JP4040588B2 - Transmitter for spatial multiplexing transmission - Google Patents

Transmitter for spatial multiplexing transmission Download PDF

Info

Publication number
JP4040588B2
JP4040588B2 JP2004059692A JP2004059692A JP4040588B2 JP 4040588 B2 JP4040588 B2 JP 4040588B2 JP 2004059692 A JP2004059692 A JP 2004059692A JP 2004059692 A JP2004059692 A JP 2004059692A JP 4040588 B2 JP4040588 B2 JP 4040588B2
Authority
JP
Japan
Prior art keywords
transfer coefficient
coefficient matrix
transmission
signal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004059692A
Other languages
Japanese (ja)
Other versions
JP2005252614A5 (en
JP2005252614A (en
Inventor
理一 工藤
泰司 鷹取
健太郎 西森
伸彦 立川
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004059692A priority Critical patent/JP4040588B2/en
Publication of JP2005252614A publication Critical patent/JP2005252614A/en
Publication of JP2005252614A5 publication Critical patent/JP2005252614A5/ja
Application granted granted Critical
Publication of JP4040588B2 publication Critical patent/JP4040588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、N個のアンテナ素子を用い、直交波周波数分割多重を用いたF個の周波数多重と、L個の空間多重による送信を行う空間多重伝送用送信装置に関する。   The present invention relates to a transmitter for spatial multiplexing transmission that uses N antenna elements and performs transmission by F frequency multiplexing using orthogonal frequency division multiplexing and L spatial multiplexing.

直交波周波数分割多重送信装置は、直交性を利用し周波数軸上でのオーバーラップを許容することで中心周波数が異なる複数の搬送波を利用でき、高い周波数効率を実現する送信装置である。また、空間多重伝送用送信装置は,複数のアンテナ素子から異なる信号を送信することで,周波数帯域を増大することなしに高速伝送を実現する送信装置である。
図6に、従来のマルチビームを形成することで伝送品質を改善することのできる空間多重伝送用送信装置の内部構成の一例をブロック図で示す(例えば、非特許文献1参照)。
An orthogonal wave frequency division multiplex transmission device is a transmission device that can use a plurality of carriers having different center frequencies by using orthogonality and allowing overlap on the frequency axis, thereby realizing high frequency efficiency. The spatial multiplexing transmission apparatus is a transmission apparatus that realizes high-speed transmission without increasing the frequency band by transmitting different signals from a plurality of antenna elements.
FIG. 6 is a block diagram showing an example of the internal configuration of a spatial multiplexing transmission apparatus that can improve transmission quality by forming a conventional multi-beam (see, for example, Non-Patent Document 1).

図6に示される従来の空間多重伝送用送信装置は、シリアルーパラレル変換装置100と、送信装置111〜11Lと、マルチビーム形成装置121〜12Lと、信号合成装置131〜13Nと、切り替え装置141〜14Nと、送信用アンテナ素子151〜15Nと、重み決定装置160から構成される.
送信信号はシリアルーパラレル変換器100によって複数の信号系列T〜Tを生成し、送信装置111〜11LによってL系列の送信信号系列が形成される。そして、マルチビーム形成装置121〜12Lによって各々重み決定装置160により決定ざれた重みを用い、異なった指向性を形成するため各アンテナ素子への出力信号が形成される。更に、信号合成装置131〜13Nにより同一のアンテナ素子に出力された信号を足し合わせ、切り替え装置141〜14Nから送信用アンテナ素子151〜15Nに出力し、同一の時刻、同一の周波数で送信される。
The conventional spatial multiplexing transmission apparatus shown in FIG. 6 includes a serial-parallel conversion apparatus 100, transmission apparatuses 111 to 11L, multi-beam forming apparatuses 121 to 12L, signal synthesis apparatuses 131 to 13N, and a switching apparatus 141. To 14N, transmitting antenna elements 151 to 15N, and a weight determining device 160.
The transmission signal generates a plurality of signal sequences T 1 to T L by the serial-parallel converter 100, and L transmission signal sequences are formed by the transmission devices 111 to 11 L. Then, the multi-beam forming devices 121 to 12L use the weights determined by the weight determining device 160, and output signals to the respective antenna elements are formed to form different directivities. Furthermore, the signals output to the same antenna element by the signal synthesizers 131 to 13N are added together, output from the switching devices 141 to 14N to the transmitting antenna elements 151 to 15N, and transmitted at the same time and at the same frequency. .

ここで重み決定装置160では、マルチビーム形成装置121〜12Lで送信信号に設定する重みを以下のようにして決定する。
まず伝達係数行列Hの特異値分解(H=UDV)を行い,ユニタリ行列V及び特異値を要素とする対角行列を求める。そして、送信アンテナ数をN、受信アンテナ数をM、XをMとNのうち小さい方の数字とし、u〜uxをM×1の列ベクトルとし、v〜vxをN×1列のベクトルとし、上添え字Hは共役転置を表すものとすると,伝達係数行列は以下の演算式(1)で表される。
Here, the weight determination device 160 determines the weight set for the transmission signal by the multi-beam forming devices 121 to 12L as follows.
First, singular value decomposition (H = UDV H ) of the transfer coefficient matrix H is performed to obtain a unitary matrix V and a diagonal matrix having singular values as elements. The number of transmitting antennas is N, the number of receiving antennas is M, X is the smaller number of M and N, u 1 to u x are M × 1 column vectors, and v 1 to v x are N × 1. Assuming that the vector is a column and the superscript H represents a conjugate transpose, the transfer coefficient matrix is represented by the following arithmetic expression (1).

Figure 0004040588
Figure 0004040588

次に、特異値の大きい方からL個を選択し、各特異値に対応したユニタリ行列Vの列ベクトルv〜vを重みとして選択し,各列ベクトルを用いて以下の演算式(2)によって各アンテナ素子151〜15Nから送信する送信信号s〜sを形成する。 Next, L is selected from the larger singular values, the column vectors v 1 to v L of the unitary matrix V corresponding to each singular value are selected as weights, and the following formula (2 ) To form transmission signals s 1 to s N transmitted from the antenna elements 151 to 15N.

Figure 0004040588
Figure 0004040588

ユニタリ行列Vは、伝達係数行列Hとその複素共役転置行列Hの積 の固有ベクトルとなっている。
受信局では、例えば送信局で送信されたビームの数L以上の受信アンテナを用いて復号を行う。以下に受信アンテナ数をN、受信アンテナ数とビーム数をL(N>L)とした場合の復号方法の例を示す。
受信局アンテナ素子において受信される信号をR〜R、送信アンテナjで送信され、受信アンテナiで受信したときの伝達係数をHijとし,各受信信号における雑音をn〜nとすると、空間多重伝送用送信装置によって信号を送信すると受信信号R〜Rは以下の演算式(3)で表すことができる。
The unitary matrix V is an eigenvector of the product H H H of the transfer coefficient matrix H and its complex conjugate transpose matrix H H.
In the receiving station, for example, decoding is performed using receiving antennas having a number L or more of beams transmitted from the transmitting station. An example of a decoding method when the number of reception antennas is N and the number of reception antennas and the number of beams is L (N> L) is shown below.
Signals received by the receiving station antenna elements are R 1 to R L , transmission coefficients when transmitted by the transmitting antenna j and received by the receiving antenna i are H ij, and noise in each received signal is n 1 to n L. Then, when signals are transmitted by the spatial multiplexing transmission apparatus, the received signals R 1 to R L can be expressed by the following arithmetic expression (3).

Figure 0004040588
Figure 0004040588

従って、受信装置では以下の演算式(4)を実行することによって送信信号を復号することが可能となる.   Therefore, the receiving apparatus can decode the transmission signal by executing the following arithmetic expression (4).

Figure 0004040588
ここでT'〜T'は受信装置で推定した送信信号である。
Figure 0004040588
Here, T ′ 1 to T ′ L are transmission signals estimated by the receiving apparatus.

このようにすることによって,周波数帯域を増大せずにアンテナ数倍の伝送速度を実現することが可能であり、指向性利得が得られ、更に、N素子からLビームを形成する(N≧L)ことによって良好なビームを選択できるためダイバーシチ効果も得ることができる。
送信ダイバーシチは、例えば、Space-Time-Transmission-Diversity(立川著「W-CDMA移動通信方式」丸善),あるいはSpace-Time-Block-Code (Naguib, et.al “Space-Time-Block-Codes: code design criteria ),Delay Diversityなどを用いることができる。
By doing so, it is possible to realize a transmission speed several times the number of antennas without increasing the frequency band, to obtain a directivity gain, and to form an L beam from N elements (N ≧ L ), A good beam can be selected, and a diversity effect can also be obtained.
Transmission diversity is, for example, Space-Time-Transmission-Diversity (Tachikawa's “W-CDMA mobile communication system” Maruzen) or Space-Time-Block-Code (Naguib, et.al “Space-Time-Block-Codes: code design criteria), Delay Diversity, etc. can be used.

一方、図7に従来のマルチビームを形成することで伝送品質を改善する直交波周波数分割多重を用いた空間多重伝送用送信装置の一例をブロック図で示す。
ここに示される空間多重伝送用送信装置は、シリアルーパラレル変換装置200と、送信装置2111〜21FLと、マルチビーム形成装置2111〜21FLと、信号合成装置2311〜23NFと、逆フーリエ変換装置241〜24Nと、切り替え装置251〜25Nと、送信用アンテナ素子261〜26Nと、重み決定装置270から構成される。
On the other hand, FIG. 7 is a block diagram showing an example of a transmission apparatus for spatial multiplexing transmission using orthogonal frequency division multiplexing that improves transmission quality by forming a conventional multi-beam.
The spatial multiplexing transmission apparatus shown here includes a serial-parallel conversion apparatus 200, transmission apparatuses 2111 to 21FL, multi-beam forming apparatuses 2111 to 21FL, signal synthesis apparatuses 2311 to 23NF, and inverse Fourier transform apparatuses 241 to 241. 24N, switching devices 251 to 25N, transmitting antenna elements 261 to 26N, and a weight determining device 270.

送信信号はシリアルーパラレル変換器200によってM×Lの信号系列に分けられ、更に、送信装置2111〜21FLによって符号化され、マルチビーム形成装置2211〜22FLに出力される。
マルチビーム形成装置2211〜22FLでは、それぞれ重み決定装置270により決定された重みを用い、異なった指向性を形成するための各アンテナ素子261〜26Nへの出力信号が形成され,信号合成装置2311〜23NFにより同一のアンテナ素子に出力された信号を足し合わせ、切り替え装置251〜25Nから送信用アンテナ素子261〜26Nに出力され送信される。
ここで重み決定装置は、F個の周波数帯毎にL個のマルチビームにかける重みを上記した演算式(1)のようにユニタリ行列Vの列ベクトルvを求め、マルチビーム形成装置2211〜22FLにおいて送信信号に重みを設定する。
(Miyashita, K.;Nishimura, T.;Ohgane, T.;Ogawa,Y.;Takatori, Y;Keizo Cho;"High data-rate transmission with eigenbeam-space division multiplexing (E-SDM) in a MIMO channel,"Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall.2002 IEEE 56th, Volume:3,24-28 Sept. 2002 Pages:1302_1306 vol.3).
The transmission signal is divided into M × L signal series by the serial-parallel converter 200, further encoded by the transmission devices 2111 to 21FL, and output to the multi-beam forming devices 2211 to 22FL.
In the multi-beam forming apparatuses 2211 to 22FL, output signals to the antenna elements 261 to 26N for forming different directivities are formed using the weights determined by the weight determining apparatus 270, respectively, and the signal combining apparatuses 2311 to 2311 are formed. The signals output to the same antenna element by 23NF are added together, and output from the switching devices 251 to 25N to the transmitting antenna elements 261 to 26N and transmitted.
Here, the weight determination apparatus obtains the column vector v of the unitary matrix V as shown in the arithmetic expression (1) described above for the weight applied to the L multi-beams for each of F frequency bands, and multi-beam forming apparatuses 2211 to 22FL. A weight is set for the transmission signal at.
(Miyashita, K.; Nishimura, T.; Ohgane, T.; Ogawa, Y.; Takatori, Y; Keizo Cho; "High data-rate transmission with eigenbeam-space division multiplexing (E-SDM) in a MIMO channel, "Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th, Volume: 3,24-28 Sept. 2002 Pages: 1302_1306 vol.3).

ところで、図6に示す従来例によれば、推定した伝達係数行列のみによって形成されるため、伝達関数推定に誤差が生じると伝送品質の大きな劣化を招くという問題があり、伝達関数推定誤差の大きい環境には適用できない。また受信アンテナ数が送信アンテナ数より少ない場合、形成できるマルチビームの数は受信アンテナ数に制限されてしまうため送信ダイバーシチを適用できない。
一方、図7に示す従来例によれば、図6に示す従来例と比較して、マルチビーム形成装置211〜22FLは周波数分割多重数倍必要となり、また、重み決定装置270内での演算量も多くなり、制御が複雑となる問題があった。
By the way, according to the conventional example shown in FIG. 6, since it is formed only by the estimated transfer coefficient matrix, if there is an error in the transfer function estimation, there is a problem that the transmission quality is greatly deteriorated, and the transfer function estimation error is large. Not applicable to the environment. When the number of reception antennas is smaller than the number of transmission antennas, the number of multi-beams that can be formed is limited by the number of reception antennas, and therefore transmission diversity cannot be applied.
On the other hand, according to the conventional example shown in FIG. 7, compared to the conventional example shown in FIG. 6, the multi-beam forming devices 211 to 22FL are required to be multiplied by the frequency division multiplexing number, and the amount of calculation in the weight determining device 270 is increased. As a result, there was a problem that the control was complicated.

本発明は上記事情に鑑みてなされたものであり、全周波数帯の伝搬環境から決定した重みを用いて送信を行うことにより、伝搬環境推定誤差による伝送品質の劣化を低減しながら送信アンテナ数のマルチビームを形成することを可能とし、マルチビーム形成のための制御を簡易化することを可能とした空間多重伝送用送信装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by performing transmission using weights determined from the propagation environment of all frequency bands, the number of transmission antennas can be reduced while reducing deterioration in transmission quality due to propagation environment estimation errors. An object of the present invention is to provide a spatial multiplexing transmission apparatus capable of forming a multi-beam and simplifying the control for forming the multi-beam.

上記した課題を解決するために本発明は、N個のアンテナ素子を用い、直交波周波数分割多重を用いたF個の周波数多重と、L個の空間多重による送信を行う空間多重伝送用送信装置であって、前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え装置と、前記切り替え装置に接続され、対応するアンテナ素子において受信された受信信号にフーリエ変換を行い、F個の受信信号に変換するN個のフーリエ変換手段及び、前記N個のフーリエ変換装置の対応する周波数帯の受信信号を入力信号とし、その周波数帯での伝達係数行列を推定する伝達係数行列推定手段及び、前記伝達係数行列推定手段において推定されたF個の伝達係数行列より前記マルチビーム形成装置で各入力信号に乗算する重みを求める伝達係数行列演算手段を有する重み決定装置と、前記入力された信号に直並列変換を行い、周波数分割多重数F×空間多重数Lに振り分けるシリアルーパラレル変換装置と、前記シリアルーパラレル変換装置の出力信号を入力信号とし、符号化を行い送信信号系列として逆フーリエ変換装置に出力するF×L個の送信装置と、前記送信装置から入力されたF個の信号に逆フーリエ変換を行い、L個のマルチビーム形成装置にそれぞれ出力を行うL個の逆フーリエ変換装置と、前記逆フーリエ変換装置の出力を入力信号とし、N個の信号に分割し、前記重み決定装置により決定された重み付けを行った後、N個の信号合成装置の対応するポートに出力を行うマルチビーム形成装置と、前記L個のマルチビーム形成装置からL個のポートに入力された入力信号を重ね合わせ、前記切り替え装置の他方のポートに出力を行うN個の信号合成装置と、を備えたことを特徴とする空間多重伝送用送信装置である。 In order to solve the above-described problems, the present invention provides a spatial multiplexing transmission apparatus that uses N antenna elements, performs F frequency multiplexing using orthogonal frequency division multiplexing, and L spatial multiplexing transmission. A switching device that is connected to each antenna element and switches a reception signal and a transmission signal; and a Fourier transform is performed on the reception signal that is connected to the switching device and is received by the corresponding antenna element, and F receptions are made. N Fourier transform means for converting into signals, and a transfer coefficient matrix estimation means for estimating a transfer coefficient matrix in the frequency band using the received signals in the corresponding frequency bands of the N Fourier transform devices as input signals; A transfer coefficient matrix for obtaining a weight for multiplying each input signal by the multi-beam forming apparatus from the F transfer coefficient matrices estimated by the transfer coefficient matrix estimation means. A weight determining apparatus with a calculation unit, performs serial-parallel conversion on the input signal, and a serial-parallel converter for distributing the frequency division multiplexing F × spatial multiplexing number L, and the output signal of the serial-parallel converter F × L transmitters that are encoded as input signals and output to the inverse Fourier transform device as a transmission signal sequence, and F signals input from the transmitter are subjected to inverse Fourier transform, and L multiple After the L inverse Fourier transform devices that output to the beam forming device and the output of the inverse Fourier transform device as input signals, the signals are divided into N signals, and weighting determined by the weight determining device is performed. , A multi-beamformer for outputting to corresponding ports of N signal synthesizers, and an input signal input to L ports from the L multibeamformers. Combined, a spatial multiplexing transmission for transmission apparatus characterized by comprising a, and N signal mixer for outputting the other port of the switching device.

また、本発明において、前記重み決定装置の伝達係数行列演算手段は、前記伝達係数行列推定手段において推定されたF個の伝達係数行列の複素共役転置行列と伝達係数行列の積を求め、この行列の固有ベクトルを算出し、前記マルチビーム形成装置で各入力信号に乗算する重みとして出力することを特徴とする。 In the present invention, the transfer coefficient matrix calculating means of the weight determining device obtains the product of the complex conjugate transpose matrix and the transfer coefficient matrix of the F transfer coefficient matrices estimated by the transfer coefficient matrix estimating means. The eigenvector is calculated and output as a weight for multiplying each input signal by the multi-beam forming apparatus.

また、本発明において、前記伝達係数行列演算手段は、前記F個の伝達係数行列から、それぞれ前記伝達係数行列の複素共役転置行列と伝達係数行列の積を求め、和をとった行列の固有ベクトルを算出し、前記マルチビーム形成装置において各信号に設定する重みとして出力することを特徴とする。 In the present invention, the transfer coefficient matrix calculating means obtains a product of the complex conjugate transpose matrix and the transfer coefficient matrix of the transfer coefficient matrix from the F transfer coefficient matrices, and calculates an eigenvector of the summed matrix. It calculates and outputs as a weight set to each signal in the said multi-beam forming apparatus.

また、本発明において、前記伝達係数行列演算手段は、前記F個の伝達係数行列から、伝達係数行列とその複素共役転置行列の積を求め、各行列に重み付けを行い、和をとった行列の固有ベクトルを算出し、前記マルチビーム形成装置において各信号に設定する重みとして出力することを特徴とする。   Further, in the present invention, the transfer coefficient matrix calculation means obtains a product of the transfer coefficient matrix and its complex conjugate transpose matrix from the F transfer coefficient matrices, weights each matrix, An eigenvector is calculated and output as a weight set for each signal in the multi-beam forming apparatus.

また、本発明において、前記伝達係数行列演算手段は、前記伝達係数行列の複素共役転置行列と伝達係数行列の積に乗算する重みとして、伝達係数行列とその複素共役転置行列の積の固有値の和を用い、前記マルチビーム形成装置において各信号に設定する重みとして出力することを特徴とする。 Further, in the present invention, the transfer coefficient matrix calculation means calculates a sum of eigenvalues of the product of the transfer coefficient matrix and the complex conjugate transpose matrix as a weight to multiply the product of the complex conjugate transpose matrix and the transfer coefficient matrix of the transfer coefficient matrix. And output as a weight set to each signal in the multi-beam forming apparatus.

また、本発明において、前記伝達係数行列演算手段は、前記伝達係数行列推定手段において推定されたF個の伝達係数行列から任意のI個の伝達係数行列を選択し、送信時の重みを算出し、前記マルチビーム形成装置において各信号に設定する重みとして出力することを特徴とする。   In the present invention, the transfer coefficient matrix calculation means selects an arbitrary I transfer coefficient matrix from the F transfer coefficient matrices estimated by the transfer coefficient matrix estimation means, and calculates a transmission weight. The multi-beam forming apparatus outputs a weight set for each signal.

本発明によれば、直交波周波数分割多重を行う場合において、広い周波数帯の伝搬環境から重みを決定してマルチビームによる送信を行うことで、伝搬環境推定誤差による伝送品質の劣化を低減しながら送信アンテナ数のマルチビームを形成することを可能とし、また、マルチビーム形成のための制御を簡易化することができる。
更に、狭い周波数帯の伝搬環境をそれぞれ推定し、それらの伝達係数行列から重みを決定することで、送信アンテナ数と同数までのマルチビームを形成することができ、送信ダイバーシチを適用することができる。
According to the present invention, when orthogonal wave frequency division multiplexing is performed, weights are determined from a propagation environment in a wide frequency band and transmission is performed using multi-beams, thereby reducing transmission quality degradation due to propagation environment estimation errors. It is possible to form a multi-beam with the number of transmitting antennas, and to simplify the control for forming the multi-beam.
Furthermore, by estimating each propagation environment in a narrow frequency band and determining weights from those transfer coefficient matrices, it is possible to form multi-beams up to the same number as the number of transmission antennas and to apply transmission diversity. .

以下、図1〜図5を参照しながら本発明実施形態について詳細に説明する。図1は本発明の一実施形態を示すブロック図であり、伝搬環境誤差の大きい環境において空間多重伝送の伝送品質の劣化を防ぐ空間多重伝送用送信装置の構成が示されている。
図1中、300は送信信号発生装置、3111〜31LFは送信装置、321〜32Lは逆フーリエ変換装置、331〜33Lはマルチビーム形成装置、341〜34Nは信号合成装置、351〜35Nは切り替え装置、361〜36Nはアンテナ素子、370は重み決定装置である。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. FIG. 1 is a block diagram showing an embodiment of the present invention, and shows the configuration of a spatial multiplexing transmission apparatus for preventing deterioration of transmission quality of spatial multiplexing transmission in an environment where a propagation environment error is large.
In FIG. 1, 300 is a transmission signal generator, 3111 to 31LF are transmitters, 321 to 32L are inverse Fourier transform devices, 331 to 33L are multi-beam forming devices, 341 to 34N are signal synthesizers, and 351 to 35N are switching devices. , 361 to 36N are antenna elements, and 370 is a weight determination device.

上記構成において、シリアルーパラレル変換装置300により、シリアルーパラレル変換され周波数分割多重数F×空間多重数Lに振り分けられた送信信号は、それぞれ送信装置3111〜31LFにより符号化され、送信信号系列としてF個ずつ逆フーリエ変換装置321〜32Lに出力される。
逆フーリエ変換装置321〜32Lに入力された信号は逆フーリエ変換され、それぞれマルチビーム形成装置331〜33Lに出力される。マルチビーム形成装置に入力された信号は重み決定装置370により決定される重みV(k=1〜L)を、アナログもしくはデジタルで乗算し、信号合成装置341〜34Nにおいて同一のアンテナ素子に出力する信号が加算され、切り替え装置351〜35Nを介してアンテナ素子361〜36Nから送信される。
重み決定装置370は、伝達係数行列推定手段371と、伝達係数行列演算手段372から構成される。伝達係数行列推定手段371は、切り替え装置351〜35Nの受信時の出力を入力信号とし、広帯域な周波数帯での伝達係数行列を推定し、伝達係数行列演算手段372において所定の伝送品質を満たす重みを決定する。
In the above configuration, the transmission signals serial-parallel converted by the serial-parallel conversion device 300 and distributed to the frequency division multiplexing number F × the spatial multiplexing number L are encoded by the transmission devices 3111 to 31LF, respectively, and transmitted as a transmission signal sequence. F pieces are output to the inverse Fourier transform devices 321 to 32L.
The signals input to the inverse Fourier transform devices 321 to 32L are subjected to inverse Fourier transform and output to the multi-beam forming devices 331 to 33L, respectively. The signals input to the multi-beam forming device are multiplied by analog or digital weights V k (k = 1 to L) determined by the weight determining device 370 and output to the same antenna element in the signal combining devices 341 to 34N. Are transmitted from the antenna elements 361 to 36N via the switching devices 351 to 35N.
The weight determination device 370 includes a transmission coefficient matrix estimation unit 371 and a transmission coefficient matrix calculation unit 372. The transmission coefficient matrix estimation means 371 estimates the transmission coefficient matrix in a wide frequency band by using the output at the time of reception of the switching devices 351 to 35N as an input signal, and the transmission coefficient matrix calculation means 372 weights satisfying a predetermined transmission quality To decide.

ここで、N個のアンテナ素子を持つ送信装置と、M個のアンテナ素子数を持つ受信装置間において直交波周波数分割多重と空間多重を用いた通信を考える。
まず受信装置より、既知の信号Tを広帯域な搬送波により送信すると、送信装置では受信される受信信号Rからその周波数帯での伝達係数行列Hは以下の演算式(5)(6)によって算出される。この上りの伝達関数行列hより下りの伝達係数行列Hは以下の演算式(7)によって算出される。
Here, consider communication using orthogonal wave frequency division multiplexing and spatial multiplexing between a transmission apparatus having N antenna elements and a reception apparatus having M antenna elements.
First, when a known signal T is transmitted from a receiving device using a broadband carrier wave, a transmission coefficient matrix H in the frequency band is calculated from the received signal R received by the transmitting device by the following arithmetic expressions (5) and (6). The The downstream transfer coefficient matrix H is calculated by the following equation (7) from the upstream transfer function matrix h.

Figure 0004040588
Figure 0004040588

Figure 0004040588
Figure 0004040588

Figure 0004040588
Figure 0004040588

伝達係数行列Hijは、送信装置のアンテナ素子#jから受信装置の#iのアンテナ素子間における伝達係数の推定結果を表している。
例えば、伝達係数行列演算手段372は、各周波数帯における伝達係数行列から、その伝搬環境の到来波方向、到来波数、レベル、遅延の推定をMUSIC法(Multiple Signal Classification)やESPRIT法(Estimation of Signal Parameters via Rotational Invariance Techniques)(Paulaj et al, 'ESPRIT−a subspace rotation approach to signal parameter estimation', IEEE Proceeding,74(7), 1044-1045, July 1986)を用いて推定し、あらかじめ準備された重みの中から、その環境において所定の伝送品質の基準値を最大とするような重みを選択し、マルチビーム形成装置331において乗算される重みとして出力する。
上記した伝達係数行列演算手段372において、例えば、伝達係数行列とその複素共役転置行列の積H を求め、得られた行列の固有ベクトルを重み値として適用する。このように重みを決定することで、周波数選択性フェージングによる伝送品質の劣化を低減させることができる。
Transfer coefficient matrix H ij represents the estimation result of the transmission coefficient between the antenna elements # i of the receiving apparatus from the antenna elements # j of the transmission device.
For example, the transfer coefficient matrix calculation means 372 estimates the direction of arrival wave, the number of incoming waves, the level, and the delay of the propagation environment from the transfer coefficient matrix in each frequency band by MUSIC (Multiple Signal Classification) or ESPRIT (Estimation of Signal). Parameters via Rotational Invariance Techniques) (Paulaj et al, 'ESPRIT-a subspace rotation approach to signal parameter estimation', IEEE Proceeding, 74 (7), 1044-1045, July 1986). The weight that maximizes the reference value of the predetermined transmission quality in the environment is selected from the above, and is output as the weight multiplied by the multi-beam forming apparatus 331.
In the above-described transfer coefficient matrix calculation means 372, for example, a product H k H k H of the transfer coefficient matrix and its complex conjugate transpose matrix is obtained, and the eigenvector of the obtained matrix is applied as a weight value. By determining the weights in this way, it is possible to reduce transmission quality degradation due to frequency selective fading.

重み決定装置370の他の実施形態を図2に示す。ここに示す重み決定装置370は、フーリエ変換装置401〜40Nと、伝達係数行列推定手段411〜41Fと、伝達係数行列演算手段420で構成される。
上記構成において、フーリエ変換装置401〜40Nは、切り替え装置351〜35Nの受信時の出力を入力信号としてフーリエ変換を行い、周波数帯毎に分離し、伝達係数推定手段411〜41Fに出力する。また、伝達係数行列推定手段411〜41Nは、各周波数帯において伝達係数行列を算出し、伝達係数行列演算装置420に出力する。伝達係数行列演算手段420は、推定された伝達係数行列から送信時の重みを決定する。
Another embodiment of the weight determination device 370 is shown in FIG. The weight determination device 370 shown here includes Fourier transform devices 401 to 40N, transfer coefficient matrix estimation means 411 to 41F, and transfer coefficient matrix calculation means 420.
In the above configuration, the Fourier transform devices 401 to 40N perform Fourier transform using the output upon reception of the switching devices 351 to 35N as an input signal, separate each frequency band, and output to the transfer coefficient estimation means 411 to 41F. Further, the transfer coefficient matrix estimation means 411 to 41N calculate a transfer coefficient matrix in each frequency band, and output it to the transfer coefficient matrix calculation device 420. The transmission coefficient matrix calculation means 420 determines the weight at the time of transmission from the estimated transmission coefficient matrix.

伝達係数行列演算手段420は、各周波数帯の伝達係数行列を用いて、送信時に全ての周波数帯で活用する重みを算出することで伝搬環境推定誤差による伝送品質の劣化を低減する。例えば、各周波数帯における伝達係数行列から、その伝搬環境の到来彼方向、到来波数、レベル、遅延の推定を上記したMUSIC法やESPRIT法を用いて推定し、あらかじめ準備された重みの中から、その環境において所定の伝送品質基準値を最大とする重みを選択し、マルチビーム形成装置331〜33Lにおいて乗算される重みとして出力する。
上記した伝達係数行列演算手段420において、ある周波数帯#k(1≦k≦F)での伝達係数行列をHとすると、例えば、伝達係数行列Hとその複素共役転置行列H の積の和Σ から、固有ベクトルを重みとして適用する。このように重みを決定することで、周波数選択性フェージングによる伝送品質の劣化を低減させることができ、また受信アンテナ数に関係なく送信アンテナ数Nのマルチビームを形成することができることから送信ダイバーシチを適用することができる。
The transmission coefficient matrix calculation means 420 uses the transmission coefficient matrix of each frequency band to calculate weights used in all frequency bands at the time of transmission, thereby reducing deterioration in transmission quality due to propagation environment estimation errors. For example, from the transfer coefficient matrix in each frequency band, the estimation of the arrival direction, the number of incoming waves, the level, and the delay of the propagation environment is estimated using the above-described MUSIC method and ESPRIT method, and from the weights prepared in advance, In the environment, a weight that maximizes a predetermined transmission quality reference value is selected and output as a weight that is multiplied in the multi-beam forming apparatuses 331 to 33L.
In the above-described transfer coefficient matrix calculation means 420, assuming that the transfer coefficient matrix in a certain frequency band #k (1 ≦ k ≦ F) is H k , for example, the transfer coefficient matrix H k and its complex conjugate transpose matrix H k H From the product sum Σ H k H H k , an eigenvector is applied as a weight. By determining the weights in this way, it is possible to reduce deterioration in transmission quality due to frequency selective fading, and it is possible to form multi-beams with the number of transmission antennas N regardless of the number of reception antennas, thereby reducing transmission diversity. Can be applied.

また、上記した伝達係数行列演算手段420において、各周波数帯の伝達係数行列Hから計算された に重みW乗算したものの和Σw を求め、その固有ベクトルを重み値として適用する。
重みwとしては例えば、上記した伝達係数行列演算手段420において、伝達係数行列Hから計算された の固有値λk1〜λkXを求め、大きいものから順に空間多重数L個の和を以下の演算式(8)により計算する。
Further, the transfer coefficient matrix calculating unit 420 as described above, calculates the sum? W k H k H H k but multiplied weight W k to H k H H k calculated from the transfer coefficient matrix H of each frequency band, the eigenvector Apply as a weight value.
The weights w k for example, in the transmission coefficient matrix calculating unit 420 described above, eigenvalues lambda k1 to [lambda] kX of calculated from the transfer coefficient matrix H k H k H H k, spatial multiplexing number L pieces in descending order Is calculated by the following equation (8).

Figure 0004040588
上記Λを重みWとしてΣΛ を算出しその固有ベクトルを重み値として適用する。
Figure 0004040588
ΣΛ i h i H h i is calculated using Λ k as the weight W k and its eigenvector is applied as a weight value.

また、上記した伝達係数行列演算手段420において、伝達係数行列推定手段411〜41Fで推定された伝達係数行列hのうち任意のI個(I≦F)の伝達係数行列を用いて重みを決定する。
更に、全周波数帯に同じ重みを適用するという観点で、従来例で示した図7のマルチビーム形成装置において、空間多重における#kのマルチビームにかかわるマルチビーム形成装置22k1〜22kFで用いる重みを同一にすることでも同じ効果を得ることができる。また、このとき周波数帯でマルチビーム形成装置をいくつかの組に分け、それぞれの組で同じ重みを適用するような制御方法を採用することによっても伝搬環境行列推定誤差による伝送品質の劣化を低減することができる。
Further, in the above-described transfer coefficient matrix calculation means 420, the weight is determined using any I (I ≦ F) transfer coefficient matrices among the transfer coefficient matrices h k estimated by the transfer coefficient matrix estimation means 411 to 41F. To do.
Further, from the viewpoint of applying the same weight to all frequency bands, in the multi-beam forming apparatus of FIG. 7 shown in the conventional example, the weights used in the multi-beam forming apparatuses 22k1 to 22kF related to the #k multi-beam in spatial multiplexing are used. The same effect can be obtained by making them the same. At this time, the degradation of transmission quality due to propagation environment matrix estimation error is also reduced by dividing the multi-beam forming devices into several groups in the frequency band and adopting a control method that applies the same weight to each group. can do.

本発明の実施による効果を計算機シミュレーションにより実行した結果を以下に説明する。ここでは、送信アンテナ素子数を8、受信アンテナ素子数を2とし、上りと下りで異なる周波数を用い直交波周波数分割多重及び空間分割多重による通信を考える。
伝搬路モデルとしては到来波を100波とし、図3に示すように散乱物の集まりである5つのクラスタが送信機及び受信機のまわりに存在することとし、それぞれ角度広がりを25°とした。伝搬環境は仲上−ライスフェージングとし、Kファクタを6dB、遅延スプレッドを100ns、遅延波の電力分布を指数で与えた。そして、送信電力を30dBとし、クラスタの中心方向及び各到来波の到来方向に位相をランダムに与えて1000回試行し、誤り率の累積確立をとった。このときシミュレーションに用いた諸元表を図5に示す。
The results of executing the effects of the present invention by computer simulation will be described below. Here, it is assumed that the number of transmitting antenna elements is 8, the number of receiving antenna elements is 2, and communication using orthogonal frequency division multiplexing and space division multiplexing is performed using different frequencies for uplink and downlink.
As a propagation path model, the incoming wave is 100 waves, and as shown in FIG. 3, five clusters, which are a collection of scattered objects, exist around the transmitter and the receiver, and the angular spread is 25 °. The propagation environment was Nakagami-Rice fading, the K factor was 6 dB, the delay spread was 100 ns, and the power distribution of the delayed wave was given as an index. Then, the transmission power was set to 30 dB, the phase was randomly given in the center direction of the cluster and the arrival direction of each incoming wave, and the trial was performed 1000 times to establish the cumulative error rate. The specification table used for the simulation at this time is shown in FIG.

送信装置は2つのマルチビームを形成し、送信を行うものとし、従来例によるものは、各周波数帯において上り伝搬環各周波数で得られた伝達係数行列を用い、特異値分解によるマルチビームを形成するものとし、本実施形態によるものは、#kの周波数帯で推定された伝達係数行列hとその複素共役転置行列の積 の和ΣH の固有ベクトルの中から固有値の多きいベクトル2つを送信時の重みとして全周波数帯で活用するものとした。
固有値の大きい方(Signal1)と小さい方(Signal2)のマルチビームにそれぞれ変調方式16QAM(Quadrature Amplitude Modulation)とQPSK(Quadrature Phase Shift Keying)を適用した際の誤り率の確立分布を図4に示す。図4において、縦軸はCP(Cumulative Provability)、横軸はBER(Bit Error Rate: 誤り率)を表す。それぞれ誤り率10−4値で12%、8%の改善が見られる。
The transmitting device forms two multi-beams and performs transmission. In the conventional example, a multi-beam is formed by singular value decomposition using the transfer coefficient matrix obtained at each frequency of the uplink propagation ring in each frequency band. According to this embodiment, the transfer coefficient matrix h k estimated in the #k frequency band and the product H k H H k of the complex conjugate transpose matrix ΣH k H H k are used as eigenvectors. Two vectors with large eigenvalues are used in all frequency bands as weights during transmission.
FIG. 4 shows the probability distribution of the error rate when modulation schemes 16QAM (Quadrature Amplitude Modulation) and QPSK (Quadrature Phase Shift Keying) are applied to the multi-beams having the larger eigenvalues (Signal 1) and smaller (Signal 2), respectively. In FIG. 4, the vertical axis represents CP (Cumulative Provability), and the horizontal axis represents BER (Bit Error Rate). There is an improvement of 12% and 8% in the error rate 10 −4 value, respectively.

以上説明のように本発明によれば、重み決定装置370が、切り替え装置351〜35nから出力される信号を入力信号とし、当該入力信号から広帯域の周波数帯の伝達係数行列を推定し、当該推定された伝達係数行列を用いてマルチビーム形成装置の重みを決定するものであり、受信装置において所定の伝送品質の基準値を最大とする重みを決定することを特徴とするものである。このことにより、直交波周波数分割多重を行う場合、広い周波数帯の伝搬環境から重みを決定してマルチビームによる送信を行い、伝搬環境推定誤差による伝送品質の劣化を低減し、演算量を減らすことができる。
また、狭い周波数帯の伝搬環境をそれぞれ推定し、それらの伝達係数行列から重みを決定することで、送信アンテナ数と同数までのマルチビームを形成することができ、送信ダイバーシチを適用することができる。
As described above, according to the present invention, the weight determination device 370 uses the signals output from the switching devices 351 to 35n as input signals, estimates a wideband frequency band transfer coefficient matrix from the input signals, and performs the estimation. The weight of the multi-beamforming apparatus is determined using the transmitted transfer coefficient matrix, and the weight that maximizes the reference value of the predetermined transmission quality is determined in the receiving apparatus. As a result, when orthogonal frequency division multiplexing is performed, weights are determined from the propagation environment in a wide frequency band and transmission is performed using multi-beams, thereby reducing transmission quality degradation due to propagation environment estimation errors and reducing the amount of computation. Can do.
In addition, by estimating the propagation environment in a narrow frequency band and determining the weight from the transfer coefficient matrix, it is possible to form up to the same number of multi-beams as the number of transmission antennas and to apply transmission diversity. .

本発明の実施形態における空間多重伝送用送信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the transmitter for spatial multiplexing transmission in embodiment of this invention. 図1における重み決定装置の他の実施形態を示すブロック図である。It is a block diagram which shows other embodiment of the weight determination apparatus in FIG. 計算機シミュレーションでの伝搬環境モデルを示す図である。It is a figure which shows the propagation environment model in computer simulation. 誤り率の確立分布について、本発明実施形態と従来例とを対比して示した図である。It is the figure which contrasted the embodiment of this invention, and the prior art example about the probability distribution of an error rate. 計算機シミュレーションに用いた諸元表を示す図である。It is a figure which shows the specification table used for computer simulation. 従来の空間多重伝送用送信装置の内部構成の一例を示すブロック図である。It is a block diagram which shows an example of an internal structure of the conventional transmitter for spatial multiplexing transmission. 従来の空間多重伝送用送信装置における内部構成の他の例を示すブロック図である。It is a block diagram which shows the other example of the internal structure in the conventional transmitter for spatial multiplexing transmission.

符号の説明Explanation of symbols

300…シリアルーパラレル変換装置、3111〜31LF…送信装置、331〜33L…マルチビーム形成装置、341〜34N…信号合成装置、351〜35N…切り替え装置、361〜36N…アンテナ素子、370…重み決定装置、321〜32L…逆フーリエ変換装置、371、411〜41F…伝達係数行列推定手段、372、420…伝達係数行列演算手段、401〜40N…フーリエ変換装置

300 ... serial-parallel converter, 3111-31LF ... transmission device, 331-33L ... multi-beam forming device, 341-34N ... signal synthesis device, 351-35N ... switching device, 361-36N ... antenna element, 370 ... weight determination Device, 321-32L ... inverse Fourier transform device, 371, 411-41F ... transfer coefficient matrix estimation means, 372, 420 ... transfer coefficient matrix calculation means, 401-40N ... Fourier transform device

Claims (6)

N個のアンテナ素子を用い、直交波周波数分割多重を用いたF個の周波数多重と、L個の空間多重による送信を行う空間多重伝送用送信装置であって、
前記各アンテナ素子に接続され、受信信号と送信信号を切り替える切り替え装置と、
前記切り替え装置に接続され、対応するアンテナ素子において受信された受信信号にフーリエ変換を行い、F個の受信信号に変換するN個のフーリエ変換手段及び、
前記N個のフーリエ変換装置の対応する周波数帯の受信信号を入力信号とし、その周波数帯での伝達係数行列を推定する伝達係数行列推定手段及び、
前記伝達係数行列推定手段において推定されたF個の伝達係数行列より前記マルチビーム形成装置で各入力信号に乗算する重みを求める伝達係数行列演算手段を有する重み決定装置と、
前記入力された信号に直並列変換を行い、周波数分割多重数F×空間多重数Lに振り分けるシリアルーパラレル変換装置と、
前記シリアルーパラレル変換装置の出力信号を入力信号とし、符号化を行い送信信号系列として逆フーリエ変換装置に出力するF×L個の送信装置と、
前記送信装置から入力されたF個の信号に逆フーリエ変換を行い、L個のマルチビーム形成装置にそれぞれ出力を行うL個の逆フーリエ変換装置と、
前記逆フーリエ変換装置の出力を入力信号とし、N個の信号に分割し、前記重み決定装置により決定された重み付けを行った後、N個の信号合成装置の対応するポートに出力を行うマルチビーム形成装置と、
前記L個のマルチビーム形成装置からL個のポートに入力された入力信号を重ね合わせ、前記切り替え装置の他方のポートに出力を行うN個の信号合成装置と、
を備えたことを特徴とする空間多重伝送用送信装置。
A transmitter for spatial multiplexing transmission that uses N antenna elements and performs transmission by F frequency multiplexing using orthogonal frequency division multiplexing and L spatial multiplexing,
A switching device that is connected to each antenna element and switches between a received signal and a transmitted signal;
N Fourier transform means connected to the switching device and performing Fourier transform on the received signal received by the corresponding antenna element to convert it to F received signals;
A transfer coefficient matrix estimation means for taking a received signal in a corresponding frequency band of the N Fourier transform devices as an input signal and estimating a transfer coefficient matrix in the frequency band; and
A weight determination device having a transfer coefficient matrix calculation means for obtaining a weight for multiplying each input signal by the multi-beam forming device from the F transfer coefficient matrices estimated by the transfer coefficient matrix estimation means ;
A serial-to-parallel converter that performs serial-parallel conversion on the input signal and distributes the divided signal to frequency division multiplexing number F × spatial multiplexing number L;
F × L transmitters that use the output signal of the serial-parallel converter as an input signal, perform encoding and output to the inverse Fourier transformer as a transmission signal sequence, and
L inverse Fourier transform devices that perform an inverse Fourier transform on the F signals input from the transmission device and output to L multi-beam forming devices,
The multi-beam which uses the output of the inverse Fourier transform device as an input signal, divides the signal into N signals, performs weighting determined by the weight determination device, and outputs to the corresponding ports of the N signal synthesis devices A forming device;
N signal synthesizers that superimpose input signals input to the L ports from the L multi-beamformers and output to the other port of the switching device;
A spatial multiplexing transmission apparatus characterized by comprising:
前記重み決定装置の伝達係数行列演算手段は、
前記伝達係数行列推定手段において推定されたF個の伝達係数行列の複素共役転置行列と伝達係数行列の積を求め、この行列の固有ベクトルを算出し、前記マルチビーム形成装置で各入力信号に乗算する重みとして出力する
ことを特徴とする請求項1に記載の空間多重伝送用送信装置。
The transfer coefficient matrix calculation means of the weight determination device is
The product of the complex conjugate transpose matrix and the transfer coefficient matrix of the F transfer coefficient matrices estimated by the transfer coefficient matrix estimation means is obtained, the eigenvector of this matrix is calculated, and each input signal is multiplied by the multi-beam forming apparatus. The transmitter for spatial multiplexing transmission according to claim 1, wherein the transmitter is output as a weight .
前記伝達係数行列演算手段は、
前記F個の伝達係数行列から、それぞれ前記伝達係数行列の複素共役転置行列と伝達係数行列の積を求め、和をとった行列の固有ベクトルを算出し、前記マルチビーム形成装置において各信号に設定する重みとして出力することを特徴とする請求項に記載の空間多重伝送用送信装置。
The transfer coefficient matrix calculation means includes
The product of the complex conjugate transpose matrix and the transfer coefficient matrix of the transfer coefficient matrix is obtained from the F transfer coefficient matrices, and the eigenvector of the summed matrix is calculated and set in each signal in the multi-beam forming apparatus. 2. The spatial multiplexing transmission apparatus according to claim 1 , wherein the transmission apparatus outputs the weight as a weight.
前記伝達係数行列演算手段は、
前記F個の伝達係数行列から、前記伝達係数行列の複素共役転置行列と伝達係数行列の積を求め、各行列に重み付けを行い、和をとった行列の固有ベクトルを算出し、前記マルチビーム形成装置において各信号に設定する重みとして出力する
ことを特徴とする請求項に記載の空間多重伝送用送信装置。
The transfer coefficient matrix calculation means includes
A product of a complex conjugate transpose matrix and a transfer coefficient matrix of the transfer coefficient matrix is obtained from the F transfer coefficient matrices, each matrix is weighted, and an eigenvector of the summed matrix is calculated. 2. The transmitter for spatial multiplexing transmission according to claim 1 , wherein the weight is set as a weight set for each signal.
前記伝達係数行列演算手段は、
前記伝達係数行列の複素共役転置行列と伝達係数行列の積に乗算する重みとして、伝達係数行列とその複素共役転置行列の積の固有値の和を用い、前記マルチビーム形成装置において各信号に設定する重みとして出力する
ことを特徴とする請求項に記載の空間多重伝送用送信装置。
The transfer coefficient matrix calculation means includes
As a weight for multiplying the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix, the sum of the eigenvalues of the product of the transfer coefficient matrix and the complex conjugate transpose matrix is used and set in each signal in the multi-beamforming apparatus. The transmitter for spatial multiplexing transmission according to claim 4 , wherein the transmitter is output as a weight.
前記伝達係数行列演算手段は、
前記伝達係数行列推定手段において推定されたF個の伝達係数行列から任意のI個の伝達係数行列を選択し、送信時の重みを算出し、前記マルチビーム形成装置において各信号に設定する重みとして出力する
ことを特徴とする請求項のいずれか1項に記載の空間多重伝送用送信装置。
The transfer coefficient matrix calculation means includes
As an arbitrary I transmission coefficient matrix selected from the F transmission coefficient matrices estimated by the transmission coefficient matrix estimating means, a weight at the time of transmission is calculated, and a weight set for each signal in the multi-beam forming apparatus The transmitter for spatial multiplexing transmission according to any one of claims 1 to 5 , wherein the transmitter is output.
JP2004059692A 2004-03-03 2004-03-03 Transmitter for spatial multiplexing transmission Expired - Lifetime JP4040588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059692A JP4040588B2 (en) 2004-03-03 2004-03-03 Transmitter for spatial multiplexing transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059692A JP4040588B2 (en) 2004-03-03 2004-03-03 Transmitter for spatial multiplexing transmission

Publications (3)

Publication Number Publication Date
JP2005252614A JP2005252614A (en) 2005-09-15
JP2005252614A5 JP2005252614A5 (en) 2006-06-08
JP4040588B2 true JP4040588B2 (en) 2008-01-30

Family

ID=35032694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059692A Expired - Lifetime JP4040588B2 (en) 2004-03-03 2004-03-03 Transmitter for spatial multiplexing transmission

Country Status (1)

Country Link
JP (1) JP4040588B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457830B1 (en) * 2005-09-29 2014-11-05 인터디지탈 테크날러지 코포레이션 Mimo beamforming-based single carrier frequency division multiple access system
JP4708206B2 (en) * 2006-02-10 2011-06-22 日本電信電話株式会社 Wireless communication method and wireless base station

Also Published As

Publication number Publication date
JP2005252614A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US8134503B2 (en) Open-loop beamforming MIMO communications in frequency division duplex systems
US7333056B2 (en) Adaptive antenna radio communication device
US7020490B2 (en) Radio communication system
KR100876797B1 (en) Apparatus and method for beam forming in a multi-antenna system
JP4376805B2 (en) Spatial multiplexing transmission method and transmitter
US20040213187A1 (en) Transmit diversity system method and computer program product
US8456361B1 (en) Beamforming with partial channel knowledge
US8184733B2 (en) Radio reception device, radio transmission device, radio base station, reception method, and transmission method
JPWO2009107738A1 (en) Channel information prediction system and channel information prediction method
WO2018221431A1 (en) Wireless device and wireless communication method
JP4765336B2 (en) Wireless communication apparatus and wireless communication method
JP4698346B2 (en) Wireless transmission system, base station, and wireless transmission method
JP4040588B2 (en) Transmitter for spatial multiplexing transmission
JP4435039B2 (en) Spatial multiplexing transmission apparatus and spatial multiplexing control method
US20070297576A1 (en) Method and device for controlling channel state information transferred by a first telecommunication device to a second telecommunication device
JP4001880B2 (en) Spatial multiplex transmission equipment
JP4494190B2 (en) Spatial multiplexing transmission method and spatial multiplexing transmission apparatus
JP2007036403A (en) Spatial multiplex transmission device and method
JP4401881B2 (en) Transmission method and apparatus for spatial multiplexing transmission
JP4260653B2 (en) Transmitter for spatial multiplexing transmission
KR101422026B1 (en) A method for transmitting/receiving signal in a Multiple Input Multiple Output system
Arifin Capacity Analysis for Hybrid Beamforming MIMO Channel using Discrete Cosine Transform and Antenna Selection
JP5008702B2 (en) Spatial multiplexing transmission method and spatial multiplexing transmission apparatus
JP2005191878A (en) Transmitter for multi-element antenna
Lin et al. A Low-Complexity and High-Performance Beamforming Scheme for mmWave WPAN Systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4040588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350