JP2006013352A - 光半導体素子収納用パッケージおよび光半導体装置 - Google Patents
光半導体素子収納用パッケージおよび光半導体装置 Download PDFInfo
- Publication number
- JP2006013352A JP2006013352A JP2004191726A JP2004191726A JP2006013352A JP 2006013352 A JP2006013352 A JP 2006013352A JP 2004191726 A JP2004191726 A JP 2004191726A JP 2004191726 A JP2004191726 A JP 2004191726A JP 2006013352 A JP2006013352 A JP 2006013352A
- Authority
- JP
- Japan
- Prior art keywords
- base
- optical semiconductor
- semiconductor element
- metal substrate
- package
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
Abstract
【課題】 放熱性に優れ長期間の気密信頼性に優れるとともに光ファイバとの結合効率が良い光半導体素子パッケージおよび光半導体装置を提供すること。
【解決手段】 光半導体素子収納用パッケージは、上面の中央部に光半導体素子Sを搭載するための第1の基台1Aおよび第1の基台1Aを挟んで抵抗体4をそれぞれ設置するための2つの第2の基台1Bを有するとともに貫通孔1bを有する金属基板1と、貫通孔1bに挿通され封止材2を介して固定されたリード端子3とを具備し、第2の基台1Bは、金属基板1と一体に形成されており、第1の基台1Aは、第2の基台1Bより熱伝導率が大きく熱膨張率が小さい材料から成り、第2の基台1Bおよび金属基板1にロウ付けされている。
【選択図】 図1
【解決手段】 光半導体素子収納用パッケージは、上面の中央部に光半導体素子Sを搭載するための第1の基台1Aおよび第1の基台1Aを挟んで抵抗体4をそれぞれ設置するための2つの第2の基台1Bを有するとともに貫通孔1bを有する金属基板1と、貫通孔1bに挿通され封止材2を介して固定されたリード端子3とを具備し、第2の基台1Bは、金属基板1と一体に形成されており、第1の基台1Aは、第2の基台1Bより熱伝導率が大きく熱膨張率が小さい材料から成り、第2の基台1Bおよび金属基板1にロウ付けされている。
【選択図】 図1
Description
本発明は、光半導体素子が搭載される光半導体素子収納用パッケージおよび光半導体装置に関する。
従来、光通信分野で用いられているLD(レーザーダイオード)やPD(フォトダイオ−ド)等の光半導体素子を収納するための光半導体装置を図2(a)、(b)に示す。図2(a)は、従来の光半導体素子収納用パッケージおよび光半導体装置の断面図、図2(b)は図2(a)の蓋体を外した状態を上面から見た平面図である。
従来の光半導体素子収納用パッケージ(以下、パッケージともいう)は、上面の中央部に光半導体素子S’および薄膜抵抗基板14を搭載するための円筒を縦に切断した形状の基台11aと、この基台11aの周辺に上面から下面にかけて形成された直径0.5〜2mmの貫通孔11bを有する、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金,冷間圧延鋼(SPC)等の金属から成る円板状の金属基板11と、貫通孔11bに挿通され、少なくとも下面側の端部が貫通孔11bから突出するように封止材12を介して固定されるとともに上面側の端部が薄膜抵抗体14に電気的に接続される鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金等の金属から成るリード端子13とを具備している。
なお、金属基板11とリード端子13との接合は、絶縁ガラスから成る封止材12を介して行なわれ、封止材12によって金属基板11とリード端子13とが電気的に絶縁されている。また、光半導体素子S’は基台11aに、あるいは基台11aにサブマウント基板を介して200〜400℃の融点を有する金(Au)−錫(Sn)等の低融点ロウ材によりロウ付け固定され、光半導体素子S’の電極がボンディングワイヤ115を介して薄膜抵抗体14に電気的に接続される。
そして、金属基板11の上面には、外周端から幅1mm以内の外周部に、光半導体素子S’の保護を目的として、Fe−Ni−Co合金等から成る第1の蓋体16aがYAGレーザ溶接、シーム溶接またはロウ付け等により固定され、さらに、光半導体素子S’に対向する部位に光ファイバ17が固定された第2の蓋体16bが例えばYAGレーザやシーム溶接等の溶接により接合されて製品としての光半導体装置となる。
このような光半導体装置は、主に大容量の光通信等に使用され、リード端子13が外部電気回路(図示せず)に接続され、外部電気回路から駆動信号が供給されることによって光半導体素子S’が光励起され、励起された光を戻り光防止用の光アイソレータ(図示せず)を介して光ファイバ17に送出し、光ファイバ17内に伝達させる。そして、40km以下の伝送距離において2.5Gbps(Giga bit per second)以下の伝送容量の用途に多用されている。
しかし、近年この40km以下の伝送距離における高速通信に対する需要が急激に増加するにともない、伝送容量が不足するようになり、光半導体装置をさらに高速化する研究開発が活発に進められるようになってきた。そのために、光信号を発信する光半導体素子S’を10Gbps程度の高周波数の信号で駆動するとともに、長距離伝送においても十分な信号波形を得るために、より大電力の信号で駆動して高出力化することが検討されるようになってきた。
従来の光半導体装置の光半導体素子S’は5mW程度で駆動され、その光出力は0.2〜0.5mW程度であった。しかし、近年の大出力の光半導体装置では、光出力が1mWのレベルまで向上してきており、これにともなって、光半導体素子S’は10mW以上の電力で駆動されるようになってきている。そして、光半導体素子S’を大きな電力で駆動するために光半導体素子S’が非常に発熱することから、光半導体素子収納用パッケージに対してはより効果的な放熱性が要求されるようになってきた。そこで基台11aもしくは金属基板11を熱伝導性に優れた、例えば銅−タングステン等の金属材料から成るものとし、光半導体素子S’の発熱を効果的に放熱するものが提案されている(例えば、特許文献1参照)。
特開2000-353846号公報
しかしながら、従来の光半導体素子収納用パッケージは、銅−タングステン等の熱伝導性に優れた金属から成る基台を金属基板11に銀ロウ等で接合するものであるために、基台と金属基板11とを高精度に位置合わせすることが困難であり、その結果、光ファイバとの結合効率が悪くなるという問題点があった。
また、基台11aと金属基板11とを一体形成した際には高精度で位置合わせすることは容易であるが、銅−タングステン等の金属材料は表面がポーラス状になっているためにめっき密着性が悪く、金属基板11の上面に蓋体をYAG溶接する際の局所的な高温の熱履歴がかかると、金属基板11の溶接部のめっきの膨れや剥離が発生しやすくなり、また熱伝導性がよいために金属基板11と第1および第2の蓋体16a,16bとを溶接するために必要な熱がすぐに逃げてしまうため、溶接が十分にできず長期間の気密信頼性に欠けるという問題点を有していた。
さらに、熱伝導率の大きい材料は第1及び第2の蓋体16a,16bを溶接する際に発生する熱が光半導体素子S’に伝わりやすいために、光半導体素子S’の劣化を招き、十分な性能が得られないという問題点があった。
本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、放熱性に優れ長期間の気密信頼性に優れるとともに光ファイバとの結合効率が良い光半導体素子収納用パッケージおよび光半導体装置を提供することにある。
本発明の光半導体素子収納用パッケージは、上面の中央部に光半導体素子を搭載するための第1の基台およびこの第1の基台を挟んで抵抗体をそれぞれ設置するための2つの第2の基台を有するとともに前記第1および第2の基台の周辺に前記上面から下面にかけて形成された貫通孔を有する金属基板と、前記貫通孔に挿通され、少なくとも前記下面側の端部が前記貫通孔から突出するように封止材を介して固定されるとともに前記上面側の端部が前記抵抗体に電気的に接続されるリード端子とを具備している光半導体素子収納用パッケージにおいて、前記第2の基台は、前記金属基板と一体に形成されており、前記第1の基台は、前記第2の基台より熱伝導率が大きく熱膨張率が小さい材料から成り、前記第2の基台および前記金属基板にロウ付けされていることを特徴とするものである。
また、本発明の光半導体素子収納用パッケージは、上記構成において好ましくは、前記光半導体素子は前記第1の基台の露出した一側面に搭載されるものであり、前記第1の基台と前記第2の基台との間の隙間は、平面視における前記光半導体素子が搭載される側の方がその反対側より小さいことを特徴とするものである。
また、本発明の光半導体装置は、上記の光半導体素子収納用パッケージと、前記第1の基台に搭載されて前記抵抗体の電極に電気的に接続された光半導体素子と、前記第2の基台に設置されて前記リード端子の前記上面側の端部に電気的に接続された前記抵抗体と、光を透過させる開口を有するとともに前記第1および第2の基台を覆うように前記金属基板の前記上面に接合された蓋体とを具備していることを特徴とするものである。
本発明の光半導体素子収納用パッケージによれば、第1の基台は、第2の基台より熱伝導率が大きいことにより光半導体素子の発熱を速やかに放散させることができ、第2の基台より熱膨張率が小さいことによりロウ付け時の加熱後に冷却されると、第2の基台と一体に形成されている金属基板が収縮することにより第2の基台に挟まれて第1の基台1Aが固定されるため、第1の基台の位置精度が優れる。その結果LDの発光面の位置と、蓋体の光ファイバとの光軸がずれないため光ファイバとの結合効率が良くなり効率的な伝送ができる。また、金属基板と第1の基台とは別材料で形成でき、金属基板にめっき密着性が良く、熱伝導率の小さい材料を選択することができるので、蓋体の良好な溶接が可能となり、長期間の気密信頼性に優れるものとできる。
また、本発明の光半導体素子収納用パッケージは、上記構成において好ましくは、光半導体素子は第1の基台の露出した一側面に搭載されるものであり、第1の基台と第2の基台との間の隙間は、平面視における光半導体素子が搭載される側の方がその反対側より小さいことから、第1の基台を第2の基台および金属基板にロウ付けする際に、ロウ材の表面張力により、第1の基台が、隙間が小さくなっている光半導体素子の搭載される側の方に、ロウ材の表面張力による力がバランスするところまで吸い寄せられるように自身で移動して固着される。従って、第2の基台に対する第1の基台の位置合わせを容易とし、かつ正確なものとすることができる。
本発明の光半導体装置によれば、光半導体素子が、上記の光半導体素子収納用パッケージの第1の基台に搭載されて、抵抗体の電極に電気的に接続されていることから、正確に位置合わせされた台1の基台に搭載された光半導体素子と光ファイバとが正確に位置合わせされ、光半導体素子と光ファイバとの結合効率が良好な半導体装置とすることができる。
次に、本発明の光半導体素子収納用パッケージ(以下、パッケージともいう)および光半導体装置について添付の図面に基づいて詳細に説明する。
図1(a)は、本発明のパッケージに光半導体素子Sを搭載して成る光半導体装置の実施の形態の一例を示した断面図であり、図1(b)は、図1(a)に示す光半導体装置の蓋体を外した状態での上面から見た平面図である。
これらの図において、1は金属基板、1Aは第1の基台、1Bは第2の基台、2は封止材、3はリード端子であり、主にこれらで本発明のパッケージが構成され、また、Sは光半導体素子、4は薄膜抵抗基板等の抵抗体、6は蓋体であり、主にこれら本発明のパッケージと光半導体素子Sと、抵抗体4と、蓋体6とで本発明の光半導体装置が構成される。
金属基板1は、光半導体素子Sを搭載する第1の基台1Aを搭載するとともに光半導体素子Sが発生する熱をパッケージ外部へ放散する機能を有し、その形状は例えば直径3.0〜6.0mmの円板状,半径1.5〜8.0mmの円周の一部を切り取った半円板状,一辺3.0〜15mmの四角板状等で厚みが0.5〜2mmの平板状の上面に抵抗体4を設置するための第2の基台1Bが一体に形成されており、第2の基台1Bの近傍の平板部には上面から下面にかけて形成された直径0.5〜2mmの貫通孔1bを有する。
このような金属基板1は、冷間圧延鋼(SPC)(熱膨張率:12×10-6/℃)等の金属から成り、例えば金属基板1が冷間圧延鋼から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工、切削加工等の従来周知の金属加工方法を施すことによって所定形状に製作される。
また、金属基板1の表面には耐食性に優れ、かつロウ材との濡れ性に優れた厚さ0.5〜9μmのニッケル(Ni)層と厚さ0.5〜5μmの金(Au)層をめっき法により順次被着させておくと、金属基板1が酸化腐食するのを有効に防止するとともに各部品を金属基板1に良好にロウ付けすることができる。
なお、金属基板1の厚みは0.5mm以上が好ましく、厚みが0.5mm未満の場合、後述する第1の蓋体6aや第2の蓋体6bを金属基体1にYAG溶接する際に、溶接の条件(温度等)により金属基板1が曲がったりして変形し易くなる傾向があり、2mmを超えると、パッケージや半導体装置の厚みが不要に厚いものとなり小型化をすることが困難となる傾向がある。従って、金属基体1の厚みは0.5〜2mmが好ましい。
なお、図1(a)、(b)には、半導体素子Sを1個搭載し、貫通孔1bを2個形成した例を示しているが、複数の半導体素子Sを搭載し、複数の貫通孔1bを形成してもよい。
本発明のパッケージによれば、金属基板1に形成されるリード端子3は並列に構成され、抵抗体4と接続される2つのリード端子3の距離は0.2〜5mmがよい。なお、抵抗体4と接続される2つのリード端子3の距離が0.2mm以下の場合、2つの抵抗体4に流れる高周波信号同士が干渉し、高周波信号の反射損失が大きくなるため伝送距離の劣化を引き起こす。5mm以上の場合、光半導体素子Sの電極とリード端子3の距離が離れすぎるため、ボンディングワイヤ5による誘導成分により高周波帯において反射損失が大きくなるため5mm以内とすることが好ましい。
第2の基台1Bは、SPC等の金属から成り、金属基板1と一体に加工される。例えば金属基板1が冷間圧延鋼から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工、切削加工等の従来周知の金属加工方法を施すことによって所定形状に製作される。
また、第2の基台1Bの表面にも耐食性に優れ、かつロウ材との濡れ性に優れた厚さ0.5〜9μmのニッケル(Ni)層と厚さ0.5〜5μmの金(Au)層をめっき法により順次被着させておくと、第2の基台1Bが酸化腐食するのを有効に防止するとともに各部品を第2の基台1Bに良好にロウ付けすることができる。
なお、第2の基台1Bの大きさは、例えば第1の基台1Aを挟む位置に、金属基板1の中心から半径1.2〜3mm半円形の中心部分を切除した扇状で、LDが搭載される面側の長さ0.5〜2mm×高さ1〜3mmが好ましく、この大きさより小さい場合は、後述する第1の基台1Aとの接合が難しく、またロウ材により表面全面がロウ材に覆われ、各部品との接合がし難くなる傾向がある。また幅0.5〜2mm×高さ1〜3mmより大きくなると、パッケージや半導体装置の厚みが不要に厚いものとなり小型化をすることが困難となる傾向がある。
第1の基台1Aは銅(Cu)−タングステン(W)合金(熱膨張率:8.6×10-6/℃、熱伝導率:220W/m・K)等の熱伝導性のよい金属から成り、例えば第1の基台1Aが銅(Cu)−(タングステン)W合金から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工、切削加工等の従来周知の金属加工方法を施すことによって所定形状に製作される。
また、第1の基台1Aの表面には耐食性に優れ、かつロウ材との濡れ性に優れた厚さ0.5〜9μmのニッケル(Ni)層と厚さ0.5〜5μmの金(Au)層をめっき法により順次被着させておくと、第1の基台1Aが酸化腐食するのを有効に防止するとともに第2の基台1B及び金属基板1に良好にロウ付けすることができる。
第1の基台1Aは、第2の基台1Bより熱伝導率が大きく熱膨張率が小さい材料とされる。例えば、第1の基台1AがCu−W合金(熱伝導率:220W/m・K、熱膨張率:8.6×10-6/℃)から成るときは、第2の基台1Bは冷間圧延鋼(熱伝導率:80W/m・K、熱膨張率:12×10-6/℃)にて製作される。 このように、第1の基台1Aの熱伝導率が大きいことから、光半導体素子Sが発する熱は、第1の基台1Aにより速やかに金属基板1および第2の基台1Bに伝熱されてパッケージの外部に放熱されるので、光半導体素子Sの動作温度を一定に保つようにすることができる。また、金属基板1および第2の基台1Bに、パッケージの組立に好適な材料、例えばめっき膜の密着性がよく蓋体6との溶接が容易な材料を選択することができる。
さらに、第1の基台1Aの熱膨張率が第2の基台1Bの熱膨張率より小さいことから、第2の基台1Bが第1の基台1Aを圧縮することにより、接合後に冷却されるにつれ固定されろう材の接合において第1の基台1Aが動くことなく接合されるため実装精度がよくなる。
好ましくは、第1の基台1Aの熱膨張率は、第2の基台1Bの熱膨張率より3〜5×10-6/℃小さいものとするのがよい。熱膨張率の差が3×10-6/℃より少ないと、第2の基台1Bと一体に形成されている金属基板1が収縮したときに第一の基台1Aが第2の基台1Bから挟まれて生じる圧縮力が弱くなり、第1の基台1Aが強固に固定されないために十分な実装精度が得られない傾向があり、熱膨張率の差が5×10-6/℃を超えると、第2の基台1Bから挟まれて生じる圧縮力が強くなりすぎ、第1の基台1Aが第2の基台1Bの間から逃げるように前後方向に位置ズレしてしまう傾向がある。
なお、第1の基台1Aの大きさは第2の基台1Bに挟まれる側の面の長さが0.5〜3mm×第2の基台1Bと平行となる光半導体素子Sが搭載される側の面の長さが0.5〜2.5mm×高さ1〜3mmが好ましい。この大きさより小さい場合は、第2の基台1Bとの接合が難しく、また表面全体がロウ材に覆われ、LD等の光半導体素子Sとの接合がし難くなる傾向がある。また上記の大きさより大きくなると、光半導体素子収納用パッケージや光半導体装置の厚みが不要に厚いものとなり小型化をすることが困難となる傾向がある。
さらに、第1の基台1Aの高さは、第2の基台1Bと同じ高さのとき、最も精度よく接合できるが、光半導体素子Sの実装位置、大きさによっては第2の基台1Bより高くてもよい。第2の基台1Bより低い場合、光半導体素子Sの発光角度によっては第2の基台1Bにより光が遮断され、特性劣化を及ぼす場合がある。よって、第1の基台1Aに対する第2の基台1Bの高さは、第1の基台1Aより0.5〜2mm低い高さとするのが望ましい。
また、第1の基台1Aを第2の基台1Bの間に挟んでロウ付けするために、第1の基台1Aと第2の基台1Bとの間の隙間Gは、0.01〜0.3mmとするのがよい。隙間が0.01mmより小さいと、ロウ材が隙間Gの全面に流れないため十分な接合が行なえない傾向があり、0.3mmを超えると、隙間Gにロウ材がメニスカスを形成して入り込まず、接合が行なえなくなる傾向がある。
なお、第1の基台1Aと第2の基台1Bとの間の隙間Gは、第1の基台1Aの光半導体素子Sが搭載される一側面側、すなわち金属基板1の中心側に近い部分の隙間Gが0.01〜0.1mmとし、その反対側、すなわち金属基板1の外周側に近い部分の隙間Gが0.15〜0.3mmとし、光半導体素子Sが搭載される金属基板1の中心側に近い部分の隙間Gの方がその反対側の金属基板1の外周側に近い部分の隙間Gより小さいようにすることが好ましい。
このように隙間Gが金属基板1の中心側に近い方から外周側の方に向かって漸次広がるように形成しておくと、第1の基台1Aを第2の基台1Bおよび金属基板1にロウ付けする際に、ロウ材の表面張力により、第1の基台1Aが、隙間Gが小さくなっている金属基板1の中心側の方に、ロウ材の表面張力による力がバランスするところまで吸い寄せられるように自身で移動して固着される。従って、第2の基台1Bに対する第1の基台1Aの位置合わせを容易とし、かつ正確なものとすることができる。
ロウ材の表面張力がバランスする位置に第1の基台1Aが固着されることから、金属基板1の中心側の露出した側面は、第2の基台1Bの抵抗体4が設けられる側面より少しだけ飛び出した状態になるが、金属基板1または第2の基台1Bの金属基板1の中心側に位置合わせ用の突起を設け、これがストッパーとなって固着されるようにすれば、より正確に第2の基台1Bの側面と第1の基台1Aの側面とが同一面となるように固着することができる。
なお、有効にこの機能を発揮させるために、2つの第2の基台1Bの第1の基台1Aに接する側の面同士のなす角度が、1〜4°、より好ましくは1〜3°となるようにするのがよい。
以上により、第1の基台1Aの両側の隙間Gは、同じロウ材が使用されるので同じ隙間Gの寸法となり、光半導体素子Sが搭載される面の金属基板1の中心側における位置もロウ材の表面張力の作用で位置決めされるので、平面視における光半導体素子Sが搭載される位置は、容易にかつ極めて正確なものとすることができ、従って光ファイバ7とのアライメントも正確なものとなり、光半導体素子Sと光ファイバ7との結合効率も極めて正確なものとすることができる。
リード端子3は、光半導体素子Sが送受信する電気信号を外部電気回路(図示せず)との間で送受する機能を有する。なお、リード端子3は、少なくとも金属基板1の下面側の端部が貫通孔1bから1〜20mm程度突出するように、封止材2を介して固定されており、金属基板1の上面側の端部は、後述する抵抗体4の抵抗配線導体と電気的に接続される。また、抵抗体4の上端側は、光半導体素子Sにボンディングワイヤ等の電気的接続手段15を介して接続される。
このようなリード端子3は、鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属から成り、例えばリード端子3が鉄−ニッケル−コバルト合金から成る場合は、このインゴット(塊)を圧延加工や打ち抜き加工等の従来周知の金属加工方法を施すことによって、長さが1.5〜22mm、直径が0.1〜1mmの円柱状または角柱状の柱状に製作される。
なお、リード端子3の金属基板1の上面に突出した部位の長さが0.2mm未満であると、後述する抵抗体4とロウ材等を用いて強固に接合することが困難と成る傾向があり、10mmを超えるとリード端子3の誘導成分により高周波帯における信号伝送特性が悪くなる傾向がある。従って、リード端子3は、少なくとも金属基板1の上面側の端部が貫通孔1bの金属基板1の上面から1〜10mm程度突出するように、封止材2を介して固定することが好ましい。
また、封止材2は、金属基板1とリード端子3との絶縁間隔を確保するとともに、リード端子3を金属基板1の貫通孔1bに固定する機能を有し、通常、ガラスやセラミックなどの無機材料が用いられる。
抵抗体4は、リード端子3との間で高周波信号のインピーダンスマッチングを図るものであり、マイクロストリップライン等でパターンが形成されることで高周波信号を損失なく伝送する機能を有している。
抵抗体4は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラス−セラミックス等の絶縁性の無機材料の表面に抵抗配線等が形成されて成る。
例えば抵抗体4の抵抗配線等が酸化アルミニウム質焼結体の無機材料の表面に形成される場合であれば、酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等のセラミック原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工,積層加工,切断加工を施すことにより抵抗体4用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより絶縁性の基板が製作される。
抵抗配線の導体は、例えば、抵抗体4が酸化アルミニウム質焼結体の基板に形成される場合であれば、基板の抵抗配線のパターンを形成する部位以外にレジストを施し、チタンを蒸着後、白金、金を順次蒸着し、レジストを除去することにより薄膜抵抗配線のパターンが形成された抵抗体4を得る。そして、抵抗体4は、一般的に光半導体装置として良好な伝送が可能な20〜60Ωとなる抵抗値の範囲となるように形成される。
また、抵抗体4は、温度が200〜400℃の融点を有する半田や金(Au)−錫(Sn)等の低融点ロウ材のプレフォームを基板の抵抗配線の導体が形成されている面と反対側の裏面と第2の基台1Bとの間に挟んだりしたものを200〜400℃の温度で加熱することにより第2の基台1Bに固定される。
また、本発明の光半導体装置は、上述の光半導体素子収納用パッケージの基台1aに光半導体素子Sを金(Au)−錫(Sn)等の低融点ロウ材を介して実装し、しかる後、その電極を抵抗体4の上方側の抵抗配線の端部とボンディングワイヤ等の電気的接続手段15を介して接続し、そして金属基板1に蓋体16をYAG溶接により接合することにより製作される。
なお通常は、金属基板1の上面には、外周端から幅1mm以内の外周部に、光半導体素子Sの保護を目的として、Fe−Ni−Co合金等から成り、上端中央部に窓体が接合された第1の蓋体6aがYAGレーザ溶接、シーム溶接またはロウ付け等により固定され、さらに第1の蓋体6aの外周部(鍔状部)に、光ファイバ7と戻り光防止用の光アイソレータ(図示せず)とが樹脂接着剤で接着された第2の蓋体6bをYAGレーザ溶接等の溶接接合により接合することで光半導体装置となる。
かくして、本発明の光半導体素子収納用パッケージおよび光半導体装置によれば、搭載される光半導体素子Sの放熱性に優れるので、大出力の光半導体装置とでき、光半導体素子Sと光ファイバ7との結合効率も優れたものとできるので、電気信号を光信号に変換する効率も優れた光半導体装置とできる。そして、10GHz以上の高周波信号であっても長い伝送距離で伝送が可能な、蓋体6と金属基体1との長期間の気密信頼性に優れた光半導体素子収納用パッケージおよび光半導体装置とできる。
以下の本発明の光半導体装置と比較用の半導体装置とを製作して評価した。
まず、金属基板1の貫通孔1bにリード端子3を挿入し、封止材2となるガラスで接合した。Fe99.6%−Mn0.4%系のSPC(Steel Plate Cold)材から成る厚み1mm×半径2.8mmの金属基板1の上面に平面視において半径1.5mmの半円形の中央部分が1.15mm分断された扇形状で高さ1.4mmの第2の基台1Bが形成されたものを作製した。なお、第2の基台1Bの第1の基台1Aが挟まれて設置される面には、金属基板1の内周側から外周側にかけて第1の基台1Aの対向する面に対し0〜6°の範囲で1°ごとの傾斜角度が付くように製作したものを3個ずつ準備した。
まず、金属基板1の貫通孔1bにリード端子3を挿入し、封止材2となるガラスで接合した。Fe99.6%−Mn0.4%系のSPC(Steel Plate Cold)材から成る厚み1mm×半径2.8mmの金属基板1の上面に平面視において半径1.5mmの半円形の中央部分が1.15mm分断された扇形状で高さ1.4mmの第2の基台1Bが形成されたものを作製した。なお、第2の基台1Bの第1の基台1Aが挟まれて設置される面には、金属基板1の内周側から外周側にかけて第1の基台1Aの対向する面に対し0〜6°の範囲で1°ごとの傾斜角度が付くように製作したものを3個ずつ準備した。
次に、高さ1.4mm×第2の基台1Bと接する側の長さ1.14mm×LDが搭載される面側の長さ1.1mmで金属基板1の外周部側が半径1.5mmの円弧とされた形状のCu−W合金から成る第1の基台1Aを製作し、第2の基台1Bおよび金属基板1に銀(Ag)−銅(Cu)合金から成るロウ材によりロウ付けした。
次に、光半導体素子SとなるLDをAu−Snロウ材にて第1の基台1Aの搭載部にロウ付けした。そして、光半導体素子Sと抵抗体4の抵抗配線の上端とをボンディングワイヤによる電気的接続手段15によって電気的に接続する一方、リード端子3の上端と抵抗体4の抵抗配線の下端とを半田によって電気的に接続した。
そして、Fe−Ni−Co合金から成る第1の蓋体6aを金属基板1の上面の外周部にシーム溶接により接合し、しかる後、この第1の蓋体6aの外側に、光ファイバ7と光アイソレータとを樹脂接着剤で接着した第2の蓋体6bをYAGレーザ溶接により接合し、評価用の本発明の光半導体装置を作製した。
次に、比較用の光半導体装置は、Cu−W合金から成る半径1.5mm×厚み1.4mmの円柱を半分に切削した図2の従来の基台11aの形状とした基台11aをFe−Ni−Co合金から成る半径2.8mm×高さ1mmの金属基板11の上面にロウ材により接合した。そして、光半導体素子S’と抵抗体14とを基台11aにロウ付けにより接合して作製した。
評価用および比較用の光半導体装置の光半導体素子S,S’について、以下の計測を行なって評価した。第1の蓋体6aを接着する前に顕微鏡(倍率:40倍)にてLDの発光面と金属基板1の中心との距離を計測し実装精度とした。さらに、2つの第2の基台1Bの第1の基台1Aに相対する面とのなす角度を0〜6°に変化させたときの実装精度を確認し、第1の蓋体6aおよび第2の蓋体6bを接合した後、周囲温度が25℃の室内において光半導体装置のLDに電流100mAを印加したときの光半導体装置の金属基板1の側面の表面温度を表面温度計(安部熱計器(株)製、ND−500)にて計測して定常状態の温度を記録した。また、光の結合効率は、光パワーメータ(データシステム社製、ALP-7033CAA)にて光半導体素子S,S’の光出力と光ファイバ7,17の光出力とを計測し、20log(光出力/光入力)により求めた。それぞれの平均値の結果を表1に示す。
表1より、本発明の光半導体装置はAg−Cu合金から成るロウ材の表面張力により、2つの第2の基台1Bの相対する面の角度が1〜3°のときに角度0°より安定した良好な実装精度を得られ、それに伴い結合効率もよくなっていることが分かった。また5°以上角度を大きくした場合、第1の其台1Aと第2の基台1Bとが十分に接合されないこともわかった。また、今回熱伝導率のよい材質を使用していることから金属基板1の側面の温度についても従来品に比べ熱放熱性も良い結果が得られた。
なお、本発明は、上述の実施の最良の形態の例および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、大電流で駆動する必要のないLDでも使用することが可能である。
1・・・・・・・金属基板
1A・・・・・・第1の基台
1B・・・・・・第2の基台
1b・・・・・・貫通孔
2・・・・・・・封止材
3・・・・・・・リード端子
4・・・・・・・抵抗体
6・・・・・・・蓋体
6a・・・・・・第1の蓋体
6b・・・・・・第2の蓋体
7・・・・・・・光ファイバ
S・・・・・・・光半導体素子
G・・・・・・・隙間
1A・・・・・・第1の基台
1B・・・・・・第2の基台
1b・・・・・・貫通孔
2・・・・・・・封止材
3・・・・・・・リード端子
4・・・・・・・抵抗体
6・・・・・・・蓋体
6a・・・・・・第1の蓋体
6b・・・・・・第2の蓋体
7・・・・・・・光ファイバ
S・・・・・・・光半導体素子
G・・・・・・・隙間
Claims (3)
- 上面の中央部に光半導体素子を搭載するための第1の基台および該第1の基台を挟んで抵抗体をそれぞれ設置するための2つの第2の基台を有するとともに前記第1および第2の基台の周辺に前記上面から下面にかけて形成された貫通孔を有する金属基板と、前記貫通孔に挿通され、少なくとも前記下面側の端部が前記貫通孔から突出するように封止材を介して固定されるとともに前記上面側の端部が前記抵抗体に電気的に接続されるリード端子とを具備している光半導体素子収納用パッケージにおいて、前記第2の基台は、前記金属基板と一体に形成されており、前記第1の基台は、前記第2の基台より熱伝導率が大きく熱膨張率が小さい材料から成り、前記第2の基台および前記金属基板にロウ付けされていることを特徴とする光半導体素子収納用パッケージ。
- 前記光半導体素子は前記第1の基台の露出した一側面に搭載されるものであり、前記第1の基台と前記第2の基台との間の隙間は、平面視における前記光半導体素子が搭載される側の方がその反対側より小さいことを特徴とする請求項1記載の光半導体素子収納用パッケージ。
- 請求項1または請求項2に記載の光半導体素子収納用パッケージと、前記第1の基台に搭載されて前記抵抗体の電極に電気的に接続された光半導体素子と、前記第2の基台に設置されて前記リード端子の前記上面側の端部に電気的に接続された前記抵抗体と、光を透過させる開口を有するとともに前記第1および第2の基台を覆うように前記金属基板の前記上面に接合された蓋体とを具備していることを特徴とする光半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191726A JP2006013352A (ja) | 2004-06-29 | 2004-06-29 | 光半導体素子収納用パッケージおよび光半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191726A JP2006013352A (ja) | 2004-06-29 | 2004-06-29 | 光半導体素子収納用パッケージおよび光半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006013352A true JP2006013352A (ja) | 2006-01-12 |
Family
ID=35780195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004191726A Pending JP2006013352A (ja) | 2004-06-29 | 2004-06-29 | 光半導体素子収納用パッケージおよび光半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006013352A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5368588B2 (ja) * | 2010-01-27 | 2013-12-18 | 三菱電機株式会社 | 半導体レーザモジュール |
-
2004
- 2004-06-29 JP JP2004191726A patent/JP2006013352A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5368588B2 (ja) * | 2010-01-27 | 2013-12-18 | 三菱電機株式会社 | 半導体レーザモジュール |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110957278B (zh) | 电子部件搭载用封装体以及使用其的电子装置 | |
JP2016189431A (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
US10629505B2 (en) | Electronic component mounting package and electronic device using the same | |
JP5312358B2 (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
JP6431441B2 (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
JP2005159277A (ja) | 光半導体素子収納用パッケージおよび光半導体装置 | |
JP2006013352A (ja) | 光半導体素子収納用パッケージおよび光半導体装置 | |
JP2004335584A (ja) | 半導体パッケージ | |
JP6166101B2 (ja) | 光半導体素子収納用パッケージおよびこれを備えた実装構造体 | |
JP5705491B2 (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
JP2011049523A (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
JP2004259962A (ja) | 光半導体素子収納用パッケージおよび光半導体装置 | |
JP2001168447A (ja) | レーザーダイオード光モジュール | |
JP2011114104A (ja) | サブマウントおよびそれを用いた電子装置 | |
JP4493285B2 (ja) | 光半導体素子収納用パッケージおよび光半導体装置 | |
JP4172783B2 (ja) | 入出力端子および半導体素子収納用パッケージならびに半導体装置 | |
JP2014146756A (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
JP2004207259A (ja) | 光半導体素子収納用パッケージおよび光半導体装置 | |
JP3881554B2 (ja) | 光半導体素子収納用パッケージおよび光半導体装置 | |
JP2010010658A (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
JP3993774B2 (ja) | 光半導体素子収納用パッケージ | |
JP2012227482A (ja) | 電子部品搭載用パッケージおよびそれを用いた電子装置 | |
JP2002314186A (ja) | 光半導体素子収納用パッケージおよび光半導体装置 | |
JP2003318303A (ja) | 入出力端子および半導体素子収納用パッケージならびに半導体装置 | |
JP4295526B2 (ja) | 光半導体素子収納用パッケージおよび光半導体装置 |