JP5008702B2 - Spatial multiplexing transmission method and spatial multiplexing transmission apparatus - Google Patents

Spatial multiplexing transmission method and spatial multiplexing transmission apparatus Download PDF

Info

Publication number
JP5008702B2
JP5008702B2 JP2009188009A JP2009188009A JP5008702B2 JP 5008702 B2 JP5008702 B2 JP 5008702B2 JP 2009188009 A JP2009188009 A JP 2009188009A JP 2009188009 A JP2009188009 A JP 2009188009A JP 5008702 B2 JP5008702 B2 JP 5008702B2
Authority
JP
Japan
Prior art keywords
transmission
unit
matrix
signal
coefficient matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009188009A
Other languages
Japanese (ja)
Other versions
JP2009278652A (en
Inventor
理一 工藤
健太郎 西森
泰司 鷹取
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009188009A priority Critical patent/JP5008702B2/en
Publication of JP2009278652A publication Critical patent/JP2009278652A/en
Application granted granted Critical
Publication of JP5008702B2 publication Critical patent/JP5008702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は複数のアンテナ素子を用い、空間多重による送信を行う空間多重伝送用送信方法および空間多重伝送用送信装置に関する。   The present invention relates to a spatial multiplexing transmission method and a spatial multiplexing transmission apparatus that perform transmission by spatial multiplexing using a plurality of antenna elements.

空間多重伝送用送信装置(単に、「送信装置」ともいう)は、複数のアンテナ素子から異なる信号を送信することで、周波数域を増大することなしに高速伝送を実現する空間多重伝送用送信装置である。
図7に伝搬環境に最適となるように送信指向性を制御し、空間多重を行い伝送速度を向上させる理想的な空間多重伝送用送信装置を示す。図7において、符号910はシリアル−パラレル変換部、921〜92Lは送信部、931〜93Lはマルチビーム形成部、941〜94Nは信号合成部、951〜95Nは切り替え部、961〜96Nはアンテナ素子、970は伝達係数行列推定部、980は特異値分解演算部である。
A spatial multiplexing transmission apparatus (also simply referred to as “transmission apparatus”) transmits a different signal from a plurality of antenna elements, thereby realizing high-speed transmission without increasing the frequency range. It is.
FIG. 7 shows an ideal transmitter for spatial multiplexing transmission that controls transmission directivity so as to be optimal for the propagation environment and performs spatial multiplexing to improve the transmission speed. In FIG. 7, reference numeral 910 is a serial-parallel conversion unit, 921 to 92L are transmission units, 931 to 93L are multi-beam forming units, 941 to 94N are signal synthesis units, 951 to 95N are switching units, and 961 to 96N are antenna elements. , 970 is a transfer coefficient matrix estimation unit, and 980 is a singular value decomposition calculation unit.

アンテナ素子961〜96Nで受信された信号は切り替え部951〜95Nにより切り替えられ、伝達係数行列推定部970に出力される。伝達係数行列推定部970は受信したプリアンブル信号から伝達係数行列を算出し、特異値分解演算部980に出力する。特異値分解演算部980は伝達係数行列に特異値分解を行い、マルチビーム形成部931〜93Lに送信重みを出力する。   Signals received by antenna elements 961 to 96N are switched by switching units 951 to 95N and output to transmission coefficient matrix estimation unit 970. The transfer coefficient matrix estimation unit 970 calculates a transfer coefficient matrix from the received preamble signal and outputs it to the singular value decomposition calculation unit 980. The singular value decomposition calculation unit 980 performs singular value decomposition on the transfer coefficient matrix and outputs transmission weights to the multi-beam forming units 931 to 93L.

送信信号系列は、シリアル−パラレル変換部910により、空間分割多重数Lに振り分けられ、それぞれ送信部921〜92Lにより変調され、マルチビーム形成部931〜93Lに出力される。マルチビーム形成部931〜93Lに入力された各信号系列は、特異値分解演算部980で決定された送信重みをかけられた後、信号合成部941〜94Nの対応するポートに出力される。信号合成部941〜94Nは入力された信号を合成し、その出力信号は、前記切り替え部951〜95Nを介し、アンテナ素子961〜96Nから送信される。   The transmission signal sequence is distributed to the spatial division multiplexing number L by the serial-parallel conversion unit 910, modulated by the transmission units 921 to 92L, and output to the multi-beam forming units 931 to 93L. Each signal sequence input to the multi-beam forming units 931 to 93L is subjected to transmission weights determined by the singular value decomposition calculation unit 980 and then output to corresponding ports of the signal combining units 941 to 94N. The signal synthesis units 941 to 94N synthesize the input signals, and the output signals are transmitted from the antenna elements 961 to 96N via the switching units 951 to 95N.

ここで特異値分解演算部980ではマルチビーム形成部931〜93Lで送信信号にかける送信重みを以下のようにして決定する。
空間多重伝送用送信装置のアンテナ素子数をM、通信相手である空間多重伝送用受信装置(単に、「受信装置」ともいう)のアンテナ素子数をMとし、MをMとMのうち小さい方の数字とする。空間多重伝送用送信装置では、送信を行う伝搬環境の伝達係数行列Hの推定を行う。伝達係数行列Hは、例えば以下のように推定される。受信装置側から送信装置と受信装置で共に既知であるプリアンブル信号S(M×M行列)の送信を行い、空間多重伝送用送信装置における受信信号X(M×M)にプリアンブル信号の逆行列S −1(M×M行列)を乗算することで得られる行列の転置行列として得ることができる。
Here, the singular value decomposition calculation unit 980 determines the transmission weight applied to the transmission signal by the multi-beam forming units 931 to 93L as follows.
The number of antenna elements of the spatial multiplexing transmission apparatus is M T , the number of antenna elements of the spatial multiplexing transmission receiver (simply called “reception apparatus”) as the communication partner is M R, and M X is M R and M Let T be the smaller number. The spatial multiplexing transmission apparatus estimates the transfer coefficient matrix H of the propagation environment in which transmission is performed. The transfer coefficient matrix H is estimated as follows, for example. A preamble signal S 0 (M R × M R matrix) that is known by both the transmission device and the reception device is transmitted from the reception device side, and the received signal X 0 (M T × M R ) in the spatial multiplexing transmission device is transmitted. It can be obtained as a transposed matrix of a matrix obtained by multiplying the inverse matrix S 0 −1 (M R × M R matrix) of the preamble signal.

伝達係数行列Hは下式のように特異値分解により、ユニタリ行列V(M×M行列)、U(M×M行列)及び固有値√λを対角要素とする対角行列D(M×M対角行列)に分けることができる。 The transfer coefficient matrix H is a diagonal matrix having unitary matrix V (M T × M X matrix), U U (M R × M X matrix) and eigenvalue √λ as diagonal elements by singular value decomposition as shown in the following equation. D (M X × M X diagonal matrix).

Figure 0005008702
Figure 0005008702

ここで、Hijは送信装置のj番目のアンテナから受信装置のi番目のアンテナまでの伝達係数を表し、Vijは送信装置においてj番目の送信ビームに対するi番目のアンテナ素子に適用する送信重みであり、Uijは受信装置のj番目の送信ビームに対するi番目のアンテナの受信信号に適用する受信重みの複素共役となっている。ここで、固有値λは各パスの伝送容量の大きさを表す。上付きの添え字Hは複素共役行列を表す。 Here, H ij represents a transfer coefficient from the j-th antenna of the transmission apparatus to the i-th antenna of the reception apparatus, and V ij is a transmission weight applied to the i-th antenna element for the j-th transmission beam in the transmission apparatus. U ij is a complex conjugate of the reception weight applied to the reception signal of the i-th antenna with respect to the j-th transmission beam of the receiving apparatus. Here, the eigenvalue λ represents the transmission capacity of each path. The superscript H represents a complex conjugate matrix.

このようにして得られたVから、対応する固有値の大きいものから通信に用いる空間多重数Lだけ列ベクトルを選択し得られる上り送信ウェイトWを送信装置の送信重みとし、Uから通信に使用するL個の行ベクトルを選択し得られる上り受信ウェイトW′を受信装置の受信重みとすることで、各信号で特異値λに対応する最大の伝送容量を実現することができる。WとW′を下式に示す。 From V obtained in this way, an uplink transmission weight W obtained by selecting a column vector by the spatial multiplexing number L used for communication from a corresponding large eigenvalue is used as a transmission weight of the transmission device, and used from U H for communication. The maximum transmission capacity corresponding to the singular value λ can be realized in each signal by using the uplink reception weight W ′ obtained by selecting L row vectors to be used as the reception weight of the reception apparatus. W and W ′ are shown in the following equation.

Figure 0005008702
Figure 0005008702

Figure 0005008702
Figure 0005008702

L=Mとした場合では、送信装置で送信信号S(M×1ベクトル)に送信重みVを用いて送信することで、受信信号X(MR×1ベクトル)は以下のように表せる。 In the case of L = M X , the reception signal X (MR × 1 vector) can be expressed as follows by transmitting the transmission signal S (M X × 1 vector) using the transmission weight V in the transmission apparatus.

Figure 0005008702
Figure 0005008702

よって送信信号Sは受信信号Xに例えばUの複素共役転置行列を乗算することで、それぞれ対応する固有値の平方根を乗算された送信信号Sを得ることができ、各信号は固有値λだけ熱雑音Nに対する比(SN比)が高くなり、伝送容量が最大となる通信を実現できる。   Therefore, the transmission signal S can be obtained by multiplying the reception signal X by a complex conjugate transpose matrix of U, for example, to obtain the transmission signal S multiplied by the square root of the corresponding eigenvalue, and each signal has a thermal noise N by the eigenvalue λ. The ratio (S / N ratio) with respect to is increased, and communication with the maximum transmission capacity can be realized.

(Miyashita,K.;Nishimura,T.;Ohgane,T.;Ogawa,Y.;Takatori,Y.;KeizoCho;”High data-rate transmission with eigenbeam-space division multiplexing(E-SDM)in a MIMO channel,‘’Vehicular Technology Conference,2002.Proceedings.VTC 2002-Fall.2002 IEEE 56th,Volume:3,24-28 Sept.2002 Pages:1302_1306 vol.3).(Miyashita, K .; Nishimura, T .; Ohgane, T .; Ogawa, Y .; Takatori, Y .; KeizoCho; “High data-rate transmission with eigenbeam-space division multiplexing (E-SDM) in a MIMO channel, '' Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th, Volume: 3,24-28 Sept. 2002 Pages: 1302_1306 vol.3).

上記の手段は最大の伝送容量を得ることを可能とするが、特異値分解の演算量が大きいことが問題となる。   Although the above means makes it possible to obtain the maximum transmission capacity, there is a problem that the calculation amount of singular value decomposition is large.

発明は、このような事情に鑑みてなされたもので、その目的は、少ない演算量で送信重みを決定することができる、空間多重伝送用送信方法および送信装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the invention is to provide a transmission method and a transmission apparatus for spatial multiplexing transmission that can determine a transmission weight with a small amount of calculation.

本発明は上記課題を解決するためになされたものであり、本発明の空間多重伝送用送信方法は、複数のアンテナ素子を備え、推定した伝達係数行列から伝搬環境に適した送信重みを決定して送信信号に送信重み付けを行ったうえで空間分割多重を用いて送信する方法であって、前記送信重みとして、推定した伝達係数行列から得られる相関行列の列ベクトルに対し直交化法を適用するか、推定した伝達係数行列から得られる相関行列の逆行列の列ベクトルに対し直交化法を適用することを特徴とする。
これにより、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。
The present invention has been made to solve the above problems, and the spatial multiplexing transmission method of the present invention includes a plurality of antenna elements, and determines a transmission weight suitable for the propagation environment from the estimated transmission coefficient matrix. In this method, transmission weighting is performed on a transmission signal and transmission is performed using space division multiplexing, and an orthogonalization method is applied to a column vector of a correlation matrix obtained from an estimated transfer coefficient matrix as the transmission weight. Alternatively, the orthogonalization method is applied to the column vector of the inverse matrix of the correlation matrix obtained from the estimated transfer coefficient matrix.
This makes it possible to determine the transmission weight without performing singular value decomposition calculation with a large calculation load, and can significantly reduce the calculation amount.

また、本発明の空間多重伝送用送信方法は、前記送信重みとして、推定した伝達係数行列から得られる相関行列、または、相関行列の逆行列に対し直交化法を用いたものを用いる場合には、ノルムの大きいものから直交化法を適用することで得られる直交ベクトルを用いることを特徴とする。
これにより、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。
In the spatial multiplexing transmission method of the present invention, when the transmission weight is a correlation matrix obtained from an estimated transfer coefficient matrix or an inverse matrix of a correlation matrix using an orthogonalization method, An orthogonal vector obtained by applying an orthogonalization method with a large norm is used.
This makes it possible to determine the transmission weight without performing singular value decomposition calculation with a large calculation load, and can significantly reduce the calculation amount.

また、本発明の空間多重伝送用送信方法は、複数のアンテナ素子を備え、推定した伝達係数行列から伝搬環境に適した送信重みを決定して送信信号に送信重み付けを行ったうえで空間分割多重を用いて送信する方法であって、送信重みとして、推定した伝達係数行列の逆行列の列ベクトルをある値に規格化したものを用いることを特徴とする空間多重伝送用送信方法において、前記送信重みとして、推定した伝達係数行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用いることを特徴とする。
これにより、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。
The spatial multiplexing transmission method of the present invention includes a plurality of antenna elements, determines a transmission weight suitable for the propagation environment from the estimated transmission coefficient matrix, performs transmission weighting on the transmission signal, and then performs space division multiplexing. In the transmission method for spatial multiplexing transmission, a transmission weight obtained by standardizing a column vector of an inverse matrix of an estimated transfer coefficient matrix to a certain value is used as a transmission weight. As a weight, an orthogonal vector obtained by applying an orthogonalization method to a column vector of an inverse matrix of the estimated transfer coefficient matrix is used.
This makes it possible to determine the transmission weight without performing singular value decomposition calculation with a large calculation load, and can significantly reduce the calculation amount.

また、本発明の空間多重伝送用送信装置は、N個(N≧2)のアンテナ素子を用い、L(N≧L≧2)個の空間多重による送信を行う空間多重伝送用送信装置において、前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え部と、前記切り替え部に接続され、受信時に切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、前記伝達係数行列推定部において推定した伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列の列ベクトルを演算するか、または、相関行列の逆行列の列ベクトルを演算し、対応する列ベクトルを送信重みとしてマルチビーム形成部に出力する送信重み決定部と、送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系をマルチビーム形成部に出力する送信部と、前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記切り替え部の他方のポートに出力を行う信号合成部とを備え、前記送信重み決定部は、前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列から得られる相関行列の列ベクトルに対し直交化法を適用するか推定した伝達係数行列から得られる相関行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用い、マルチビーム形成部に出力することを特徴とする。
これにより、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。
In addition, the spatial multiplexing transmission apparatus of the present invention is a spatial multiplexing transmission apparatus that uses N (N ≧ 2) antenna elements and performs transmission by L (N ≧ L ≧ 2) spatial multiplexing. A switching unit that is connected to each of the antenna elements and switches between a received signal and a transmission signal, and a transfer coefficient matrix that is connected to the switching unit and that receives a signal output from the switching unit at the time of reception as an input signal and estimates a transfer coefficient matrix Calculate the column vector of the correlation matrix, which is the product of the complex conjugate transpose matrix of the transfer coefficient matrix estimated by the transfer coefficient matrix estimation unit and the transfer coefficient matrix, or the column vector of the inverse matrix of the correlation matrix. A transmission weight determination unit that calculates and outputs the corresponding column vector as a transmission weight to the multi-beam forming unit, and performs serial-parallel conversion on the input signal to be transmitted, and assigns it to the spatial multiplexing number L. Dividing the serial-parallel conversion unit, the output signal of the serial-parallel conversion unit as an input signal, a transmission unit that outputs a transmission signal system to a multi-beam forming unit, and a signal input from the transmission unit as an input signal, A multi-beam forming unit that divides the signal into N signals, performs weighting determined by the transmission weight determining unit, and then outputs to a corresponding port of the N signal combining units; superimposing the output from the corresponding L-number of the multi-beam forming portion into L port signals, e Bei and a signal synthesizing unit for outputting to the other port of the switching unit, the transmit weight determination unit, The transmission weight is obtained from the transmission coefficient matrix estimated by applying the orthogonalization method to the column vector of the correlation matrix obtained from the transmission coefficient matrix estimated by the transmission coefficient matrix estimation unit. Column vector of the inverse matrix of the correlation matrix using the orthogonal vectors obtained by applying the orthogonalization method to that, and outputs the multi-beam forming unit.
This makes it possible to determine the transmission weight without performing singular value decomposition calculation with a large calculation load, and can significantly reduce the calculation amount.

また、本発明の空間多重伝送用送信装置は、前記送信重み決定部は、前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列から得られる相関行列、または、相関行列の逆行列に対し直交化法を用いたものを用いる場合には、ノルムの大きいものから直交化法を適用することで得られる直交ベクトルを用いて、マルチビーム形成部に出力することを特徴とする。
これにより、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。
In the spatial multiplexing transmission apparatus according to the present invention, the transmission weight determining unit may use, as the transmission weight, a correlation matrix obtained from the transfer coefficient matrix estimated by the transfer coefficient matrix estimation unit, or an inverse matrix of the correlation matrix. On the other hand, in the case of using the orthogonalization method, the orthogonal vector obtained by applying the orthogonalization method from the one having a large norm is output to the multi-beam forming unit.
This makes it possible to determine the transmission weight without performing singular value decomposition calculation with a large calculation load, and can significantly reduce the calculation amount.

また、本発明の空間多重伝送用送信装置は、N(N≧2)個のアンテナ素子を用い、L(N≧L≧2)個の空間多重による送信を行う空間多重伝送用送信装置において、前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え部と、前記切り替え部に接続され、受信時に切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、前記伝達係数行列推定部において推定された伝達係数行列の逆行列を演算し、対応する列ベクトルを送信重みとしてマルチビーム形成部に出力する送信重み決定部と、送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系をマルチビーム形成部に出力する送信部と、前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記切り替え部の他方のポートに出力を行う信号合成部とを備えることを特徴とする空間多重伝送用送信装置において、前記送信重み決定部は、前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用い、マルチビーム形成部に出力することを特徴とする。
これにより、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。
In addition, the spatial multiplexing transmission apparatus of the present invention uses N (N ≧ 2) antenna elements and performs transmission by L (N ≧ L ≧ 2) spatial multiplexing. A switching unit that is connected to each of the antenna elements and switches between a received signal and a transmission signal, and a transfer coefficient matrix that is connected to the switching unit and that receives a signal output from the switching unit at the time of reception as an input signal and estimates a transfer coefficient matrix An estimation unit, an inverse matrix of the transmission coefficient matrix estimated by the transmission coefficient matrix estimation unit, a transmission weight determination unit that outputs a corresponding column vector as a transmission weight to the multi-beam forming unit, and an input signal to be transmitted Serial-parallel conversion is performed, and the serial-parallel conversion unit that distributes to the spatial multiplexing number L, and the output signal of the serial-parallel conversion unit is used as an input signal. A transmitter that outputs to a multi-beam forming unit, and a signal input from the transmitter as an input signal is divided into N signals, weighted as determined by the transmission weight determiner, and then N signals A multi-beam forming unit that outputs to a corresponding port of the combining unit, and a signal output from the corresponding L multi-beam forming units to L ports among the multi-beam forming units is superimposed, and the switching unit And a signal synthesizer that outputs to the other port of the transmission multiplex transmission apparatus, wherein the transmission weight determination unit uses the transmission coefficient estimated by the transmission coefficient matrix estimation unit as the transmission weight. The present invention is characterized in that an orthogonal vector obtained by applying an orthogonalization method to a column vector of an inverse matrix is output to a multi-beam forming unit.
This makes it possible to determine the transmission weight without performing singular value decomposition calculation with a large calculation load, and can significantly reduce the calculation amount.

本発明の空間多重伝送用送信方法においては、複数のアンテナ素子を備え、推定した伝達係数行列から伝搬環境に適した送信重みを決定して送信信号に送信重み付けを行ったうえで空間分割多重を用いて送信する方法であって、送信重みとして、推定した伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列の列ベクトルをある値に規格化したものを用いるか、または、推定した伝達係数行列から得られる相関行列の逆行列の列ベクトルをある値に規格化したものを用いるようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減することができる。   The spatial multiplexing transmission method of the present invention includes a plurality of antenna elements, determines a transmission weight suitable for the propagation environment from the estimated transmission coefficient matrix, performs transmission weighting on the transmission signal, and performs space division multiplexing. A transmission weight using a transmission weight obtained by normalizing a column vector of a correlation matrix, which is a product of a complex conjugate transposed matrix of a transfer coefficient matrix and a transfer coefficient matrix, to a certain value, or Since the column vector of the inverse matrix of the correlation matrix obtained from the estimated transfer coefficient matrix is standardized to a certain value, the transmission weight is determined without performing the singular value decomposition operation with a large calculation load. And the amount of calculation can be significantly reduced.

また、本発明の空間多重伝送用送信方法においては、複数のアンテナ素子を備え、推定した伝達係数行列から伝搬環境に適した送信重みを決定して送信信号に送信重み付けを行ったうえで空間分割多重を用いて送信する方法であって、前記送信重みとして、推定した伝達係数行列から得られる相関行列の列ベクトルに対し直交化法を適用するか、推定した伝達係数行列から得られる相関行列の逆行列の列ベクトルに対し直交化法を適用するようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。   The spatial multiplexing transmission method of the present invention includes a plurality of antenna elements, determines a transmission weight suitable for the propagation environment from the estimated transmission coefficient matrix, performs transmission weighting on the transmission signal, and then performs space division. A transmission method using multiplexing, wherein as the transmission weight, an orthogonalization method is applied to a column vector of a correlation matrix obtained from an estimated transfer coefficient matrix, or a correlation matrix obtained from an estimated transfer coefficient matrix Since the orthogonalization method is applied to the column vector of the inverse matrix, it is possible to determine the transmission weight without performing the singular value decomposition calculation with a large calculation load, and the calculation amount can be significantly reduced.

また、本発明の空間多重伝送用送信方法においては、前記送信重みとして、推定した伝達係数行列から得られる相関行列、または、相関行列の逆行列に対し直交化法を用いたものを用いる場合には、ノルムの大きいものから直交化法を適用することで得られる直交ベクトルを用いるようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。   Further, in the spatial multiplexing transmission method of the present invention, when the transmission weight uses a correlation matrix obtained from the estimated transfer coefficient matrix or an inverse matrix of the correlation matrix using an orthogonalization method Uses the orthogonal vector obtained by applying the orthogonalization method from the one with the large norm, so that it is possible to determine the transmission weight without performing the calculation of the singular value decomposition with a large calculation load. The amount can be significantly reduced.

また、本発明の空間多重伝送用送信方法においては、複数のアンテナ素子を備え、推定した伝達係数行列から伝搬環境に適した送信重みを決定して送信信号に送信重み付けを行ったうえで空間分割多重を用いて送信する方法であって、送信重みとして、推定した伝達係数行列の逆行列の列ベクトルをある値に規格化したものを用いることを特徴とする空間多重伝送用送信方法において、前記送信重みとして、推定した伝達係数行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用いるようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。   The spatial multiplexing transmission method of the present invention includes a plurality of antenna elements, determines a transmission weight suitable for the propagation environment from the estimated transmission coefficient matrix, performs transmission weighting on the transmission signal, and then performs space division. A method of transmitting using multiplexing, wherein a transmission weight is obtained by normalizing a column vector of an inverse matrix of an estimated transfer coefficient matrix to a certain value, Since the orthogonal vector obtained by applying the orthogonalization method to the column vector of the inverse matrix of the estimated transfer coefficient matrix is used as the transmission weight, transmission is performed without performing computation of singular value decomposition with a large computation load. The weight can be determined, and the amount of calculation can be significantly reduced.

また、本発明の空間多重伝送用送信装置においては、N個(N≧2)のアンテナ素子を用い、L(N≧L≧2)個の空間多重による送信を行う空間多重伝送用送信装置において、前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え部と、前記切り替え部に接続され、受信時に切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、前記伝達係数行列推定部において推定した伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列の列ベクトルを演算するか、または、相関行列の逆行列の列ベクトルを演算し、対応する列ベクトルを送信重みとしてマルチビーム形成部に出力する送信重み決定部と、送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系をマルチビーム形成部に出力する送信部と、前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記切り替え部の他方のポートに出力を行う信号合成部とを備えるようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。   In the spatial multiplexing transmission apparatus according to the present invention, N (N ≧ 2) antenna elements are used, and the spatial multiplexing transmission apparatus performs transmission by L (N ≧ L ≧ 2) spatial multiplexing. A switching unit that is connected to each of the antenna elements and switches a reception signal and a transmission signal; and a transfer coefficient that is connected to the switching unit and that receives a signal output from the switching unit at the time of reception as an input signal and estimates a transfer coefficient matrix A matrix estimation unit and a column vector of a correlation matrix that is a product of a complex conjugate transposed matrix of the transmission coefficient matrix estimated by the transmission coefficient matrix estimation unit and the transmission coefficient matrix, or a column vector of an inverse matrix of the correlation matrix A transmission weight determination unit that outputs the corresponding column vector as a transmission weight to the multi-beam forming unit, and performs serial-parallel conversion on the input signal to be transmitted, and performs spatial multiplexing A serial-parallel conversion unit that distributes data to L, a transmission unit that outputs an output signal of the serial-parallel conversion unit as an input signal, and outputs a transmission signal system to the multi-beam forming unit, and a signal input from the transmission unit as an input signal A multi-beam forming unit that divides the signal into N signals, performs weighting determined by the transmission weight determining unit, and then outputs the signals to corresponding ports of the N signal combining units; and the multi-beam forming unit A signal combining unit that superimposes the signals output from the corresponding L multi-beam forming units to the L ports and outputs the signals to the other port of the switching unit. Therefore, it is possible to determine the transmission weight without performing the calculation of the singular value decomposition having a large value, and the calculation amount can be significantly reduced.

また、本発明の空間多重伝送用送信装置においては、前記送信重み決定部は、前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列から得られる相関行列の列ベクトルに対し直交化法を適用するか推定した伝達係数行列から得られる相関行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用い、マルチビーム形成部に出力するようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。   Further, in the spatial multiplexing transmission apparatus according to the present invention, the transmission weight determining unit orthogonalizes the transmission weight with respect to a column vector of a correlation matrix obtained from the transmission coefficient matrix estimated by the transmission coefficient matrix estimation unit. Since the orthogonal vector obtained by applying the orthogonalization method to the column vector of the inverse matrix of the correlation matrix obtained from the transfer coefficient matrix estimated by applying the method is output to the multi-beam forming unit, This makes it possible to determine the transmission weight without performing the singular value decomposition calculation with a large calculation load, and can significantly reduce the calculation amount.

また、本発明の空間多重伝送用送信装置においては、前記送信重み決定部は、前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列から得られる相関行列、または、相関行列の逆行列に対し直交化法を用いたものを用いる場合には、ノルムの大きいものから直交化法を適用することで得られる直交ベクトルを用いて、マルチビーム形成部に出力するようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。   In the spatial multiplexing transmission apparatus according to the present invention, the transmission weight determination unit may use, as the transmission weight, a correlation matrix obtained from the transfer coefficient matrix estimated by the transfer coefficient matrix estimation unit, or an inverse of the correlation matrix. When using the orthogonalization method for the matrix, the orthogonal vector obtained by applying the orthogonalization method from the one with the large norm is used to output to the multi-beam forming unit. It is possible to determine the transmission weight without performing a calculation of a singular value decomposition with a large load, and the calculation amount can be significantly reduced.

また、本発明の空間多重伝送用送信装置においては、N(N≧2)個のアンテナ素子を用い、L(N≧L≧2)個の空間多重による送信を行う空間多重伝送用送信装置において、前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え部と、前記切り替え部に接続され、受信時に切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、前記伝達係数行列推定部において推定された伝達係数行列の逆行列を演算し、対応する列ベクトルを送信重みとしてマルチビーム形成部に出力する送信重み決定部と、送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系をマルチビーム形成部に出力する送信部と、前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記切り替え部の他方のポートに出力を行う信号合成部とを備えることを特徴とする空間多重伝送用送信装置において、前記送信重み決定部は、前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用い、マルチビーム形成部に出力するようにしたので、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にし、演算量を著しく削減できる。   In the spatial multiplexing transmission apparatus of the present invention, N (N ≧ 2) antenna elements are used, and L (N ≧ L ≧ 2) spatial multiplexing transmission is performed in the spatial multiplexing transmission apparatus. A switching unit that is connected to each of the antenna elements and switches a reception signal and a transmission signal; and a transfer coefficient that is connected to the switching unit and that receives a signal output from the switching unit at the time of reception as an input signal and estimates a transfer coefficient matrix A matrix estimation unit, a transmission weight determination unit that calculates an inverse matrix of the transmission coefficient matrix estimated in the transmission coefficient matrix estimation unit, and outputs a corresponding column vector as a transmission weight to the multi-beam forming unit, and an input signal to be transmitted The serial-parallel conversion is performed, and the serial-parallel conversion unit that distributes to the spatial multiplexing number L, and the output signal of the serial-parallel conversion unit is used as an input signal, and is transmitted. After transmitting the signal system to the multi-beam forming unit and the signal input from the transmission unit as an input signal, the signal is divided into N signals, and weighting determined by the transmission weight determination unit is performed. A multi-beam forming unit that outputs to a corresponding port of N signal combining units, and a signal output to L ports from the corresponding L multi-beam forming units among the multi-beam forming units is superimposed And a signal synthesizer that outputs to the other port of the switching unit, wherein the transmission weight determination unit uses the transmission coefficient matrix estimation unit as the transmission weight. Since the orthogonal vector obtained by applying the orthogonalization method to the column vector of the inverse matrix of the estimated transfer coefficient matrix is output to the multi-beam forming unit, the computation load It makes it possible to determine the transmission weight without calculation of a large singular value decomposition, amount of calculation can be significantly reduced.

本発明の空間多重伝送用送信装置の第1の構成例を示すブロック図である。It is a block diagram which shows the 1st structural example of the transmitter for spatial multiplexing transmission of this invention. 本発明の空間多重伝送用送信装置の第2構成例を示すブロック図である。It is a block diagram which shows the 2nd structural example of the transmitter for spatial multiplexing transmission of this invention. 計算機シミュレーションに用いた伝搬環境を示す図である。It is a figure which shows the propagation environment used for computer simulation. 計算機シミュレーションに用いた到来素波の電力分布を示す図である。It is a figure which shows the electric power distribution of the incoming elementary wave used for computer simulation. 本発明の効果を示す伝送容量の累積確率を示す図である。It is a figure which shows the cumulative probability of the transmission capacity which shows the effect of this invention. 到来波グループの伝搬パラメータを示す図である。It is a figure which shows the propagation parameter of an incoming wave group. 理想的な空間多重伝送用送信装置を示すブロック図である。1 is a block diagram showing an ideal spatial multiplexing transmission apparatus. FIG.

次に本発明を実施するための最良の形態について図面を参照して説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

[第1の実施の形態]
以下、図1を参照しながら本発明の第一の実施形態について詳細に説明する。図1は本発明の空間多重伝送用送信装置の第1の構成例を示すブロック図であり、伝搬環境に最適となる送信指向性制御により高い伝送品質を得る通信を行う場合に、送信重みをより簡易に決定することを可能とする構成を示している。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 is a block diagram showing a first configuration example of a spatial multiplexing transmission apparatus according to the present invention. When performing communication for obtaining high transmission quality by transmission directivity control that is optimal for a propagation environment, transmission weights are set. It shows a configuration that makes it possible to determine more easily.

符号110はシリアル−パラレル変換部、121〜12Lは送信部、131〜13Lはマルチビーム形成部、141〜14Nは信号合成部、151〜15Nは切り替え部、161〜16Nはアンテナ素子、170は伝達係数行列推定部、180は送信重み決定部である。   Reference numeral 110 is a serial-parallel conversion unit, 121 to 12L are transmission units, 131 to 13L are multi-beam forming units, 141 to 14N are signal synthesis units, 151 to 15N are switching units, 161 to 16N are antenna elements, and 170 is a transmission A coefficient matrix estimation unit 180 is a transmission weight determination unit.

アンテナ素子161〜16Nで受信された信号は切り替え部151〜15Nにより切り替えられ、伝達係数行列推定部170に出力される。伝達係数行列推定部170は受信したプリアンブル信号から伝達係数行列を算出し、送信重み決定部180に出力する。送信重み決定部180は以下に示すように送信重みを決定し、マルチビーム形成部131〜13Lに送信重みを出力する。   Signals received by the antenna elements 161 to 16N are switched by the switching units 151 to 15N and output to the transfer coefficient matrix estimation unit 170. The transmission coefficient matrix estimation unit 170 calculates a transmission coefficient matrix from the received preamble signal and outputs it to the transmission weight determination unit 180. The transmission weight determining unit 180 determines the transmission weight as described below, and outputs the transmission weight to the multi-beam forming units 131 to 13L.

送信信号系列は、シリアル−パラレル変換部110により、空間分割多重数Lに振り分けられ、それぞれ送信部121〜12Lより変調され、マルチビーム形成部131〜13Lに出力される。マルチビーム形成部131〜13Lに入力された各信号系列は、送信重み決定部180で決定された送信重みがアナログ量、もしくはデジタル量により乗算された後、信号合成部141〜14Nの対応するポートに出力される。信号合成部141〜14Nは入力された信号を合成し、その出力信号は、前記切り替え部151〜15Nを介し、アンテナ素子161〜16Nから送信される。   The transmission signal series is distributed to the spatial division multiplexing number L by the serial-parallel conversion unit 110, modulated by the transmission units 121 to 12L, and output to the multi-beam forming units 131 to 13L. Each signal sequence input to the multi-beam forming units 131 to 13L is obtained by multiplying the transmission weight determined by the transmission weight determining unit 180 by an analog amount or a digital amount, and then corresponding ports of the signal combining units 141 to 14N. Is output. The signal synthesis units 141 to 14N synthesize the input signals, and the output signals are transmitted from the antenna elements 161 to 16N via the switching units 151 to 15N.

簡単のため受信装置のアンテナ素子数と送信装置のアンテナ素子数をMとし、空間分割多重数をLとした場合の通信を考える。   For simplicity, let us consider communication when the number of antenna elements of the receiving device and the number of antenna elements of the transmitting device is M and the number of space division multiplexing is L.

空間多重伝送用送信装置は、受信装置より送信されたプリアンブル信号S(M×M行列)を受信し、伝達係数行列推定部170において受信信号X(M×M)にプリアンブル信号の逆行列S −1(M×M行列)を乗算し、転置行列を求めることで伝達係数行列Hを推定する。 The spatial multiplexing transmission device receives the preamble signal S 0 (M × M matrix) transmitted from the reception device, and the transmission coefficient matrix estimation unit 170 converts the received signal X 0 (M × M) into an inverse matrix of the preamble signal. The transfer coefficient matrix H is estimated by multiplying S 0 −1 (M × M matrix) and obtaining a transposed matrix.

送信重み決定部180では、送信重みとして伝達係数行列の複素共役転置行列を求め、送信重みWとして、   The transmission weight determination unit 180 obtains a complex conjugate transpose matrix of the transfer coefficient matrix as the transmission weight, and as the transmission weight W,

Figure 0005008702
Figure 0005008702

をマルチビーム形成部に出力する。ここで、[ ]は行列の中からL個の列ベクトルを選ぶ演算子であるとし、Pは Is output to the multi-beam forming unit. Here, [] L is an operator that selects L column vectors from the matrix, and P is

Figure 0005008702
Figure 0005008702

と表すことができ、p〜pはVDUの対応する列ベクトルのノルムの値であり、α〜αは各ビームに分配する電力値を表す。以下、簡単のためα〜αを1とし、L=Mの場合を考える。 P 1 to p L are the norm values of the corresponding column vectors of VDU H , and α 1 to α L represent the power values distributed to each beam. Hereinafter, for the sake of simplicity, let α 1 to α L be 1, and consider the case where L = M.

マルチビーム形成部131〜13Lにおいて、このような送信重みWを用いて送信信号S(L×1ベクトル)の送信を行うと、受信装置で受信される信号X(M×1ベクトル)は以下のように表せる。   When the multi-beam forming units 131 to 13L transmit the transmission signal S (L × 1 vector) using such transmission weight W, the signal X (M × 1 vector) received by the receiving apparatus is It can be expressed as follows.

Figure 0005008702
Figure 0005008702

ここで、UDPは、 Here, UD 2 U HP is

Figure 0005008702
Figure 0005008702

と表すことができ、対角成分の値が大きくなるため受信装置において、ZF(ZeroForcing)やMMSE(Minimum Mean Square Error)等による復号アルゴリズムの効果を高めることができる。また、伝達係数行列の複素共役転置行列からL個のベクトルを選択する際に、列ベクトルのノルムが大きいものから選択することで伝送容量を増加させることができる。   Since the value of the diagonal component increases, the effect of a decoding algorithm such as ZF (Zero Forcing) or MMSE (Minimum Mean Square Error) can be enhanced in the receiving apparatus. Further, when L vectors are selected from the complex conjugate transpose matrix of the transfer coefficient matrix, the transmission capacity can be increased by selecting the vector vector having a large norm.

ここで選択した列ベクトルに対し、直交化法を用いることでより信号間の干渉を減らすことができる。ここで選択した列ベクトルをv,v,・・・,vとおき、ベクトルaとbの内債を(a,b)と表すものとする。v′=vとしてグラムシュミットの直交化法を行うと、 Interference between signals can be further reduced by using the orthogonalization method for the column vector selected here. The column vectors selected here are denoted by v 1 , v 2 ,..., V L, and the bonds in vectors a and b are represented by (a, b). When Gram Schmidt's orthogonalization method is performed with v ′ 1 = v 1 ,

Figure 0005008702
Figure 0005008702

以上のように直交ベクトルv′,v′・・・,v′を新しく求めることができる。このとき、ノルムの大きい列ベクトルから順に直交化法を用いることで、より伝送容量を上げることができる。 As described above, the orthogonal vectors v ′ 1 , v ′ 2 ..., V ′ L can be newly obtained. At this time, the transmission capacity can be further increased by using the orthogonalization method in order from the column vector having the largest norm.

また、送信重み決定部180において送信重みとして伝達係数行列の逆行列を求め、送信重みWとして、   In addition, the transmission weight determining unit 180 obtains an inverse matrix of the transmission coefficient matrix as the transmission weight, and as the transmission weight W,

Figure 0005008702
Figure 0005008702

をマルチビーム形成部131〜13Lに出力する。ここでPは、   Are output to the multi-beam forming units 131 to 13L. Where P is

Figure 0005008702
Figure 0005008702

と表すことができ、p〜pはVD−1の対応する列ベクトルのノルムの値であり、α〜αは各ビームに分配する電力値を表す。以下、簡単のためα〜αを1とし、L=Mの場合を考える。 Can be represented as, p 1 ~p L is the norm of the value of the corresponding column vector VD -1 U H, α 1 ~α L represents a power value to be distributed to each beam. Hereinafter, for the sake of simplicity, let α 1 to α L be 1, and consider the case where L = M.

マルチビーム形成部131〜13Lにおいて、このような送信重みWを用いて送信信号S(L×1ベクトル)の送信を行うと、受信装置で受信される信号X(M×1ベクトル)は以下のように表せる。   When the multi-beam forming units 131 to 13L transmit the transmission signal S (L × 1 vector) using such transmission weights W, the signal X (M × 1 vector) received by the receiving apparatus is as follows. It can be expressed as follows.

Figure 0005008702
Figure 0005008702

と表すことができ、受信側での復号負荷が減少する。また、伝達係数行列の複素共役転置行列からL個のベクトルを選択する際に、列ベクトルのノルムが小さいものから選択することで伝送容量を増加させることができる。   And the decoding load on the receiving side is reduced. Further, when L vectors are selected from the complex conjugate transpose matrix of the transfer coefficient matrix, the transmission capacity can be increased by selecting one having a small norm of the column vector.

ここで選択した列ベクトルに対し、直交化法を用いることでより信号間の干渉を減らすことができる。ここで選択したベクトルをv,v,・・・,vLとおき、ベクトルaとbの内債を(a,b)と表すものとする。v′=vとしてグラムシュミットの直交化法を行うと、 Interference between signals can be further reduced by using the orthogonalization method for the column vector selected here. The vectors selected here are denoted by v 1 , v 2 ,..., V L , and the internal bonds of vectors a and b are represented by (a, b). When Gram Schmidt's orthogonalization method is performed with v ′ 1 = v 1 ,

Figure 0005008702
Figure 0005008702

以上のように直交ベクトルv′,v′・・・,v′を新しく求めることができる。このとき、ノルムの大きい列ベクトルから順に直交化法を用いることで、より伝送容量を上げることができる。ただし、この場合v′1は最も固有値の小さい送信ウェイトと相関が高くなっているため、逆順に送信ウェイトベクトルを並び替える必要がある。 As described above, the orthogonal vectors v ′ 1 , v ′ 2 ..., V ′ L can be newly obtained. At this time, the transmission capacity can be further increased by using the orthogonalization method in order from the column vector having the largest norm. However, in this case, v ′ 1 has a high correlation with the transmission weight having the smallest eigenvalue, and thus it is necessary to rearrange the transmission weight vectors in the reverse order.

ここで、送信素子数N、受信素子数M、N>MとしてL個の空間多重を行う場合に、伝達係数行列の複素共役転置行列から得た送信重みWと、逆行列から得た送信重みWを以下に示す。 Here, the number of transmission elements N, the receiving element number M, when performing the L spatial multiplexing as N> M, a transmission weight W H obtained from the complex conjugate transposed matrix of the transfer coefficient matrix, the transmission obtained from the inverse matrix the weight W I are shown below.

Figure 0005008702
Figure 0005008702

Figure 0005008702
Figure 0005008702

上記の式と、固有値がλ>λ・‥>λの関係となっていることを考慮すると、(14)式の各列ベクトルは(2)式で表せる理想的な送信重みの第一固有値に対応する列ベクトル(v11,v21,・・・,vN1)と相関が高くなることが分かる。また、(15)式は逆に最も小さい固有値に対応する列ベクトル(v1M,v2M,・・・,vNM)と相関が高くなる。このことからWおよびWから任意の列ベクトルを選択し、直交化法を用いることでより伝送品質を向上させることができる。 Considering the above equation and the relationship that the eigenvalue is λ 1 > λ 2 ...> Λ M , each column vector of equation (14) is the ideal transmission weight represented by equation (2). It can be seen that the correlation is high with the column vector (v 11 , v 21 ,..., V N1 ) corresponding to one eigenvalue. On the other hand, the equation (15) is highly correlated with the column vector (v 1M , v 2M ,..., V NM ) corresponding to the smallest eigenvalue. This select any column vector from W H and W I from, it is possible to further improve transmission quality by using the orthogonalization method.

また、推定された伝達係数行列Hの相関行列HHとその逆行列をU、V、Dを用いて表すと、 Further, when the correlation matrix H H H of the estimated transfer coefficient matrix H and its inverse matrix are expressed using U, V, and D,

Figure 0005008702
Figure 0005008702

Figure 0005008702
Figure 0005008702

となる。ここで、固有値がλ1>λ2>‥・>λの関係となっていることを考慮すると、(16)式の各列ベクトルは(2)式で表せる理想的な送信重みの第一固有値に対応する列ベクトル(v11,v21,・・・,vN1)と相関が高くなることが分かる。また、(17)式は逆に最も小さい固有値に対応する列ベクトル(v1M,v2M,・・・,vNM)と相関が高くなる。このことから相関行列およびその逆行列の任意の列ベクトルを選択し、これまで示してきた送信重みの直交化法に組み合わせて用いることで、より伝送品質を向上させることが期待できる。 It becomes. Here, considering that the eigenvalues have a relationship of λ 1 > λ 2 >...> Λ M , each column vector of the equation (16) is the first ideal transmission weight expressed by the equation (2). It can be seen that the correlation with the column vectors (v 11 , v 21 ,..., V N1 ) corresponding to the eigenvalues becomes high. On the contrary, the equation (17) is highly correlated with the column vector (v 1M , v 2M ,..., V NM ) corresponding to the smallest eigenvalue. From this, it is expected that transmission quality can be further improved by selecting an arbitrary column vector of the correlation matrix and its inverse matrix and using it in combination with the orthogonalization method of transmission weights shown so far.

また、本発明は通信相手局との伝達係数行列を推定する際に、通信相手局が(1)式で表せる特異値分解から得られる送信重みと相関を持つような送信重みW″を用いてプリアンブル信号を用いれば更に効果的となる。このとき推定される伝達係数行列H′は、   Further, the present invention uses a transmission weight W ″ that has a correlation with the transmission weight obtained from the singular value decomposition expressed by the equation (1) when estimating the transfer coefficient matrix with the communication counterpart station. The use of the preamble signal is more effective, and the estimated transfer coefficient matrix H ′ is

Figure 0005008702
Figure 0005008702

通信相手局の送信重みがUと相関を持つため、α>βとなる。このとき、(14)式と(15)式は、   Since the transmission weight of the communication partner station has a correlation with U, α> β. At this time, the equations (14) and (15) are

Figure 0005008702
Figure 0005008702

Figure 0005008702
Figure 0005008702

と書き直すことができ、α≫βとすると、(2)式で表せる理想的な送信重みとなることが分かる。   If α >> β, it can be seen that the ideal transmission weight can be expressed by equation (2).

また、伝達係数行列の推定から、送信重みの決定までの演算は、その全て、もしくは一部を通信相手局において行い、フィードバック情報により同様に指向性制御を行うこともできる。     Further, all or a part of the calculation from the estimation of the transfer coefficient matrix to the determination of the transmission weight can be performed in the communication partner station, and the directivity control can be similarly performed using the feedback information.

[第2の実施の形態]
次に、図2を参照しながら本発明の第2の実施の形態について説明する。図2は本発明空間多重伝送用送信装置の第2の実施形態であり、伝搬環境に最適となる送信指向性制御により高い伝送品質を得る通信を行う場合に、送信重みをより簡易に決定することを可能とする構成を示している。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 shows a second embodiment of the transmission device for spatial multiplexing transmission according to the present invention, in which transmission weights are more easily determined when performing communication for obtaining high transmission quality by transmission directivity control that is optimal for the propagation environment. The configuration that enables this is shown.

図2において、符号110はシリアル−パラレル変換部、121〜12Lは送信部、131〜13Lはマルチビーム形成部、141〜14Nは信号合成部、151〜15Nは切り替え部、161〜16Nはアンテナ素子、170は伝達係数行列推定部、210は受信重み演算部、220は送信重み候補記憶部、230は直交化演算部である。   In FIG. 2, reference numeral 110 is a serial-parallel converter, 121 to 12L are transmitters, 131 to 13L are multi-beam forming units, 141 to 14N are signal synthesizers, 151 to 15N are switching units, and 161 to 16N are antenna elements. , 170 is a transfer coefficient matrix estimation unit, 210 is a reception weight calculation unit, 220 is a transmission weight candidate storage unit, and 230 is an orthogonalization calculation unit.

アンテナ素子161〜16Nで受信された信号は切り替え部151〜15Nにより切り替えられ、伝達係数行列推定部170に出力される。伝達係数行列推定部170は受信したプリアンブル信号から伝達係数行列を算出し、受信重み演算部210に出力する。受信重み演算部210は復号のための受信重みの演算を行い、その過程で生じる受信重みの候補を送信重み候補記憶部220に出力する。送信重み候補記憶部220は送信重みの候補を直交化演算部230に出力し、直交化された送信重みが、マルチビーム形成部131〜13Lに送信重みとして出力される。   Signals received by the antenna elements 161 to 16N are switched by the switching units 151 to 15N and output to the transfer coefficient matrix estimation unit 170. The transfer coefficient matrix estimation unit 170 calculates a transfer coefficient matrix from the received preamble signal and outputs it to the reception weight calculation unit 210. The reception weight calculation unit 210 calculates reception weights for decoding, and outputs reception weight candidates generated in the process to the transmission weight candidate storage unit 220. The transmission weight candidate storage unit 220 outputs transmission weight candidates to the orthogonalization calculation unit 230, and the orthogonalized transmission weights are output to the multi-beam forming units 131 to 13L as transmission weights.

送信信号系列は、シリアル−パラレル変換110により、空間分割多重数Lに振り分けられ、それぞれ送信部121〜12Lにより変調され、マルチビーム形成部131〜13Lに出力される。マルチビーム形成部131〜13Lに入力された各信号系列は、送信重み候補記憶部220で決定された送信重みをかけられた後、信号合成部141〜14Nの対応するポートに出力される。信号合成部141〜14Nは入力された信号を合成し、その出力信号は、前記切り替え部151〜15Nを介し、アンテナ素子161〜16Nから送信される。   The transmission signal sequence is distributed to the spatial division multiplexing number L by serial-parallel conversion 110, modulated by transmission units 121 to 12L, and output to multi-beam forming units 131 to 13L. Each signal sequence input to the multi-beam forming units 131 to 13L is subjected to the transmission weight determined by the transmission weight candidate storage unit 220, and then output to the corresponding ports of the signal combining units 141 to 14N. The signal synthesis units 141 to 14N synthesize the input signals, and the output signals are transmitted from the antenna elements 161 to 16N via the switching units 151 to 15N.

前記の受信重み演算部210は、受信重みを演算する過程で生じる複素行列に含まれる任意のベクトルを送信重み候補として、送信重み演算候補記憶部220に出力する。例えば、伝達係数行列の逆行列を受信重みとして用いる場合には、受信重みW′は以下のように演算することができる(受信側の素子数が多い場合)。   The reception weight calculation unit 210 outputs an arbitrary vector included in the complex matrix generated in the process of calculating the reception weight to the transmission weight calculation candidate storage unit 220 as a transmission weight candidate. For example, when the inverse matrix of the transfer coefficient matrix is used as the reception weight, the reception weight W ′ can be calculated as follows (when the number of elements on the reception side is large).

Figure 0005008702
Figure 0005008702

この場合、伝達係数行列の複素共役転置行列H、逆行列(HH)−1、相関行列HH、その逆行列をそれぞれ演算の途中で計算することとなり、これらのうち任意の列ベクトルを送信重み候補記憶部に出力することで、前述のように(2)式で表せる理想的な送信重みと高い相関を持つ送信重みを直交化演算部により形成することができる。 In this case, the complex conjugate transpose matrix H H , the inverse matrix (H H H) −1 H H , the correlation matrix H H H, and the inverse matrix of the transfer coefficient matrix are calculated in the middle of the calculation, and any of these is arbitrary. Is output to the transmission weight candidate storage unit, the transmission weight having a high correlation with the ideal transmission weight represented by the equation (2) can be formed by the orthogonalization calculation unit as described above.

[具体例による効果の説明]
次に、送信素子数を4、受信素子数を4とした場合に、伝達係数行列の複素共役転置行列の列ベクトルに、ノルムの大きいものから直交化演算を行ったものを送信重みとした場合の伝送容量を、送信重みを適用しないで無指向性での送信を行った従来方法と、(2)式で与えられる理想的な送信重みを適用した理想値と、それぞれ比較を行う。
[Explanation of effect by specific example]
Next, assuming that the number of transmitting elements is 4 and the number of receiving elements is 4, the column weight of the complex conjugate transpose matrix of the transfer coefficient matrix is obtained by performing the orthogonalization operation from the one with a large norm as the transmission weight The transmission capacity is compared with the conventional method in which transmission is performed in a non-directional manner without applying the transmission weight and the ideal value to which the ideal transmission weight given by Equation (2) is applied.

本発明による指向性制御法の効果を検証するために用いる伝搬環境を示す。図3に示すように送信局と受信局それぞれの周囲にラプラシアン分布で角度拡がり25°のクラスタをNo.1からNo.6まで6つずつ設置した。到来波は90波とし、15波ずつNo.1からNo.6までのグループに分けた。   The propagation environment used in order to verify the effect of the directivity control method by this invention is shown. As shown in FIG. 3, clusters with a Laplacian distribution and an angle spread of 25 ° around each of the transmitting station and the receiving station are No. 1 to No. 1. 6 to 6 were installed. The incoming waves are 90 waves, and 15 waves are received from No. 1 to No. 1 Divided into groups of up to 6.

到来波の素波電力と到来時間を表すグラフを図4に示す。それぞれのグループの到来波は、基地局および端末局の周りに設置した同番号のクラスタを通過する確率を50%とし、そのほかの番号のクラスタを通過する確率をそれぞれ10%ずつとなっている。各到来波グループに適用した伝搬パラメータを図6に示す。到来波全体での遅延スプレッドは61nsecとなる。搬送波周波数を5.2GHz、各サブキャリアの周波数帯域を0.31MHz、サブキャリア数を50とした。それぞれのビームに等電力を割り当てるものとし、復号にはMMSEアルゴリズムを用いた。   FIG. 4 shows a graph representing the incoming wave power and arrival time. Each group of incoming waves has a 50% probability of passing through the same number of clusters installed around the base station and the terminal station, and a 10% probability of passing through the other numbered clusters. The propagation parameters applied to each incoming wave group are shown in FIG. The delay spread for the entire incoming wave is 61 nsec. The carrier frequency was 5.2 GHz, the frequency band of each subcarrier was 0.31 MHz, and the number of subcarriers was 50. It is assumed that equal power is allocated to each beam, and the MMSE algorithm is used for decoding.

上記のような伝搬環境モデルを用い、クラスタおよびそれを構成する散乱体、それぞれの到来波の位相をランダムに与え、100回試行し、全サブキャリア数(50)×試行回数(100)のデータを用い、その伝送容量の累積確率を計算した。その結果を図5に示す。図5によれば、累積確率の50%値において、理想値からは8.6%低い値をとるが、指向性制御を用いない従来方法に比べると、37.7%の増加が得られることを示した。   Using the propagation environment model as described above, the cluster, the scatterers constituting it, and the phase of each incoming wave are randomly assigned, and trials are performed 100 times. Was used to calculate the cumulative probability of the transmission capacity. The result is shown in FIG. According to FIG. 5, in the 50% value of the cumulative probability, the value is 8.6% lower than the ideal value, but an increase of 37.7% is obtained compared to the conventional method that does not use directivity control. showed that.

以上、本発明の実施の形態について説明したが、本発明の空間多重伝送用送信装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Although the embodiments of the present invention have been described above, the spatial multiplexing transmission apparatus of the present invention is not limited to the above-described illustrated examples, and various modifications can be made without departing from the scope of the present invention. Of course, it can be added.

本発明によれば、特異値分解による空間分割多重を用いた通信において、簡易な演算で送信重みを決定することを可能とし、高い伝送速度をもつ通信を実現できるので、本発明は、空間多重伝送用送信方法および送信装置等に有用である。   According to the present invention, in communication using space division multiplexing by singular value decomposition, it is possible to determine transmission weights with a simple calculation and realize communication with a high transmission rate. This is useful for a transmission method and a transmission device for transmission.

110 シリアル−パラレル変換部
121〜12L 送信部
131〜13L マルチビーム形成部
141〜14N 信号合成部
151〜15N 切り替え部
161〜16N アンテナ素子
170 伝達係数行列推定部
180 送信重み決定部
210 受信重み演算部
220 送信重み候補記憶部
230 直交化演算部
110 Serial-parallel converters 121 to 12L Transmitters 131 to 13L Multi-beam forming units 141 to 14N Signal combiners 151 to 15N Switching units 161 to 16N Antenna element 170 Transfer coefficient matrix estimation unit 180 Transmission weight determination unit 210 Reception weight calculation unit 220 Transmission weight candidate storage unit 230 Orthogonalization operation unit

Claims (6)

複数のアンテナ素子を備え、推定した伝達係数行列から伝搬環境に適した送信重みを決定して送信信号に送信重み付けを行ったうえで空間分割多重を用いて送信する方法であって、
前記送信重みとして、推定した伝達係数行列から得られる相関行列の列ベクトルに対し直交化法を適用するか、
推定した伝達係数行列から得られる相関行列の逆行列の列ベクトルに対し直交化法を適用すること
を特徴とする空間多重伝送用送信方法。
A method comprising a plurality of antenna elements, determining a transmission weight suitable for a propagation environment from an estimated transmission coefficient matrix, performing transmission weighting on a transmission signal, and transmitting using space division multiplexing,
As the transmission weight, an orthogonalization method is applied to the column vector of the correlation matrix obtained from the estimated transfer coefficient matrix, or
A transmission method for spatial multiplexing transmission, wherein an orthogonalization method is applied to a column vector of an inverse matrix of a correlation matrix obtained from an estimated transfer coefficient matrix.
前記送信重みとして、
推定した伝達係数行列から得られる相関行列、または、相関行列の逆行列に対し直交化法を用いたものを用いる場合には、ノルムの大きいものから直交化法を適用することで得られる直交ベクトルを用いること
を特徴とする請求項に記載の空間多重伝送用送信方法。
As the transmission weight,
When using the correlation matrix obtained from the estimated transfer coefficient matrix or the inverse matrix of the correlation matrix using the orthogonalization method, the orthogonal vector obtained by applying the orthogonalization method from the one with the large norm The transmission method for spatial multiplexing transmission according to claim 1 , wherein:
複数のアンテナ素子を備え、推定した伝達係数行列から伝搬環境に適した送信重みを決定して送信信号に送信重み付けを行ったうえで空間分割多重を用いて送信する方法であって、
送信重みとして、推定した伝達係数行列の逆行列の列ベクトルをある値に規格化したものを用いること
を特徴とする空間多重伝送用送信方法において、
前記送信重みとして、推定した伝達係数行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用いること
を特徴とする空間多重伝送用送信方法。
A method comprising a plurality of antenna elements, determining a transmission weight suitable for a propagation environment from an estimated transmission coefficient matrix, performing transmission weighting on a transmission signal, and transmitting using space division multiplexing,
In the transmission method for spatial multiplexing transmission, the transmission weight is obtained by standardizing a column vector of an inverse matrix of the estimated transfer coefficient matrix to a certain value.
An orthogonal vector obtained by applying an orthogonalization method to a column vector of an inverse matrix of an estimated transfer coefficient matrix is used as the transmission weight.
N個(N≧2)のアンテナ素子を用い、L(N≧L≧2)個の空間多重による送信を行う空間多重伝送用送信装置において、
前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え部と、
前記切り替え部に接続され、受信時に切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、
前記伝達係数行列推定部において推定した伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列の列ベクトルを演算するか、または、相関行列の逆行列の列ベクトルを演算し、対応する列ベクトルを送信重みとしてマルチビーム形成部に出力する送信重み決定部と、
送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、
前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系をマルチビーム形成部に出力する送信部と、
前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、
前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記切り替え部の他方のポートに出力を行う信号合成部と
を備え、
前記送信重み決定部は、
前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列から得られる相関行列の列ベクトルに対し直交化法を適用するか推定した伝達係数行列から得られる相関行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用い、マルチビーム形成部に出力すること
特徴とする空間多重伝送用送信装置。
In a spatial multiplexing transmission apparatus that performs transmission by L (N ≧ L ≧ 2) spatial multiplexing using N (N ≧ 2) antenna elements,
A switching unit that is connected to each antenna element and switches between a reception signal and a transmission signal;
A transfer coefficient matrix estimation unit that is connected to the switching unit and receives a signal output from the switching unit at the time of reception as an input signal, and estimates a transfer coefficient matrix;
Calculate the column vector of the correlation matrix that is the product of the complex conjugate transpose matrix of the transfer coefficient matrix estimated by the transfer coefficient matrix estimation unit and the transfer coefficient matrix, or calculate the column vector of the inverse matrix of the correlation matrix, and A transmission weight determining unit that outputs a column vector to be transmitted to the multi-beam forming unit as a transmission weight;
A serial-parallel converter that performs serial-parallel conversion on an input signal to be transmitted and distributes the input signal to a spatial multiplexing number L;
An output signal of the serial-parallel conversion unit as an input signal, and a transmission unit that outputs a transmission signal system to a multi-beam forming unit;
The signal input from the transmission unit is used as an input signal, divided into N signals, weighted by the transmission weight determination unit, and then output to the corresponding ports of the N signal synthesis units A multi-beam forming unit;
Wherein one of the multi-beam forming unit, superposing the output from the corresponding L-number of the multi-beam forming portion into L port signals, Bei give a signal combining unit for outputting to the other port of the switching unit,
The transmission weight determination unit
As the transmission weight, the column vector of the inverse matrix of the correlation matrix obtained from the transmission coefficient matrix estimated by applying the orthogonalization method to the column vector of the correlation matrix obtained from the transmission coefficient matrix estimated by the transmission coefficient matrix estimation unit Output to the multi-beam forming unit using the orthogonal vector obtained by applying the orthogonalization method to
A transmitter for spatial multiplexing transmission.
前記送信重み決定部は、
前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列から得られる相関行列、または、相関行列の逆行列に対し直交化法を用いたものを用いる場合には、ノルムの大きいものから直交化法を適用することで得られる直交ベクトルを用いて、マルチビーム形成部に出力すること
を特徴とする請求項記載の空間多重伝送用送信装置。
The transmission weight determination unit
As the transmission weight, when using a correlation matrix obtained from the transfer coefficient matrix estimated by the transfer coefficient matrix estimator or an inverse matrix of the correlation matrix, the one having a large norm is used. 5. The transmitter for spatial multiplexing transmission according to claim 4 , wherein an orthogonal vector obtained by applying the orthogonalization method is used to output to the multi-beam forming unit.
N(N≧2)個のアンテナ素子を用い、L(N≧L≧2)個の空間多重による送信を行う空間多重伝送用送信装置において、
前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え部と、
前記切り替え部に接続され、受信時に切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、
前記伝達係数行列推定部において推定された伝達係数行列の逆行列を演算し、対応する列ベクトルを送信重みとしてマルチビーム形成部に出力する送信重み決定部と、
送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、
前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系をマルチビーム形成部に出力する送信部と、
前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、
前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記切り替え部の他方のポートに出力を行う信号合成部と
を備えることを特徴とする空間多重伝送用送信装置において、
前記送信重み決定部は、
前記送信重みとして、前記伝達係数行列推定部により推定した伝達係数行列の逆行列の列ベクトルに対し直交化法を適用することで得られる直交ベクトルを用い、マルチビーム形成部に出力すること
を特徴とする空間多重伝送用送信装置。
In a spatial multiplexing transmission apparatus that performs transmission by L (N ≧ L ≧ 2) spatial multiplexing using N (N ≧ 2) antenna elements,
A switching unit that is connected to each antenna element and switches between a reception signal and a transmission signal;
A transfer coefficient matrix estimation unit that is connected to the switching unit and receives a signal output from the switching unit at the time of reception as an input signal, and estimates a transfer coefficient matrix;
A transmission weight determination unit that calculates an inverse matrix of the transmission coefficient matrix estimated in the transmission coefficient matrix estimation unit and outputs a corresponding column vector to the multi-beam forming unit as a transmission weight;
A serial-parallel converter that performs serial-parallel conversion on an input signal to be transmitted and distributes the input signal to a spatial multiplexing number L;
An output signal of the serial-parallel conversion unit as an input signal, and a transmission unit that outputs a transmission signal system to a multi-beam forming unit;
The signal input from the transmission unit is used as an input signal, divided into N signals, weighted by the transmission weight determination unit, and then output to the corresponding ports of the N signal synthesis units A multi-beam forming unit;
A signal combining unit that superimposes the signals output from the corresponding L multi-beam forming units to the L ports among the multi-beam forming units and outputs the signals to the other port of the switching unit. In the spatial multiplexing transmission device characterized by
The transmission weight determination unit
An orthogonal vector obtained by applying an orthogonalization method to a column vector of an inverse matrix of the transmission coefficient matrix estimated by the transmission coefficient matrix estimation unit is used as the transmission weight, and is output to the multi-beam forming unit. A transmitter for spatial multiplexing transmission.
JP2009188009A 2009-08-14 2009-08-14 Spatial multiplexing transmission method and spatial multiplexing transmission apparatus Expired - Fee Related JP5008702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188009A JP5008702B2 (en) 2009-08-14 2009-08-14 Spatial multiplexing transmission method and spatial multiplexing transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188009A JP5008702B2 (en) 2009-08-14 2009-08-14 Spatial multiplexing transmission method and spatial multiplexing transmission apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004373193A Division JP4494190B2 (en) 2004-12-24 2004-12-24 Spatial multiplexing transmission method and spatial multiplexing transmission apparatus

Publications (2)

Publication Number Publication Date
JP2009278652A JP2009278652A (en) 2009-11-26
JP5008702B2 true JP5008702B2 (en) 2012-08-22

Family

ID=41443578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188009A Expired - Fee Related JP5008702B2 (en) 2009-08-14 2009-08-14 Spatial multiplexing transmission method and spatial multiplexing transmission apparatus

Country Status (1)

Country Link
JP (1) JP5008702B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
JP4198452B2 (en) * 2002-11-28 2008-12-17 京セラ株式会社 Radio apparatus and antenna directivity control method

Also Published As

Publication number Publication date
JP2009278652A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP4376805B2 (en) Spatial multiplexing transmission method and transmitter
JP3895228B2 (en) Wireless communication apparatus and direction of arrival estimation method
EP2744121B1 (en) Method for determining beamforming parameters in a wireless communication system and to a wireless communication system
JP6416869B2 (en) Wireless communication control method and wireless communication system
US11290169B2 (en) Methods, systems and units of a distributed base station system for handling of downlink communication
KR20090088193A (en) Apparatus and method for switched beam-forming using multi-beam combining
JP5073809B2 (en) Channel information prediction system and channel information prediction method
JP5133007B2 (en) Transmitting apparatus and beamforming matrix generation method
JP4481336B2 (en) Channel information prediction system and channel information prediction method
JP5333526B2 (en) Radio base station apparatus, terminal apparatus, and radio communication method
KR100963333B1 (en) BeanForming Method using Multiple Antenna
CN113179231A (en) Beam space channel estimation method in millimeter wave large-scale MIMO system
JP4698346B2 (en) Wireless transmission system, base station, and wireless transmission method
JP4494190B2 (en) Spatial multiplexing transmission method and spatial multiplexing transmission apparatus
JP5008702B2 (en) Spatial multiplexing transmission method and spatial multiplexing transmission apparatus
JP4401881B2 (en) Transmission method and apparatus for spatial multiplexing transmission
JP4001880B2 (en) Spatial multiplex transmission equipment
JP2007036403A (en) Spatial multiplex transmission device and method
JP4444300B2 (en) Wireless communication apparatus and wireless communication method
JP7415687B2 (en) Wireless communication device and wireless communication method
JP4430060B2 (en) Wireless communication apparatus and method
KR20180080768A (en) Method and apparatus for combining a plurality of radio frequency signals
JP4260653B2 (en) Transmitter for spatial multiplexing transmission
JP4040588B2 (en) Transmitter for spatial multiplexing transmission
JP4778982B2 (en) Reception apparatus and interference suppression method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R151 Written notification of patent or utility model registration

Ref document number: 5008702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees