JP2006005951A - レンズアンテナ装置 - Google Patents

レンズアンテナ装置 Download PDF

Info

Publication number
JP2006005951A
JP2006005951A JP2005201985A JP2005201985A JP2006005951A JP 2006005951 A JP2006005951 A JP 2006005951A JP 2005201985 A JP2005201985 A JP 2005201985A JP 2005201985 A JP2005201985 A JP 2005201985A JP 2006005951 A JP2006005951 A JP 2006005951A
Authority
JP
Japan
Prior art keywords
lens
radiators
axis
radiator
guide rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201985A
Other languages
English (en)
Other versions
JP4679276B2 (ja
JP2006005951A5 (ja
Inventor
Takanari Ogawa
隆也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005201985A priority Critical patent/JP4679276B2/ja
Publication of JP2006005951A publication Critical patent/JP2006005951A/ja
Publication of JP2006005951A5 publication Critical patent/JP2006005951A5/ja
Application granted granted Critical
Publication of JP4679276B2 publication Critical patent/JP4679276B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】レンズ部分の小型軽量化により装置全体の小型軽量化を実現し、かつレンズ部分の取り扱い、製作、組立を容易にする。
【解決手段】静止衛星からの電波は球体レンズを二分した半球レンズ120の側方周面から入射される。半球レンズ120は電波反射板110上に載置されているため、半球レンズ120で集束される電波は電波反射板110により半球レンズ120の断面で反射され、球体レンズの場合とは面対称な経路をとる。そこで、放射器130を半球レンズ120の側方周面上に形成される電波ビームの集束位置、すなわち焦点に配置することで、放射器130にて静止衛星からの電波を受信することができ、逆に静止衛星へ電波を送信することも可能となる。半球レンズが使用可能であるため、レンズ部分の小型化が実現でき、その取り扱い、装置の製作、組立が容易となる。
【選択図】図1

Description

本発明は、衛星通信システムの地上局に用いられ、電波ビームを集束させる球体レンズを利用したレンズアンテナ装置に関する。
従来より、電波ビームを集束可能な球体レンズを利用して、球体レンズの下半球面上の所定位置に放射器を配置し、球体レンズの中心方向に放射器の指向性を合わせることで、所定方向に電波ビームを形成するレンズアンテナ装置の開発が進められている。この種のアンテナ装置は、放射器の位置を球体レンズの下半球面上で任意に移動させるだけで、天球上のどこにでも電波ビームを指向させることができるので、パラボラアンテナ装置等のように全体を回転駆動させる必要がなく、駆動系の小型化が容易であるという利点を有する。
しかしながら、レンズアンテナ装置では、球体レンズそのものが小型化の制約となっているため、もはや全体の小型化が困難な状況にある。また、球体形状のため、組立時の取り扱いが容易でないという問題があった。
以上述べたように、従来のレンズアンテナ装置では、球体レンズそのものの大きさが装置小型化の制約となり、しかも球体形状のため、製作、組立時の取り扱いが容易でないという問題があった。
本発明は、上記の問題を解決するためになされたもので、レンズ部分の小型軽量化により装置全体の小型軽量化を実現でき、かつレンズ部分の取り扱い、製作、組立が容易なレンズアンテナ装置を提供することを目的とする。
また、このレンズアンテナ装置において、複数個の放射器を備える場合に、各放射器で複数個の通信衛星を捕捉追尾するための効率的な運用を実現する放射器位置決め制御方法を提供することを目的とする。
上記の目的を達成するために、本発明に係るレンズアンテナ装置は、以下のように構成される。
(1)電波ビームを集束する球体レンズを二分してなる半球レンズと、この半球レンズが断面側で載置され、天空側からの入射電波を反射する電波反射板と、前記半球レンズの任意の電波集束点位置に配置され、電波ビームを形成するアンテナ素子を備える放射器と、前記半球レンズのアジマス軸周りに前記放射器の位置を調整して前記電波ビームの方位角を制御する方位角調整手段と、前記半球レンズのエレベーション軸周りに前記放射器の位置を調整して前記電波ビームの仰角を制御する仰角調整手段とを具備する構成とする。
すなわち、本発明では、通信相手先が静止衛星であることを想定し、半球レンズの側方周面から入射される静止衛星からの電波を、半球レンズにより集束しつつ、電波反射板により反射して、半球レンズの入射側とは逆側の側方周面における焦点に配置した放射器により受信可能とし、逆に放射器からの電波ビームを静止衛星に指向できるようにしている。このように半球レンズを使用しているため、従来の球体レンズに比して大きさ、重量が半分で済むため、装置全体の小型軽量化を実現することができる。
(2)(1)の構成において、前記電波反射板は、反射効率を高めるため、前記半球レンズの二分断面より径大の円盤形状であることが望ましい。
(3)(1)の構成において、前記電波ビームが直線偏波であるときは、前記放射器の偏波軸を調整する偏波軸調整手段を備えるものとする。これにより、偏波軸を容易に一致させることができ、特性向上を実現できる。
(4)(1)の構成において、当該レンズアンテナ装置が移動体に搭載されるときは、前記方位角調整手段及び仰角調整手段は、前記移動体の姿勢変化に応じて前記放射器のアジマス軸周り、エレベーション軸周りの位置を自動的に調整する。これにより、前記電波ビームの指向方向を移動体の姿勢変化によらず一定に維持させることが可能となる。
(5)(1)の構成において、具体的には、当該レンズアンテナ装置の設置位置に水平に配置される固定ベースと、この固定ベースにアジマス軸周りに回転自在に搭載される回転ベースとを備え、前記回転ベース上に前記半球レンズ、電波反射板、放射器及び仰角調整手段を搭載し、前記固定ベースに対する回転ベースのアジマス軸周りの回転を前記方位角調整手段として用いる。
(6)(5)の構成において、前記仰角調整手段は、前記半球レンズの中心点を通る、前記アジマス軸に直交するエレベーション軸を支点とし、前記半球レンズの周面に沿って平行に架設されるガイドレールと、このガイドレールを前記エレベーション軸周りに回転させる回転機構とを備え、前記放射器は、前記ガイドレール上で任意の位置に自走する自走機構を備える構成とする。
(7)(6)の構成において、前記放射器を複数個備える場合には、前記複数個の放射器はいずれも前記仰角調整手段の同一ガイドレール上を自走するようにする。
(8)(7)の構成において、前記複数個の放射器は、いずれも未使用時に、使用中の放射器のブロッキングにならない位置、例えば使用中放射器の隣接する位置に退避することが望ましい。
(9)(5)の構成において、前記仰角調整手段は、前記回転ベースから前記半球レンズの周面に沿って平行に延びる支持板と、前記放射器を前記支持板に沿ってスライド自在に保持する放射器保持手段とを備える構成としてもよい。
(10)(5)の構成において、さらに、前記回転ベース上の搭載機器を覆うレドームを備えることが望ましい。
(11)(5)の構成において、さらに、前記回転ベース上の搭載機器を覆うレドームを備える場合に、当該レドームを前記回転ベースに対してアジマス軸周りに回転自在に取り付けるようにし、前記仰角調整手段は、前記回転ベースから前記半球レンズの天頂に向けて、当該半球レンズの周面に沿って平行に延びる支持板と、前記放射器を前記支持板に沿ってスライド自在に保持する放射器保持手段と、前記レドームの回転ベースに対するアジマス軸周りの回転を前記放射器の前記支持板上のスライドに変換する放射器可動手段とを備える構成とする。
この構成によれば、レドームの回転ベースに対するアジマス軸周りの回転を放射器のエレベーション軸周りの移動に変換することができ、レドームを取り外さなくても放射器の位置調整が可能となる。
(12)(11)の構成において、具体的には、前記放射器可動手段は、前記放射器の電波放射面とは逆側の面に取り付けられ、前記レドームの内面近傍に延接されるガイドピンと、前記レドームの内面に設けられ、前記ガイドピンと係合して、当該レドームの回転に伴って前記ガイドピンを前記支持板に沿ってスライドさせるガイドレールとを備える構成とする。
(13)(6)の構成において、さらに、前記回転ベースの前記アジマス軸周りの回転と、前記ガイドレールの前記エレベーション軸周りの回転と、前記ガイドレール上の放射器の自走を制御する制御装置を備えるものとする。これにより各可動部の自動制御が可能となる。
(14)(5)の構成において、前記固定ベース側と回転ベース側の電気的接続にロータリージョイントを用いる。これにより、回転ベースにおける回転の自由度を向上させることができる。
本発明に係るレンズアンテナ装置の放射器位置決め制御方法は、以下のような特徴を有する。
(15)設置位置に水平に配置される固定ベースと、この固定ベースにアジマス軸周りに回転自在に搭載される回転ベースと、この回転ベース上に設けられ、電波ビームを集束する球体レンズを二分してなる半球レンズ、この半球レンズが断面側で載置され、天空側からの入射電波を反射する電波反射板、前記半球レンズの中心点を通る、前記アジマス軸に直交するエレベーション軸を支点とし、前記半球レンズの周面に沿って平行に架設されるガイドレール、このガイドレールを前記エレベーション軸周りに回転させる回転機構、及び前記ガイドレール上で任意の位置に自走する自走機構を備える複数個の放射器と、前記回転ベースの前記アジマス軸周りの回転と、前記ガイドレールの前記エレベーション軸周りの回転と、前記ガイドレール上の複数個の放射器の自走を制御する制御装置とを備えるレンズアンテナ装置に用いられ、前記複数の放射器のうちの第1及び第2の放射器が天空上に存在する2つの通信相手先の衛星の位置にそれぞれ対応するように前記第1及び第2の放射器を位置決め制御する制御方法であって、前記2つの衛星の位置を入力するステップと、入力された2つの衛星の位置から前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に前記第1及び第2の放射器それぞれを配置すべく、前記第1及び第2の放射器の配置されるべき2つの位置を演算するステップと、前記第1及び第2の放射器が配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、前記半球レンズの中心を通り前記アジマス軸と直交する第2仮想平面との交線上に前記アジマス軸が配置されるように前記回転ベースを回転させるステップと、前記ガイドレールを前記エレベーション軸周りに回転させると共に、該ガイドレールに沿って前記第1及び第2の放射器を移動させ、該第1及び第2の放射器をそれらの配置されるべき位置に配置するステップとを備えたことを特徴とする。
上記の制御方法によれば、2つの送受信モジュールを2つの衛星の位置にそれぞれ対応する位置に、それらの移動に干渉が生じることなく移動させることができる。
(16)好ましくは、(15)の方法において、さらに、前記2つの衛星のうち一方の衛星の位置変化後の位置を探索する第1探索ステップと、この第1探索ステップで探索された一方の衛星の位置変化後の位置と第1探索ステップによる位置探索前の他方の衛星の位置とから前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に2つの放射器の各々を配置すべく、前記第1及び第2の放射器が配置されるべきこれら2つの位置を演算するステップと、前記第1及び第2の放射器の配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、第1回転軸と直交する第2仮想平面との交線上にエレベーション軸が配置されるよう前記回転ベースを回転させるステップと、前記ガイドレールをエレベーション軸周りに回転させると共に、該ガイドレールに沿って第1及び第2の放射器を移動させて第1及び第2の放射器をそれらの配置されるべき位置に配置するステップと、2つの衛星のうち他方の衛星の位置変化後の位置を探索する第2探索ステップと、この第2探索ステップで探索された他方の衛星の位置変化後の位置と第1探索ステップによる位置探索後の一方の衛星の位置とから前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に2つの放射器の各々を配置すべく、第1及び第2の放射器が次に配置されるべきこれらの2つの位置を演算するステップと、前記第1及び第2の放射器の次に配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、アジマス軸と直交する第2仮想平面との交線上にエレベーション軸が配置されるよう前記回転ベースを回転させるステップと、前記ガイドレールをエレベーション軸周りに回転させると共に、該ガイドレールに沿って第1及び第2の放射器を移動させて第1及び第2の放射器をそれらの配置されるべき位置に配置するステップとを備えるものとする。
(17)あるいは(15)の方法において、さらに、2つの衛星の位置変化後の各々に位置を探索する複合探索ステップと、この複合探索ステップで探索された双方の衛星の位置変化後の位置から前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に2つの放射器の各々を配置すべく、第1及び第2の放射器が配置されるべきこれら2つの位置を演算するステップと、前記第1及び第2の放射器の配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、前記アジマス軸と直交する第2仮想平面との交線上にエレベーション軸が配置されるよう前記回転ベースを回転させるステップと、前記ガイドレールをエレベーション軸周りに回転させると共に、該ガイドレールに沿って第1及び第2の放射器を移動させて2つの放射器をそれらの配置されるべき位置に配置するステップとを備えるものとする。
本発明によれば、レンズ部分の小型軽量化により装置全体の小型軽量化を実現でき、かつレンズ部分の取り扱い、製作、組立が容易なレンズアンテナ装置を提供することができ、このレンズアンテナ装置において、複数個の放射器を備える場合に、各放射器で複数個の通信衛星を捕捉追尾するための効率的な運用を実現する放射器位置決め制御方法を提供することができる。
以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は、本発明の一実施形態によるレンズアンテナ装置100の基本構造を示す構成概略図である。ここでは、静止軌道上にある通信衛星(図示せず。以下、静止衛星と称する。)との間で通信を行う日本の地上局に設けられる場合を想定する。
図1に示すレンズアンテナ装置100は、平面状の電波反射板110上に球体レンズを二分した半球レンズ120を載置し、この半球レンズ120の側方周面上に放射器130を配置した構成となっている。
ここで、電波反射板110は、理想的には無限大に広がる平面であることが望ましいが、実際にはアンテナ特性(利得、サイドローブ等)の許容範囲からその大きさを決定する。
また、球体レンズは、球状誘電体レンズとも呼ばれ、同心の球面に誘電体が積層されて構成され、これを通過する略平行な電波を一点に集束させることができる。一般に、積層される誘電体の各誘電率は、外側にいくほど低くなっている。本実施形態で用いる半球レンズ120は、この球体レンズをその球中心を通る面で二分したもので、その断面下に電波反射板110が配置されるため、実質的に球体レンズとして取り扱うことができる。
すなわち、上記構成によるレンズアンテナ装置100では、静止衛星からの電波は半球レンズ120の側方周面から入射される。このとき、球体レンズならば、電波は図中点線で示すような経路で集束するが、本実施形態では、球体レンズを二分した半球レンズ120を使用し、電波反射板110上に載置しているため、半球レンズ120で集束される電波は電波反射板110により半球レンズ120の断面で反射される。よって、半球レンズ120の入射電波は、図中実線で示すように、球体レンズの場合とは面対称な経路をとる。そこで、放射器130を半球レンズ120の側方周面上に形成される電波ビームの集束位置、すなわち焦点に配置する。これにより、放射器130にて、静止衛星からの電波を受信することができ、逆に静止衛星へ電波を送信することも可能となる。
実際に使用する場合には、当該レンズアンテナ装置100を略水平面上に設置し、通信相手先となる静止衛星の方位及び仰角に合わせて放射器130を配置させることになる。
尚、上記の説明では、日本の地上局に設けられる場合を想定したが、勿論、他の地域でも使用可能である。但し、例えば赤道近くで使用すると、半球レンズ120における電波入射角と出射角が鋭角となり、放射器130がブロッキングの対象となってしまう。しかしながら、この場合には、当該レンズアンテナ装置100を水平面から適度に傾けることで、放射器130をブロッキングの範囲から外すことができる。
また、上記実施形態では、放射器が1個の場合について説明したが、放射器を複数個備えるようにすれば、方位角の異なる複数の静止衛星と通信することも可能である。このとき、未使用の放射器については、使用中の放射器のブロッキングにならない位置、例えば使用中の放射器に隣接する位置に配置しておくことが望ましい。
また、本実施形態のレンズアンテナ装置100は、その構造上、球体レンズを使用していた従来装置に比して、高さの縮小、軽量化を飛躍的に実現することが可能である。このことは、上記レンズアンテナ装置100を自動車、航空機、船舶といった移動体に搭載するときに大きな利点となる。この場合、放射器130を半球レンズ120の周面に沿って移動可能とし、放射器130による電波ビームを静止衛星に向けた後、移動体の3軸方向の動きに合わせて放射器130の位置を制御することで、静止衛星を追尾して通信状態を維持することができる。さらに、放射器130が持つアンテナ素子部を可動とし、移動体の振動に追従可能として、通信品質を安定に維持するようにしてもよい。
上記構成によれば、半球レンズを使用しているため、従来の球体レンズに比して大きさ、重量が半分で済むため、装置全体の小型軽量化を実現することができる。
以下、具体的な実施例をあげて説明する。
(第1の実施例)
図2乃至図4は、本発明に係る第1の実施例として、2つの静止衛星と通信可能とする車載用に適したレンズアンテナ装置の構造を示すもので、図2は一部断面を示す外観斜視図、図3及び図4はそれぞれ内部構造を示す断面斜視図とそのA−A線断面図である。
本実施例のレンズアンテナ装置200は、移動体の水平面に固定される略円形の固定ベース210と、この固定ベース210上にAZ(アジマス)軸周りに回転自在に取り付けられた略円形の回転ベース220と、この回転ベース220上に固定され、回転ベース220と略同径の円盤状電波反射板230と、AZ軸上に中心がくるようにして電波反射板230上に固定される半球レンズ240とを備えている。ここで、電波反射板230の径は半球レンズ240の径よりも十分大きいものとする。
固定ベース210のAZ軸部分にはロータリージョイント(R/J)の軸受け部211が設けられ、その周囲には周面上部にベアリング機構212が設けられたハブ213が形成され、さらに半球レンズ240より径大な位置にリング状の溝部214が形成されている。尚、詳細は図示しないが、溝部214の外側の壁面にはラックが切られている。
回転ベース220の下部において、AZ軸部分には固定ベース210側の軸受け部211と対となってロータリージョイントを形成する軸受け部221が設けられ、その周囲には固定ベース210側のハブ213の外周面と対向し、ベアリング機構212と接触して回転ベース220を回転自在に支持するハブ222が形成され、さらに半球レンズ240と略同径のリム223が形成されている。ハブ222とリム223との間には、補強のため、複数本のスポーク224が渡されている。リム223の外周面下部において、複数箇所に固定ベース210に当接してがたつきを防止するAZローラ225が装着されている。
上記リム223の外周面には、AZ軸に対して対称となる位置に、外方向に突出され、半球レンズ240の中心点を通りAZ軸に直交する延直線上に対向配置される一対のEL(エレベーション)軸回転シャフト251、252を回転自在に支持する一対の支持具226、227が固定される。一方の支持具226にはEL軸駆動機構260が設けられ、他方の支持具227にはAZ軸駆動機構270が設けられる。一対のEL軸回転シャフト251、252には、半球レンズ240と同一中心点を持つ半円弧状のガイドレール280が固定され、回転シャフト251を回転駆動することで、ガイドレール280が半球レンズ240の周面に沿って移動可能となされている。
上記EL軸駆動機構260は、支持具226に駆動モータ261をその回転軸がシャフト251と平行となるようにして固定し、その回転軸にプーリ262を装着し、一方、EL軸回転シャフト251の端部にモータ側のプーリ262より径大のプーリ263を装着し、プーリ262、263間をベルト264で連結して、駆動モータ261の回転がEL軸回転シャフト251に伝達される構造となっている。すなわち、駆動モータ261を正逆方向に回転させることにより、EL軸回転シャフト251を通じてガイドレール280がEL軸周りに回動するようになっている。
また、上記AZ軸駆動機構270は、支持具227に駆動モータ271をその回転軸が下向きとなるようにして固定し、その回転軸にピニオンギヤ272を装着し、このピニオンギヤ272を固定ベース210側の溝部214のラックに噛み合わせ、駆動モータ271を正逆方向に回転させることにより、回転ベース220全体がAZ軸周りに正逆方向に回転する構造となっている。
上記ガイドレール280には、第1及び第2の放射器290、300が設けられる。各放射器290、300は、詳細は後述するが、ガイドレール280に沿って自走するための自走駆動機構を備えている。ここで、各放射器290、300の電波放射面は、ガイドレール280上の各位置で、半球レンズ240の焦点に位置するように設定される。
上記固定ベース210上の空き空間には電源装置310、駆動制御/信号処理装置320が設けられ、上記回転ベース220の空き空間には放射器290、300の給電、送受信信号の周波数変換を行うアップ/ダウン(U/D)コンバータ330が設けられている。アップ/ダウン(U/D)コンバータ330と各放射器290、300とは、図示しないカールコードにて接続されている。固定ベース210と回転ベース220との間の電気的接続は、ロータリージョイント(211、221)を通じて行われる。これにより、回転ベース220のAZ軸周りの回転に影響されることなく、放射器290、300への電源供給、その送受信信号の入出力、AZ軸回転、EL軸回動、放射器自走のための駆動制御信号/モニタ信号等の送受を行うことができる。
さらに、半球レンズ240及びガイドレール280が移動し得る領域を覆うように、キャップ型カバー部材(以下、レドーム)340が固定ベース210に接合されている。これにより、前述の全ての構成要素が外界に対して密閉されている。レドーム340は、電波透過性を有するとともに熱電動率の低い材質、例えば樹脂によって構成され、一方、固定ベース210は金属などの熱伝導率の高い材質によって構成されている。
次に、図5及び図6を用いて、ガイドレール280と放射器290、300との関係の詳細について説明する。図5(a)、(b)は、半球レンズ240の中心側から見たガイドレール280の図であり、図6はガイドレール280と放射器290の断面側面図である。
図5及び図6に示すように、ガイドレール280は、円弧状のアーム板281と、アーム板281の両側部に設けられた一対の筒状レール282と、アーム板281の内面上に敷かれたラックギアレール283とを有している。
放射器290は、特に図6に示すように、電波ビームの送受信を担うアンテナ素子291と、電波ビームの処理を担う電子回路基板292と、電子回路基板292を収納する本体部293とを有している。電子回路基板292はカールコードを介してU/Dコンバータ330に接続されている。
本体部293のアーム板281側には、図5及び図6に示すように、一対の筒状レール282に当接して摺動する3個のV字ベアリング294と、ラックギアレール283と噛み合う案内歯車295と、案内歯車295を駆動する案内モータ296とが設けられている。案内モータ296は、電子回路基板292、カールコード、U/Dコンバータ330を介して駆動制御/信号処理装置320に接続されている。
放射器300は、放射器290と同構成であり、アンテナ素子301、電子回路基板302、本体部303、3個のV字ベアリング304、案内歯車305と、案内モータ306を有する。
その他、駆動制御/信号処理装置320は、図示しないホスト装置に接続され、通信先の静止衛星の位置に関する情報が入力されるようになっている。
次に、上記構成によるレンズアンテナ装置の作用について図7及び図8を用いて説明する。図7は放射器290、300の位置決め制御の概略を示す斜視図であり、図8は放射器290、300の位置決め制御の概略を示すフロー図である。尚、図7では、説明を簡単にするため、電波反射板230により半球レンズ240が球体レンズとして機能しているものとして、図面上の反射経路を省略する。
まず、選択された通信可能な2つの静止衛星ST1、ST2の大まかな位置s1、s2が、ホスト装置から駆動制御/信号処理装置320に入力される(STEP11)。
駆動制御/信号処理装置320は、図7に示すように、入力された2つの衛星の位置s1、s2から半球レンズ240の中心を通って電波反射板230で反射して延びる各軸線a1、a2上に2つの放射器290、300の各々を配置するために、放射器290、300(より詳細には、それらのアンテナ素子291、301)の配置されるべき2つの位置P1、P2を演算する(STEP12)。
次に、駆動制御/信号処理装置320は、放射器290、300の配置されるべき2つの位置P1、P2と半球レンズ240の中心Oとを含む第1仮想平面Sと、半球レンズ240の中心Oを通り回転ベース6のAZ軸と直交する第2仮想平面Hとの交線上にEL軸が配置されるよう、方位角調整用のモータ271を駆動して回転ベース220を回転させる(STEP13)。
回転ベース220の回転に続いて、あるいは回転ベース220の回転と同時に、駆動制御/信号処理装置320は仰角調整用のモータ261を駆動させ、ガイドレール280をEL軸周りに回転させて、ガイドレール280を位置P1、P2に重ね合わせる(STEP14)。
仰角調整用のモータ261の駆動に続いて、あるいはモータ261の駆動と同時に、駆動制御/信号処理装置320は放射器290、300の各案内モータ296、306を駆動させ、放射器290、300をガイドレール280に沿って位置P1、P2に移動させる(STEP15)。これにより、放射器290、300の初期位置決めが達成される。
2つの静止衛星ST1、ST2の方位角、仰角は、被搭載移動体の位置、移動方向、傾きによって変化する。本実施例によるレンズアンテナ装置200は、このように比較的高速に位置を変える衛星ST1、ST2を、以下のように追尾する。
初期位置決めが達成された後、2つの衛星ST1、ST2のうち一方の衛星、例えば衛星ST1のより正確な位置(位置変化後の位置の意味を含む)が探索される(第1探索工程:STEP21)。衛星ST1の位置の探索は、例えば以下のように行われ得る。
まず、仰角調整用の駆動モータ261を双方向に微小量回転させてガイドレール280をEL軸周りに微小に双方向に回転させると共に、ガイドレール280上で衛星ST1に対応して位置決めされている放射器290の案内モータ296を双方向に微小量駆動して、放射器290をガイドレール280に沿って双方向に微小距離移動させる。これにより、放射器290は2次元の微小球面内を移動する。
この微小球面内の移動の間に、衛星ST1と放射器290との通信状態がより良好である地点Q1を探索する。通信状態の良否は、受信信号の強度などを監視することで判断することができる。地点Q1は、衛星ST1のより正確な位置から半球レンズ230の中心Oを通り反射して延びる軸線上の位置に対応していると考えることができる。すなわち、地点Q1の探索により、衛星ST1のより正確な位置を知ることができる。
次に、第1探索工程で探索された一方の衛星ST1の位置と第1探索工程による位置変化探索の前に求めた他方の衛星ST2の位置とから半球レンズ230の中心Oを通り反射して延びる各軸線上の位置が演算される。この場合、2つの位置Q1、P2が確認される(STEP22)。
そして、放射器290、300が次に配置されるべき2つの位置Q1、P2と半球レンズ230の中心Oとを含む新たな第1仮想平面Sと、第2仮想平面Hとの交線上にEL軸が配置されるよう、方位調整用の駆動モータ271が駆動されて回転ベース220が回転される(STEP23)。
回転ベース220の回転に続いて、あるいは回転ベース220の回転と同時に、駆動制御/信号処理装置320は仰角調整用の駆動モータ261を駆動させ、ガイドレール280をEL軸周りに回転させて位置Q1、P2に重ね合わせる(STEP24)。
仰角調整用の駆動モータ261の駆動に続いて、あるいは当該モータ261の駆動と同時に、駆動制御/信号処理装置320は放射器290、300の各案内モータ296、306を駆動させ、放射器290、300をガイドレール280に沿って位置Q1、P2に移動させる(STEP25)。これにより、放射器300の位置P2を保存しつつ、放射器290の追尾位置決めが達成される。このような制御形態は非干渉制御と呼ばれるものである。
送受信モジュール290の追尾位置決めが達成された後、2つの衛星ST1、ST2のうち、他方の衛星ST2のその時点のより正確な位置(位置変化後の位置の意味を含む)を探索する(第2探索工程:STEP31)。衛星ST2の位置の探索は、衛星ST1の位置の探索と同様に行われ得る。
第2探索工程で探索された衛星ST2の位置と第2探索工程による位置探索前(第1探索工程による位置探索後)の衛星ST1の位置とから半球レンズ230の中心Oを通り反射して延びる各軸線上の位置を演算する。この場合、2つの位置Q1、Q2を確認する(STEP32)。
そして、方位角調整用の駆動モータ271を駆動して、放射器290、300が次に配置されるべき2つの位置Q1、Q2と半球レンズ230の中心Oとを含む新たな第1仮想平面Sと、第2仮想平面Hとの交線上にEL軸が配置されるよう、回転ベース220を回転させる(STEP33)。
回転ベース220の回転に続いて、あるいは回転ベース220の回転と同時に、駆動制御/信号処理装置320は仰角調整用の駆動モータ261を駆動させ、ガイドレール280をEL軸周りに回転させて、ガイドレール280を位置Q1、Q2に重ね合わせる(STEP34)。
仰角調整用の駆動モータ261の駆動に続いて、あるいは当該モータ261の駆動と同時に、駆動制御/信号処理装置320は放射器290、300の各案内モータ296、306を駆動させ、放射器290、300をガイドレール280に沿って位置Q1、Q2に移動させる(STEP35)。これにより、放射器290の位置Q1を保存しつつ、すなわち、非干渉的に放射器300の追尾位置決めが達成される。
以後、放射器290、300の追尾位置決めを交互に連続に行っていくことで、2つの衛星ST1、ST2をほぼ連続的に追尾していくことが可能である。
ここで、2つの衛星ST1、ST2は静止衛星であるため、両者の位置関係は変化しない。このため、放射器290、300の位置関係も変化せず、ガイドレール280上でほぼ固定される。
尚、各放射器290、300の本体部293、303が近接したとき、アンテナ素子291、301が隣接するようにしておけば、2つの衛星ST1、ST2が近接している場合にも対応可能となる。
また、3つ目の放射器が、ガイドレール280に沿って移動可能に設けられることが好ましい。この場合、3つの放射器のうちの任意の2つを衛星ST1、ST2に対応させることができるため、追尾位置決めをより効率良く行うことができる。さらに、3つ目の放射器を予め備えていることは、いずれか1つの放射器に故障が生じた場合でも、2つの衛星ST1、ST2を追尾する機能を直ちには失わないという効果もある。
このように位置決めされる放射器290、300から電波が放射されると、放射電波は半球レンズ230の層状誘電体を順次通過し、電波反射板230で反射することにより、進行方向をほぼ平行に変換されて、平行電波として衛星ST1、ST2に送信される。一方、衛星ST1、ST2から平行に入射された電波は、半球レンズ230を通過し電波反射板230で反射することでその焦点位置に配置された放射器290、300に向けて集束され、放射器290、300によって効率よく受信される。
以上のように、本実施例によるレンズアンテナ装置は、1つの半球レンズ230に対向して2つの放射器290、300が配置され、互いにその移動が干渉しないようになされているため、2つの衛星ST1、ST2を同時に追尾することができると共に、小スペースに配置することが可能であるという特徴を有するものである。
また、本実施例によれば、ガイドレール280に2つの放射器290、300を設けているため、2つの放射器290、300の互いの移動に干渉が生じることを防止することができる。
さらに本実施例によれば、2つの衛星ST1、ST2が接近している場合でも、2つのアンテナ素子291、301を隣接させることができるため、2つの衛星ST1、ST2を常に追尾することができる。
なお、本実施例では、衛星ST1の移動を探索して、放射器300の位置を変えないように衛星ST1の移動に合わせて放射器290を移動することと、衛星ST2の移動を検索して、放射器290の位置を変えないように衛星ST2の移動に合わせて放射器300を移動することとを交互に行っているが、一度の探索動作で衛星ST1及びST2の移動を探索し、送受信モジュール290、300を複合的に一動作で新たな目標位置に調整する制御方法も採用され得る。
また、衛星ST1及びST2の探索によって放射器290、300の位置にフィードバック制御をかける制御方法に限らず、例えば他のセンサにより被搭載移動体の3軸方向の変化を検出してホスト装置に入力し、ホスト装置から駆動制御/信号処理装置320に与えて、その情報に基づくオープン制御によって放射器290、300の位置を制御することも可能である。このオープン制御についても、放射器290及び300の位置決めを交互に行う態様と、複合的に一動作で行う態様とがある。
(第2の実施例)
図9及び図10は、本発明に係る第2の実施例として、任意の箇所に設置して1つの静止衛星との間で通信を行えるようにした可搬型に適したレンズアンテナ装置の構造を示すもので、図9は一部分解した外観斜視図、図10は図9のB−B線断面図である。
本実施例のレンズアンテナ装置400は、略円形の固定ベース410と、この固定ベース410上にAZ軸周りに回転自在に取り付けられた略円形の回転ベース420と、この回転ベース420上に固定され、回転ベース420よりやや小径の円盤状電波反射板430と、AZ軸上に中心がくるようにして電波反射板430上に固定される半球レンズ440とを備えている。ここで、電波反射板430の径は半球レンズ440の径よりも十分大きいものとする。尚、固定ベース410に対する回転ベース420の回転機構については、周知の技術で実現可能であるので、ここではその説明を省略する。
上記固定ベース410は、下部の3箇所に三脚として機能とする高さ調整器413を備える。また、回転ベース420は、適当な位置に方位磁石421及び水準器422を備え、さらに、詳細は図示しないが、回転ベース420の回転をロックするAZ軸回転ロック機構424を備える。また、取り扱う電波が直線偏波の場合には、後述する放射器450の送受信電波の偏波角度(POL)を調整するためのPOL調整ダイヤル機構425が設けられる。また、必要に応じて可搬用の取っ手426が装着される。さらに、回転ベース420の周面所定箇所には、EL軸調整用目盛り427が刻まれる。
上記回転ベース420には、上面部の所定位置に、半球レンズ440の周面に沿って湾曲したELサポート板428が一体形成される。このELサポート板428には、図に示すように、長手方向にスリット429が形成されており、ここに放射器450がスライド自在に装着される。
放射器450は、ELサポート板428より内側で、半球レンズ440の焦点位置にアンテナ素子451が位置するようになっており、上記スリット429に対するスライド機構部452の後部にはPOL調整部453を備えている。さらに、POL調整部453の背面にはEL軸調整用ピン454が固定されている。上記POL調整部453は、POL伝達フレキシブルケーブル455により、上記POL調整ダイヤル機構425を介して外部の送受信装置と接続され、POL調整ダイヤル機構425のダイヤルを回すことにより、偏波軸を任意の角度に調整可能とする。
上記回転ベース420の上部には、半球レンズ440及び放射器450の可動部全体を覆うレドーム460が一定範囲で回動自在に装着される。この回動機構については、周知の技術を利用できるので、その説明を省略する。
上記レドーム460の内面において、上記放射器450の後部に設けられたEL軸調整用ピン454に対向する位置に、斜めにピン454を案内する一対のガイドレール461が設けられ、このガイドレール461内にEL軸調整用ピン454の先端部が挿入されるようになっている。すなわち、回転ベース420に対してレドーム460を回動させることで、ピン454がガイドレール461に沿って移動する。このとき、放射器450の移動はスリット422の形成方向に規制されている。このため、レドーム460の回動に伴って放射器450がEL軸方向に回動することになる。
また、上記レドーム460の回転ベース420との接合部には、EL軸調整のための回動を止めておくEL軸回転ロック機構462が設けられている。
すなわち、上記構成によるレンズアンテナ装置では、通信相手先の静止衛星(設置位置での衛星方位角、仰角が既知であるものとする)を捕捉する場合、まず水準器422を見ながら各高さ調整器423を調整して固定ベース410及び回転ベース420を水平にする。次に、方位磁石421を見ながら回転ベース420の基準線を目的の静止衛星の方位角に概略合わせ、AZ軸回転ロック機構424により回転ベース420の回転をロックする。
続いて、回転ベース420に対してレドーム460を回動させ、レドーム460の縁に設けた基準線を回転ベース420の周面部に設けたEL軸調整用目盛り427の衛星仰角値に合わせて、EL軸回転ロック機構462によりその回動をロックする。このレドーム460の回動により放射器450がELサポート板428のスリット429に沿ってスライドし、EL軸調整用目盛り427に合致した衛星仰角(実際には反射角)に合わせられる。次に、POL調整ダイヤル機構425のダイヤルを回して、放射器450の偏波軸を衛星通信波の偏波軸に合わせる。最終的には、放射器450の受信信号をモニタし、その利得が最大になるように、方位角、仰角、偏波軸を調整する。
以上のように、本実施例のレンズアンテナ装置は、可搬が容易な形状であり、手調整ではあるが、適当な位置に設置して簡単に衛星方向に電波ビームを向けることができる。また、衛星波が直線偏波の場合でも、簡単に偏波軸を合わせることが可能である。
尚、上記実施例では、各回転軸、偏波軸の調整を手調整で行うものとしたが、適宜駆動装置を設けて自動調整を行えるようにしてもよい。
本発明は、上記実施例に限定されるものではない。例えば、電波反射板に面修正をかけることで、電波ビームのアンテナパターンを改善することも可能である。また、半球レンズは、完全な球体を二分したものではなく、扁平な球体を二分したものであっても、電波ビームの焦点が定まり、利得が十分得られるものならば、対応可能である。この場合、半球レンズの高さを低く抑えられれば、レドームの高さも制限することができ、全体の小型化に応じることができる。その他、本発明の要旨を逸脱しない範囲で種々変形可能である。
本発明の一実施形態によるレンズアンテナ装置の基本構造を示す構成概略図。 本発明に係る第1の実施例として、2つの静止衛星と通信可能とする車載用に適したレンズアンテナ装置の構造を示す外観斜視図。 第1の実施例の内部構造を示す断面斜視図。 図3のA−A線断面図。 第1の実施例において、半球レンズの中心側から見たガイドレールと放射器の構成を示す平面図。 第1の実施例において、ガイドレールと放射器の構造を示す断面側面図。 第1の実施例において、放射器の位置決め制御の概略を示す斜視図。 第1の実施例において、放射器の位置決め制御の概略を示すフロー図。 本発明に係る第2の実施例として、任意の箇所に設置して1つの静止衛星との間で通信を行えるようにした可搬型に適したレンズアンテナ装置の構造を示す外観斜視図。 図9のB−B線断面図。
符号の説明
100…レンズアンテナ装置
110…電波反射板
120…半球レンズ
130…放射器
200…レンズアンテナ装置
210…固定ベース
211…R/J軸受け部
212…ベアリング機構
213…ハブ
214…溝部
220…回転ベース
221…R/J軸受け部
222…ハブ
223…リム
224…スポーク
225…AZローラ
226、227…EL軸回転シャフト支持具
230…電波反射板
240…半球レンズ
251、252…EL軸回転シャフト
260…EL軸駆動機構
261…EL軸駆動モータ
262、263…プーリ
264…ベルト
270…AZ軸駆動機構
271…AZ軸駆動モータ
272…ピニオンギヤ
280…ガイドレール
281…円弧状アーム板
282…筒状レール
283…ラックギアレール
290…放射器
291…アンテナ素子
292…電子回路基板
293…本体部
294…V字ベアリング
295…案内歯車
296…案内モータ
300…放射器
301…アンテナ素子
302…電子回路基板
303…本体部
304…V字ベアリング
305…案内歯車
306…案内モータ
310…電源装置
320…駆動制御/信号処理装置
330…アップ/ダウンコンバータ
340…レドーム
400…レンズアンテナ装置
410…固定ベース
413…高さ調整器
420…回転ベース
421…方位磁石
422…水準器
424…AZ軸回転ロック機構
425…POL調整ダイヤル機構
426…可搬用取っ手
427…EL軸調整用目盛り
428…ELサポート板
429…スリット
430…円盤状電波反射板
440…半球レンズ
450…放射器
451…アンテナ素子
452…スライド機構部
453…POL調整部
454…EL軸調整用ピン
455…POL伝達フレキシブルケーブル
460…レドーム
461…ガイドレール
462…EL軸回転ロック機構

Claims (17)

  1. 電波ビームを集束する球体レンズを二分してなる半球レンズと、
    この半球レンズが断面側で載置され、天空側からの入射電波を反射する電波反射板と、
    前記半球レンズの任意の電波集束点位置に配置され、電波ビームを形成するアンテナ素子を備える放射器と、
    前記半球レンズのアジマス軸周りに前記放射器の位置を調整して前記電波ビームの方位角を制御する方位角調整手段と、
    前記半球レンズのエレベーション軸周りに前記放射器の位置を調整して前記電波ビームの仰角を制御する仰角調整手段とを具備することを特徴とするレンズアンテナ装置。
  2. 前記電波反射板は、前記半球レンズの二分断面より径大の円盤形状であることを特徴とする請求項1記載のレンズアンテナ装置。
  3. 前記電波ビームが直線偏波であるとき、前記放射器の偏波軸を調整する偏波軸調整手段を備えることを特徴とする請求項1記載のレンズアンテナ装置。
  4. 当該レンズアンテナ装置が移動体に搭載されるとき、前記方位角調整手段及び仰角調整手段は、前記移動体の姿勢変化に応じて前記放射器のアジマス軸周り、エレベーション軸周りの位置を自動的に調整して前記電波ビームの指向方向を維持させることを特徴とする請求項1記載のレンズアンテナ装置。
  5. 当該レンズアンテナ装置の設置位置に水平に配置される固定ベースと、
    この固定ベースにアジマス軸周りに回転自在に搭載される回転ベースとを備え、
    前記回転ベース上に前記半球レンズ、電波反射板、放射器及び仰角調整手段を搭載し、前記固定ベースに対する回転ベースのアジマス軸周りの回転を前記方位角調整手段として用いることを特徴とする請求項1記載のレンズアンテナ装置。
  6. 前記仰角調整手段は、前記半球レンズの中心点を通る、前記アジマス軸に直交するエレベーション軸を支点とし、前記半球レンズの周面に沿って平行に架設されるガイドレールと、このガイドレールを前記エレベーション軸周りに回転させる回転機構とを備え、
    前記放射器は、前記ガイドレール上で任意の位置に自走する自走機構を備えることを特徴とする請求項5記載のレンズアンテナ装置。
  7. 前記放射器を複数個備え、前記複数個の放射器はいずれも前記仰角調整手段の同一ガイドレール上を自走することを特徴とする請求項6記載のレンズアンテナ装置。
  8. 前記複数個の放射器は、いずれも未使用時に、使用中の放射器のブロッキングにならない位置に退避することを特徴とする請求項7記載のレンズアンテナ装置。
  9. 前記仰角調整手段は、前記回転ベースから前記半球レンズの周面に沿って平行に延びる支持板と、前記放射器を前記支持板に沿ってスライド自在に保持する放射器保持手段とを備えることを特徴とする請求項5記載のレンズアンテナ装置。
  10. さらに、前記回転ベース上の搭載機器を覆うレドームを備えることを特徴とする請求項5記載のレンズアンテナ装置。
  11. さらに、前記回転ベース上の搭載機器を覆うレドームを備え、当該レドームを前記回転ベースに対してアジマス軸周りに回転自在に取り付け、
    前記仰角調整手段は、前記回転ベースから前記半球レンズの天頂に向けて、当該半球レンズの周面に沿って平行に延びる支持板と、前記放射器を前記支持板に沿ってスライド自在に保持する放射器保持手段と、前記レドームの回転ベースに対するアジマス軸周りの回転を前記放射器の前記支持板上のスライドに変換する放射器可動手段とを備えることを特徴とする請求項5記載のレンズアンテナ装置。
  12. 前記放射器可動手段は、前記放射器の電波放射面とは逆側の面に取り付けられ、前記レドームの内面近傍に延接されるガイドピンと、前記レドームの内面に設けられ、前記ガイドピンと係合して、当該レドームの回転に伴って前記ガイドピンを前記支持板に沿ってスライドさせるガイドレールとを備えることを特徴とする請求項11記載のレンズアンテナ装置。
  13. さらに、前記回転ベースの前記アジマス軸周りの回転と、前記ガイドレールの前記エレベーション軸周りの回転と、前記ガイドレール上の放射器の自走を制御する制御装置を備えることを特徴とする請求項6記載のレンズアンテナ装置。
  14. 前記固定ベース側と回転ベース側の電気的接続にロータリージョイントを用いることを特徴とする請求項5記載のレンズアンテナ装置。
  15. 設置位置に水平に配置される固定ベースと、
    この固定ベースにアジマス軸周りに回転自在に搭載される回転ベースと、
    この回転ベース上に設けられ、電波ビームを集束する球体レンズを二分してなる半球レンズ、この半球レンズが断面側で載置され、天空側からの入射電波を反射する電波反射板、前記半球レンズの中心点を通る、前記アジマス軸に直交するエレベーション軸を支点とし、前記半球レンズの周面に沿って平行に架設されるガイドレール、このガイドレールを前記エレベーション軸周りに回転させる回転機構、及び前記ガイドレール上で任意の位置に自走する自走機構を備える複数個の放射器と、
    前記回転ベースの前記アジマス軸周りの回転と、前記ガイドレールの前記エレベーション軸周りの回転と、前記ガイドレール上の複数個の放射器の自走を制御する制御装置とを備えるレンズアンテナ装置に用いられ、
    前記複数の放射器のうちの第1及び第2の放射器が天空上に存在する2つの通信相手先の衛星の位置にそれぞれ対応するように前記第1及び第2の放射器を位置決め制御する制御方法であって、
    前記2つの衛星の位置を入力するステップと、
    入力された2つの衛星の位置から前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に前記第1及び第2の放射器それぞれを配置すべく、前記第1及び第2の放射器の配置されるべき2つの位置を演算するステップと、
    前記第1及び第2の放射器が配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、前記半球レンズの中心を通り前記アジマス軸と直交する第2仮想平面との交線上に前記アジマス軸が配置されるように前記回転ベースを回転させるステップと、
    前記ガイドレールを前記エレベーション軸周りに回転させると共に、該ガイドレールに沿って前記第1及び第2の放射器を移動させ、該第1及び第2の放射器をそれらの配置されるべき位置に配置するステップと、
    を備えたことを特徴とするレンズアンテナ装置の放射器位置決め制御方法。
  16. さらに、前記2つの衛星のうち一方の衛星の位置変化後の位置を探索する第1探索ステップと、
    この第1探索ステップで探索された一方の衛星の位置変化後の位置と第1探索ステップによる位置探索前の他方の衛星の位置とから前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に2つの放射器の各々を配置すべく、前記第1及び第2の放射器が配置されるべきこれら2つの位置を演算するステップと、
    前記第1及び第2の放射器の配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、第1回転軸と直交する第2仮想平面との交線上にエレベーション軸が配置されるよう前記回転ベースを回転させるステップと、
    前記ガイドレールをエレベーション軸周りに回転させると共に、該ガイドレールに沿って第1及び第2の放射器を移動させて第1及び第2の放射器をそれらの配置されるべき位置に配置するステップと、
    2つの衛星のうち他方の衛星の位置変化後の位置を探索する第2探索ステップと、
    この第2探索ステップで探索された他方の衛星の位置変化後の位置と第1探索ステップによる位置探索後の一方の衛星の位置とから前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に2つの放射器の各々を配置すべく、第1及び第2の放射器が次に配置されるべきこれらの2つの位置を演算するステップと、
    前記第1及び第2の放射器の次に配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、アジマス軸と直交する第2仮想平面との交線上にエレベーション軸が配置されるよう前記回転ベースを回転させるステップと、
    前記ガイドレールをエレベーション軸周りに回転させると共に、該ガイドレールに沿って第1及び第2の放射器を移動させて第1及び第2の放射器をそれらの配置されるべき位置に配置するステップと、
    を備えたことを特徴とする請求項15に記載のレンズアンテナ装置の放射器位置決め制御方法。
  17. さらに、2つの衛星の位置変化後の各々に位置を探索する複合探索ステップと、
    この複合探索ステップで探索された双方の衛星の位置変化後の位置から前記半球レンズの中心を通って前記電波反射板で反射して延びる各軸線上に2つの放射器の各々を配置すべく、第1及び第2の放射器が配置されるべきこれら2つの位置を演算するステップと、
    前記第1及び第2の放射器の配置されるべき2つの位置と前記半球レンズの中心とを含む第1仮想平面と、前記アジマス軸と直交する第2仮想平面との交線上にエレベーション軸が配置されるよう前記回転ベースを回転させるステップと、
    前記ガイドレールをエレベーション軸周りに回転させると共に、該ガイドレールに沿って第1及び第2の放射器を移動させて2つの放射器をそれらの配置されるべき位置に配置するステップと、
    を備えたことを特徴とする請求項15に記載のレンズアンテナ装置の放射器位置決め制御方法。
JP2005201985A 2005-07-11 2005-07-11 レンズアンテナ装置 Expired - Fee Related JP4679276B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201985A JP4679276B2 (ja) 2005-07-11 2005-07-11 レンズアンテナ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201985A JP4679276B2 (ja) 2005-07-11 2005-07-11 レンズアンテナ装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001025732A Division JP3742303B2 (ja) 2001-02-01 2001-02-01 レンズアンテナ装置

Publications (3)

Publication Number Publication Date
JP2006005951A true JP2006005951A (ja) 2006-01-05
JP2006005951A5 JP2006005951A5 (ja) 2008-03-21
JP4679276B2 JP4679276B2 (ja) 2011-04-27

Family

ID=35773882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201985A Expired - Fee Related JP4679276B2 (ja) 2005-07-11 2005-07-11 レンズアンテナ装置

Country Status (1)

Country Link
JP (1) JP4679276B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034754A (ja) * 2008-07-28 2010-02-12 National Institute Of Information & Communication Technology レンズアンテナ装置
WO2023142369A1 (zh) * 2022-01-28 2023-08-03 中信科移动通信技术股份有限公司 龙伯透镜制作装置、制作方法及龙伯透镜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504659A (ja) * 1991-01-28 1994-05-26 トムソン マルチメデイア ソシエテ アノニム アンテナ装置
JPH06507284A (ja) * 1991-05-13 1994-08-11 トムソン マルチメデイア ソシエテ アノニム 無線周波アンテナ装置
JPH0711013U (ja) * 1993-06-30 1995-02-14 デイエツクスアンテナ株式会社 アンテナ装置
JP2000183645A (ja) * 1998-12-18 2000-06-30 Toshiba Corp アンテナ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504659A (ja) * 1991-01-28 1994-05-26 トムソン マルチメデイア ソシエテ アノニム アンテナ装置
JPH06507284A (ja) * 1991-05-13 1994-08-11 トムソン マルチメデイア ソシエテ アノニム 無線周波アンテナ装置
JPH0711013U (ja) * 1993-06-30 1995-02-14 デイエツクスアンテナ株式会社 アンテナ装置
JP2000183645A (ja) * 1998-12-18 2000-06-30 Toshiba Corp アンテナ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034754A (ja) * 2008-07-28 2010-02-12 National Institute Of Information & Communication Technology レンズアンテナ装置
WO2023142369A1 (zh) * 2022-01-28 2023-08-03 中信科移动通信技术股份有限公司 龙伯透镜制作装置、制作方法及龙伯透镜

Also Published As

Publication number Publication date
JP4679276B2 (ja) 2011-04-27

Similar Documents

Publication Publication Date Title
JP3566598B2 (ja) アンテナ装置
AU2005308393B2 (en) Phased array planar antenna for tracking a moving target and tracking method
JP4119352B2 (ja) レンズアンテナ装置
JP3742303B2 (ja) レンズアンテナ装置
JP3616267B2 (ja) アンテナ装置
KR101864208B1 (ko) 지구 중간 궤도 위성 통신 시스템들을 위한 저비용 무전선 지상 스테이션 안테나
KR20070107663A (ko) 안테나 위치설정기 시스템
KR20170129795A (ko) 지구 중간 궤도 위성 통신 시스템들을 위한 저비용 무전선 지상 스테이션 안테나
US6492955B1 (en) Steerable antenna system with fixed feed source
US20110037671A1 (en) Combination planar and parabolic reflector antenna to access satellite
JP4679276B2 (ja) レンズアンテナ装置
JP3657554B2 (ja) レンズアンテナ装置
CA2013632C (en) Antenna pointing device
JP2004140860A (ja) レンズアンテナ装置とその放射器位置決め制御方法
JP2002141729A (ja) 周回衛星追尾アンテナの制御方法及び周回衛星追尾アンテナ装置
US20060109573A1 (en) Two axis independent driven single hinged gimbaled mirror beam steerer
JP3176805B2 (ja) 移動体用衛星通信アンテナ装置
JP2002043999A (ja) 周回衛星による衛星通信用地上端末装置
JP2545742B2 (ja) 移動地球局用アンテナ装置
JPH08162833A (ja) 移動地球局用アンテナ装置
JP2008236769A (ja) レンズアンテナ装置
EP1414110A1 (en) Steerable antenna system with fixed feed source
WO2023235543A1 (en) Multi-feed tracking antenna with stationary reflector
JP2006261994A (ja) アンテナ装置
JPH08307139A (ja) 移動体搭載用衛星アンテナ装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees