal, and determines the transmission weight by the above-described calculation.

また、ここまで記載した送信重みを求めるための演算は複数の周波数帯で同一の送信重みを用いることによって、伝搬環境推定誤差による伝送品質劣化を低減させつつ、演算量も削減することができる。   Further, the calculation for obtaining the transmission weight described so far can use the same transmission weight in a plurality of frequency bands, thereby reducing the transmission quality degradation due to the propagation environment estimation error and reducing the calculation amount.

次に本発明の効果を検証するために行った計算機シミュレ−ションを説明する。
送信アンテナ素子数を4、受信アンテナ素子数を2とし、上りと下りで5.2MHzの周波数を用い直交波周波数分割多重及び空間分割多重による通信を考える。伝搬路モデルとしては到来波を100波とし、図5に示すように散乱物の集まりである5つのクラスタが送信機及び受信機のまわりに存在することとし、それぞれ角度広がりを25°とした。伝搬環境は仲上−ライスフェ−ジングとし、Kファクタを3[dB]、散乱波の遅延スプレッドを100nsec、遅延波の電力分布を指数で与えた。平均受信電力を30dBとし、クラスタの中心方向及び各到来波の到来方向と位相をランダムに与えて1000回試行し誤り率の累積確率をとった。
Next, computer simulation performed to verify the effect of the present invention will be described.
Consider a communication using orthogonal wave frequency division multiplexing and space division multiplexing, where the number of transmission antenna elements is 4, the number of reception antenna elements is 2, and a frequency of 5.2 MHz is used for uplink and downlink. As a propagation path model, the incoming wave is 100 waves, and as shown in FIG. 5, five clusters, which are a collection of scattered objects, exist around the transmitter and the receiver, and the angular spread is 25 °. The propagation environment was Nakagami-Rice fading, the K factor was 3 [dB], the delay spread of the scattered wave was 100 nsec, and the power distribution of the delayed wave was given as an index. The average received power was set to 30 dB, the center direction of the cluster and the arrival direction and phase of each incoming wave were randomly assigned, and the error rate was accumulated 1000 times to obtain the cumulative probability of error rate.

空間多重数を2とし、周波数帯域幅を400kHzとしたサブキャリアのうちt番目の周波数帯に着目することとし、従来例によるものは、推定されたt番目の周波数帯の伝達係数行列から、特異値分解によるマルチビ−ムを形成するものとし、本実施形態によるものは、t番目の周波数帯および前後の周波数帯から得られる3つの伝達係数行列複素共役転置行列と伝達係数行列の積H (k=t−1,t,t+1)の平均行列から周波数で得られた伝達係数行列を用いて特異値分解によるマルチビ−ムを形成するものとした。 Focusing on the t-th frequency band among the subcarriers having a spatial multiplexing number of 2 and a frequency bandwidth of 400 kHz, the conventional example is based on the estimated transfer coefficient matrix of the t-th frequency band. A multi-beam is formed by value decomposition, and according to the present embodiment, a product H K H of three transfer coefficient matrix complex conjugate transpose matrices and transfer coefficient matrices obtained from the t-th frequency band and the preceding and subsequent frequency bands is used. A multi-beam based on singular value decomposition is formed using a transfer coefficient matrix obtained by frequency from an average matrix of H K (k = t−1, t, t + 1).

伝搬環境推定誤差がある場合に、固有値の大きいビ−ムの受信側で得られるCNRから伝送容量を求めた図6に示す。伝播環境推定誤差が10―2より大きくなった場合に提案方法が有効であることが示された。 FIG. 6 shows the transmission capacity obtained from the CNR obtained on the receiving side of the beam having a large eigenvalue when there is a propagation environment estimation error. It was shown that the proposed method is effective when the propagation environment estimation error is larger than 10-2 .

以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within a scope not departing from the gist of the present invention.

なお上述の各装置は内部に、コンピュータシステムを有している。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   Each of the above devices has a computer system inside. The process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

本発明の第1の実施形態における空間多重伝送用送信装置を示すブロック図。1 is a block diagram showing a spatial multiplexing transmission apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態における送信重み決定装置を示すブロック図。The block diagram which shows the transmission weight determination apparatus in the 2nd Embodiment of this invention. 本発明の第4の実施形態における送信重み決定装置を示すブロック図。The block diagram which shows the transmission weight determination apparatus in the 4th Embodiment of this invention. 本発明の第5の実施形態における空間多重伝送用送信装置を示すブロック図。FIG. 10 is a block diagram showing a spatial multiplexing transmission apparatus according to a fifth embodiment of the present invention. 本発明の検証で用いた計算機シミュレーションでの伝搬環境モデルの図。The figure of the propagation environment model in the computer simulation used by verification of this invention. 計算機シミュレーションにおける受信信号のCNRと伝送容量の関係を示す図。The figure which shows the relationship between CNR and the transmission capacity of the received signal in computer simulation. 従来のマルチビ−ムを形成する空間多重伝送用送信装置を示すブロック図。The block diagram which shows the transmitter for spatial multiplexing transmission which forms the conventional multi-beam. 本発明の第1の実施形態における送信重み決定装置を示すブロック図。The block diagram which shows the transmission weight determination apparatus in the 1st Embodiment of this invention. 本発明の第3の実施形態における送信重み決定装置を示すブロック図。The block diagram which shows the transmission weight determination apparatus in the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 送信重み決定ブロック
100、700 シリアル−パラレル変換装置
1111〜11LF、711〜71L 送信装置
1211〜12LF、721〜72L マルチビ−ム形成装置
1311〜13NF、731〜73N 信号合成装置
141〜14N 逆フ−リエ変換装置
151〜15N、741〜74N 切替え装置
161〜16N、751〜75N アンテナ素子
171〜17N フ−リエ変換装置
181〜18F 伝達係数行列推定装置
190、760、420 送信重み決定装置
211〜21F 伝達係数行列演算装置
220、300、900 選択分配装置
231〜23F 送信重み演算装置
410 フィ−ドバック情報抽出装置
1 Transmission Weight Determination Block 100, 700 Serial-Parallel Converters 1111-11LF, 711-71L Transmitters 1211-12LF, 721-72L Multibeam Forming Devices 1311-13NF, 731-73N Signal Synthesizers 141-14N Rie transform devices 151 to 15N, 741 to 74N Switching devices 161 to 16N, 751 to 75N Antenna elements 171 to 17N Fourier transform devices 181 to 18F Transfer coefficient matrix estimation devices 190, 760, 420 Transmission weight determination devices 211 to 21F Coefficient matrix calculation device 220, 300, 900 Select distribution device 231-23F Transmission weight calculation device 410 Feedback information extraction device

Claims (14)

複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、
受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝搬環境を推定し、この推定された複数の周波数帯の伝搬環境情報に基づいてあらかじめ設定された複数の送信重みの中から、対応する周波数帯の送信重みを選択することを特徴とする空間多重伝送用送信方法。
A method comprising a plurality of transmission / reception means, determining a transmission weight suitable for a propagation environment, weighting each transmission sequence, and performing orthogonal frequency division multiplexing for transmission,
Perform orthogonal frequency division multiplexing demodulation on the received signal, estimate the propagation environment in each frequency band of orthogonal frequency division multiplexing, and set a plurality of transmission weights set in advance based on the propagation environment information of the estimated multiple frequency bands. A spatial multiplexing transmission method for selecting a transmission weight of a corresponding frequency band from among them.
複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、
受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、
送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、その平均を求めて得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法。
A method comprising a plurality of transmission / reception means, determining a transmission weight suitable for a propagation environment, weighting each transmission sequence, and performing orthogonal frequency division multiplexing for transmission,
Perform orthogonal frequency division multiplexing demodulation on the received signal, estimate the transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, and determine the transmission weight of each signal sequence from the transmission coefficient matrix of multiple frequency bands,
When determining the transmission weight, find the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix in each frequency band, select multiple products, and calculate the average of the eigenvectors of the matrix at the frequency. A transmission method for spatial multiplexing transmission, characterized in that a transmission weight of a band signal sequence is used.
複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、
受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、
送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、送信重みを決定しようとする周波数帯からの周波数差に対応する重みを前記積に乗算し、その和をとって得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法。
A method comprising a plurality of transmission / reception means, determining a transmission weight suitable for a propagation environment, weighting each transmission sequence, and performing orthogonal frequency division multiplexing for transmission,
Perform orthogonal frequency division multiplexing demodulation on the received signal, estimate the transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, and determine the transmission weight of each signal sequence from the transmission coefficient matrix of multiple frequency bands,
In determining the transmission weight, obtain the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix in each frequency band, select multiple products, and the frequency difference from the frequency band for which the transmission weight is to be determined. A transmission method for spatial multiplexing transmission, wherein a weight corresponding to is multiplied by the product, and an eigenvector of a matrix obtained by taking the sum is used as a transmission weight of a signal sequence of the frequency band.
複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、
受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、
送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、それぞれの積に対応する重みを前記積に乗算し、その和をとって得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法。
A method comprising a plurality of transmission / reception means, determining a transmission weight suitable for a propagation environment, weighting each transmission sequence, and performing orthogonal frequency division multiplexing for transmission,
Perform orthogonal frequency division multiplexing demodulation on the received signal, estimate the transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, and determine the transmission weight of each signal sequence from the transmission coefficient matrix of multiple frequency bands,
In determining the transmission weight, the complex conjugate transpose matrix of the transfer coefficient matrix and the product of the transfer coefficient matrix are obtained in each frequency band, a plurality of these products are selected, and the product is multiplied by the weight corresponding to each product. A transmission method for spatial multiplexing transmission, characterized in that an eigenvector of a matrix obtained by taking the sum is used as a transmission weight of a signal sequence in the frequency band.
複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、
受信信号に直交周波数分割多重復調を行い、直交周波数分割多重の各周波数帯で伝達係数行列を推定し、複数の周波数帯の伝達係数行列から各信号系列の送信重みを決定することとし、
送信重みを決定するにあたって、各周波数帯で伝達係数行列の複素共役転置行列および当該伝達係数行列の積を求め、それらの積を複数選択し、それぞれの積に対応する重みは、送信重みを適用する当該周波数帯の伝達係数行列、または伝達係数行列から得られるパラメータと、選択した積の周波数帯の伝達係数行列、または伝達係数行列から得られるパラメータとの相関値により決定し、この重みを前記積に乗算し、その和をとって得られる行列の固有ベクトルを当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法。
A method comprising a plurality of transmission / reception means, determining a transmission weight suitable for a propagation environment, weighting each transmission sequence, and performing orthogonal frequency division multiplexing for transmission,
Perform orthogonal frequency division multiplexing demodulation on the received signal, estimate the transmission coefficient matrix in each frequency band of orthogonal frequency division multiplexing, and determine the transmission weight of each signal sequence from the transmission coefficient matrix of multiple frequency bands,
When determining the transmission weight, obtain the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix in each frequency band, select multiple products, and apply the transmission weight to the weight corresponding to each product. And a parameter obtained from the transmission coefficient matrix of the corresponding frequency band, or a parameter obtained from the transmission coefficient matrix of the selected product and a parameter obtained from the transmission coefficient matrix of the selected product frequency band, or the transmission coefficient matrix. A transmission method for spatial multiplexing transmission, characterized in that an eigenvector of a matrix obtained by multiplying a product and taking the sum is used as a transmission weight of a signal sequence of the frequency band.
複数の送受信手段を備え、伝搬環境に適した送信重みを決定して各送信系列に重み付けを行ったうえで直交周波数分割多重をして送信する方法であって、
請求項1から請求項5のいずれか1項に記載の送信重み、もしくは送信重みを決定するために必要となる情報を通信相手局からフィードバックすることで、当該周波数帯の信号系列の送信重みとすることを特徴とする空間多重伝送用送信方法。
A method comprising a plurality of transmission / reception means, determining a transmission weight suitable for a propagation environment, weighting each transmission sequence, and performing orthogonal frequency division multiplexing for transmission,
The transmission weight according to any one of claims 1 to 5, or information necessary for determining the transmission weight is fed back from a communication partner station, so that the transmission weight of the signal sequence of the frequency band A transmission method for spatial multiplexing transmission.
前記送信重みとして、複数の周波数帯で共通のものを用いることを特徴とする請求項1から請求項6のいずれか1項に記載の空間多重伝送用送信方法。 The transmission method for spatial multiplexing transmission according to any one of claims 1 to 6, wherein a common transmission weight is used for a plurality of frequency bands. N個のアンテナ素子を用い、直交波周波数分割多重を用いたF個の周波数多重と、L個の空間多重による送信を行う空間多重伝送装置において、 前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え装置と、
前記切り替え装置に接続され、受信時に切り替え装置から出力される信号を入力信号とし、入力信号にフーリエ変換を行い、それぞれF個の受信信号に変換するN個のフーリエ変換装置と、
前記フーリエ変換装置の対応する周波数帯の受信信号を入力信号とし、その周波数帯での伝達係数行列を推定する伝達係数行列推定装置と、
前記伝達係数行列推定手段において推定されたF個の伝達係数行列より複数の伝達係数行列を選び、対応する周波数帯におけるマルチビーム形成装置の送信重みを決定する送信重み決定装置と、
前記フーリエ変換装置と、伝達係数行列推定装置と、送信重み決定装置を総称した送信重み決定ブロックと、
送信する入力信号にシリアル−パラレル変換を行い、周波数分割多重数F×空間多重数Lに振り分けるシリアル−パラレル変換装置と、
前記シリアル−パラレル変換装置の出力信号を入力信号とし、送信信号系をマルチビーム形成装置に出力するF×L個の送信装置と、
前記送信装置から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定装置により決定された重み付けを行った後、N×F個の信号合成装置の対応するポ−トに出力を行うマルチビーム形成装置と、
前記マルチビ−ム形成装置のうち対応するL個のマルチビーム形成装置からL個のポ−トに入力された信号を重ね合わせ、逆フーリエ変換装置の対応するポ−トに出力を行う信号合成装置と、
前記信号合成装置から出力されたF個の信号に逆フーリエ変換を行い、前記切替え装置の他方のポ−トに出力を行うN個の逆フーリエ変換装置と、
を備えたことを特徴とする空間多重伝送用送信装置。
In a spatial multiplexing transmission apparatus that uses N antenna elements, performs F frequency multiplexing using orthogonal wave frequency division multiplexing, and L spatial multiplexing, and is connected to each of the antenna elements, and receives signals and transmissions. A switching device for switching signals;
N number of Fourier transform devices connected to the switching device and having a signal output from the switching device at the time of reception as an input signal, performing Fourier transform on the input signal, and converting each of the signals into F received signals;
A transfer coefficient matrix estimation device for estimating a transfer coefficient matrix in the frequency band, using a received signal in a corresponding frequency band of the Fourier transform device as an input signal;
A transmission weight determination device that selects a plurality of transmission coefficient matrices from the F transmission coefficient matrices estimated by the transmission coefficient matrix estimation means, and determines the transmission weights of the multi-beamforming apparatus in the corresponding frequency band;
A transmission weight determination block that collectively refers to the Fourier transform device, a transfer coefficient matrix estimation device, and a transmission weight determination device;
A serial-parallel conversion device that performs serial-parallel conversion on an input signal to be transmitted and distributes the divided signal into frequency division multiplexing number F × spatial multiplexing number L;
F × L transmitters that use the output signal of the serial-parallel converter as an input signal and output a transmission signal system to the multi-beam forming device;
The signal input from the transmission device is used as an input signal, divided into N signals, weighted by the transmission weight determination device, and the corresponding ports of the N × F signal synthesis devices. A multi-beam forming device that outputs to
A signal synthesizer that superimposes signals input to L ports from the corresponding L multi-beam forming devices among the multi-beam forming devices and outputs them to the corresponding ports of the inverse Fourier transform device. When,
N inverse Fourier transform devices that perform an inverse Fourier transform on the F signals output from the signal synthesizer and output to the other port of the switching device;
A spatial multiplexing transmission apparatus characterized by comprising:
前記送信重み決定装置は、
対応するt番目の周波数帯に前記マルチビーム形成装置で乗算する送信重みを、
前記F個の伝達係数行列から選択したMt(≦F)個の伝達係数行列から、それぞれの複素共役転置行列と伝達係数行列との積を求め、Mt個の平均をとった行列の固有ベクトルとして出力することを特徴とする請求項8に記載の空間多重伝送用送信装置。
The transmission weight determination device includes:
A transmission weight for multiplying the corresponding t-th frequency band by the multi-beamformer,
A product of each complex conjugate transpose matrix and a transfer coefficient matrix is obtained from Mt (≦ F) transfer coefficient matrices selected from the F transfer coefficient matrices, and output as an eigenvector of an Mt averaged matrix. The transmission device for spatial multiplexing transmission according to claim 8.
前記送信重み決定装置は、対応するt番目の周波数帯に前記マルチビーム形成装置で乗算する送信重みを、前記F個の伝達係数行列から選択したMt個の伝達係数行列から、それぞれその複素共役転置行列と伝達係数行列との積を求め、得られたk番目の行列に重みwkを乗算し、和をとることで得られる行列の固有ベクトルとして出力することを特徴とする請求項8に記載の空間多重伝送用送信装置。 The transmission weight determining apparatus is configured to transmit transmission weights to be multiplied by a corresponding t-th frequency band by the multi-beam forming apparatus from Mt transfer coefficient matrices selected from the F transfer coefficient matrices, respectively, and complex conjugate transpose thereof. 9. The space according to claim 8, wherein a product of a matrix and a transfer coefficient matrix is obtained, the obtained k-th matrix is multiplied by a weight wk, and the result is output as an eigenvector of the matrix obtained by taking the sum. Multiplex transmission device. 前記送信重み決定装置は、
対応するt番目の周波数帯に前記マルチビーム形成装置で乗算する送信重みを、前記F個の伝達係数行列から選択したMt個の伝達係数行列から、それぞれの複素共役転置行列と伝達係数行列との積を求め、それぞれの周波数帯に応じた重みwtkを乗算し、和をとることで得られる行列の固有ベクトルとして出力することを特徴とする請求項8に記載の空間多重伝送用送信装置。
The transmission weight determination device includes:
A transmission weight for multiplying the corresponding t-th frequency band by the multi-beamforming apparatus is calculated from Mt transfer coefficient matrices selected from the F transfer coefficient matrices, and each complex conjugate transpose matrix and transfer coefficient matrix 9. The transmitter for spatial multiplexing transmission according to claim 8, wherein the product is obtained, multiplied by a weight wtk corresponding to each frequency band, and output as an eigenvector of a matrix obtained by taking the sum.
前記送信重み決定装置は、
対応するt番目の周波数帯に前記マルチビーム形式装置で乗算する送信重みを、前記F個の伝達係数行列から選択したMt個の伝達係数行列から、それぞれの複素共役転置行列と伝達係数行列との積を求め、t番目の周波数帯の伝達係数行列との相関値に応じた重みwtkを乗算し、和をとることで得られる行列の固有ベクトルとして出力することを特徴とする請求項8に記載の空間多重伝送用送信装置。
The transmission weight determination device includes:
From the Mt transfer coefficient matrices selected from the F transfer coefficient matrices, transmission weights for multiplying the corresponding t-th frequency band by the multi-beam format apparatus are used to calculate the respective complex conjugate transpose matrix and transfer coefficient matrix. 9. The product according to claim 8, wherein the product is obtained, multiplied by a weight wtk corresponding to a correlation value with a transfer coefficient matrix of the t-th frequency band, and output as an eigenvector of a matrix obtained by taking the sum. A transmitter for spatial multiplexing transmission.
前記送信重み決定ブロックにおいて、受信時に切替え装置から出力される信号を入力信号とし、
入力信号から請求項1〜5のいずれか1項に記載の送信重みを決定するための演算の全て、もしくは一部を行った結果の情報を含むフィールドバック情報を抽出するフィードバック情報抽出装置と、
前記フィードバック情報抽出装置の出力を入力信号とし、請求項8〜12のいずれか1項に記載の送信重みを決定する演算を行う送信重み決定装置と、
を備えたことを特徴とする空間多重伝送用送信装置。
In the transmission weight determination block, a signal output from the switching device at the time of reception is used as an input signal,
A feedback information extraction device that extracts field back information including information on the result of performing all or part of the calculation for determining the transmission weight according to any one of claims 1 to 5, from an input signal;
The output of the feedback information extraction device as an input signal, a transmission weight determination device that performs a calculation to determine the transmission weight according to any one of claims 8 to 12,
A spatial multiplexing transmission apparatus characterized by comprising:
前記送信重み決定装置は、
複数の周波数帯に共通の送信重みを出力することを特徴とする請求項8〜13のいずれか1項に記載の空間多重伝送用送信装置。
The transmission weight determination device includes:
The transmission device for spatial multiplexing transmission according to any one of claims 8 to 13, wherein a transmission weight common to a plurality of frequency bands is output.
JP2004203200A 2004-07-09 2004-07-09 Transmission method and apparatus for spatial multiplexing transmission Expired - Fee Related JP4401881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203200A JP4401881B2 (en) 2004-07-09 2004-07-09 Transmission method and apparatus for spatial multiplexing transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203200A JP4401881B2 (en) 2004-07-09 2004-07-09 Transmission method and apparatus for spatial multiplexing transmission

Publications (2)

Publication Number Publication Date
JP2006025328A true JP2006025328A (en) 2006-01-26
JP4401881B2 JP4401881B2 (en) 2010-01-20

Family

ID=35798251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203200A Expired - Fee Related JP4401881B2 (en) 2004-07-09 2004-07-09 Transmission method and apparatus for spatial multiplexing transmission

Country Status (1)

Country Link
JP (1) JP4401881B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214994A (en) * 2006-02-10 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Base station device of radio communication system, and radio communication method thereof
WO2007114197A1 (en) * 2006-03-29 2007-10-11 Kyocera Corporation Radio reception device, radio transmission device, radio base station, reception method, and transmission method
WO2008032358A1 (en) * 2006-09-11 2008-03-20 Fujitsu Limited Radio communication apparatus and radio communication method
WO2009081580A1 (en) * 2007-12-25 2009-07-02 Panasonic Corporation Wireless communication base station device, wireless communication mobile station device, and propagation path estimation method
US8761678B2 (en) 2007-03-27 2014-06-24 Kabushiki Kaisha Toshiba Radio transmitting method and apparatus, and radio receiving method and apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214994A (en) * 2006-02-10 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Base station device of radio communication system, and radio communication method thereof
JP4503540B2 (en) * 2006-02-10 2010-07-14 日本電信電話株式会社 Base station apparatus for wireless communication system and wireless communication method thereof
WO2007114197A1 (en) * 2006-03-29 2007-10-11 Kyocera Corporation Radio reception device, radio transmission device, radio base station, reception method, and transmission method
JPWO2007114197A1 (en) * 2006-03-29 2009-08-13 京セラ株式会社 Wireless receiving device, wireless transmitting device, wireless base station, receiving method, and transmitting method
JP4829292B2 (en) * 2006-03-29 2011-12-07 京セラ株式会社 Wireless receiving device, wireless transmitting device, wireless base station, receiving method, and transmitting method
US8184733B2 (en) 2006-03-29 2012-05-22 Kyocera Corporation Radio reception device, radio transmission device, radio base station, reception method, and transmission method
WO2008032358A1 (en) * 2006-09-11 2008-03-20 Fujitsu Limited Radio communication apparatus and radio communication method
JPWO2008032358A1 (en) * 2006-09-11 2010-01-21 富士通株式会社 Wireless communication apparatus and wireless communication method
US8315223B2 (en) 2006-09-11 2012-11-20 Fujitsu Limited Mobile station, base station and radio communication method
US8761678B2 (en) 2007-03-27 2014-06-24 Kabushiki Kaisha Toshiba Radio transmitting method and apparatus, and radio receiving method and apparatus
WO2009081580A1 (en) * 2007-12-25 2009-07-02 Panasonic Corporation Wireless communication base station device, wireless communication mobile station device, and propagation path estimation method
US9237049B2 (en) 2007-12-25 2016-01-12 Panasonic Intellectual Property Corporation Of America Wireless communication base station device, wireless communication mobile station device, and propagation path estimation method

Also Published As

Publication number Publication date
JP4401881B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
KR100493068B1 (en) Method and apparatus for semi-blind transmit antenna array using feedback information in mobile communication system
US8102934B2 (en) Transmitting apparatus and method
KR102318220B1 (en) Beam selection apparatus and method in a wireless communication system
US8982867B2 (en) System and method for wireless communications
US7907912B2 (en) Apparatus and method for eliminating multi-user interference
EP2744121B1 (en) Method for determining beamforming parameters in a wireless communication system and to a wireless communication system
KR101268687B1 (en) Communication system including basestations and terminal for multi-cell cooperative communication
EP3639389B1 (en) Methods and devices for processing uplink signals
JP5073809B2 (en) Channel information prediction system and channel information prediction method
JP4376805B2 (en) Spatial multiplexing transmission method and transmitter
US8750401B2 (en) Sequential transmission multi-beamforming method with low complexity using Hadamard matrix
JP4481336B2 (en) Channel information prediction system and channel information prediction method
KR20100049829A (en) Data transmission system for forwarding data using a plurality of antennas
KR20170046758A (en) Ping pong beamforming
US20100323630A1 (en) Reception apparatus, mobile equipment, communication system, and communication method
JPWO2007058264A1 (en) Transmitting apparatus, MIMO communication system, and transmission diversity method
JP4503540B2 (en) Base station apparatus for wireless communication system and wireless communication method thereof
JP4698346B2 (en) Wireless transmission system, base station, and wireless transmission method
JP4401881B2 (en) Transmission method and apparatus for spatial multiplexing transmission
JP2007036403A (en) Spatial multiplex transmission device and method
JP4494190B2 (en) Spatial multiplexing transmission method and spatial multiplexing transmission apparatus
JP4001880B2 (en) Spatial multiplex transmission equipment
JP4040588B2 (en) Transmitter for spatial multiplexing transmission
JP4246169B2 (en) Wireless communication apparatus and wireless communication method
JP5008702B2 (en) Spatial multiplexing transmission method and spatial multiplexing transmission apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees