JP2006016573A - マイクロカプセル及び熱輸送流体 - Google Patents

マイクロカプセル及び熱輸送流体 Download PDF

Info

Publication number
JP2006016573A
JP2006016573A JP2004198250A JP2004198250A JP2006016573A JP 2006016573 A JP2006016573 A JP 2006016573A JP 2004198250 A JP2004198250 A JP 2004198250A JP 2004198250 A JP2004198250 A JP 2004198250A JP 2006016573 A JP2006016573 A JP 2006016573A
Authority
JP
Japan
Prior art keywords
heat
microcapsule
transport fluid
heat transport
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198250A
Other languages
English (en)
Inventor
Yoshiyuki Morita
善幸 森田
Mitsuru Osawa
充 大澤
Hiroki Nakagawa
浩樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004198250A priority Critical patent/JP2006016573A/ja
Publication of JP2006016573A publication Critical patent/JP2006016573A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

【課題】吸収及び放出可能な熱量、及び、熱伝導率が増大する熱輸送流体を提供すること、及びこの熱輸送流体に適した潜熱蓄熱物質が封入されたマイクロカプセルを提供することを目的とする。
【解決手段】 マイクロカプセルに封入した相転移を伴う潜熱蓄熱物質により熱輸送流体が吸収・放出可能な熱量を増大させること、及び、熱輸送流体を構成する物質に熱伝導性粒子を含有せしめて熱輸送流体の巨視的熱伝導率を増大させることによって、熱輸送流体が吸収・放出可能な熱量及び、熱伝導率を増大させる。
【選択図】 図3

Description

本発明は、潜熱蓄熱物質が封入されたマイクロカプセルと、このマイクロカプセルを用いた熱輸送流体に関する。
現在、大型空調機やエンジンの冷却、冷凍庫の冷却、パーソナルコンピュータの冷却、モータの冷却、燃料電池の冷却、あるいは成形金型の加熱等、機械装置の加熱・冷却に熱輸送流体が広く使われている。加熱・冷却に用いられる熱輸送流体の種類は使用する温度によって限定され、典型的には0〜100℃の範囲では水を主成分とする熱輸送流体が使用され、0℃以下ではブライン溶液が使用されている。
機械装置の熱交換器や放熱器等は、熱輸送流体の比熱及び熱伝導率に基づいて設計されるが、使用する温度範囲によって熱輸送流体の種類が限定されるため、機械装置の設計は、熱輸送流体の種類によって制約を受けている。
例えば自動車のエンジンの場合、エンジンの出力によって設計上の冷却能力がほぼ決まり、ラジエータの放熱面積及び冷却水の保有量は、冷却水の比熱及び熱伝導率に従って設計されている。このため、ラジエータの小型化、及び冷却水の保有量削減は困難であった。
さらに詳しくは、常温、常圧環境下における液体の中で水は最も高い熱伝導率を有するが、自動車エンジンの冷却水は冬季の使用を考慮してエチレングリコール等の不凍液を添加しているため、純粋の水よりも比熱及び熱伝導率が低い。エチレングリコール50wt%を含む冷却水の場合、比熱は約3.5kJ/kg、熱伝導率は約0.4W/m・Kでしかない。水の比熱が4.1kJ/kg、水の熱伝導率が0.6W/m・Kであることを考えると、現状の自動車エンジンの冷却水は水の有する性能を十分利用していないといえる。
自動車エンジンの冷却水の比熱及び熱伝導率を向上させることができれば、ラジエータやエンジンの小型化、及び冷却水の保有量削減が可能になる。
特許文献1には、吸収することができる熱量及び放出することができる熱量が大きい媒体が提案されている。
特許文献1に開示された発明は、液体中に分散させたカプセル粒子内部に潜熱蓄熱物質を具備せしめた媒体であり、この潜熱蓄熱物質によって媒体が蓄えられる熱量を大きくするものである。このような媒体によれば、周囲領域から吸収・放熱可能な熱量が大きくなり、媒体の巨視的な比熱を大きくできるものといえる。
特開2003−129844号公報(段落0005〜0006、図1、図2)
しかし、潜熱蓄熱物質だけでは、媒体の巨視的な比熱を大きくすることは可能だが、媒体の単位時間当たりに伝導可能な熱量、すなわち熱伝導率を上げることはできない。従って、既存の機械装置にこの媒体を用いて従来よりも大きな熱量を吸収・放熱させるには、発熱部及び放熱部との接触時間を長くしなければならないという問題が生じる。
媒体の熱伝導率を上げることができれば、前記した問題を解決できる。しかし、これまで吸収・放出可能な熱量だけでなく、熱伝導率をも増大させた熱輸送流体は知られていない。
そこで、本発明では、吸収及び放出可能な熱量、及び、熱伝導率が増大する熱輸送流体を提供することを目的とし、あわせてこの熱輸送流体への使用に適した潜熱蓄熱物質が封入されたマイクロカプセルを提供することを目的とする。
本発明は、マイクロカプセルに封入した相転移を伴う潜熱蓄熱物質により熱輸送流体が吸収・放出可能な熱量を増大させること、及び、熱輸送流体を構成する物質に熱伝導性粒子を含有せしめて熱輸送流体の巨視的熱伝導率を増大させることによって、熱輸送流体が吸収・放出可能な熱量及び、熱伝導率を増大させるものである。
請求項1に記載の発明は、壁材の内部に相転移を伴う潜熱蓄熱物質が封入されたマイクロカプセルであって、前記壁材と前記潜熱蓄熱物質との少なくとも一方が第一の熱伝導性粒子を備えたことを特徴とするマイクロカプセルの構成とした。
なお、相転移を伴う潜熱畜熱材(以下、単に潜熱蓄熱物質と記す)とは、周囲から熱を吸収するときは相転移して熱を潜熱として蓄え、周囲に熱を放出するときは相転移して潜熱を放出する物質をいう。相転移は固相・液相間に限らず、結晶・非結晶間、結晶間の変態等をもいう。
任意の物質の相転移点では、潜熱蓄熱によって顕熱蓄熱よりも大きな熱量を吸収あるいは放出されることが知られている。
この性質を利用して、目的とする温度範囲内に相転移点のある物質を潜熱蓄熱物質として用いることにより、より多くの熱を蓄え、あるいは放出させることが可能になる。請求項1に記載の発明では、マイクロカプセルに潜熱蓄熱物質を封入しているので、この潜熱蓄熱物質により、吸収及び放出可能な熱量が増大する。
さらに、このマイクロカプセルに第一の熱伝導性粒子を加えることにより、マイクロカプセルの巨視的な熱伝導率が増大する。すなわち、第一の熱伝導性粒子をマイクロカプセル内の潜熱畜熱性物質、及びマイクロカプセルの壁材のいずれか一方または両方に含ませた場合、第一の熱伝導性粒子を含ませたいずれかの熱伝導率が増大する結果、マイクロカプセルの巨視的な熱伝導率が増大する。
なお、マイクロカプセルの壁材には、加工性が良いことから樹脂を使用する場合が多い。一般に樹脂の熱伝導率は無機物と比較して低いが、マイクロカプセルの樹脂製壁材に第一の熱伝導性粒子を含ませることにより、マイクロカプセル壁材の熱伝導率を改善することができる。また、潜熱蓄熱物質に第一の熱伝導性粒子を含有させた場合には、潜熱蓄熱物質の過冷却を防止することが可能となる。
請求項2に記載の発明は前記第一の熱伝導性粒子が、熱伝導率0.6W/m・K以上で、かつ粒子径100nm以下の金属粒子と炭素構造体との少なくとも一方であることを特徴とする請求項1に記載のマイクロカプセルの構成とした。
請求項2の発明によれば、熱伝導率が水(0.6W/m・K)以上の第一の熱伝導性粒子を用いるため、マイクロカプセルの巨視的な熱伝導率をより有効に改善することができる。
また、粒子径100nm以下の微小な金属粒子及び炭素構造体の少なくとも一方を用いるため、大粒径の粒子と比較して粒子の表面積の総和が大きくなるので、より有効に熱伝導率を増大させることができる。
請求項3に記載の発明は、前記潜熱蓄熱物質が、融点20℃から100℃の有機化合物であることを特徴とする請求項1または請求項2に記載のマイクロカプセルの構成とした。
請求項3の発明によれば、潜熱蓄熱物質に融点20℃から100℃の有機化合物を用いているので、0℃から水の沸点までの温度範囲内での使用に適したマイクロカプセルを提供することができる。特に、水を主成分とする加熱冷却媒体を使用する場合に適したマイクロカプセルを提供することができる。
請求項4に記載の発明は、請求項1から請求項3のいずれか1項に記載のマイクロカプセルが流体中に分散されていることを特徴とする熱輸送流体の構成とした。
請求項4に記載の熱輸送流体の構成によれば、マイクロカプセルの内部にある潜熱蓄熱物質により、熱輸送流体が吸収及び放出可能な熱量が増大する。
また、マイクロカプセルの内部及び壁材の少なくともどちらか一方には第一の熱伝導性粒子が封入されているので、マイクロカプセルの巨視的な熱伝導率が向上し、マイクロカプセル内の潜熱蓄熱物質の温度変化に対する応答速度が速くなる。その結果、熱輸送流体の巨視的な熱伝導率が向上し、熱輸送流体の温度変化に対する応答速度も速くなる。
このように、請求項4に記載の熱輸送流体は、潜熱蓄熱物質により吸収及び放出可能な熱量が増大し、また、第一の熱伝導性粒子により巨視的な熱伝導率が増大するものである。
なお、熱輸送流体とは、機械装置の加熱冷却に用いられる温度範囲内で液体の状態である流体のことを言う。従って、例えば室温では固体のワックス、金属等であっても使用温度範囲内で液状となるものであれば本発明の熱輸送流体に含まれる。
請求項5に記載の発明は、壁材の内部に相転移を伴う潜熱蓄熱物質が封入されたマイクロカプセルと、第二の熱伝導性粒子とが流体中に分散されていることを特徴とする熱輸送流体の構成とした。
請求項5に記載の熱輸送流体の構成によれば、マイクロカプセルの内部にある潜熱蓄熱物質により、熱輸送流体の吸収・放出可能な熱量が増大する。
また、熱輸送流体に第二の熱伝導性粒子が分散されているので、熱輸送流体の巨視的な熱伝導率が向上し、熱輸送流体の温度変化に対する応答速度が速くなる。
このように、請求項5に記載の熱輸送流体は、潜熱蓄熱物質により吸収・放出可能な熱量が増大し、また、第二の熱伝導性粒子により巨視的な熱伝導率が増大するものである。
請求項6に記載の発明は、前記マイクロカプセルが、請求項1から請求項3のいずれか1項に記載のマイクロカプセルであることを特徴とする請求項5に記載の熱輸送流体の構成とした。
請求項6に記載のマイクロカプセルには潜熱蓄熱物質が封入されているため、熱輸送流体が吸収・放出可能な熱量が増大する。
また、熱輸送流体と、マイクロカプセルの壁材と、マイクロカプセルに封入された潜熱蓄熱物質との内、少なくともいずれか1つが第一または第二の熱伝導性粒子を備えているので、熱輸送流体の巨視的な熱伝導率が向上し、熱輸送流体の温度変化に対する応答速度が速くなる。
請求項7に記載の発明は、前記第二の熱伝導性粒子が、熱伝導率0.6W/m・K以上で、かつ粒子径100nm以下の金属粒子と、炭素構造体との、少なくとも一方であることを特徴とする請求項5または請求項6に記載の熱輸送流体の構成とした。
請求項7に記載の熱輸送流体は、第二の熱伝導性粒子に高熱伝導率で小粒径の金属粒子及び炭素構造体の少なくとも一方を用いる。このため、マイクロカプセルから外部の機械装置等への熱伝導、またはこの逆方向の熱伝導を効率よく行なうことができる。
また、大粒径の粒子と比較すると、小粒径の粒子の表面積の総和は大きくなるので、より有効に熱伝導率を増大させることができる。これらにより、熱輸送流体の温度変化に対する応答速度が速くなる。
請求項8に記載の発明は、流体中に水を20wt%以上含有することを特徴とする請求項4から請求項7のいずれか1項に記載の熱輸送流体の構成とした。
請求項8に記載の熱輸送流体によれば、現在水を主成分とする熱輸送流体が用いられている加熱冷却システムについて、吸収・放出可能な熱量及び、熱伝導率が増大する熱輸送流体を提供することができる。このような水を主成分とする熱輸送流体は、自動車等に用いられる内燃エンジンの冷却水に好適に用いることができる。
請求項9に記載の発明は、流体中に分散剤を含有することを特徴とする請求項4から請求項8のいずれか1項に記載の熱輸送流体の構成とした。
請求項9に記載の熱輸送流体によれば、分散剤が含有されているので、熱輸送流体とマイクロカプセル等との親和性を高める作用によって、あるいは熱輸送流体の粘度を調整する作用によって第二の熱伝導性粒子及びマイクロカプセルを安定して分散させることができる。
本発明によれば、吸収・放出可能な熱量及び、熱伝導率が増大する熱輸送流体を提供することができる。さらに、この熱輸送流体への使用に適した潜熱蓄熱物質が封入されたマイクロカプセルを提供することができる。
次に、本発明のマイクロカプセル及び熱輸送流体の実施形態について、適宜図面を参照しながら詳細に説明する。
図1は、本発明に係る壁材の内部に潜熱蓄熱物質が封入されたマイクロカプセルの模式図である。図1に示すように、マイクロカプセル1中の潜熱蓄熱物質2とマイクロカプセル1の壁材3との、少なくとも一方に第一の熱伝導性粒子4が含有されている。
マイクロカプセル1の粒子径は、用途に応じて最適の範囲を決める。同一重量の潜熱蓄熱物質2に対する表面積、すなわち熱交換面積を大きくするためには、マイクロカプセル1の粒子径は小さいことが好ましい。
特に自動車などの内燃エンジンの冷却水に使用する場合は、熱交換面積を大きくするためにマイクロカプセル1の粒子径を10μm以下にすることが好ましい。なお、本発明では、粒子径の測定はレーザー回折式粒度分布測定装置(島津社製SALD−7000型)によって行なう。
マイクロカプセル1は、In−Situ重合法、液中乾燥法、気中懸濁被覆法等の公知の方法で製造することができる。
In−Situ重合法は潜熱蓄熱物質2の内側または外側の一方からモノマーを供給し、潜熱蓄熱物質の表面上でモノマーを重合させてマイクロカプセル1を製造する方法である。In−Situ重合法では、マイクロカプセル1の壁材3には尿素樹脂、メラミン樹脂、アクリル樹脂、ポリアミド、ポリウレタン、エチルセルロース、ゼラチンなどを用いることができる。
液中硬化被覆法は、潜熱蓄熱物質2を含むポリマ溶液をオリフィスから硬化剤浴に滴下する方法で、壁材3にはゼラチン等を用いることができる。
液中乾燥法は、潜熱蓄熱物質2を含む水溶液滴をポリマ溶液で囲み、加熱、減圧等で乾燥する方法であり、壁材3にポリスチレン、ポリビニルアルコール等の熱可塑性樹脂を用いることができる。
気中懸濁被覆法は潜熱蓄熱物質2を流動床上に懸濁させ、壁材を噴射して被覆する方法であり、壁材3に各種ポリマ、アルミナ等を用いることができる。
そして、マイクロカプセル1の製造時に、第一の熱伝導性粒子4を潜熱蓄熱物質2と、壁材3を構成する材料とともに分散させることにより、潜熱蓄熱物質2とマイクロカプセル1の壁材3のどちらか一方または両方に、第一の熱伝導性粒子4を含ませることができる。
特に、自動車などの内燃エンジンや燃料電池、モータの冷却水に用いるマイクロカプセル1の場合は、−20〜200℃の温度範囲で熱変形、溶融あるいは低温脆化しないこと等の耐熱性が要求されるため、壁材には尿素樹脂、メラミン樹脂等の熱硬化性樹脂を用いて、In−Situ重合法で製造することが好ましい。
マイクロカプセル1の形状は、球形のカプセルの中に潜熱蓄熱物質2が1つの核をなす球形単核型、球形のカプセルの中に潜熱蓄熱物質2が複数の核をなす球形多核型、不定形のカプセルの中に潜熱蓄熱物質2が1つの核をなす不定形単核型、不定形のカプセルの中に潜熱蓄熱物質2が複数の核をなす不定形多核型のいずれであっても良い。いずれの場合も、潜熱蓄熱物質2及びマイクロカプセル1の壁材3の一方または両方に第一の熱伝導性粒子4を含ませることができる。
マイクロカプセル1に封入する潜熱蓄熱物質2は、マイクロカプセル1の使用温度範囲に応じて有機物または無機物の融点等を考慮して選択する。利用可能な相転移は、融解・凝固のような固相と液相間の相転移に限られず、結晶相と非結晶相間の変態も利用することができる。
マイクロカプセル1を0〜100℃の範囲で使用する場合には、潜熱蓄熱物質2として例えば硫酸ナトリウム水和物、チオ硫酸ナトリウム水和物、塩化カルシウム水和物等の無機物、また、例えばヘキサデカン、オクタデカンなどの脂肪族炭化水素、ステアリン酸、酢酸ナトリウム水和物などの高級脂肪酸又はその塩、オレイン酸アミド等のアミド化合物、あるいは、パルミチン酸イソプロピル、ステアリン酸ブチル等のエステル化合物、ステアリルアルコール等のアルコール類、パラフィン、または、ポリエチレンオキシド、ポリエステル、ポリアミド、ポリオレフィンのオリゴマ等の有機物を用いることができる。これらは単独で用いることも、幾つかを組み合わせて用いることもできる。また、潜熱蓄熱物質2として、例えばポリマのガラス転移点等の結晶相と非結晶相間の変態を有する物質を利用することもできる。
さらに、0℃より低温で使用する場合には、潜熱蓄熱物質2として例えばデカン等の脂肪族炭化水素、t−ブタノール等のアルコール類等の有機化合物を使用温度に応じて選択して用いることができる。また、潜熱蓄熱物質2に水を用いることもできる。
100℃より高い温度で使用する場合は、例えばポリオレフィン系、ポリエステル系、ポリアミド系等のポリマ、あるいは、脂肪族炭化水素、アルコール類等の有機化合物、または錫、鉛、アンチモン等の合金を、潜熱蓄熱物質2に用いることができる。
特に、自動車の冷却系の場合は、融点30〜100℃で融解潜熱100kJ/kg以上で、かつ、炭素数6以上のアルコール類、または炭素数10以上の脂肪酸、または炭素数10以上の脂肪族炭化水素を潜熱蓄熱物質2に使用することができる。具体的には、ステアリルアルコール、ステアリン酸、パラフィンが例示される。
これらの有機物の複数を組み合わせて、複数の相転移点を有する潜熱蓄熱物質2とすることもできる。これは、マイクロカプセル1に複数の相転移点を有する潜熱蓄熱物質2を封入しても良いし、異なる種類の潜熱蓄熱物質2が封入された2種類以上のマイクロカプセル1を組み合わせて使用しても良い。
このようなマイクロカプセル1を用いれば、冷却水の吸収可能な熱量を増やせるだけで無く、例えば冬季に一旦暖められた冷却水の温度を、エンジンを止めた後も相転移点の温度で一定時間保持することができる。また、夏季には、冷却水が一定温度以上になることを抑制できる。
次に、第一の熱伝導性粒子4について詳細に説明する。
第一の熱伝導性粒子4には、熱伝導率の高い物質を使用する。水以上(0.6W/m・K)の熱伝導率を示す物質の粒子を用いることが好ましい。
第一の熱伝導性粒子4は、図1(a)に示すように、マイクロカプセル1に封入された潜熱蓄熱物質2にのみ分散させても良いし、マイクロカプセル1の壁材3にのみ分散させても良い(図1(b))。また、潜熱蓄熱物質2と壁材3の両方に分散させても良い(図1(c))。壁材3に分散された第一の熱伝導性粒子4は、図1(b)、(c)に示したように壁材3を貫通し、表面に露出していても良いし、図1(d)、(e)のように壁材3の中に内包されていても良い。さらに、図1(f)のように壁材3の表面に密着していてもよい。いずれの場合も、第一の熱伝導性粒子4によりマイクロカプセル1の巨視的な熱伝導率が向上する。
第一の熱伝導性粒子4には、自由電子による熱伝導を示す金属、例えばアルミニウム、銅、金、銀、プラチナ、パラジウムなどの金属の粒子を用いる。第一の熱伝導性粒子4に使用する金属の選定に当たっては、化学的に安定な貴金属類または合金、あるいは酸化により表面に不動態を形成する金属を選定することが望ましい。
また、第一の熱伝導性粒子4にはグラファイト、ダイヤモンド、カーボンナノチューブ、カーボンナノファイバ、カーボンナノホーン、フラーレン等の炭素構造体を使用する。第一の熱伝導性粒子4として、前記した金属粒子と炭素構造体を混合して用いることもできる。
第一の熱伝導性粒子4の粒子径は、マイクロカプセル1の粒子径、壁材3の厚み等を考慮して決定する。第一の熱伝導性粒子4の表面積の総和を大きくするため、粒子径は小さいほうが良い。より高い熱伝導効果を得るためには、粒子径100nm、さらに好ましくは50nm以下のもの用いることが望ましい。粒子径の下限値は無いが、商業的には粒子径0.5nm以下のものを入手することは困難である。
自動車などの内燃エンジンの冷却水に用いる第一の熱伝導性粒子4の場合は、第一の熱伝導性粒子4の表面積の総和を大きくするため、粒子径が100nm以下であることが好ましく、金属粒子または炭素構造体のいずれも用いることができる。
図2(a)〜(g)は、本発明の熱輸送流体の概念図である。
熱輸送流体には、第一の熱伝導性粒子4と、第二の熱伝導性粒子5との少なくともどちらか一方と、潜熱蓄熱物質2が封入されたマイクロカプセル1とが存在する。
すなわち、図2(a)では、第一の熱伝導性粒子4がマイクロカプセル1には含有されておらず、第二の熱伝導性粒子5が熱輸送流体中に分散されている。また、図2(b)〜(g)ではマイクロカプセル1と熱輸送流体とに、各々第一の熱伝導性粒子4と第二の熱伝導性粒子5とが含まれている。壁材3に分散された第一の熱伝導性粒子4は、図2(c)、(d)に示したように壁材3を貫通し、表面に露出していても良いし、図2(e)、(f)のように壁材3の中に内包されていても良い。さらに、図2(g)のように壁材3の表面に密着していてもよい。
さらに、図2(b)〜(g)の別の実施形態として、マイクロカプセル1に第一の熱伝導性粒子4が含まれ、第二の熱伝導性粒子5は用いない熱輸送流体の構成とする場合も、本発明に含まれる。
熱輸送流体には、その使用温度範囲により水、シリコーンオイル、その他のオイル等の、公知の加熱冷却に用いられる有機物または無機物の液体を用いることができる。
また、熱輸送流体には、その使用目的に応じた添加剤等が含有されていても良い。例えば、自動車の冷却系に用いる熱輸送流体としては、水とエチレングリコールまたはプロピレングリコールとの混合物等、公知のものを使用することができる。防錆剤などの添加剤であっても良い。
熱輸送流体中には、マイクロカプセル1及び第二の熱伝導性粒子5を安定的に分散させるため、分散剤6を添加することができる。
すなわち、疎水性相互作用によりマイクロカプセル1が凝集する場合には、アルキルベンゼンスルホン酸塩、αオレフィンスルホン酸塩、ナフタレンスルホン酸塩等のアニオン系界面活性剤、牛脂ジアミンジオレイン酸塩、ヤシジアミンジアジピン酸塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等のカチオン系界面活性剤、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルグリセリルエーテル等のノニオン系の界面活性剤を用いて、凝集を防止することができる。
また、ポリ(メタ)アクリル酸、ポリビニルピロリドン等の水溶性ポリマを添加して熱輸送流体の粘度を調整することにより、熱伝導性粒子4またはマイクロカプセル1の沈降、浮上を抑制することもできる。なお、マイクロカプセル1の沈降、浮上の抑制は、マイクロカプセル1に含ませる熱伝導性粒子4の量を変えてマイクロカプセル1の比重を調整することによっても行なうことができる。
なお、分散剤6を使用せずに本発明の熱輸送流体を構成することも可能であることはいうまでも無い。
熱輸送流体に分散させる第二の熱伝導性粒子5には、第一の熱伝導性粒子4と同様の、金属粒子及び炭素構造体の中から選択される1種類の粒子を用いることができる。また、2種類以上の粒子を組み合わせて用いることもできる。
粒子径に関しては、熱輸送流体の配管等における閉塞を防止するために小さいほうが好ましい。
また、自動車などの内燃エンジンの冷却水に用いる第二の熱伝導性粒子5の場合には、熱輸送流体の動粘性率の上昇を抑えるため、添加量を熱輸送流体に対して60wt%以下にすることが好ましい。
以上、本発明の実施形態について説明したが、本発明は前記実施形態には限定されない。本実施形態では自動車エンジンの冷却システムを例に取り上げたが、本発明のマイクロカプセル及び熱輸送流体は他の機械装置の冷却システムにも適用できる。例えば、冷凍用ブライン、あるいは大規模な空調用の熱輸送流体等に適用すると、吸収・放出可能な熱量及び、熱伝導率の増大効果を顕著に奏することができる。
次に、本発明の効果を確認した実施例について説明する。前記実施形態の熱輸送流体を自動車のエンジン用冷却水として用い、従来のエンジン用冷却水と比熱、熱伝導率を比較した。
この実施例ではマイクロカプセル1の壁材3にメラミン樹脂を用い、マイクロカプセル1に封入する潜熱蓄熱物質2にステアリン酸を用いた。また、本実施例の熱輸送流体は、このマイクロカプセル1と、第二の熱伝導性粒子5と分散剤6とで構成した。
第二の熱伝導性粒子5としてカーボンナノチューブ(CNTと記す)を用い、分散剤6として亜鉛プロトポリフィンを用いて、これらを水とエチレングリコールとの50wt%混合液(以下EG50%水と記す)に分散させた。なお、本実施例で使用したCNTは気相成長法によって製造した多層カーボンナノチューブであり、熱伝導率は約2000W/m・K、チューブ径は17〜23nm、チューブ長は0.5μmである。また、本実施例で用いたステアリン酸の融点は71℃、融解熱は210kJ/kgである。
<マイクロカプセル1の製造>
本実施例のマイクロカプセル1は、潜熱蓄熱物質2としてステアリン酸、マイクロカプセル1の壁材3としてメラミン樹脂を用いて、In−Situ法により製造した。
メラミン粉末5gに37%ホルムアルデヒド水溶液6.5gと水10gを加え、pHを8に調製した後、約70℃まで加熱して、メラミン−ホルムアルデヒド初期重合物水溶液を得た。
次に、pHを4.5に調製したアルキルベンゼンスルホン酸塩(花王株式会社製ネオペレックスGS)5wt%を含む水溶液100g中に、潜熱蓄熱物質2としてステアリン酸80gを激しく攪拌しながら添加し、乳化を行った。この乳化液に前記したメラミン−ホルムアルデヒド初期重合物水溶液全量を添加し、70℃で2時間攪拌して固形部分の濃度が約45%であるマイクロカプセル1を含有する水溶液を得た。この水溶液を以下マイクロカプセル溶液という。
得られたマイクロカプセル1水溶液中の粒子径は10μm、壁膜厚は1.0μmであった。
<冷却水の調製>
EG50%水の100重量部に対し、前記した方法で製造したマイクロカプセル溶液を22重量部、CNTを0.2重量部、亜鉛プロトポリフィンを0.1重量部添加し、激しく撹拌して熱輸送流体を得た。
このようにして調製した熱輸送流体の熱伝導率と比熱を表1の実施例に示す。なお、表1で比較用に示した比較例3のマイクロカプセル溶液を22重量部含むEG50%水、及び比較例4のCNTを2.5重量部含むEG50%水には分散剤(亜鉛プロトポリフィン)が0.1重量部含まれており、熱輸送流体と同様に、激しく撹拌して試料を調製した。
Figure 2006016573
表1に示したように、現在の自動車用冷却水のEG50%水(比較例1)の熱伝導率と比熱は、水(比較例2)より劣っている。
また、比較例1と比較例3から、マイクロカプセル1は熱伝導率を下げ、比熱を上昇させる効果があり、一方、比較例1と比較例4から、CNTは熱伝導率を上昇させ、比熱を下げる効果があることがわかる。
そして、両者が添加された熱輸送流体(実施例1)では、熱伝導率及び比熱が自動車エンジン冷却に用いられているEG50%水(比較例1)だけでなく、水(比較例2)と比較しても優れていることがわかる。すなわち、潜熱蓄熱物質2(ステアリン酸)が封入されたマイクロカプセル1及び第二の熱伝導性粒子5により、熱伝導率及び比熱が改善された熱輸送流体が得られることがわかる。
この自動車エンジン冷却用の熱輸送流体の効果について、図3を参照して説明する。
図3(a)は本発明の熱輸送流体を、エンジンの冷却システム10に適用した場合の概略図である。
エンジンの冷却システム10は発熱体であるエンジンのシリンダ冷却部11と、放熱体であるラジエータ部12との間を、自動車エンジンの冷却用の熱輸送流体が循環ポンプ13により循環させられる構成となっている。
図3(b)は、安定走行状態において、エンジンの冷却システム10の冷却液が保有する熱量の変化を、本発明の熱輸送流体を用いた場合と、従来のEG50%水を用いた場合とを比較して示した概念図である。
図3(b)の縦軸は熱量(J)で、横軸は時間(秒)である。図3(b)の直線の傾きが大きいほど、熱伝導率が大きいことを表す。なお、図3(b)では、近似的にステアリン酸の熱伝導率は相転移点の前後で一定であるとしている。
本発明の熱輸送流体が循環ポンプ13によりシリンダ冷却部11に達したとき、シリンダ冷却部11の熱は、熱輸送流体中の第二の熱伝導性粒子5を介して速やかにマイクロカプセル1中の潜熱蓄熱物質2に伝えられる。そして、潜熱蓄熱物質2が相転移点において温度一定で融解して、シリンダ冷却部11の熱を潜熱として蓄えることにより、従来のEG50%水よりも大きな熱量を蓄える。
これに対して、EG50%水を用いた場合は、潜熱蓄熱は行なわれず、また熱伝導率及び比熱が本発明の熱輸送流体よりも小さいため、熱量の増加速度及び蓄えられる熱量ともに小さくなる。
次に、シリンダ冷却部11で熱を蓄えた熱輸送流体は、循環ポンプ13によりラジエータ部12へ移送され、走行風によって冷却され、元の温度に戻る。
本発明の熱輸送流体の場合、マイクロカプセル1中の潜熱蓄熱物質2に蓄えられた潜熱は、第二の熱伝導性粒子5を介して速やかにラジエータ部12の走行風が当たる面に伝導される結果、熱輸送流体が速やかに冷却される。
これに対して、EG50%水を用いた場合は、熱伝導率が本発明の熱輸送流体よりも小さいため、熱量の減少速度は小さいが、保有していた熱量も小さいため、熱輸送流体と同様に元の温度に戻る。
図3(b)に示したように、本発明の熱輸送流体を用いれば、同一のエンジンの冷却システムで冷却水の熱輸送量を増やすことができる。別言すれば、本発明の熱輸送流体を用いれば、従来のものよりも小型のエンジンの冷却システムを用いて、従来と同一の熱輸送量を得ることが可能になる。
従来のエンジンの冷却システムを小型化することが可能になれば、自動車の軽量化が図れるだけでなく、ラジエータの小型化が可能になり、車体のデザインの自由度が増す。
実施形態に係る壁材内部に潜熱蓄熱物質が封入されたマイクロカプセルの模式図である。 実施形態に係る熱輸送流体の概念図である。分散剤の表記は、熱輸送流体に分散剤6が完全に溶解していることを表す。 本発明の熱輸送流体をエンジンの冷却システムに適用した場合の概略図である。
符号の説明
1 マイクロカプセル
2 潜熱蓄熱物質
3 壁材
4 第一の熱伝導性粒子
5 第二の熱伝導性粒子
6 分散剤

Claims (9)

  1. 壁材の内部に相転移を伴う潜熱蓄熱物質が封入されたマイクロカプセルであって、
    前記壁材と、前記潜熱蓄熱物質との、少なくとも一方が第一の熱伝導性粒子を備えたことを特徴とするマイクロカプセル。
  2. 前記第一の熱伝導性粒子が、熱伝導率0.6W/m・K以上で、
    かつ粒子径100nm以下の金属粒子と、炭素構造体との、
    少なくとも一方であることを特徴とする請求項1に記載のマイクロカプセル。
  3. 前記潜熱蓄熱物質が、融点20℃から100℃の有機化合物であることを特徴とする請求項1または請求項2に記載のマイクロカプセル。
  4. 請求項1から請求項3のいずれか1項に記載のマイクロカプセルが流体中に分散されていることを特徴とする熱輸送流体。
  5. 壁材の内部に相転移を伴う潜熱蓄熱物質が封入されたマイクロカプセルと、
    第二の熱伝導性粒子と
    が流体中に分散されていることを特徴とする熱輸送流体。
  6. 前記マイクロカプセルが、請求項1から請求項3のいずれか1項に記載のマイクロカプセルであることを特徴とする
    請求項5に記載の熱輸送流体。
  7. 前記第二の熱伝導性粒子が、熱伝導率0.6W/m・K以上で、
    かつ粒子径100nm以下の金属粒子と、炭素構造体との、
    少なくとも一方であることを特徴とする請求項5または請求項6に記載の熱輸送流体。
  8. 流体中に、水を20wt%以上含有することを特徴とする請求項4から請求項7のいずれか1項に記載の熱輸送流体。
  9. 流体中に、分散剤を含有することを特徴とする請求項4から請求項8のいずれか1項に記載の熱輸送流体。
JP2004198250A 2004-07-05 2004-07-05 マイクロカプセル及び熱輸送流体 Pending JP2006016573A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198250A JP2006016573A (ja) 2004-07-05 2004-07-05 マイクロカプセル及び熱輸送流体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198250A JP2006016573A (ja) 2004-07-05 2004-07-05 マイクロカプセル及び熱輸送流体

Publications (1)

Publication Number Publication Date
JP2006016573A true JP2006016573A (ja) 2006-01-19

Family

ID=35791122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198250A Pending JP2006016573A (ja) 2004-07-05 2004-07-05 マイクロカプセル及び熱輸送流体

Country Status (1)

Country Link
JP (1) JP2006016573A (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031520A (ja) * 2005-07-25 2007-02-08 Honda Motor Co Ltd 熱輸送流体
JP2007330872A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 水溶性相変化物質のマイクロカプセル化方法及び装置
JP2007330876A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 水溶性相変化物質のマイクロカプセル化方法、水溶性相変化物質含有マイクロカプセル粒子、冷却液、及び熱移送媒体
JP2008039209A (ja) * 2006-08-02 2008-02-21 Hitachi Ltd 温度調整部材
JP2008045090A (ja) * 2006-08-21 2008-02-28 Toyota Motor Corp 冷却液組成物、及び冷却系
JP2008149133A (ja) * 2006-12-15 2008-07-03 General Electric Co <Ge> 相変化材料を用いたmri傾斜コイルの熱伝達の強化
JP2008189901A (ja) * 2007-01-11 2008-08-21 Honda Motor Co Ltd 熱輸送流体およびその製造方法
WO2009128476A1 (ja) * 2008-04-16 2009-10-22 森下仁丹株式会社 蓄熱シームレスカプセルおよびその製造方法
JP2010132841A (ja) * 2008-12-08 2010-06-17 Denso Corp 熱輸送流体、熱輸送装置および熱輸送方法
JP2011104572A (ja) * 2009-11-20 2011-06-02 Konica Minolta Holdings Inc リポソームの製造方法およびフロー製造装置
JP2013007514A (ja) * 2011-06-23 2013-01-10 Denso Corp 熱輸送システム
JP2013007311A (ja) * 2011-06-23 2013-01-10 Toyota Motor Corp 内燃機関の冷却装置
JP2013104059A (ja) * 2011-11-15 2013-05-30 Yen-Hao Huang 熱伝導効率を向上させる促進剤
JP2014516334A (ja) * 2011-04-08 2014-07-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 適合密度を有する吸着剤と相変化材料の混合物
JP2014208728A (ja) * 2013-04-16 2014-11-06 富士高分子工業株式会社 蓄熱性シリコーン材料及びその製造方法
JP2014234975A (ja) * 2013-06-04 2014-12-15 有富 和宏 装置内部の圧力と大気圧の圧力差によってできる水柱を利用した熱交換装置
US9022099B2 (en) 2010-11-09 2015-05-05 Denso Corporation Heat transport fluid passage device with hydrophobic membrane
WO2016042909A1 (ja) * 2014-09-17 2016-03-24 株式会社村田製作所 冷却デバイス
CN106150651A (zh) * 2016-08-31 2016-11-23 华南理工大学 适于纳米磁流体冷却循环的重构方法
JP2017520746A (ja) * 2014-07-16 2017-07-27 ヴァレオ システム テルミク 空調回路、より具体的には自動車の空調回路における使用に適したコンデンサシリンダ
CN107903876A (zh) * 2017-11-09 2018-04-13 中国皮革和制鞋工业研究院 一种相变微胶囊及其制备方法和应用
JP2019089285A (ja) * 2017-11-16 2019-06-13 株式会社パワーバンクシステム 蓄冷/蓄熱シート及び蓄冷/蓄熱シート生成方法
CN110617142A (zh) * 2019-09-03 2019-12-27 哈尔滨工业大学(威海) 基于分层花状纳米颗粒流体的内燃机冷却系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217196A (ja) * 1987-03-05 1988-09-09 Nippon Kapuseru Prod:Kk 潜熱型蓄熱材
JPH0525471A (ja) * 1991-07-19 1993-02-02 Matsushita Electric Works Ltd 蓄熱用媒体
JP2003129844A (ja) * 2001-10-25 2003-05-08 Toyota Motor Corp 熱吸放出媒体
JP2003221578A (ja) * 2002-01-30 2003-08-08 Sekisui Chem Co Ltd 蓄熱用マイクロカプセル及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217196A (ja) * 1987-03-05 1988-09-09 Nippon Kapuseru Prod:Kk 潜熱型蓄熱材
JPH0525471A (ja) * 1991-07-19 1993-02-02 Matsushita Electric Works Ltd 蓄熱用媒体
JP2003129844A (ja) * 2001-10-25 2003-05-08 Toyota Motor Corp 熱吸放出媒体
JP2003221578A (ja) * 2002-01-30 2003-08-08 Sekisui Chem Co Ltd 蓄熱用マイクロカプセル及びその製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528223B2 (ja) * 2005-07-25 2010-08-18 本田技研工業株式会社 熱輸送流体
JP2007031520A (ja) * 2005-07-25 2007-02-08 Honda Motor Co Ltd 熱輸送流体
JP2007330872A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 水溶性相変化物質のマイクロカプセル化方法及び装置
JP2007330876A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 水溶性相変化物質のマイクロカプセル化方法、水溶性相変化物質含有マイクロカプセル粒子、冷却液、及び熱移送媒体
JP2008039209A (ja) * 2006-08-02 2008-02-21 Hitachi Ltd 温度調整部材
JP2008045090A (ja) * 2006-08-21 2008-02-28 Toyota Motor Corp 冷却液組成物、及び冷却系
JP2008149133A (ja) * 2006-12-15 2008-07-03 General Electric Co <Ge> 相変化材料を用いたmri傾斜コイルの熱伝達の強化
JP2008189901A (ja) * 2007-01-11 2008-08-21 Honda Motor Co Ltd 熱輸送流体およびその製造方法
JP4528324B2 (ja) * 2007-01-11 2010-08-18 本田技研工業株式会社 熱輸送流体およびその製造方法
WO2009128476A1 (ja) * 2008-04-16 2009-10-22 森下仁丹株式会社 蓄熱シームレスカプセルおよびその製造方法
JP5579597B2 (ja) * 2008-04-16 2014-08-27 森下仁丹株式会社 蓄熱シームレスカプセルおよびその製造方法
JP2010132841A (ja) * 2008-12-08 2010-06-17 Denso Corp 熱輸送流体、熱輸送装置および熱輸送方法
JP2011104572A (ja) * 2009-11-20 2011-06-02 Konica Minolta Holdings Inc リポソームの製造方法およびフロー製造装置
US9022099B2 (en) 2010-11-09 2015-05-05 Denso Corporation Heat transport fluid passage device with hydrophobic membrane
JP2014516334A (ja) * 2011-04-08 2014-07-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 適合密度を有する吸着剤と相変化材料の混合物
JP2013007514A (ja) * 2011-06-23 2013-01-10 Denso Corp 熱輸送システム
JP2013007311A (ja) * 2011-06-23 2013-01-10 Toyota Motor Corp 内燃機関の冷却装置
JP2013104059A (ja) * 2011-11-15 2013-05-30 Yen-Hao Huang 熱伝導効率を向上させる促進剤
JP2014208728A (ja) * 2013-04-16 2014-11-06 富士高分子工業株式会社 蓄熱性シリコーン材料及びその製造方法
JP2014234975A (ja) * 2013-06-04 2014-12-15 有富 和宏 装置内部の圧力と大気圧の圧力差によってできる水柱を利用した熱交換装置
JP2017520746A (ja) * 2014-07-16 2017-07-27 ヴァレオ システム テルミク 空調回路、より具体的には自動車の空調回路における使用に適したコンデンサシリンダ
WO2016042909A1 (ja) * 2014-09-17 2016-03-24 株式会社村田製作所 冷却デバイス
CN106150651A (zh) * 2016-08-31 2016-11-23 华南理工大学 适于纳米磁流体冷却循环的重构方法
CN107903876A (zh) * 2017-11-09 2018-04-13 中国皮革和制鞋工业研究院 一种相变微胶囊及其制备方法和应用
JP2019089285A (ja) * 2017-11-16 2019-06-13 株式会社パワーバンクシステム 蓄冷/蓄熱シート及び蓄冷/蓄熱シート生成方法
CN110617142A (zh) * 2019-09-03 2019-12-27 哈尔滨工业大学(威海) 基于分层花状纳米颗粒流体的内燃机冷却系统及方法
CN110617142B (zh) * 2019-09-03 2021-01-26 哈尔滨工业大学(威海) 基于分层花状纳米颗粒流体的内燃机冷却系统及方法

Similar Documents

Publication Publication Date Title
JP2006016573A (ja) マイクロカプセル及び熱輸送流体
Tariq et al. Nanoparticles enhanced phase change materials (NePCMs)-A recent review
Leong et al. Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges
Alehosseini et al. Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management
Jebasingh et al. A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle dispersed organic phase change material for low-temperature applications
Vakhshouri Paraffin as phase change material
US20060199011A1 (en) Use of aqueous microcapsule dispersions as heat transfer liquids
Kalidasan et al. Nano additive enhanced salt hydrate phase change materials for thermal energy storage
Wang et al. Liquid metal (LM) and its composites in thermal management
Liu et al. A review on thermal properties improvement of phase change materials and its combination with solar thermal energy storage
JP2008051389A (ja) ヒートパイプ型伝熱装置
Tebaldi et al. Polymers with nano-encapsulated functional polymers: encapsulated phase change materials
Lokesh et al. Melting/solidification characteristics of paraffin based nanocomposite for thermal energy storage applications
KR20010111034A (ko) 전자 부품용 흡열부에서의 피씨엠의 용도
Khezri et al. Fabrication and Thermal properties of graphene nanoplatelet-enhanced phase change materials based on paraffin encapsulated by melamine–formaldehyde
EP3824041B1 (en) A method for heat storage using phase change material coated with nanoparticles
Nagar et al. Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials
Sheikh et al. A review on micro-encapsulated phase change materials (EPCM) used for thermal management and energy storage systems: Fundamentals, materials, synthesis and applications
Tan et al. Silica-confined composite form-stable phase change materials: a review
Yadav et al. A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications
JP2008088240A (ja) 熱輸送媒体
JP2010132841A (ja) 熱輸送流体、熱輸送装置および熱輸送方法
JP2007238862A (ja) 熱輸送媒体
JP2007031597A (ja) 吸・放熱カプセル及びその製造方法並びに吸・放熱カプセル分散液及びその製造方法
JP2018100326A (ja) 潜熱蓄熱物質を含む熱輸送媒体並びに熱輸送用混合液及び熱輸送方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720