JP2005191878A - Transmitter for multi-element antenna - Google Patents

Transmitter for multi-element antenna Download PDF

Info

Publication number
JP2005191878A
JP2005191878A JP2003430110A JP2003430110A JP2005191878A JP 2005191878 A JP2005191878 A JP 2005191878A JP 2003430110 A JP2003430110 A JP 2003430110A JP 2003430110 A JP2003430110 A JP 2003430110A JP 2005191878 A JP2005191878 A JP 2005191878A
Authority
JP
Japan
Prior art keywords
weight value
transmission power
transmission
signal
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003430110A
Other languages
Japanese (ja)
Other versions
JP4386712B2 (en
JP2005191878A5 (en
Inventor
Riichi Kudo
理一 工藤
Taiji Takatori
泰司 鷹取
Keizo Cho
敬三 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003430110A priority Critical patent/JP4386712B2/en
Publication of JP2005191878A publication Critical patent/JP2005191878A/en
Publication of JP2005191878A5 publication Critical patent/JP2005191878A5/ja
Application granted granted Critical
Publication of JP4386712B2 publication Critical patent/JP4386712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To distribute power corresponding to a propagation environment between a transmission station and a reception station when a transfer function is estimated. <P>SOLUTION: From the propagation environment estimated when signals are received, power which satisfies required transmission quality to an opposite station is distributed to antenna elements. For instance, when an SNR (Signal to Noise Ratio) in receiving signals transmitted from a certain antenna element is degraded and the transmission quality of the entire system is lowered, the power to be distributed to the antenna element is increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数のアンテナ素子を有する送受信機に利用する。特に、各アンテナ素子から異信号を送信する際に、その電力配分を最適化することで信号の品質を改善する多素子アンテナシステム用個別振幅制御装置に利用する。   The present invention is used for a transceiver having a plurality of antenna elements. In particular, when a different signal is transmitted from each antenna element, it is used for an individual amplitude control apparatus for a multi-element antenna system that improves the signal quality by optimizing its power distribution.

適応アンテナは、複数のアンテナ素子から送信された信号を複数のアンテナ素子で受信することで、伝搬環境を推定することにより送信された信号を得るアンテナである。以下に、伝達係数を用いて信号を得る方法を示す。   An adaptive antenna is an antenna that obtains a signal transmitted by estimating a propagation environment by receiving signals transmitted from a plurality of antenna elements by a plurality of antenna elements. A method for obtaining a signal using a transfer coefficient will be described below.

図10に従来の伝搬環境の推定を行う適応アンテナ装置を示す(例えば、非特許文献1参照)。従来の適応アンテナ装置は、複数の送受信アンテナ素子141〜14Nと、送受信切り替え装置(以下では、単に、切り替え装置と記す)131〜13Nと、送信機110と、受信機170とから構成される。   FIG. 10 shows a conventional adaptive antenna apparatus that estimates a propagation environment (see, for example, Non-Patent Document 1). The conventional adaptive antenna device includes a plurality of transmission / reception antenna elements 141 to 14N, transmission / reception switching devices (hereinafter simply referred to as switching devices) 131 to 13N, a transmitter 110, and a receiver 170.

適応アンテナ装置の複数の送信局アンテナ素子131〜13Nにおいて送信された信号をT1〜TN、受信局において受信される信号をR1〜RN、伝達係数をN列の伝達係数列行列としてHijとし、各受信信号にのるノイズをn1〜nNとすると、 Signals transmitted from the plurality of transmitting station antenna elements 131 to 13N of the adaptive antenna apparatus are T 1 to T N , signals received at the receiving station are R 1 to R N , and transmission coefficients are N transmission coefficient sequence matrices. If H ij and the noise on each received signal is n 1 to n N ,

Figure 2005191878
と表せる。受信信号に、伝達係数行列の逆行列を乗算すると、送信信号T1’〜TN’が導出される。
Figure 2005191878
It can be expressed. When the reception signal is multiplied by the inverse matrix of the transfer coefficient matrix, transmission signals T 1 ′ to T N ′ are derived.

Figure 2005191878
1〜NNは送信信号T1〜TNを求める際に加わるノイズで、
Figure 2005191878
N 1 to N N are noises added when obtaining the transmission signals T 1 to T N.

Figure 2005191878
と与えられ、ここで行列GはHの逆行列である。各アンテナ素子で受信する際に加わるノイズの平均電力がn2に等しく、送信信号T1〜TNの絶対値が1とすると、i番目の信号に対するSNRiは(3)式より
Figure 2005191878
Where the matrix G is the inverse of H. Assuming that the average power of noise applied at the time of reception by each antenna element is equal to n 2 and the absolute value of the transmission signals T 1 to T N is 1, the SNR i for the i-th signal is given by equation (3).

Figure 2005191878
となっている。送信信号T1〜TNを解析するためのSNRがそれぞれの信号に対して異なる。したがってSNRが低い信号が存在するとシステム全体としての誤り率が増大するという問題がある。
S.Kurosaki,etal,“A SDM-COFDM Scheme Employing a Simple Feed-ForwardInter-Channel Canceller for MIMO Based Broadband Wireless LANs”,IEICETrans.Commun.,2003
Figure 2005191878
It has become. The SNR for analyzing the transmission signals T 1 to T N is different for each signal. Therefore, if there is a signal with a low SNR, there is a problem that the error rate of the entire system increases.
S. Kurosaki, etal, “A SDM-COFDM Scheme Employing a Simple Feed-Forward Inter-Channel Canceller for MIMO Based Broadband Wireless LANs”, IEICETrans.Commun., 2003

複数のアンテナ素子を用いて複数の信号を送信する送信局において各アンテナ素子に給電する電力量は均一に与えた場合に、伝搬環境により信号毎のSNRにばらつきが生じ、伝送品質を劣化させるという問題があった。   In a transmission station that transmits a plurality of signals using a plurality of antenna elements, when the amount of power supplied to each antenna element is given uniformly, the SNR varies for each signal depending on the propagation environment, which degrades the transmission quality. There was a problem.

本発明は、この伝送品質の劣化を防ぐためのものであり、伝達関数推定の際、送信局と受信局との間の伝搬環境に応じた電力分配を行うことで複数の送信信号のSNRのばらつきを少なくし、伝送品質を改善することを目的とする。   The present invention is for preventing the deterioration of transmission quality, and at the time of transfer function estimation, by distributing power according to the propagation environment between a transmitting station and a receiving station, the SNRs of a plurality of transmission signals are reduced. The purpose is to reduce the variation and improve the transmission quality.

本発明の第一の観点は、信号受信時に推定される伝搬環境から、相手局に対し所要の伝送品質を満たす電力配分をアンテナ素子に行うことを特徴とする。例えば、あるアンテナ素子から送信される信号に対する受信時のSNRが劣化し、システム全体の伝送品質を下げている場合があるが、このアンテナ素子に配分する電力を上げることにより、システム全体の伝送品質を向上させることができる。   A first aspect of the present invention is characterized in that an antenna element performs power distribution that satisfies a required transmission quality with respect to a partner station from a propagation environment estimated at the time of signal reception. For example, there is a case where the SNR at the time of reception for a signal transmitted from a certain antenna element is deteriorated and the transmission quality of the entire system is lowered. By increasing the power allocated to this antenna element, the transmission quality of the entire system is reduced. Can be improved.

すなわち、本発明は、多素子アンテナシステム用送信装置であって、N個のアンテナ素子と、このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、入力信号から伝達関数行列を推定して出力する伝達関数推定手段と、この伝達関数推定手段の出力信号を入力信号とし、N個の振幅変換装置の重み値を決定する重み値決定手段と、N個の送信信号を発生させる送信機と、この送信機から発生したN個の送信信号をそれぞれ入力信号とし、この入力信号に振幅重み付けを行い、前記切り替え装置に送信信号を出力する前記N個の振幅変換装置とを備え、前記重み値決定手段は、伝達関数行列に基づき前記N個の振幅変換装置の重み値をそれぞれ決定する手段を備えた多素子アンテナシステム用送信装置である。   That is, the present invention is a transmission device for a multi-element antenna system, which includes N antenna elements, N switching devices that are respectively connected to the antenna elements and switch between transmission signals and reception signals, and the switching devices. The transfer function estimation means for estimating the transfer function matrix from the input signal and outputting the N signals output from each switching device at the time of reception as input signals, and the output signal of this transfer function estimation means as input A weight value determining means for determining weight values of N amplitude converters, a transmitter for generating N transmission signals, and N transmission signals generated from the transmitter as input signals, The N amplitude converters that perform amplitude weighting on the input signal and output a transmission signal to the switching device, and the weight value determining means is based on a transfer function matrix. Serial is the N multi-element transmitting device antenna system comprising means for determining respective weighting values of the amplitude converter.

ここで、本発明の特徴とするところは、前記重み値をそれぞれ決定する手段は、推定された伝達関数行列から、各信号のSignal−to−Noise Rasio(SNR)がほぼ等しくなるように前記N個の振幅変換装置の重みの値をそれぞれ決定するSNR均等化重み値決定手段を備えたところにある(請求項1)。   Here, the feature of the present invention is that the means for determining each of the weight values is based on the estimated transfer function matrix so that the signal-to-noise ratio (SNR) of each signal is substantially equal. SNR equalization weight value determining means for determining the weight value of each of the amplitude converters is provided (claim 1).

例えば、前記SNR均等化重み値決定手段は、前記伝達関数推定手段によって推定された伝達関数行列を入力信号とし、伝達関数行列の転置演算を行う転置行列演算手段と、この転置行列演算手段により生成された転置行列を入力信号とし、逆行列演算を行う逆行列演算手段と、この逆行列演算手段により生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、送信電力を設定する送信電力設定手段と、この送信電力設定手段の出力信号と送信電力比とから重み値を決定しN個の前記振幅変換装置に出力する重み値出力手段とを備え、前記送信電力比決定手段は、送信されるN個の信号のSNRがほぼ等しくなるように送信電力比を決定する手段を備え、前記重み値出力手段は、前記送信電力設定手段で設定された送信電力となるように重み値を決定する手段を備えることにより実現することができる(請求項2)。   For example, the SNR equalization weight value determining means generates a transpose matrix operation means for performing a transpose operation of a transfer function matrix using the transfer function matrix estimated by the transfer function estimation means as an input signal, and a transpose matrix operation means. An inverse matrix operation means for performing an inverse matrix operation using the transposed matrix as an input signal, and an inverse matrix generated by the inverse matrix operation means as an input signal, determining a transmission power ratio and outputting to the weight value output means Power ratio determining means; transmission power setting means for setting transmission power; weight value output means for determining a weight value from an output signal of this transmission power setting means and a transmission power ratio and outputting it to the N amplitude converters The transmission power ratio determining means includes means for determining a transmission power ratio so that SNRs of N signals to be transmitted are substantially equal, and the weight value output means includes the transmission power ratio. Can be achieved by providing a means for determining a weight value such that the set transmission power setting means (claim 2).

あるいは、本発明の多素子アンテナシステム用送信装置は、N個のアンテナ素子と、このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、入力信号から伝達関数行列を推定して出力する伝達関数推定手段と、この伝達関数推定手段の出力信号を入力信号とし、N個の振幅変換装置の重み値を決定する重み値決定手段と、N個の送信信号を発生させる送信機と、この送信機から発生したN個の送信信号をそれぞれ入力信号とし、この入力信号に振幅重み付けを行い、前記切り替え装置に送信信号を出力する前記N個の振幅変換装置とを備え、前記重み値決定手段は、伝達関数行列に基づき前記N個の振幅変換装置の重み値をそれぞれ決定する手段を備えた多素子アンテナシステム用送信装置である。   Alternatively, the multi-element antenna system transmission device of the present invention is connected to N antenna elements, N switching devices that are respectively connected to the antenna elements and switch between transmission signals and reception signals, and the switching devices. , N signals output from each switching device at the time of reception as input signals, transfer function estimation means for estimating and outputting a transfer function matrix from the input signals, and output signals of the transfer function estimation means as input signals, Weight value determining means for determining weight values of N amplitude converters, a transmitter for generating N transmission signals, and N transmission signals generated from the transmitter as input signals, respectively. The N number of amplitude converters that perform amplitude weighting and output a transmission signal to the switching device, and the weight value determining means includes the N number of units based on a transfer function matrix. Is a multi-element transmitting device antenna system comprising means for determining respective weighting values of the amplitude converter.

ここで、本発明の特徴とするところは、前記重み値をそれぞれ決定する手段は、推定された伝達関数行列から、誤り率が最小となるように前記N個の振幅変換装置の重みの値をそれぞれ決定する誤り率最小化重み値決定手段を備えたところにある(請求項3)。   Here, a feature of the present invention is that each means for determining the weight value determines the weight value of the N amplitude converters from the estimated transfer function matrix so that the error rate is minimized. There is provided error rate minimizing weight value determining means for determining each (claim 3).

例えば、前記誤り率最小化重み値決定手段は、前記伝達関数推定手段によって推定された伝達関数行列を入力信号とし、伝達関数行列の転置演算を行う転置行列演算手段と、この転置行列演算手段により生成された転置行列を入力信号とし、逆行列演算を行う逆行列演算手段と、誤り率とSNRとの間に成り立つ関数を設定し、送信電力比決定手段に出力する誤り率関数設定手段と、この誤り率関数設定手段の出力信号と前記逆行列演算手段とにより生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、送信電力を設定する送信電力設定手段と、この送信電力設定手段の出力信号と送信電力比とから重み値を決定しN個の振幅変換装置に出力する重み値出力手段とを備え、前記送信電力比決定手段は、送信される信号の誤り率が最小となるように送信電力比を決定する手段を備え、前記重み値出力手段は、前記送信電力設定手段で設定された送信電力となるように重み値を決定する手段を備えることにより実現することができる(請求項4)。   For example, the error rate minimizing weight value determining means uses the transfer function matrix estimated by the transfer function estimating means as an input signal, and a transposed matrix calculating means for performing a transpose operation of the transfer function matrix, and the transposed matrix calculating means An inverse matrix operation means for performing an inverse matrix operation using the generated transposed matrix as an input signal, an error rate function setting means for setting a function established between the error rate and the SNR, and outputting the function to the transmission power ratio determination means, A transmission power ratio determination unit that determines the transmission power ratio and outputs the transmission power ratio to the weight value output unit using the inverse matrix generated by the output signal of the error rate function setting unit and the inverse matrix calculation unit as an input signal, and the transmission power Transmission power setting means for setting, and weight value output means for determining a weight value from an output signal of the transmission power setting means and a transmission power ratio and outputting the weight value to N amplitude converters, the transmission power ratio The determining means includes means for determining a transmission power ratio so that an error rate of a signal to be transmitted is minimized, and the weight value output means is weighted so as to be the transmission power set by the transmission power setting means. This can be realized by providing means for determining a value (claim 4).

本発明の第二の観点は、信号受信時に推定される伝搬環境から、受信時に伝送品質が最良となる相手送受信装置のアンテナ素子にかける重みを決定し、送信時に相手送受信装置の重み付け信号を送信し、受信時には振幅制御装置により、この重み付け信号を読み取り、通信相手に対して最適な電力配分を各アンテナ素子に対して行うことを特徴とする。   The second aspect of the present invention is to determine a weight to be applied to the antenna element of the partner transmission / reception device having the best transmission quality at the time of reception from the propagation environment estimated at the time of signal reception, and transmit the weighted signal of the partner transmission / reception device at the time of transmission At the time of reception, the weight control signal is read by the amplitude control device, and optimal power distribution to the communication partner is performed for each antenna element.

すなわち、本発明は多素子アンテナシステムの送信装置であって、N個のアンテナ素子と、このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、2つの信号にそれぞれ分岐する分岐装置と、この分岐装置により分岐された一方の出力を入力信号とし、入力信号に含まれる相手局の重み値決定手段により決定された重み値を取り出し、各振幅変換装置の重みを決定する振幅制御装置と、前記分岐装置により分岐された他方の出力を入力信号とし、入力信号から推定された伝達関数行列を重み値決定手段に出力し、復号を行う受信機と、この受信機から出力される伝達関数行列を入力信号とし、伝達関数行列から相手局の各振幅変換装置により乗算された重みを算出し、送信機に重み信号を出力する重み値決定手段と、アンテナ数と同数の送信信号を発生させる前記送信機と、この送信機からの信号を入力信号とし、各信号に振幅重み付けを行い、前記切り替え装置の他方のポートへの入力信号を生成する振幅変換装置とを備え、前記重み値決定手段は、送受信装置の間で交互に行われる送受信に伴い推定された伝達関数行列に基づいて決定された相手局の前記N個の振幅変換装置の重み値を前記送信機へ出力する手段を備え、前記送信機は、相手局への情報信号と重み信号とを出力する手段を備えた多素子アンテナシステム用送信装置である。   That is, the present invention is a transmission device of a multi-element antenna system, which includes N antenna elements, N switching devices that are connected to the antenna elements and switch between a transmission signal and a reception signal, and the switching device. N signals that are connected and output from each switching device at the time of reception are set as input signals, branching devices branching into two signals, and one output branched by this branching device is set as an input signal. The weight value determined by the weight value determining means of the other station included is extracted, the amplitude control device for determining the weight of each amplitude converter, and the other output branched by the branch device as an input signal, from the input signal The estimated transfer function matrix is output to the weight value determining means, and the receiver for decoding and the transfer function matrix output from the receiver as input signals are transferred. The weight multiplied by each amplitude converter of the counterpart station is calculated from the number matrix, the weight value determining means for outputting the weight signal to the transmitter, the transmitter for generating the same number of transmission signals as the number of antennas, and the transmission And an amplitude converter that performs amplitude weighting on each signal and generates an input signal to the other port of the switching device, and the weight value determining means is provided between the transmitting and receiving devices. Means for outputting, to the transmitter, the weight value of the N amplitude converters of the counterpart station determined based on the transfer function matrix estimated with the transmission and reception performed alternately, the transmitter comprising: A transmission device for a multi-element antenna system provided with means for outputting an information signal and a weight signal.

ここで、本発明の特徴とするところは、前記重み値決定手段は、前記受信機によって推定された伝達関数行列を入力信号とし、この伝達関数行列から各信号のSNRがほぼ等しくなるように相手局の前記N個の振幅変換装置の重みを決定するSNR均等化重み値決定手段を備えたところにある(請求項5)。   Here, the feature of the present invention is that the weight value determining means uses the transfer function matrix estimated by the receiver as an input signal, and the other party so that the SNR of each signal becomes substantially equal from the transfer function matrix. SNR equalization weight value determination means for determining the weight of the N amplitude converters of the station is provided (claim 5).

例えば、前記SNR均等化重み値決定手段は、前記受信機によって推定された伝達関数行列を入力信号とし、伝達関数行列の逆行列演算を行う逆行列演算手段と、この逆行列演算手段により生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、相手局送信電力を設定する相手局送信電力設定手段と、この相手局送信電力設定手段の出力信号と送信電力比とから相手局の重み値を決定し前記送信機に出力する前記重み値出力手段とを備え、前記送信電力比決定手段は、相手局により送信されるN個の信号のSNRがほぼ等しくなるように送信電力比を決定する手段を備え、前記重み値出力手段は、前記相手局送信電力設定手段により設定された送信電力となるように相手局の重み値を決定する手段を備えることにより実現することができる(請求項6)。   For example, the SNR equalization weight value determination means is generated by an inverse matrix calculation means for performing an inverse matrix calculation of the transfer function matrix using the transfer function matrix estimated by the receiver as an input signal, and the inverse matrix calculation means. The transmission power ratio determining means for determining the transmission power ratio and outputting it to the weight value output means, the counterpart station transmission power setting means for setting the counterpart station transmission power, and the counterpart station transmission power setting means The weight value output means for determining the weight value of the counterpart station from the output signal and the transmission power ratio and outputting the same to the transmitter, wherein the transmission power ratio determination means includes N signals transmitted by the counterpart station. Means for determining the transmission power ratio so that the SNRs of the other stations are substantially equal, and the weight value output means determines the weight value of the counterpart station so as to be the transmission power set by the counterpart station transmission power setting means. It can be achieved by providing a means (claim 6).

あるいは、本発明は、多素子アンテナシステム用送信装置であって、N個のアンテナ素子と、このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、2つの信号にそれぞれ分岐する分岐装置と、この分岐装置により分岐された一方の出力を入力信号とし、入力信号に含まれる相手局の重み値決定手段により決定された重み値を取り出し、各振幅変換装置の重みを決定する振幅制御装置と、前記分岐装置により分岐された他方の出力を入力信号とし、入力信号から推定された伝達関数行列を重み値決定手段に出力し、復号を行う受信機と、この受信機から出力される伝達関数行列を入力信号とし、伝達関数行列から相手局の各振幅変換装置により乗算された重みを算出し、送信機に重み信号を出力する重み値決定手段と、アンテナ数と同数の送信信号を発生させる前記送信機と、この送信機からの信号を入力信号とし、各信号に振幅重み付けを行い、前記切り替え装置の他方のポートへの入力信号を生成する振幅変換装置とを備え、前記重み値決定手段は、送受信装置の間で交互に行われる送受信に伴い推定された伝達関数行列に基づいて決定された相手局の前記N個の振幅変換装置の重み値を前記送信機へ出力する手段を備え、前記送信機は、相手局への情報信号と重み信号とを出力する手段を備えた多素子アンテナシステム用送信装置である。   Alternatively, the present invention is a transmission device for a multi-element antenna system, which includes N antenna elements, N switching devices connected to the antenna elements and switching between a transmission signal and a reception signal, and the switching device. N signals output from each switching device at the time of reception are input signals, a branching device that branches into two signals, and one output branched by this branching device as an input signal. An amplitude control device that determines the weight value of each amplitude converter, and the other output branched by the branch device is used as an input signal. The transfer function matrix estimated from the above is output to the weight value determining means, the receiver for decoding, and the transfer function matrix output from the receiver as input signals, A weight value determining means for calculating a weight multiplied by each amplitude converter of the counterpart station from the function matrix and outputting a weight signal to the transmitter, the transmitter for generating the same number of transmission signals as the number of antennas, and the transmission And an amplitude converter that performs amplitude weighting on each signal and generates an input signal to the other port of the switching device, and the weight value determining means is provided between the transmitting and receiving devices. Means for outputting, to the transmitter, the weight value of the N amplitude converters of the counterpart station determined based on the transfer function matrix estimated with the transmission and reception performed alternately, the transmitter comprising: A transmission device for a multi-element antenna system provided with means for outputting an information signal and a weight signal.

ここで、本発明の特徴とするところは、前記重み値決定手段は、前記受信機によって推定された伝達関数行列を入力信号とし、この伝達関数行列から誤り率が最小となるように相手局の前記N個の振幅変換装置の重みを決定する誤り率最小化重み値決定手段を備えたところにある(請求項7)。   Here, a feature of the present invention is that the weight value determining means uses the transfer function matrix estimated by the receiver as an input signal, and the other station's error rate is minimized from the transfer function matrix. An error rate minimizing weight value determining means for determining the weight of the N amplitude converters is provided.

例えば、前記誤り率最小化重み値決定手段は、前記受信機によって推定された伝達関数行列を入力信号とし、この伝達関数行列の逆行列演算を行う逆行列演算手段と、誤り率とSNRとの間に成り立つ関数を設定し、送信電力比決定手段に出力する誤り率関数設定手段と、この誤り率関数設定手段の出力信号と前記逆行列演算手段により生成された逆行列とを入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、相手局の送信電力を設定する相手局送信電力設定手段と、この相手局送信電力設定手段の出力信号と送信電力比とから相手局の重み値を決定し前記送信機に出力する重み値出力手段とを備え、前記送信電力比決定手段は、相手局から送信される信号の誤り率が最小となるように相手局の送信電力比を決定する手段を備え、前記重み値出力手段は、前記相手局送信電力設定手段で設定された送信電力になるように重み値を決定する手段とを備えることにより実現することができる(請求項8)。   For example, the error rate minimizing weight value determining means uses the transfer function matrix estimated by the receiver as an input signal, an inverse matrix calculating means for performing an inverse matrix calculation of the transfer function matrix, and an error rate and SNR. An error rate function setting unit configured to set a function between them and output to the transmission power ratio determination unit, an output signal of the error rate function setting unit and an inverse matrix generated by the inverse matrix calculation unit are input signals, Transmission power ratio determining means for determining the transmission power ratio and outputting it to the weight value output means, counterpart station transmission power setting means for setting the transmission power of the counterpart station, output signal and transmission power ratio of the counterpart station transmission power setting means Weight value output means for determining the weight value of the other station from the other station and outputting the same to the transmitter, the transmission power ratio determining means is configured so that the error rate of the signal transmitted from the other station is minimized. Transmit power ratio The weight value output means can be realized by means for determining a weight value so as to be the transmission power set by the counterpart station transmission power setting means. ).

本発明の第三の観点は、上記二つの観点で述べた各アンテナ素子から送信する信号に重みをかけて制御する場合に、所要のBER(Bit Error Rate)が定まっているときに、送信アンテナ毎に決定した重みと伝達係数行列からBERを推定し、所要のBERが得られる送信アンテナ数を求め、その結果を送信局にフィードバックし、送信アンテナ数を変化させ、送信電力を再分配することを特徴とする。   According to a third aspect of the present invention, when a signal transmitted from each antenna element described in the above two aspects is weighted and controlled, when a required BER (Bit Error Rate) is determined, the transmission antenna Estimating the BER from the weight and transfer coefficient matrix determined every time, obtaining the number of transmission antennas for obtaining the required BER, feeding back the result to the transmission station, changing the number of transmission antennas, and redistributing the transmission power It is characterized by.

例えば、所要のSNRが定まっているときには、送信アンテナ毎に決定した重みと伝達関数とからSNRを推定し、所要のSNRが得られる送信アンテナ数を求め、その結果を送信局にフィードバックし、送信アンテナ数を変化させる手段を備えることにより実現することができる(請求項9)。   For example, when the required SNR is determined, the SNR is estimated from the weight and transfer function determined for each transmission antenna, the number of transmission antennas that can obtain the required SNR is obtained, the result is fed back to the transmission station, and the transmission is performed. This can be realized by providing means for changing the number of antennas.

本発明によれば、複数のアンテナ素子により送信した各信号のSNRのばらつきを少なくし、伝送品質を改善することができる。   According to the present invention, it is possible to reduce variation in SNR of each signal transmitted by a plurality of antenna elements and improve transmission quality.

(第一実施形態)
以下、本発明の実施の形態を図面を参照して説明する。図1は本発明の実施形態における多素子アンテナシステム用送信装置を示すブロック図である。時分割双方向方式のように上下の伝搬環境が同じとみなせる無線通信システムにおいて、受信時に推定される伝達関数から送信する際に各アンテナの送信電力にかける重みを決定し、伝送品質の改善を行う形態を示している。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a multi-element antenna system transmitter according to an embodiment of the present invention. In a wireless communication system where the upper and lower propagation environments are considered to be the same as in the time division bidirectional method, the weight applied to the transmission power of each antenna when transmitting from the transfer function estimated at the time of reception is determined to improve the transmission quality. The form to perform is shown.

図1において符号210は送信機、符号221〜22Nは振幅変換装置、231〜23Nは送受信切り替え装置、241〜24Nはアンテナ素子、250は伝達関数推定手段、260は重み値決定手段である。送信機210から出力された信号は振幅変換装置221〜22Nに入力され、k番目(1〜Nの整数)の信号に対し後述する振幅制御装置によって出力される重みWkを乗算され、アンテナ素子241〜24Nに出力される。また、アンテナ素子241〜24Nにおいて受信された受信信号は送受信切り替え装置231〜23Nによって伝達関数推定手段250に出力され、伝達関数推定手段では、伝達関数の推定を行い伝達関数行列が重み値決定手段260に出力される。上記重み値決定手段において乗算する重みW1〜WNを決定し、振幅変換装置221〜22Nに出力する。 In FIG. 1, reference numeral 210 is a transmitter, reference numerals 221 to 22N are amplitude converters, 231 to 23N are transmission / reception switching apparatuses, 241 to 24N are antenna elements, 250 is transfer function estimating means, and 260 is a weight value determining means. The signal output from the transmitter 210 is input to the amplitude converters 221 to 22N, and the k-th (integer of 1 to N) signal is multiplied by a weight Wk output by an amplitude controller described later, so that the antenna element 241 is obtained. To 24N. The reception signals received by the antenna elements 241 to 24N are output to the transfer function estimating unit 250 by the transmission / reception switching devices 231 to 23N, and the transfer function estimating unit estimates the transfer function and the transfer function matrix is the weight value determining unit. 260 is output. Weights W 1 to W N to be multiplied in the weight value determining means are determined and output to the amplitude converters 221 to 22N.

振幅変換装置221〜22Nにおいて送信信号T1〜TNに重みW1〜WNを乗算した信号を送信する際には、システム全体の伝送品質はどのようなものになるかを算出する。 When the amplitude converters 221 to 22N transmit signals obtained by multiplying the transmission signals T 1 to T N by the weights W 1 to W N , the transmission quality of the entire system is calculated.

Figure 2005191878
と表せる。受信信号に、伝達係数行列の逆行列を乗算すると、送信信号T1’〜TN’が導出される。
Figure 2005191878
It can be expressed. When the reception signal is multiplied by the inverse matrix of the transfer coefficient matrix, transmission signals T 1 ′ to T N ′ are derived.

Figure 2005191878
Figure 2005191878

Figure 2005191878
このとき、それぞれの送信信号T1〜TNの絶対値が1とすると送信信号に対するSNRiは以下のように表せる。
Figure 2005191878
At this time, if the absolute value of each of the transmission signals T 1 to T N is 1, the SNR i for the transmission signal can be expressed as follows.

Figure 2005191878
よってi番目の信号に対するSNRiは重みWiによって決定することができる。
Figure 2005191878
Therefore, the SNR i for the i-th signal can be determined by the weight W i .

このように送信する信号に対し重み付けをすることで、その伝搬環境で伝送品質が劣化しているアンテナ素子の送信電力を上げることができ、システム全体として誤り率を減少させることができる。本発明の効果を図7および図8を参照して説明する。両者とも♯1〜♯3の3つのアンテナ素子を用いて送信する場合について示してあり、図7は従来の装置によって形成されるビームパターン、図8は本発明の装置によって形成されたビームパターンである。   By weighting the signal to be transmitted in this manner, the transmission power of the antenna element whose transmission quality is degraded in the propagation environment can be increased, and the error rate can be reduced as a whole system. The effect of the present invention will be described with reference to FIGS. Both show transmission using three antenna elements # 1 to # 3. FIG. 7 shows a beam pattern formed by a conventional apparatus, and FIG. 8 shows a beam pattern formed by the apparatus of the present invention. is there.

図7の従来の装置によって形成されたビームパターンでは♯3アンテナ素子の指向性が伝搬経路を向いておらず、受信局において伝送品質が悪くなっている。これに対し、図8に示す本発明の装置によりそれぞれのアンテナ素子に重み付けを行った結果では、伝送品質劣化の原因となっていた♯3アンテナ素子の放射電力の重みを大きくすることで、システム全体の伝送品質を改善している。   In the beam pattern formed by the conventional apparatus of FIG. 7, the directivity of the # 3 antenna element does not face the propagation path, and the transmission quality at the receiving station is poor. On the other hand, as a result of weighting each antenna element by the apparatus of the present invention shown in FIG. 8, the weight of the radiated power of the # 3 antenna element, which has caused the transmission quality deterioration, is increased. The overall transmission quality has been improved.

以下に伝達関数の具体的な推定方法を示す。上記のような重みを用いた通信を行うことを考え、A局とB局において通信を行うものとする。ここで、A局からB局への伝達係数行列をHとし、B局からA局への伝達係数行列をhと表すこととし、両者の間にはh=HTが成り立っているものとする。この仮定は上り通信と下り通信とで同一環境のときに成立する。A局よりまず既知の信号TAijを送信すると、B局では受信される受信信号RBijから伝達係数行列は以下のように算出される。 The specific estimation method of the transfer function is shown below. Considering that communication using the above weights is performed, it is assumed that communication is performed between the A station and the B station. Here, the transfer coefficient matrix from A station to B station and H, the transfer coefficient matrix to the A station and be represented as h from B station, between the two assumed that consists is h = H T . This assumption holds when the upstream communication and downstream communication are in the same environment. When the station A transmits a known signal TA ij first, the station B calculates the transfer coefficient matrix from the received signal RB ij as follows.

Figure 2005191878
Figure 2005191878

Figure 2005191878
伝達係数行列HijはA局のアンテナ素子♯jからB局の♯iのアンテナ素子間の伝達係数を表している。A局から送信される送信信号TA 1〜TA Nは、受信信号RB 1〜RB Nに伝達係数行列の逆数を乗算することで求めることができる。
Figure 2005191878
A transfer coefficient matrix H ij represents a transfer coefficient between the antenna elements #j of the A station and the #i antenna elements of the B station. The transmission signals T A 1 to T A N transmitted from the station A can be obtained by multiplying the reception signals R B 1 to R B N by the reciprocal of the transfer coefficient matrix.

次に、伝達関数を推定する別法について示す。ここで、B局が送信信号TB 1〜TB NをA局に送信する際に、各アンテナ素子から送信される信号に重み付けWB 1〜WB Nを行うことを考える。このとき上記の計算で得た伝達係数行列Hが送信する際にも同じとみなせる場合には、B局からA局への伝達係数行列hは、(5)式で得られたA局からB局への伝達係数行列Hを用いて以下のように表せる。 Next, another method for estimating the transfer function will be described. Here, it is considered that when the B station transmits the transmission signals T B 1 to T B N to the A station, weighting W B 1 to W B N is performed on the signals transmitted from the respective antenna elements. At this time, when the transfer coefficient matrix H obtained by the above calculation can be regarded as the same when transmitting, the transfer coefficient matrix h from the B station to the A station is obtained from the A station obtained by the equation (5) to the B Using the transfer coefficient matrix H to the station, it can be expressed as follows.

Figure 2005191878
また、この伝達係数行列hから逆行列gが求められ、(|gi12+|gi22+…+|giN2)の関数となるWB 1〜WB Nを算出することができる。
Figure 2005191878
Further, an inverse matrix g is obtained from this transfer coefficient matrix h, and W B 1 to W B N that are functions of (| g i1 | 2 + | g i2 | 2 +... + | G iN | 2 ) are calculated. be able to.

まず、既知の信号TBijに重みWB 1〜WB Nを乗算した信号を送信すると、A局では受信信号RAijに既知信号TBijの逆数を乗算することにより、伝達関数行列は以下のように求められる。 First, when a signal obtained by multiplying the known signal TB ij by the weights W B 1 to W B N is transmitted, the station A multiplies the reception signal RA ij by the reciprocal of the known signal TB ij , so that the transfer function matrix is Asking.

Figure 2005191878
Figure 2005191878

Figure 2005191878
Figure 2005191878

Figure 2005191878
Figure 2005191878

Figure 2005191878
h’は本来の伝達関数hに対角行列Wを乗算した重み付き伝達関数となっている。さらに、WB 1〜WB NをA局に重み信号として送信しておく。
Figure 2005191878
h ′ is a weighted transfer function obtained by multiplying the original transfer function h by a diagonal matrix W. Further, W B 1 to W B N are transmitted to the A station as weight signals.

B局において重み付けを行った送信信号WB 1B 1〜WB NB Nを、A局において受信信号RB 1〜RB Nと伝達関数信号h’の逆行列を用いて解析する。受信信号RA 1〜RA Nは、 The transmission signals W B 1 T B 1 to W B N T B N weighted at the B station are analyzed using the inverse matrix of the received signals R B 1 to R B N and the transfer function signal h ′ at the A station. . The received signals R A 1 to R A N are

Figure 2005191878
Figure 2005191878

Figure 2005191878
と表すことができる。ここで、(11)式で得られるh’の逆行列からA局で得られる送受信局からの送信信号TB 1’〜TB N’は以下のように表せる。
Figure 2005191878
It can be expressed as. Here, the transmission signals T B 1 ′ to T B N ′ from the transmitting and receiving stations obtained at the A station from the inverse matrix of h ′ obtained by the equation (11) can be expressed as follows.

Figure 2005191878
行列gは伝達関数行列hの逆行列である。送信信号TB 1〜TB Nの絶対値が1に等しいとすると、i番目の信号のSNRi
Figure 2005191878
The matrix g is an inverse matrix of the transfer function matrix h. Assuming that the absolute values of the transmission signals T B 1 to T B N are equal to 1, the SNR i of the i-th signal is

Figure 2005191878
と表され、各信号のSNRを重みWiによって調節できることが示された。
Figure 2005191878
It was shown that the SNR of each signal can be adjusted by the weight W i .

また、A局からB局に送信を行うことを考える。このときA局から送信する際に用いる重みWA 1〜WA Nを求める必要がある。重み付き伝達関数行列h’とB局の重み値WB 1〜WB NからA局からB局への伝達係数行列Hは以下のように得られる。 Also consider transmission from station A to station B. It is necessary to obtain the weight W A 1 to W-A N used for transmitting from the time the A station. From the weighted transfer function matrix h ′ and the weight values W B 1 to W B N of the B station, the transfer coefficient matrix H from the A station to the B station is obtained as follows.

Figure 2005191878
よって、伝達係数行列Hの逆行列Gも同様に得られ、(|Gi12+|Gi22+…+|GiN2)の関数となるA局から送信される送信信号TA 1〜TA Nに条算する重みWA 1〜WA Nを算出することができる。
Figure 2005191878
Accordingly, the inverse matrix G of the transfer coefficient matrix H is obtained in the same manner, and the transmission signal T transmitted from the A station as a function of (| G i1 | 2 + | G i2 | 2 +... + | G iN | 2 ). it is possible to calculate the weight W a 1 ~W a N to Article calculated in a 1 ~T a N.

この実施形態において、各送受信装置の各アンテナ素子平均受信レベルの比が送受でほぼ等しい場合には、A局、B局間で重みWAおよびWBをやりとりする必要はなくなる。つまり、伝達係数行列の逆行列Gに以下のような関係が成り立つときを考える。 In this embodiment, when the ratio of each antenna element average received level of each transceiver device is substantially equal in transmission and reception is, A station, no longer need to interact weights W A and W B between B station. That is, consider a case where the following relationship holds in the inverse matrix G of the transfer coefficient matrix.

Figure 2005191878
ここで、A局においてB局からの送信信号を受信した後、B局に対し送信信号TA 1〜TA Nを送信する場合でみてみる。
Figure 2005191878
Here, let us consider a case where the transmission signals T A 1 to T A N are transmitted to the B station after the transmission signal from the B station is received at the A station.

この場合には、A局においてB局の重みWB 1〜WB Nが乗算されている伝達係数行列h’の逆行列から(24)式のようにB局の送信信号TB 1〜TB Nを得ることができる。ただし、送信する際にA局の送信信号TA 1〜TA Nにかける重みを計算する際には(26)式のようにB局の重みを用いての補正を行わず、伝達行列h’の転置行列H’の逆行列G’から求めてもよい。 In this case, from the inverse matrix of the transfer coefficient matrix h ′ multiplied by the weights W B 1 to W B N of the B station in the A station, the transmission signals T B 1 to T B of the B station are obtained as shown in the equation (24). B N can be obtained. However, when calculating the weight applied to the transmission signals T A 1 to T A N of the A station at the time of transmission, the transfer matrix h is not corrected using the weight of the B station as shown in the equation (26). You may obtain | require from the inverse matrix G 'of the transposed matrix H'.

B局の重みWB 1〜WB Nを用いずに、単に重み付き伝達係数行列の転置行列H’から逆行列G’を導出し、(|G’i12+|G’i22+…+|G’iN2)から導出することになる。このGとG’との間には下式のような関係がある。 Without using the B station weights W B 1 to W B N , the inverse matrix G ′ is simply derived from the transposed matrix H ′ of the weighted transfer coefficient matrix, and (| G ′ i1 | 2 + | G ′ i2 | 2 + ... + | G ' iN | 2 ). There is a relationship between G and G ′ as shown in the following equation.

Figure 2005191878
このとき、(|Gi12+|Gi22+…+|GiN2)と(|G’i12+|G’i22+…+|G’iN2)との関係は、
Figure 2005191878
At this time, (| G i1 | 2 + | G i2 | 2 +... + | G iN | 2 ) and (| G ′ i1 | 2 + | G ′ i2 | 2 +... + | G ′ iN | 2 ) The relationship

Figure 2005191878
と表すことができ、重みWB 1〜WB Nによる補正をしなくても、A局の重みWA 1〜WA Nを求めることができる。
Figure 2005191878
Can be expressed as, without correction by weight W B 1 ~W B N, it is possible to obtain the weight W A 1 to W-A N of A station.

既知新Tijを重みを乗算せずに送信する場合には、ここではB局からA局に送信するときを考えると、B局から送信された既知信号TBijはA局で以下のようにRAijとして得られる。 In the case of transmitting the known new T ij without multiplying the weight, here, considering the case of transmitting from the B station to the A station, the known signal TB ij transmitted from the B station is as follows at the A station. Obtained as RA ij .

Figure 2005191878
ここでTBijの逆行列を乗算することで、伝達係数行列hを得ることができる。ただし、B局より送信信号に重み付けした信号WB 1B 1〜WB 1B Nを送信した場合には、伝達係数行列hの逆行列と受信信号RA 1’〜RA N’から送信信号TB 1’〜TB N’を得ることができる。ただし、このTB 1’〜TB N’は
Figure 2005191878
Here, the transfer coefficient matrix h can be obtained by multiplying the inverse matrix of TB ij . However, when transmitting weighted signals W B 1 T B 1 ~W B 1 T B N in a transmission signal from the B station, the received signal R A 1 and inverse propagation coefficient matrix h '~R A N' Can obtain transmission signals T B 1 ′ to T B N ′. However, T B 1 'to T B N ' are

Figure 2005191878
と表すことができ、B局において乗算された重みWB 1〜WB Nにより補正される必要がある。
Figure 2005191878
And needs to be corrected by weights W B 1 to W B N multiplied at station B.

重み値W1〜WNを決定する方法としては例えば誤り率が最小になるように制御する方法や全SNRがほぼ一定になるように制御する方法が考えられる。また、伝搬環境に応じて各制御方法を切り替える方法も用いることができる
(第二実施形態)
第一実施形態の重み値決定手段の一形態を図面を参照して説明する。図2は本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図である。
As a method for determining the weight values W 1 to W N, for example, a method for controlling the error rate to be minimum or a method for controlling the total SNR to be substantially constant can be considered. Moreover, the method of switching each control method according to propagation environment can also be used (2nd embodiment).
One form of the weight value determination means of 1st embodiment is demonstrated with reference to drawings. FIG. 2 is a block diagram showing weight value determining means of the multi-element antenna system transmission apparatus according to the embodiment of the present invention.

図2において符号310は転置行列演算手段、320は逆行列演算手段、330は送信電力比決定手段、340は送信電力設定手段、350は重み値出力手段である。伝達関数推定手段によって推定された伝達関数行列を転置行列演算手段310において転置演算を行い、生成された行列に逆行列演算手段320において逆行列演算を行い、送信電力比決定手段330に出力する。   In FIG. 2, reference numeral 310 denotes a transposed matrix calculation means, 320 denotes an inverse matrix calculation means, 330 denotes a transmission power ratio determination means, 340 denotes a transmission power setting means, and 350 denotes a weight value output means. The transfer function matrix estimated by the transfer function estimating means is transposed by the transposed matrix calculating means 310, the inverse matrix calculating means 320 is subjected to the inverse matrix calculation by the inverse matrix calculating means 320, and is output to the transmission power ratio determining means 330.

上記送信電力比決定手段330では送信電力比を決定し、重み値出力手段350では、送信電力設定手段340の出力信号と送信電力比決定手段330の出力信号を入力信号とし、各振幅変換装置の重み値を決定してN個の振幅変換装置に出力する。   The transmission power ratio determining means 330 determines the transmission power ratio, and the weight value output means 350 uses the output signal of the transmission power setting means 340 and the output signal of the transmission power ratio determination means 330 as input signals, and each amplitude converter The weight value is determined and output to N amplitude converters.

送信電力比決定手段において伝達関数行列の演算結果から各信号のSNRがほぼ等しくなるように送信電力比を決定する。重み値としては以下の式を満たすように制御する。   The transmission power ratio determining means determines the transmission power ratio from the calculation result of the transfer function matrix so that the SNRs of the respective signals are substantially equal. The weight value is controlled to satisfy the following formula.

Figure 2005191878
システムの要求条件によって決定するCは、例えば送信電力設定手段において設定される送信電力Ptに対し以下の式が成り立つように決める。
Figure 2005191878
Determined by the requirements of the system C, determined for example as the following equation with respect to the transmission power P t to be set in the transmission power setting means is established.

Figure 2005191878
このように制御することによってシステム全体の伝送品質を改善することができる。
Figure 2005191878
By controlling in this way, the transmission quality of the entire system can be improved.

すなわち、本発明実施例の多素子アンテナシステム用送信装置は、図1に示すように、N個のアンテナ素子241〜24Nと、このアンテナ素子241〜24Nにそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置231〜23Nと、この切り替え装置231〜23Nに接続され、受信時に各切り替え装置231〜23Nから出力されるN個の信号を入力信号とし、入力信号から伝達関数行列を推定して出力する伝達関数推定手段250と、この伝達関数推定手段250の出力信号を入力信号とし、N個の振幅変換装置221〜22Nの重み値を決定する重み値決定手段260と、N個の送信信号を発生させる送信機210と、この送信機210から発生したN個の送信信号をそれぞれ入力信号とし、この入力信号に振幅重み付けを行い、切り替え装置231〜23Nに送信信号を出力するN個の振幅変換装置221〜22Nとを備え、重み値決定手段260は、伝達関数行列に基づきN個の振幅変換装置221〜22Nの重み値をそれぞれ決定する手段を備えた多素子アンテナシステム用送信装置である。   That is, as shown in FIG. 1, the transmitter for a multi-element antenna system according to the embodiment of the present invention is connected to N antenna elements 241 to 24N and the antenna elements 241 to 24N. N switching devices 231 to 23N for switching between the switching devices 231 to 23N, and N signals output from the switching devices 231 to 23N at the time of reception are input signals, and a transfer function matrix is obtained from the input signals. Transfer function estimating means 250 for estimating and outputting, weight value determining means 260 for determining weight values of N amplitude converters 221 to 22N using the output signal of this transfer function estimating means 250 as an input signal, and N pieces The transmitter 210 that generates a transmission signal of N and the N transmission signals generated from the transmitter 210 are used as input signals, respectively. N amplitude conversion devices 221 to 22N that perform width weighting and output transmission signals to the switching devices 231 to 23N, and the weight value determination means 260 is based on the transfer function matrix and includes the N amplitude conversion devices 221 to 22N. It is the transmitter for multi-element antenna systems provided with the means to determine each weight value.

ここで、本実施例の特徴とするとこすは、重み値をそれぞれ決定する手段は、推定された伝達関数行列から、各信号のSignal−to−Noise Rasio(SNR)がほぼ等しくなるように前記N個の振幅変換装置の重みの値をそれぞれ決定するSNR均等化重み値決定手段を備えたところにある(請求項1)。   Here, as a feature of the present embodiment, the means for determining the weight values is that the N-to-Noise Radio (SNR) of each signal is substantially equal from the estimated transfer function matrix. SNR equalization weight value determining means for determining the weight value of each of the amplitude converters is provided (claim 1).

例えば、前記SNR均等化重み値決定手段は、図2に示すように、伝達関数推定手段250によって推定された伝達関数行列を入力信号とし、伝達関数行列の転置演算を行う転置行列演算手段310と、この転置行列演算手段310により生成された転置行列を入力信号とし、逆行列演算を行う逆行列演算手段320と、この逆行列演算手段320により生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段350に出力する送信電力比決定手段330と、送信電力を設定する送信電力設定手段340と、この送信電力設定手段340の出力信号と送信電力比とから重み値を決定しN個の振幅変換装置221〜22Nに出力する重み値出力手段350とを備え、送信電力比決定手段330は、送信されるN個の信号のSNRがほぼ等しくなるように送信電力比を決定する手段を備え、重み値出力手段350は、送信電力設定手段340で設定された送信電力となるように重み値を決定する手段を備える(請求項2)。   For example, as shown in FIG. 2, the SNR equalization weight value determining means uses a transfer function matrix estimated by the transfer function estimating means 250 as an input signal, and a transposed matrix calculating means 310 for performing a transpose operation of the transfer function matrix; The transposed matrix generated by the transposed matrix calculating means 310 is used as an input signal, the inverse matrix calculating means 320 for performing an inverse matrix operation, and the inverse matrix generated by the inverse matrix calculating means 320 as an input signal, and the transmission power ratio The transmission power ratio determining means 330 for determining the transmission power and outputting to the weight value output means 350, the transmission power setting means 340 for setting the transmission power, and determining the weight value from the output signal and the transmission power ratio of the transmission power setting means 340 Weight value output means 350 for outputting to the N amplitude converters 221 to 22N, and the transmission power ratio determining means 330 is configured to transmit SNRs of N signals to be transmitted. Means for determining the transmission power ratio so as to be substantially equal, and weight value output means 350 comprises means for determining the weight value so that the transmission power set by the transmission power setting means 340 is obtained. .

(第三実施形態)
第一実施形態の重み値決定手段の一形態を図面を参照して説明する。図3は本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図である。
(Third embodiment)
One form of the weight value determination means of 1st embodiment is demonstrated with reference to drawings. FIG. 3 is a block diagram showing weight value determining means of the multi-element antenna system transmitting apparatus in the embodiment of the present invention.

図3において符号410は転置行列演算手段、420は逆行列演算手段、430は送信電力比決定手段、440は送信電力設定手段、450は重み値出力手段、460は誤り率関数設定手段である。伝達関数推定手段によって推定された伝達関数行列を転置行列演算手段410において転置演算を行い、生成された行列に逆行列演算手段420において逆行列演算を行い、送信電力比決定手段430に出力する。誤り率関数設定手段460では信号のSNRと誤り率との間に成り立つ関数を設定し、上記送信電力比決定手段430では逆行列演算手段420と誤り率関数設定手段460の出力信号から送信電力比を決定する。   In FIG. 3, reference numeral 410 is a transposed matrix calculating means, 420 is an inverse matrix calculating means, 430 is a transmission power ratio determining means, 440 is a transmission power setting means, 450 is a weight value output means, and 460 is an error rate function setting means. The transfer function matrix estimated by the transfer function estimating means is transposed by the transposed matrix calculating means 410, the inverse matrix calculating means 420 is subjected to the inverse matrix calculation by the inverse matrix calculating means 420, and output to the transmission power ratio determining means 430. The error rate function setting means 460 sets a function that holds between the SNR of the signal and the error rate, and the transmission power ratio determination means 430 determines the transmission power ratio from the output signals of the inverse matrix calculation means 420 and the error rate function setting means 460. To decide.

送信電力設定手段440では、送信電力の電力を設定し、重み値出力手段350では上記送信電力比決定手段430と送信電力設定手段440の出力信号から各振幅変換装置の重み値を決定しN個の振幅変換装置に出力する。   Transmission power setting means 440 sets the power of transmission power, and weight value output means 350 determines the weight value of each amplitude converter from the output signals of transmission power ratio determination means 430 and transmission power setting means 440, and N Output to the amplitude converter.

SNRと誤り率との間にある関数で決まる関係があるときに、システム全体の誤り率が最小となるように送信電力比決定手段において送信電力比の設定を行い、この送信電力比と送信電力設定手段で設定される送信電力から重み値決定手段において重み値を決定する。つまり誤り率BERとSNRとの間に以下のような関係が成り立つときを考える。   When there is a relationship determined by a function between the SNR and the error rate, the transmission power ratio determining unit sets the transmission power ratio so that the error rate of the entire system is minimized, and the transmission power ratio and the transmission power are set. The weight value is determined by the weight value determining means from the transmission power set by the setting means. That is, consider the following relationship between the error rate BER and SNR.

Figure 2005191878
このときシステム全体のBERallは以下のように表せる。
Figure 2005191878
At this time, the BER all of the entire system can be expressed as follows.

Figure 2005191878
このBERallを最小にするような送信電力比を送信電力比決定手段によって決定することで伝送品質を改善する。
Figure 2005191878
Transmission quality is improved by determining the transmission power ratio that minimizes this BER all by the transmission power ratio determination means.

上記のような重み値の設定を行うことで誤り率の改善を行ったシミュレーション結果を示す。送信局にダイポールアンテナAt,Bt、受信局にダイポールアンテナAr,Brをそれぞれ具備した送受信系において、送信局および受信局のダイポールアンテナ素子は0.3λの間隔をおいて設置し、その指向性についてはモーメント法を用いて算出した結果を使用した。 A simulation result in which the error rate is improved by setting the weight values as described above will be shown. In the transmission / reception system in which the transmitting station has dipole antennas A t and B t and the receiving station has dipole antennas A r and B r , the dipole antenna elements of the transmitting station and the receiving station are installed with an interval of 0.3λ, About the directivity, the result calculated using the moment method was used.

ここで、2次元平面での8波伝搬環境を考え、そのうち4波の放出角と、到来角、および経路による位相ずれをランダムに与え、残る4波をダイポールアンテナAtの指向性が有利になるように放射角を与え、変調方式QPSKにおける誤り率を算出した。(11)式で表せる誤り率とSNRとの関係はレイリーフェージング環境における遅延波を考えないとして以下の条件を与えた。   Here, an eight-wave propagation environment on a two-dimensional plane is considered, and the emission angle of four waves, the arrival angle, and the phase shift due to the path are given randomly, and the directivity of the dipole antenna At becomes advantageous for the remaining four waves. Thus, the radiation angle was given, and the error rate in the modulation scheme QPSK was calculated. The relationship between the error rate and the SNR expressed by the equation (11) was given the following condition on the assumption that the delayed wave in the Rayleigh fading environment was not considered.

Figure 2005191878
このとき(12)式で表せるシステム全体のBERallが最小となるには重み値
1〜WNを次のように決定すればよい。
Figure 2005191878
At this time, the weight values W 1 to W N may be determined as follows in order to minimize the BER all of the entire system expressed by the equation (12).

Figure 2005191878
上記の重み値を用いて振幅制御を行った際に得られる改善を図9に示した。平均SNR35dBにおいてBERで約5dBの改善が見られる。
Figure 2005191878
FIG. 9 shows the improvement obtained when amplitude control is performed using the above weight values. An improvement of about 5 dB in BER is seen at an average SNR of 35 dB.

すなわち、本実施例の多素子アンテナシステム用送信装置の前記重み値をそれぞれ決定する手段は、推定された伝達関数行列から、誤り率が最小となるように前記N個の振幅変換装置の重みの値をそれぞれ決定する誤り率最小化重み値決定手段を備える(請求項3)。   That is, the means for determining each of the weight values of the transmitter for a multi-element antenna system of the present embodiment uses the weights of the N amplitude converters so as to minimize the error rate from the estimated transfer function matrix. Error rate minimizing weight value determining means for determining each value is provided.

例えば、図3に示すように、前記誤り率最小化重み値決定手段は、伝達関数推定手段250によって推定された伝達関数行列を入力信号とし、伝達関数行列の転置演算を行う転置行列演算手段410と、この転置行列演算手段410により生成された転置行列を入力信号とし、逆行列演算を行う逆行列演算手段420と、誤り率とSNRとの間に成り立つ関数を設定し、送信電力比決定手段430に出力する誤り率関数設定手段460と、この誤り率関数設定手段460の出力信号と逆行列演算手段420とにより生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段450に出力する送信電力比決定手段430と、送信電力を設定する送信電力設定手段440と、この送信電力設定手段440の出力信号と送信電力比とから重み値を決定しN個の振幅変換装置221〜22Nに出力する重み値出力手段450とを備え、送信電力比決定手段430は、送信される信号の誤り率が最小となるように送信電力比を決定する手段を備え、重み値出力手段450は、送信電力設定手段440で設定された送信電力となるように重み値を決定する手段を備える(請求項4)。   For example, as shown in FIG. 3, the error rate minimizing weight value determining means uses a transfer function matrix estimated by the transfer function estimating means 250 as an input signal, and a transposed matrix calculating means 410 for performing a transpose operation of the transfer function matrix. And a transposed matrix generated by the transposed matrix calculation means 410 as an input signal, an inverse matrix calculation means 420 for performing an inverse matrix calculation, and a function established between the error rate and the SNR, and a transmission power ratio determination means The error rate function setting means 460 for outputting to 430, the output signal of this error rate function setting means 460 and the inverse matrix generated by the inverse matrix calculation means 420 are used as input signals, the transmission power ratio is determined, and the weight value output means Transmission power ratio determining means 430 for outputting to 450, transmission power setting means 440 for setting transmission power, output signal of this transmission power setting means 440 and transmission power ratio, etc. Weight value output means 450 for determining the weight value and outputting it to the N amplitude converters 221 to 22N, and the transmission power ratio determining means 430 transmits the transmission power ratio so that the error rate of the transmitted signal is minimized. And the weight value output means 450 includes means for determining the weight value so as to be the transmission power set by the transmission power setting means 440. (Claim 4)

(第四実施形態)
図4は、第四実施形態の装置構成を示す図であり、多素子アンテナ送受信装置を示すブロック図である。受信信号から相手通信局の決定した各アンテナにかける重みを解析し、その重みを用いた送信信号を送信する。また、信号受信時に推定される伝達関数から通信相手局の各アンテナの送信電力にかける重みを決定し、重み信号として送信することで、送受信装置間の伝送品質の改善を行う形態を示している。
(Fourth embodiment)
FIG. 4 is a diagram showing a device configuration of the fourth embodiment, and is a block diagram showing a multi-element antenna transmission / reception device. A weight applied to each antenna determined by the partner communication station from the received signal is analyzed, and a transmission signal using the weight is transmitted. Also, a mode is shown in which the weight applied to the transmission power of each antenna of the communication partner station is determined from the transfer function estimated at the time of signal reception, and is transmitted as a weight signal, thereby improving the transmission quality between the transmitting and receiving apparatuses. .

図4において符号510は送信機、符号521〜52Nは振幅変換装置、531〜53Nは送受信切り替え装置、541〜54Nはアンテナ素子、551〜55Nは分岐装置、560は振幅制御装置、570は受信機、580は重み値決定手段である。   In FIG. 4, reference numeral 510 is a transmitter, reference numerals 521 to 52N are amplitude conversion apparatuses, 531 to 53N are transmission / reception switching apparatuses, 541 to 54N are antenna elements, 551 to 55N are branching apparatuses, 560 is an amplitude control apparatus, and 570 is a receiver. Reference numeral 580 denotes a weight value determining means.

送信機510からは受信機570から出力された重み信号と送信信号とが出力され、振幅変換装置521〜52Nでは送信機からの出力信号を入力信号とし、k番目(1〜Nの整数)の信号に対し後述する振幅制御装置によって出力される重みWkを乗算し、アンテナ素子541〜54Nに出力する。また、アンテナ素子541〜54Nにおいて受信された受信信号は分岐装置551〜55Nにより受信機と振幅制御装置とに分岐される。振幅制御装置では、通信相手より送信された重み信号から送信時にk番目の振幅変換装置において乗算する重みWkを求め、振幅変換装置に出力する。受信機においては伝達関数を推定し、復号を行うと共に、伝達関数を重み値決定手段に出力する。重み値決定手段では伝達関数から相手送受信装置の振幅変換装置にかける重みを算出し、送信機に出力する。   The transmitter 510 outputs the weight signal and the transmission signal output from the receiver 570, and the amplitude converters 521 to 52N use the output signal from the transmitter as an input signal, and are k-th (1 to N integers). The signal is multiplied by a weight Wk output by an amplitude control device, which will be described later, and output to antenna elements 541 to 54N. The reception signals received by the antenna elements 541 to 54N are branched by the branching devices 551 to 55N into the receiver and the amplitude control device. In the amplitude control device, a weight Wk to be multiplied in the k-th amplitude converter at the time of transmission is obtained from the weight signal transmitted from the communication partner, and is output to the amplitude converter. In the receiver, the transfer function is estimated and decoded, and the transfer function is output to the weight value determining means. The weight value determining means calculates a weight to be applied to the amplitude converter of the counterpart transmission / reception device from the transfer function and outputs it to the transmitter.

A局とB局との間で通信を行うことを考える。A局よりまず既知の信号TAijを送信すると、B局では受信される受信信号RBijから伝達系列行列は以下のように算出される。 Consider communication between the A station and the B station. When the station A first transmits a known signal TA ij , the station B calculates a transfer sequence matrix from the received signal RB ij as follows.

Figure 2005191878
Figure 2005191878

Figure 2005191878
A局から送信される送信信号TA 1〜TA Nは、受信信号RB 1〜RB Nに伝達係数行列の逆数を乗算することで求めることができる。このとき、B局はA局の振幅変換装置において乗算する最適な重みWA 1〜WA Nを、伝達係数行列Hの逆行列Gから算出することができる。
Figure 2005191878
The transmission signals T A 1 to T A N transmitted from the station A can be obtained by multiplying the reception signals R B 1 to R B N by the reciprocal of the transfer coefficient matrix. At this time, the B station can calculate the optimum weights W A 1 to W A N multiplied by the amplitude converter of the A station from the inverse matrix G of the transfer coefficient matrix H.

次にB局からA局に送信するときには再び既知の信号TBijと受信信号RBijから伝達係数行列hを同様に求める。B局から送信された送信信号TA 1〜TA Nは伝達係数行列の逆行列を乗算することで求めることができる。ここで、B局から送信された重み信号から送信信号TA 1〜TA Nに乗算する重みWA 1〜WA Nを得、また、伝達係数行列hからB局の送信信号に乗算する最適な重みWB 1〜WB Nを算出することができる。 Next, when transmitting from the B station to the A station, the transfer coefficient matrix h is similarly obtained from the known signal TB ij and the received signal RB ij again. Transmission signals T A 1 to T A N transmitted from station B can be obtained by multiplying the inverse matrix of the transfer coefficient matrix. Here, to obtain a weight W A 1 ~W A N for multiplying the weight signal sent from B station to the transmission signal T A 1 ~T A N, also multiplies the transfer coefficient matrix h the transmission signal B station Optimal weights W B 1 to W B N can be calculated.

再びA局から送信を行う際には既知の信号TAijを送信した後、送信信号に重みを乗算した信号WA 1A 1〜WA NA Nを送信する。B局における受信信号RB 1〜RB Nと伝達係数行列hの逆行列、およびA局の重みWA 1〜WA Nから、得られる送信信号TA 1’〜TA N’は以下のように表せる。 After transmitting a known signal TA ij, and transmits the multiplied weighting the transmission signal signal W A 1 T A 1 ~W A N T A N when performing transmission from the A station again. The transmission signals T A 1 ′ to T A N ′ obtained from the received signals R B 1 to R B N and the inverse matrix of the transfer coefficient matrix h and the weights W A 1 to W A N of the A station are as follows: It can be expressed as

Figure 2005191878
Figure 2005191878

Figure 2005191878
各送信信号のSNRiは次のようになる。
Figure 2005191878
The SNR i of each transmission signal is as follows.

Figure 2005191878
よって第一実施形態と同様に振幅制御を行えることが示された。
Figure 2005191878
Therefore, it was shown that amplitude control can be performed as in the first embodiment.

(第五実施形態)
第四実施形態の重み値決定手段の一形態を図面を参照して説明する。図5は本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図である。
(Fifth embodiment)
One form of the weight value determination means of 4th embodiment is demonstrated with reference to drawings. FIG. 5 is a block diagram showing weight value determining means of the multi-element antenna system transmission apparatus according to the embodiment of the present invention.

図5において符号620は逆行列演算手段、630は送信電力比決定手段、640は相手局送信電力設定手段、650は重み値出力手段である。伝達関数推定手段によって推定された伝達関数行列を逆行列演算手段620において逆行列演算を行い、送信電力比決定手段630に出力する。上記送信電力比決定手段630では送信電力比を決定し、重み値出力手段650では、相手局送信電力設定手段640の出力信号と送信電力比決定手段630の出力信号とを入力信号とし、各振幅変換装置の重み値を決定しN個の振幅変換装置に出力する。   In FIG. 5, reference numeral 620 denotes an inverse matrix calculation means, 630 denotes a transmission power ratio determination means, 640 denotes a counterpart station transmission power setting means, and 650 denotes a weight value output means. The transfer function matrix estimated by the transfer function estimation means is subjected to inverse matrix calculation in the inverse matrix calculation means 620 and output to the transmission power ratio determination means 630. The transmission power ratio determining means 630 determines the transmission power ratio, and the weight value output means 650 uses the output signal of the counterpart station transmission power setting means 640 and the output signal of the transmission power ratio determination means 630 as input signals, and each amplitude. The weight value of the converter is determined and output to N amplitude converters.

送信電力比決定手段において伝達関数行列の演算結果から各信号のSNRがほぼ等しくなるように送信電力比を決定する。このように制御することによってシステム全体の伝送品質を改善することができる。   The transmission power ratio determining means determines the transmission power ratio from the calculation result of the transfer function matrix so that the SNRs of the respective signals are substantially equal. By controlling in this way, the transmission quality of the entire system can be improved.

すなわち、本実施例の多素子アンテナシステム用送信装置は、図4に示すように、N個のアンテナ素子541〜54Nと、このアンテナ素子541〜54Nにそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置531〜53Nと、この切り替え装置531〜53Nに接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、2つの信号にそれぞれ分岐する分岐装置551〜55Nと、この分岐装置551〜55Nにより分岐された一方の出力を入力信号とし、入力信号に含まれる相手局の重み値決定手段により決定された重み値を取り出し、各振幅変換装置521〜52Nの重みを決定する振幅制御装置560と、分岐装置551〜55Nにより分岐された他方の出力を入力信号とし、入力信号から推定された伝達関数行列を重み値決定手段580に出力し、復号を行う受信機570と、この受信機570から出力される伝達関数行列を入力信号とし、伝達関数行列から相手局の各振幅変換装置により乗算された重みを算出し、送信機510に重み信号を出力する重み値決定手段580と、アンテナ数と同数の送信信号を発生させる送信機510と、この送信機510からの信号を入力信号とし、各信号に振幅重み付けを行い、切り替え装置531〜53Nの他方のポートへの入力信号を生成する振幅変換装置521〜52Nとを備え、重み値決定手段580は、送受信装置の間で交互に行われる送受信に伴い推定された伝達関数行列に基づいて決定された相手局のN個の振幅変換装置521〜52Nの重み値を送信機510へ出力する手段を備え、送信機510は、相手局への情報信号と重み信号とを出力する手段を備えた多素子アンテナシステム用送信装置である。   That is, as shown in FIG. 4, the transmission device for a multi-element antenna system of this embodiment is connected to N antenna elements 541 to 54N and the antenna elements 541 to 54N, and transmits transmission signals and reception signals. N switching devices 531 to 53N to be switched, and branching devices 551 to 551 which are connected to the switching devices 531 to 53N and branch into two signals using N signals output from the switching devices at the time of reception as input signals. 55N and one of the outputs branched by the branching devices 551 to 55N is used as an input signal, the weight value determined by the weight value determining means of the counterpart station included in the input signal is taken out, and the amplitude conversion devices 521 to 52N The amplitude control device 560 for determining the weight and the other output branched by the branch devices 551 to 55N are used as the input signal, and the input signal Output to the weight value determining means 580, the receiver 570 that performs decoding, and the transfer function matrix output from the receiver 570 as input signals. A weight value determining means 580 for calculating a weight multiplied by the conversion device and outputting a weight signal to the transmitter 510, a transmitter 510 for generating the same number of transmission signals as the number of antennas, and a signal from the transmitter 510 Amplitude converters 521 to 52N are provided as input signals, amplitude-weighted to the respective signals, and generated as input signals to the other ports of the switching devices 531 to 53N. The weight value determining means 580 is provided between the transmitting and receiving devices. The weight values of the N amplitude converters 521 to 52N of the counterpart station determined based on the transfer function matrix estimated with the transmission and reception performed alternately are output to the transmitter 510. Comprising means, transmitter 510 is a multi-element transmitting device antenna system comprising means for outputting the information signal and the weight signal to the other station.

ここで、本実施例の特徴とするところは、重み値決定手段580は、受信機570によって推定された伝達関数行列を入力信号とし、この伝達関数行列から各信号のSNRがほぼ等しくなるように相手局のN個の振幅変換装置の重みを決定するSNR均等化重み値決定手段を備えたところにある(請求項5)。   Here, the feature of the present embodiment is that the weight value determining means 580 uses the transfer function matrix estimated by the receiver 570 as an input signal, and the SNR of each signal is substantially equal from this transfer function matrix. SNR equalization weight value determining means for determining the weights of the N amplitude converters of the counterpart station is provided.

例えば、前記SNR均等化重み値決定手段は、図5に示すように、受信機570によって推定された伝達関数行列を入力信号とし、伝達関数行列の逆行列演算を行う逆行列演算手段620と、この逆行列演算手段620により生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段650に出力する送信電力比決定手段630と、相手局送信電力を設定する相手局送信電力設定手段640と、この相手局送信電力設定手段640の出力信号と送信電力比とから相手局の重み値を決定し送信機510に出力する重み値出力手段650とを備え、送信電力比決定手段630は、相手局により送信されるN個の信号のSNRがほぼ等しくなるように送信電力比を決定する手段を備え、重み値出力手段650は、相手局送信電力設定手段640により設定された送信電力となるように相手局の重み値を決定する手段を備える(請求項6)。   For example, as shown in FIG. 5, the SNR equalization weight value determination means uses an inverse matrix calculation means 620 for performing an inverse matrix calculation of the transfer function matrix using the transfer function matrix estimated by the receiver 570 as an input signal, The inverse matrix generated by the inverse matrix calculating means 620 is used as an input signal, the transmission power ratio determining means 630 for determining the transmission power ratio and outputting it to the weight value output means 650, and the counterpart station transmission power for setting the counterpart station transmission power. A setting means 640; and a weight value output means 650 for determining a weight value of the counterpart station from the output signal of the counterpart station transmission power setting means 640 and the transmission power ratio and outputting the same to the transmitter 510, and a transmission power ratio determination means 630 includes means for determining the transmission power ratio so that the SNRs of the N signals transmitted by the counterpart station are substantially equal, and the weight value output means 650 is a counter station transmission power setting unit. As a transmission power set by 640 comprises means for determining the weight value of the other station (claim 6).

(第六実施形態)
第四実施形態の重み値決定手段の一形態を図面を参照して説明する。図6は本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図である。
(Sixth embodiment)
One form of the weight value determination means of 4th embodiment is demonstrated with reference to drawings. FIG. 6 is a block diagram showing weight value determining means of the multi-element antenna system transmission apparatus according to the embodiment of the present invention.

図6において720は逆行列演算手段、730は送信電力比決定手段、740は相手局送信電力設定手段、750は重み値出力手段、760は誤り率関数設定手段である。伝達関数推定手段によって推定された伝達関数行列を逆行列演算手段720において逆行列演算を行い、送信電力比決定手段730に出力する。誤り率関数設定手段760では信号のSNRと誤り率との間に成り立つ関数を設定し、上記送信電力比決定手段730では逆行列演算手段720と誤り率関数設定手段760の出力信号から送信電力比を決定する。相手局送信電力設定手段740では送信電力の電力を設定し、重み値出力手段750では上記送信電力比決定手段730と相手局送信電力設定手段740の出力信号から各振幅変換装置の重み値を決定しN個の振幅変換装置に出力する。   In FIG. 6, 720 is an inverse matrix calculation means, 730 is a transmission power ratio determination means, 740 is a partner station transmission power setting means, 750 is a weight value output means, and 760 is an error rate function setting means. The transfer function matrix estimated by the transfer function estimation means is subjected to inverse matrix calculation in the inverse matrix calculation means 720 and output to the transmission power ratio determination means 730. The error rate function setting means 760 sets a function that holds between the SNR of the signal and the error rate, and the transmission power ratio determination means 730 determines the transmission power ratio from the output signals of the inverse matrix calculation means 720 and the error rate function setting means 760. To decide. The partner station transmission power setting means 740 sets the power of the transmission power, and the weight value output means 750 determines the weight value of each amplitude converter from the output signals of the transmission power ratio determination means 730 and the partner station transmission power setting means 740. And output to N amplitude converters.

SNRと誤り率との間にある関数で決まる関係があるときに、システム全体の誤り率が最小となるように送信電力比決定手段において送信電力比を決定することでシステム全体の伝送品質を改善する。   When there is a relationship determined by a function between SNR and error rate, the transmission power ratio is determined by the transmission power ratio determining means so that the error rate of the entire system is minimized, thereby improving the transmission quality of the entire system. To do.

すなわち、本実施例の多素子アンテナシステム用送信装置の前記重み値決定手段580は、受信機570によって推定された伝達関数行列を入力信号とし、この伝達関数行列から誤り率が最小となるように相手局の前記N個の振幅変換装置の重みを決定する誤り率最小化重み値決定手段を備える(請求項7)。   That is, the weight value determining means 580 of the transmitter for a multi-element antenna system of this embodiment uses the transfer function matrix estimated by the receiver 570 as an input signal so that the error rate is minimized from this transfer function matrix. Error rate minimizing weight value determining means for determining the weight of the N amplitude converters of the counterpart station is provided.

例えば、前記誤り率最小化重み値決定手段は、図6に示すように、受信機570によって推定された伝達関数行列を入力信号とし、この伝達関数行列の逆行列演算を行う逆行列演算手段720と、誤り率とSNRとの間に成り立つ関数を設定し、送信電力比決定手段730に出力する誤り率関数設定手段760と、この誤り率関数設定手段760の出力信号と逆行列演算手段720により生成された逆行列とを入力信号とし、送信電力比を決定し重み値出力手段750に出力する送信電力比決定手段730と、相手局の送信電力を設定する相手局送信電力設定手段740と、この相手局送信電力設定手段740の出力信号と送信電力比とから相手局の重み値を決定し送信機510に出力する重み値出力手段750とを備え、送信電力比決定手段730は、相手局から送信される信号の誤り率が最小となるように相手局の送信電力比を決定する手段を備え、重み値出力手段750は、相手局送信電力設定手段740で設定された送信電力になるように重み値を決定する手段とを備える(請求項8)。   For example, the error rate minimizing weight value determining means, as shown in FIG. 6, uses the transfer function matrix estimated by the receiver 570 as an input signal, and the inverse matrix calculating means 720 for performing the inverse matrix calculation of this transfer function matrix. And an error rate function setting unit 760 that sets a function that is established between the error rate and the SNR and outputs the function to the transmission power ratio determining unit 730, and an output signal of the error rate function setting unit 760 and an inverse matrix calculation unit 720. The generated inverse matrix is used as an input signal, the transmission power ratio determining means 730 for determining the transmission power ratio and outputting it to the weight value output means 750, the counterpart station transmission power setting means 740 for setting the transmission power of the counterpart station, Weight value output means 750 for determining the weight value of the partner station from the output signal of the partner station transmission power setting means 740 and the transmission power ratio and outputting the weight value to the transmitter 510. 730 includes means for determining the transmission power ratio of the counterpart station so that the error rate of the signal transmitted from the counterpart station is minimized, and the weight value output means 750 is set by the counterpart station transmission power setting means 740 Means for determining a weight value so as to obtain transmission power.

(第七実施形態)
以下に送信アンテナ数を環境に応じて変化させる第三の実施形態を示す。各アンテナ素子への出力に重み付けを行う送受信装置において、例えば、所要誤り率などの所要伝送品質が定まっている場合には、送信アンテナ毎に決定した重みと伝達係数行列から伝送品質を推定し、所要伝送品質が得られる送信アンテナ数を求め、その結果を送信局にフィードバックし、送信アンテナ数を変化させ、送信電力を再配分する。このようにすることで、伝送品質が著しく劣化したアンテナを用いないようにすることができるため、伝送品質の改善が可能となる(請求項9)。
(Seventh embodiment)
A third embodiment in which the number of transmission antennas is changed according to the environment will be described below. In the transmission / reception apparatus that weights the output to each antenna element, for example, when the required transmission quality such as the required error rate has been determined, the transmission quality is estimated from the weight and transmission coefficient matrix determined for each transmission antenna, The number of transmission antennas that can achieve the required transmission quality is obtained, the result is fed back to the transmission station, the number of transmission antennas is changed, and the transmission power is redistributed. By doing so, it is possible not to use an antenna whose transmission quality is significantly deteriorated, so that it is possible to improve the transmission quality (claim 9).

本発明によれば、複数のアンテナ素子により送信した各信号のSNRのばらつきを少なくし、伝送品質を改善することができるため、品質の高い通信を実現することができるため、ユーザのサービス品質を向上させ、ユーザ勧誘に寄与することができる。   According to the present invention, it is possible to reduce the SNR variation of each signal transmitted by a plurality of antenna elements and improve the transmission quality, so that high quality communication can be realized. It can improve and contribute to user solicitation.

本発明の実施形態における多素子アンテナシステム用送信装置を示すブロック図(第一実施形態)。The block diagram which shows the transmitter for multi-element antenna systems in embodiment of this invention (1st embodiment). 本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図(第二実施形態)。The block diagram which shows the weight value determination means of the multi-element antenna system transmitter in embodiment of this invention (2nd embodiment). 本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図(第三実施形態)。The block diagram which shows the weight value determination means of the multi-element antenna system transmitter in embodiment of this invention (3rd embodiment). 第四実施形態の装置構成を示す図であり、多素子アンテナ送受信装置を示すブロック図。It is a figure which shows the apparatus structure of 4th embodiment, and is a block diagram which shows a multi-element antenna transmission / reception apparatus. 本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図(第五実施形態)。The block diagram which shows the weight value determination means of the multi-element antenna system transmitter in embodiment of this invention (5th embodiment). 本発明の実施形態における多素子アンテナシステム送信装置の重み値決定手段を示すブロック図(第六実施形態)。The block diagram which shows the weight value determination means of the multi-element antenna system transmission apparatus in embodiment of this invention (6th embodiment). 従来の装置によって形成されるビームパターンを示す図。The figure which shows the beam pattern formed with the conventional apparatus. 本発明の装置によって形成されたビームパターンを示す図。The figure which shows the beam pattern formed with the apparatus of this invention. 本実施例の重み値を用いて振幅制御を行った際に得られる改善を示す図。The figure which shows the improvement obtained when amplitude control is performed using the weight value of a present Example. 従来の伝搬環境の推定を行う適応アンテナ装置を示す図。The figure which shows the adaptive antenna apparatus which estimates the conventional propagation environment.

符号の説明Explanation of symbols

110、210、510 送信機
170、570 受信機
131〜13N、231〜23N、531〜53N (送受信)切り替え装置
141〜14N、241〜24N、541〜54N アンテナ素子
221〜22N、521〜52N 振幅変換装置
250 伝達関数推定手段
260、580 重み値決定手段
310、410 転置行列演算手段
320、420、620、720 逆行列演算手段
330、430、630、730 送信電力比決定手段
340、440 送信電力設定手段
350、450、650、750 重み値出力手段
460、760 誤り率関数設定手段
551〜55N 分岐装置
560 振幅制御装置
640、740 相手局送信電力設定手段
110, 210, 510 Transmitter 170, 570 Receiver 131-13N, 231-23N, 531-53N (Transmission / reception) switching devices 141-14N, 241-24N, 541-54N Antenna elements 221-22N, 521-52N Amplitude conversion Device 250 Transfer function estimating means 260, 580 Weight value determining means 310, 410 Transposed matrix calculating means 320, 420, 620, 720 Inverse matrix calculating means 330, 430, 630, 730 Transmission power ratio determining means 340, 440 Transmission power setting means 350, 450, 650, 750 Weight value output means 460, 760 Error rate function setting means 551-55N Branch device 560 Amplitude control devices 640, 740 Counter station transmission power setting means

Claims (9)

N個のアンテナ素子と、
このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、
この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、入力信号から伝達関数行列を推定して出力する伝達関数推定手段と、
この伝達関数推定手段の出力信号を入力信号とし、N個の振幅変換装置の重み値を決定する重み値決定手段と、
N個の送信信号を発生させる送信機と、
この送信機から発生したN個の送信信号をそれぞれ入力信号とし、この入力信号に振幅重み付けを行い、前記切り替え装置に送信信号を出力する前記N個の振幅変換装置と
を備え、
前記重み値決定手段は、伝達関数行列に基づき前記N個の振幅変換装置の重み値をそれぞれ決定する手段を備えた
多素子アンテナシステム用送信装置において、
前記重み値をそれぞれ決定する手段は、推定された伝達関数行列から、各信号のSignal−to−Noise Rasio(SNR)がほぼ等しくなるように前記N個の振幅変換装置の重みの値をそれぞれ決定するSNR均等化重み値決定手段を備えた
ことを特徴とする多素子アンテナシステム用送信装置。
N antenna elements;
N switching devices respectively connected to the antenna element and switching between a transmission signal and a reception signal;
Transfer function estimation means connected to the switching device and receiving N signals output from each switching device at the time of reception as input signals, estimating a transfer function matrix from the input signals,
A weight value determining means for determining the weight value of the N amplitude converters using the output signal of the transfer function estimating means as an input signal;
A transmitter for generating N transmission signals;
N transmission signals generated from the transmitter are used as input signals, amplitude weighting is performed on the input signals, and the N amplitude conversion devices output the transmission signals to the switching device.
In the transmission device for a multi-element antenna system, the weight value determination means includes means for determining weight values of the N amplitude converters based on a transfer function matrix.
The means for determining the weight values respectively determines the weight values of the N amplitude converters from the estimated transfer function matrix so that the signal-to-noise ratio (SNR) of each signal is substantially equal. A transmitter for a multi-element antenna system, comprising: SNR equalization weight value determining means for performing
前記SNR均等化重み値決定手段は、
前記伝達関数推定手段によって推定された伝達関数行列を入力信号とし、伝達関数行列の転置演算を行う転置行列演算手段と、
この転置行列演算手段により生成された転置行列を入力信号とし、逆行列演算を行う逆行列演算手段と、
この逆行列演算手段により生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、
送信電力を設定する送信電力設定手段と、
この送信電力設定手段の出力信号と送信電力比とから重み値を決定しN個の前記振幅変換装置に出力する重み値出力手段と
を備え、
前記送信電力比決定手段は、送信されるN個の信号のSNRがほぼ等しくなるように送信電力比を決定する手段を備え、
前記重み値出力手段は、前記送信電力設定手段で設定された送信電力となるように重み値を決定する手段を備えた
請求項1記載の多素子アンテナシステム用送信装置。
The SNR equalization weight value determining means includes:
A transfer function matrix estimated by the transfer function estimation means as an input signal, and a transpose matrix calculation means for performing a transfer function matrix transfer;
An inverse matrix operation means for performing an inverse matrix operation using the transpose matrix generated by the transpose matrix operation means as an input signal;
Transmission power ratio determining means for determining the transmission power ratio and outputting it to the weight value output means using the inverse matrix generated by the inverse matrix calculation means as an input signal;
Transmission power setting means for setting transmission power;
A weight value output means for determining a weight value from the output signal of the transmission power setting means and the transmission power ratio and outputting the weight value to the N amplitude converters;
The transmission power ratio determining means includes means for determining a transmission power ratio so that SNRs of N signals to be transmitted are substantially equal,
The transmission device for a multi-element antenna system according to claim 1, wherein the weight value output means includes means for determining a weight value so as to be the transmission power set by the transmission power setting means.
N個のアンテナ素子と、
このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、
この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、入力信号から伝達関数行列を推定して出力する伝達関数推定手段と、
この伝達関数推定手段の出力信号を入力信号とし、N個の振幅変換装置の重み値を決定する重み値決定手段と、
N個の送信信号を発生させる送信機と、
この送信機から発生したN個の送信信号をそれぞれ入力信号とし、この入力信号に振幅重み付けを行い、前記切り替え装置に送信信号を出力する前記N個の振幅変換装置と
を備え、
前記重み値決定手段は、伝達関数行列に基づき前記N個の振幅変換装置の重み値をそれぞれ決定する手段を備えた
多素子アンテナシステム用送信装置において、
前記重み値をそれぞれ決定する手段は、推定された伝達関数行列から、誤り率が最小となるように前記N個の振幅変換装置の重みの値をそれぞれ決定する誤り率最小化重み値決定手段を備えた
ことを特徴とする多素子アンテナシステム用送信装置。
N antenna elements;
N switching devices respectively connected to the antenna element and switching between a transmission signal and a reception signal;
Transfer function estimation means connected to the switching device and receiving N signals output from each switching device at the time of reception as input signals, estimating a transfer function matrix from the input signals,
A weight value determining means for determining the weight value of the N amplitude converters using the output signal of the transfer function estimating means as an input signal;
A transmitter for generating N transmission signals;
N transmission signals generated from the transmitter are used as input signals, amplitude weighting is performed on the input signals, and the N amplitude conversion devices output the transmission signals to the switching device.
In the transmission device for a multi-element antenna system, the weight value determination means includes means for determining weight values of the N amplitude converters based on a transfer function matrix.
The means for determining each of the weight values includes an error rate minimizing weight value determining means for determining the weight values of the N amplitude converters from the estimated transfer function matrix so that the error rate is minimized. A transmitter for a multi-element antenna system, comprising:
前記誤り率最小化重み値決定手段は、
前記伝達関数推定手段によって推定された伝達関数行列を入力信号とし、伝達関数行列の転置演算を行う転置行列演算手段と、
この転置行列演算手段により生成された転置行列を入力信号とし、逆行列演算を行う逆行列演算手段と、
誤り率とSNRとの間に成り立つ関数を設定し、送信電力比決定手段に出力する誤り率関数設定手段と、
この誤り率関数設定手段の出力信号と前記逆行列演算手段とにより生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、
送信電力を設定する送信電力設定手段と、
この送信電力設定手段の出力信号と送信電力比とから重み値を決定しN個の振幅変換装置に出力する重み値出力手段と
を備え、
前記送信電力比決定手段は、送信される信号の誤り率が最小となるように送信電力比を決定する手段を備え、
前記重み値出力手段は、前記送信電力設定手段で設定された送信電力となるように重み値を決定する手段を備えた
請求項3記載の多素子アンテナシステム用送信装置。
The error rate minimizing weight value determining means includes:
A transfer function matrix estimated by the transfer function estimation means as an input signal, and a transpose matrix calculation means for performing a transfer function matrix transfer;
An inverse matrix operation means for performing an inverse matrix operation using the transpose matrix generated by the transpose matrix operation means as an input signal;
An error rate function setting unit that sets a function that is established between the error rate and the SNR and outputs the function to the transmission power ratio determination unit;
Transmission power ratio determining means for determining the transmission power ratio and outputting it to the weight value output means using the output signal of the error rate function setting means and the inverse matrix generated by the inverse matrix calculating means as an input signal,
Transmission power setting means for setting transmission power;
Weight value output means for determining a weight value from the output signal of the transmission power setting means and the transmission power ratio and outputting it to N amplitude converters,
The transmission power ratio determining means includes means for determining a transmission power ratio so that an error rate of a signal to be transmitted is minimized,
The transmission device for a multi-element antenna system according to claim 3, wherein the weight value output means includes means for determining a weight value so as to be the transmission power set by the transmission power setting means.
N個のアンテナ素子と、
このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、
この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、2つの信号にそれぞれ分岐する分岐装置と、
この分岐装置により分岐された一方の出力を入力信号とし、入力信号に含まれる相手局の重み値決定手段により決定された重み値を取り出し、各振幅変換装置の重みを決定する振幅制御装置と、
前記分岐装置により分岐された他方の出力を入力信号とし、入力信号から推定された伝達関数行列を重み値決定手段に出力し、復号を行う受信機と、
この受信機から出力される伝達関数行列を入力信号とし、伝達関数行列から相手局の各振幅変換装置により乗算された重みを算出し、送信機に重み信号を出力する重み値決定手段と、
アンテナ数と同数の送信信号を発生させる前記送信機と、
この送信機からの信号を入力信号とし、各信号に振幅重み付けを行い、前記切り替え装置の他方のポートへの入力信号を生成する振幅変換装置と
を備え、
前記重み値決定手段は、送受信装置の間で交互に行われる送受信に伴い推定された伝達関数行列に基づいて決定された相手局の前記N個の振幅変換装置の重み値を前記送信機へ出力する手段を備え、
前記送信機は、相手局への情報信号と重み信号とを出力する手段を備えた
多素子アンテナシステム用送信装置において、
前記重み値決定手段は、前記受信機によって推定された伝達関数行列を入力信号とし、この伝達関数行列から各信号のSNRがほぼ等しくなるように相手局の前記N個の振幅変換装置の重みを決定するSNR均等化重み値決定手段を備えた
ことを特徴とする多素子アンテナシステム用送信装置。
N antenna elements;
N switching devices respectively connected to the antenna element and switching between a transmission signal and a reception signal;
A branching device connected to this switching device and having N signals output from each switching device at the time of reception as input signals and branching into two signals;
One output branched by this branching device is used as an input signal, the weight value determined by the weight value determining means of the counterpart station included in the input signal is extracted, and an amplitude control device that determines the weight of each amplitude converter,
The other output branched by the branching device is used as an input signal, a transfer function matrix estimated from the input signal is output to the weight value determining means, and a receiver that performs decoding;
The transfer function matrix output from this receiver is used as an input signal, the weight multiplied by each amplitude converter of the counterpart station is calculated from the transfer function matrix, and weight value determining means for outputting a weight signal to the transmitter,
The transmitter for generating the same number of transmission signals as the number of antennas;
An amplitude conversion device that uses the signal from the transmitter as an input signal, performs amplitude weighting on each signal, and generates an input signal to the other port of the switching device, and
The weight value determining means outputs the weight values of the N amplitude converters of the counterpart station determined based on a transfer function matrix estimated with transmission / reception alternately performed between the transmission / reception apparatuses to the transmitter. Means to
In the transmitter for a multi-element antenna system provided with means for outputting an information signal and a weight signal to the other station,
The weight value determining means takes a transfer function matrix estimated by the receiver as an input signal, and uses the transfer function matrix to determine the weights of the N amplitude converters of the counterpart station so that the SNRs of the signals are substantially equal. A transmitter for a multi-element antenna system, characterized by comprising an SNR equalization weight value determining means for determining.
前記SNR均等化重み値決定手段は、
前記受信機によって推定された伝達関数行列を入力信号とし、伝達関数行列の逆行列演算を行う逆行列演算手段と、
この逆行列演算手段により生成された逆行列を入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、
相手局送信電力を設定する相手局送信電力設定手段と、
この相手局送信電力設定手段の出力信号と送信電力比とから相手局の重み値を決定し前記送信機に出力する前記重み値出力手段と
を備え、
前記送信電力比決定手段は、相手局により送信されるN個の信号のSNRがほぼ等しくなるように送信電力比を決定する手段を備え、
前記重み値出力手段は、前記相手局送信電力設定手段により設定された送信電力となるように相手局の重み値を決定する手段を備えた
請求項5記載の多素子アンテナシステム用送信装置。
The SNR equalization weight value determining means includes:
Inverse matrix calculation means for performing an inverse matrix calculation of the transfer function matrix using the transfer function matrix estimated by the receiver as an input signal;
Transmission power ratio determining means for determining the transmission power ratio and outputting it to the weight value output means using the inverse matrix generated by the inverse matrix calculation means as an input signal;
Partner station transmission power setting means for setting the partner station transmission power;
The weight value output means for determining the weight value of the counterpart station from the output signal of the counterpart station transmission power setting means and the transmission power ratio and outputting it to the transmitter, and
The transmission power ratio determining means includes means for determining a transmission power ratio so that SNRs of N signals transmitted by the counterpart station are substantially equal.
The transmission device for a multi-element antenna system according to claim 5, wherein the weight value output means includes means for determining a weight value of the counterpart station so that the transmission power set by the counterpart station transmission power setting means is obtained.
N個のアンテナ素子と、
このアンテナ素子にそれぞれ接続され、送信信号と受信信号とを切り替えるN個の切り替え装置と、
この切り替え装置に接続され、受信時に各切り替え装置から出力されるN個の信号を入力信号とし、2つの信号にそれぞれ分岐する分岐装置と、
この分岐装置により分岐された一方の出力を入力信号とし、入力信号に含まれる相手局の重み値決定手段により決定された重み値を取り出し、各振幅変換装置の重みを決定する振幅制御装置と、
前記分岐装置により分岐された他方の出力を入力信号とし、入力信号から推定された伝達関数行列を重み値決定手段に出力し、復号を行う受信機と、
この受信機から出力される伝達関数行列を入力信号とし、伝達関数行列から相手局の各振幅変換装置により乗算された重みを算出し、送信機に重み信号を出力する重み値決定手段と、
アンテナ数と同数の送信信号を発生させる前記送信機と、
この送信機からの信号を入力信号とし、各信号に振幅重み付けを行い、前記切り替え装置の他方のポートへの入力信号を生成する振幅変換装置と
を備え、
前記重み値決定手段は、送受信装置の間で交互に行われる送受信に伴い推定された伝達関数行列に基づいて決定された相手局の前記N個の振幅変換装置の重み値を前記送信機へ出力する手段を備え、
前記送信機は、相手局への情報信号と重み信号とを出力する手段を備えた
多素子アンテナシステム用送信装置において、
前記重み値決定手段は、前記受信機によって推定された伝達関数行列を入力信号とし、この伝達関数行列から誤り率が最小となるように相手局の前記N個の振幅変換装置の重みを決定する誤り率最小化重み値決定手段を備えた
ことを特徴とする多素子アンテナシステム用送信装置。
N antenna elements;
N switching devices respectively connected to the antenna element and switching between a transmission signal and a reception signal;
A branching device connected to this switching device and having N signals output from each switching device at the time of reception as input signals and branching into two signals;
One output branched by this branching device is used as an input signal, the weight value determined by the weight value determining means of the counterpart station included in the input signal is extracted, and an amplitude control device that determines the weight of each amplitude converter,
The other output branched by the branching device is used as an input signal, a transfer function matrix estimated from the input signal is output to the weight value determining means, and a receiver that performs decoding;
The transfer function matrix output from this receiver is used as an input signal, the weight multiplied by each amplitude converter of the counterpart station is calculated from the transfer function matrix, and weight value determining means for outputting a weight signal to the transmitter,
The transmitter for generating the same number of transmission signals as the number of antennas;
An amplitude conversion device that uses the signal from the transmitter as an input signal, performs amplitude weighting on each signal, and generates an input signal to the other port of the switching device, and
The weight value determining means outputs the weight values of the N amplitude converters of the counterpart station determined based on a transfer function matrix estimated with transmission / reception alternately performed between the transmission / reception apparatuses to the transmitter. Means to
In the transmitter for a multi-element antenna system provided with means for outputting an information signal and a weight signal to the other station,
The weight value determining means uses the transfer function matrix estimated by the receiver as an input signal, and determines the weights of the N amplitude converters of the counterpart station so as to minimize the error rate from the transfer function matrix. A transmitter for a multi-element antenna system, characterized by comprising error rate minimizing weight value determining means.
前記誤り率最小化重み値決定手段は、
前記受信機によって推定された伝達関数行列を入力信号とし、この伝達関数行列の逆行列演算を行う逆行列演算手段と、
誤り率とSNRとの間に成り立つ関数を設定し、送信電力比決定手段に出力する誤り率関数設定手段と、
この誤り率関数設定手段の出力信号と前記逆行列演算手段により生成された逆行列とを入力信号とし、送信電力比を決定し重み値出力手段に出力する送信電力比決定手段と、
相手局の送信電力を設定する相手局送信電力設定手段と、
この相手局送信電力設定手段の出力信号と送信電力比とから相手局の重み値を決定し前記送信機に出力する重み値出力手段と
を備え、
前記送信電力比決定手段は、相手局から送信される信号の誤り率が最小となるように相手局の送信電力比を決定する手段を備え、
前記重み値出力手段は、前記送信電力設定手段で設定された送信電力になるように重み値を決定する手段とを備えた
請求項7記載の多素子アンテナシステム用送信装置。
The error rate minimizing weight value determining means includes:
An inverse matrix computing means for taking the transfer function matrix estimated by the receiver as an input signal and performing an inverse matrix computation of the transfer function matrix;
An error rate function setting unit that sets a function that is established between the error rate and the SNR and outputs the function to the transmission power ratio determination unit;
A transmission power ratio determining unit that determines an output signal of the error rate function setting unit and an inverse matrix generated by the inverse matrix calculation unit as input signals, determines a transmission power ratio, and outputs the transmission power ratio to the weight value output unit;
Partner station transmission power setting means for setting the partner station transmission power;
Weight value output means for determining the weight value of the counterpart station from the output signal of the counterpart station transmission power setting means and the transmission power ratio and outputting the weight value to the transmitter;
The transmission power ratio determining means comprises means for determining the transmission power ratio of the counterpart station so that the error rate of the signal transmitted from the counterpart station is minimized,
The transmission device for a multi-element antenna system according to claim 7, wherein the weight value output means includes means for determining a weight value so as to be the transmission power set by the transmission power setting means.
所要のSNRが定まっているときには、送信アンテナ毎に決定した重みと伝達関数とからSNRを推定し、所要のSNRが得られる送信アンテナ数を求め、その結果を送信局にフィードバックし、送信アンテナ数を変化させる手段を備えた請求項1ないし8のいずれかに記載の多素子アンテナシステム用送信装置。   When the required SNR is determined, the SNR is estimated from the weight and transfer function determined for each transmission antenna, the number of transmission antennas that can obtain the required SNR is obtained, the result is fed back to the transmission station, and the number of transmission antennas The transmitter for a multi-element antenna system according to any one of claims 1 to 8, further comprising means for changing the frequency.
JP2003430110A 2003-12-25 2003-12-25 Multi-element antenna transmitter Expired - Fee Related JP4386712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430110A JP4386712B2 (en) 2003-12-25 2003-12-25 Multi-element antenna transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430110A JP4386712B2 (en) 2003-12-25 2003-12-25 Multi-element antenna transmitter

Publications (3)

Publication Number Publication Date
JP2005191878A true JP2005191878A (en) 2005-07-14
JP2005191878A5 JP2005191878A5 (en) 2006-06-22
JP4386712B2 JP4386712B2 (en) 2009-12-16

Family

ID=34788578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430110A Expired - Fee Related JP4386712B2 (en) 2003-12-25 2003-12-25 Multi-element antenna transmitter

Country Status (1)

Country Link
JP (1) JP4386712B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314088A (en) * 2005-04-04 2006-11-16 Matsushita Electric Ind Co Ltd Ofdm receiving method and ofdm receiver
WO2007095829A1 (en) * 2006-02-23 2007-08-30 Huawei Technologies Co., Ltd. A snr feedback method for orthogonal frequency divide multiplexing (ofdm) system and the apparatus and system thereof
JP2009522885A (en) * 2006-01-04 2009-06-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Array antenna device
JP2015532550A (en) * 2012-10-01 2015-11-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improvement of AAS transmitter distortion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314088A (en) * 2005-04-04 2006-11-16 Matsushita Electric Ind Co Ltd Ofdm receiving method and ofdm receiver
JP2009522885A (en) * 2006-01-04 2009-06-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Array antenna device
US8666451B2 (en) 2006-01-04 2014-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Array antenna arrangement
US9107082B2 (en) 2006-01-04 2015-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Array antenna arrangement
WO2007095829A1 (en) * 2006-02-23 2007-08-30 Huawei Technologies Co., Ltd. A snr feedback method for orthogonal frequency divide multiplexing (ofdm) system and the apparatus and system thereof
CN101026604B (en) * 2006-02-23 2010-12-01 华为技术有限公司 Signal-noise-ration feedback method for orthogonal frequency division multiplexing system, and its device and system
JP2015532550A (en) * 2012-10-01 2015-11-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improvement of AAS transmitter distortion

Also Published As

Publication number Publication date
JP4386712B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US7949360B2 (en) Method and apparatus for adaptively allocating transmission power for beam-forming combined with OSTBCs in a distributed wireless communication system
KR102137490B1 (en) Beamforming method and apparatus for acquiring transmission beam diversity in a wireless communication system
US7907912B2 (en) Apparatus and method for eliminating multi-user interference
EP1759470B1 (en) Apparatus and method for beamforming in a multi-antenna system
US8175184B2 (en) Method for transmitting beam forming information and a method for tracking position of a mobile station in multi input multi output system using codebook-based beam forming scheme
KR101373808B1 (en) Apparatus and method for deciding channel quality indicator using beamforming in multiple antenna system
US20100103810A1 (en) Modulation coding scheme selection in a wireless communication system
US20040014431A1 (en) Adaptive communications system and method
JP2004519128A (en) Wireless communication system
JP2004511119A (en) Beam forming method
KR20080083055A (en) Wireless communication system using multiantenna transmission technique, and multi-user scheduler applied thereto
KR20090088193A (en) Apparatus and method for switched beam-forming using multi-beam combining
JP4648015B2 (en) Transmitting apparatus and transmitting method
WO2011091589A1 (en) Data transmission method and system for cooperative multiple input multiple output beam-forming
KR100963333B1 (en) BeanForming Method using Multiple Antenna
JP2020536448A (en) Remote radio head, beamforming method and program
KR20150134520A (en) Apparatus for processing transmission/reception signal for interference alignment in a mu-mimo interference broadcasting channel and method thereof
KR100594817B1 (en) A mimo-ofdm system using eigenbeamforming technology and eigenbeamforming method in the same
KR101231912B1 (en) method and transmitter for modifying beamforming vector iteratively
KR20080073191A (en) Apparatus and method for transmitting channel sounding signal in wireless communication system
JP2007166459A (en) Wireless communication apparatus and wireless communication system
JP4564430B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, RADIO COMMUNICATION SYSTEM, AND RADIO COMMUNICATION METHOD
JP4386712B2 (en) Multi-element antenna transmitter
KR20090053599A (en) Method and appratus selecting transmit antenna and estimating uplink multiple-input multiple-output channels in time-division multiplexing wireless communication systems
JP4435039B2 (en) Spatial multiplexing transmission apparatus and spatial multiplexing control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees