JP2006002728A - Control device for diesel engine - Google Patents

Control device for diesel engine Download PDF

Info

Publication number
JP2006002728A
JP2006002728A JP2004182573A JP2004182573A JP2006002728A JP 2006002728 A JP2006002728 A JP 2006002728A JP 2004182573 A JP2004182573 A JP 2004182573A JP 2004182573 A JP2004182573 A JP 2004182573A JP 2006002728 A JP2006002728 A JP 2006002728A
Authority
JP
Japan
Prior art keywords
fuel ratio
combustion
air
exhaust gas
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182573A
Other languages
Japanese (ja)
Other versions
JP4305295B2 (en
Inventor
Hiromasa Nishioka
寛真 西岡
Taro Aoyama
太郎 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004182573A priority Critical patent/JP4305295B2/en
Publication of JP2006002728A publication Critical patent/JP2006002728A/en
Application granted granted Critical
Publication of JP4305295B2 publication Critical patent/JP4305295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To start process at an early stage in response to process request of NO<SB>X</SB>regeneration or S poisoning recovery of a catalyst device or a particulate filter by combustion at theoretical air fuel ratio or rich air fuel ratio and to start acceleration at an early stage in response to acceleration request during treatment of NO<SB>X</SB>regeneration or S poisoning recovery or right after that in a control device for a diesel engine capable of performing combustion at theoretical air fuel ratio or rich air fuel ratio with a large quantity of exhaust gas recirculation. <P>SOLUTION: At a time of process of NO<SB>x</SB>regeneration and S poisoning recovery of the catalyst device or the particulate filter 12a arranged in an engine exhaust system and carrying NO<SB>x</SB>occlusion agent, combustion at theoretical air fuel ratio or rich air fuel ratio is performed in part of cylinders 1a, and an intake valve and an exhaust valve are kept closed to suspend combustion in remaining cylinders 1b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディーゼルエンジンの制御装置に関する。   The present invention relates to a control device for a diesel engine.

ディーゼルエンジンの排気ガス中には有害なNOXが含まれており、このNOXを浄化するために、機関排気系にNOX吸蔵剤を担持するNOX吸蔵還元触媒装置を配置することが提案されている。また、パティキュレートフィルタにNOX吸蔵剤を担持させて、NOXの浄化と共にパティキュレートを捕集させることも提案されている。NOX吸蔵剤は、近傍雰囲気の酸素濃度が高い時にNOXを硝酸塩の形で吸蔵し、近傍雰囲気の酸素濃度が低くなると吸蔵したNOXを放出するものである。 The exhaust gas from diesel engines contains harmful NO X, proposed to purify the NO X, be placed the NO X storage reduction catalyst device carrying the the NO X storage agent in the engine exhaust system Has been. Also, by supporting the the NO X storage agent into the particulate filter, it has been proposed to collecting particulates with purification of NO X. The NO X storage agent stores NO X in the form of nitrate when the oxygen concentration in the vicinity atmosphere is high, and releases the stored NO X when the oxygen concentration in the vicinity atmosphere decreases.

それにより、NOX吸蔵剤は、空気過剰のもとで燃焼が行われるディーゼルエンジンの排気ガス中からNOXを良好に吸蔵する。しかしながら、NOX吸蔵還元触媒装置へ硝酸塩の形で吸蔵されるNOX貯蔵可能量は有限であるために、このNOX貯蔵可能量に達する以前に、近傍空燃比を理論空燃比又はリッチ空燃比にし、NOX吸蔵還元触媒装置からNOXを放出させると共に雰囲気中の還元成分によって放出したNOXを還元浄化するNOX再生処理を実施する必要がある。 Thereby, the NO X storage agent stores NO X well from the exhaust gas of a diesel engine that is combusted under excess air. However, since the NO x storable amount stored in the form of nitrate in the NO x occluding and reducing catalyst device is finite, before the NO x storable amount is reached, the nearby air fuel ratio is set to the stoichiometric or rich air fuel ratio. In addition, it is necessary to perform NO X regeneration treatment for releasing NO X from the NO X storage reduction catalyst device and reducing and purifying NO X released by the reducing components in the atmosphere.

また、燃料中の硫黄Sは、SOXとして排気ガス中に含まれ、硫酸塩の形でNOX吸蔵還元触媒装置に吸蔵されてNOX吸蔵可能量を減少させる。それにより、NOX吸蔵還元触媒装置からSOXを放出させて還元浄化するS被毒回復処理を実施する必要がある。硫酸塩は硝酸塩より安定な物質であるために、S被毒回復処理は、NOX吸蔵還元触媒装置を昇温させた後に近傍雰囲気を理論空燃比又はリッチ空燃比とすることとなる。 Further, sulfur S in the fuel is contained in the exhaust gas as SO X and is stored in the NO X storage reduction catalyst device in the form of sulfate to reduce the NO X storage capacity. As a result, it is necessary to perform an S poison recovery process for reducing and purifying SO X by releasing SO X from the NO X storage reduction catalyst device. Since sulfate is a more stable substance than nitrate, the sulfur poisoning recovery process brings the surrounding atmosphere to the stoichiometric or rich air-fuel ratio after raising the temperature of the NO x storage reduction catalyst device.

ところで、ディーゼルエンジンにおいて多量の排気ガスを気筒内へ再循環させると、理論空燃比又はリッチ空燃比での燃焼が可能となるために、排気ガス再循環通路を機関吸気系におけるターボチャージャ・コンプレッサの上流側に接続して、多量の排気ガス再循環を可能とすることが提案されている(例えば、特許文献1参照)。こうして、NOX吸蔵還元触媒装置のNOX再生処理又はS被毒回復処理に際して、この理論空燃比又はリッチ空燃比での燃焼が実施される。 By the way, when a large amount of exhaust gas is recirculated into a cylinder in a diesel engine, combustion at a stoichiometric air-fuel ratio or a rich air-fuel ratio becomes possible. Therefore, an exhaust gas recirculation passage is connected to a turbocharger compressor in an engine intake system. It has been proposed that a large amount of exhaust gas can be recirculated by connecting to the upstream side (see, for example, Patent Document 1). Thus, the combustion at the stoichiometric air-fuel ratio or rich air-fuel ratio is performed during the NO X regeneration process or the S poison recovery process of the NO X storage reduction catalyst device.

特開2000−008835JP 2000-008835 A 特開平08−061052JP 08-061052 特開平09−112254JP 09-112254 A 特開平09−112257JP 09-112257 A

しかしながら、前述の理論空燃比又はリッチ空燃比での燃焼は、多量の排ガスを再循環させる必要があり、排気ガス再循環の応答遅れによってこれを直ぐに実現することはできないために、この燃焼によるNOX吸蔵還元触媒装置のNOX再生処理及びS被毒回復処理を直ぐに開始することはできない。 However, the combustion at the stoichiometric air-fuel ratio or rich air-fuel ratio described above requires a large amount of exhaust gas to be recirculated and cannot be realized immediately due to a response delay in exhaust gas recirculation. The NO X regeneration process and the S poison recovery process of the X storage reduction catalyst device cannot be started immediately.

また、NOX再生及びS被毒回復の処理中及びその直後においては、加速要求があっても、理論空燃比又はリッチ空燃比での燃焼において多量の排気ガスを再循環させているために、機関吸気系におけるターボチャージャ・コンプレッサの下流側の比較的長い部分には多量に排気ガスが存在しており、この排気ガスが気筒内へ供給された後でなければ、気筒内の新気量を十分に増加させることはできない。こうして、新気量が増加しなければ噴射燃料を増量することはできず、加速要求時において直ぐに機関出力を高めて加速を開始することはできない。 Further, during and immediately after the processing of NO x regeneration and S poison recovery, even if there is an acceleration request, a large amount of exhaust gas is recirculated in combustion at the stoichiometric or rich air-fuel ratio. There is a large amount of exhaust gas in the relatively long part downstream of the turbocharger / compressor in the engine intake system. If this exhaust gas is not supplied into the cylinder, the amount of fresh air in the cylinder is reduced. It cannot be increased sufficiently. Thus, if the fresh air amount does not increase, the injected fuel cannot be increased, and the engine output cannot be increased immediately when acceleration is requested, and acceleration cannot be started.

従って、本発明の目的は、多量の排気ガス再循環により理論空燃比又はリッチ空燃比での燃焼を可能とするディーゼルエンジンの制御装置であって、理論空燃比又はリッチ空燃比での燃焼による触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理要求に対して処理を早期に開始可能とすると共に、NOX再生又はS被毒回復の処理中及びその直後の加速要求に対して早期に加速を開始可能とすることである。 Accordingly, an object of the present invention is a control apparatus for a diesel engine that enables combustion at a stoichiometric air-fuel ratio or a rich air-fuel ratio by a large amount of exhaust gas recirculation, and a catalyst by combustion at the stoichiometric air-fuel ratio or rich air-fuel ratio. the processing for the apparatus or processing requirements of the particulate filter of the NO X regeneration or S-poisoning recovery while enabling early start for processing of the NO X regeneration or S-poisoning recovery and the immediately following acceleration request It is possible to start acceleration early.

本発明による請求項1に記載のディーゼルエンジンの制御装置は、多量の排気ガスを気筒内へ再循環して理論空燃比又はリッチ空燃比での燃焼を可能とするディーゼルエンジンの制御装置において、機関排気系に配置されてNOX吸蔵剤を担持する触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理に際し、一部気筒においては理論空燃比又はリッチ空燃比での前記燃焼を実施し、残りの気筒においては吸気弁及び排気弁を閉弁させたまま燃焼を休止させることを特徴とする。 According to a first aspect of the present invention, there is provided a control device for a diesel engine, wherein a large amount of exhaust gas is recirculated into a cylinder to enable combustion at a stoichiometric air-fuel ratio or a rich air-fuel ratio. upon NO X regeneration or S processing poisoning recovery of the catalytic converter or particulate filter to be disposed in an exhaust system carrying the NO X storage agent, carrying out the combustion at the stoichiometric air-fuel ratio or a rich air-fuel ratio in some cylinders In the remaining cylinders, combustion is stopped while the intake valve and the exhaust valve are closed.

本発明による請求項2に記載のディーゼルエンジンの制御装置は、多量の排気ガスを気筒内へ再循環して理論空燃比又はリッチ空燃比での燃焼を可能とするディーゼルエンジンの制御装置において、前記ディーゼルエンジンは、一方の気筒群の機関排気系と他方の気筒群の機関排気系とが互いに独立しており、一方の気筒群の機関排気系に配置されてNOX吸蔵剤を担持する触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理に際し、一方の気筒群においては理論空燃比又はリッチ空燃比での前記燃焼を実施し、他方の気筒群においては燃焼を休止させることを特徴とする。 According to a second aspect of the present invention, there is provided a diesel engine control apparatus according to the second aspect of the present invention, wherein a large amount of exhaust gas is recirculated into a cylinder to allow combustion at a stoichiometric air-fuel ratio or a rich air-fuel ratio. In the diesel engine, the engine exhaust system of one cylinder group and the engine exhaust system of the other cylinder group are independent from each other, and the catalyst device is disposed in the engine exhaust system of one cylinder group and carries the NO x storage agent or upon the processing of the NO X regeneration or S-poisoning recovery of the particulate filter, carried out the combustion at the stoichiometric air-fuel ratio or a rich air-fuel ratio in one cylinder group, that halting the combustion in the other cylinder group Features.

本発明による請求項1に記載のディーゼルエンジンの制御装置によれば、NOX吸蔵剤を担持する触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理に際し、一部気筒以外の残りの気筒において燃焼を休止させている。それにより、機関出力を維持するために一部気筒においては必然的に燃料噴射量が増量される。こうして増量された燃料噴射量に対して所望の理論空燃比又はリッチ空燃比での燃焼を実施するために必要な一部気筒における新気量は、全気筒で所望の理論空燃比又はリッチ空燃比の燃焼を実施する場合に比較して多くなり、それにより、一部気筒において、リーン空燃比の燃焼時から増量させる再循環排気ガス量はそれほど多くはない。 According to the control apparatus for a diesel engine according to the first aspect of the present invention, the remaining part other than some cylinders is subjected to the NO x regeneration or the S poison recovery process of the catalyst device or particulate filter carrying the NO x storage agent. Combustion is stopped in the cylinder. Accordingly, the fuel injection amount is inevitably increased in some cylinders in order to maintain the engine output. The amount of fresh air in some cylinders required to perform combustion at the desired stoichiometric or rich air-fuel ratio with respect to the fuel injection amount thus increased is the desired stoichiometric or rich air-fuel ratio for all cylinders. Therefore, the amount of recirculated exhaust gas to be increased from the time of combustion with a lean air-fuel ratio is not so large in some cylinders.

こうして、排気ガス再循環の応答遅れに対しても、一部気筒において所望の理論空燃比又はリッチ空燃比での燃焼が早期に実現可能であり、触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理を早期に開始することができる。この時において、休止させた残り気筒では吸気弁及び排気弁が閉弁されているために、残り気筒の排気ガスが一部気筒の理論空燃比又はリッチ空燃比の排気ガスを希薄にすることはない。 In this way, even with a response delay in exhaust gas recirculation, combustion at a desired theoretical air-fuel ratio or rich air-fuel ratio can be realized early in some cylinders, and NO x regeneration or S of the catalyst device or particulate filter can be achieved. The poisoning recovery process can be started early. At this time, since the intake valve and the exhaust valve are closed in the remaining cylinders that are stopped, the exhaust gas of the remaining cylinders does not make the exhaust gas of the stoichiometric or rich air-fuel ratio of some cylinders lean. Absent.

また、NOX再生又はS被毒回復の処理中及びその直後の加速要求に対しては、残り気筒において燃焼を開始することにより機関出力を高めて早期に加速を開始することができる。また、NOX再生又はS被毒回復の処理中において、一部気筒へはそれほど多量の排気ガスを再循環させていないために、機関吸気系に多量の再循環排気ガスが存在することはなく、加速要求時には残り気筒へも十分な量の新気を供給することができる。それにより、加速要求に対して、残り気筒では吸気弁及び排気弁を作動させると共に燃料噴射を開始し、一部気筒では噴射燃料を減量することにより、全気筒の燃料噴射量をほぼ等しくして全気筒でリーン空燃比での燃焼を開始するようにしても、十分に機関出力を高めて加速を早期に開始することができる。 Further, for the processing of the NO X regeneration or S-poisoning recovery and the immediately following acceleration request can initiate accelerated early enhances the engine output by initiating combustion in the remaining cylinders. Further, during the processing of the NO X regeneration or S-poisoning recovery, to the to some cylinders not very recirculating a large amount of exhaust gas, rather than the presence of a large amount of recirculated exhaust gas to the engine intake system When acceleration is requested, a sufficient amount of fresh air can be supplied to the remaining cylinders. As a result, in response to the acceleration request, the remaining cylinders operate the intake and exhaust valves and start fuel injection, and in some cylinders, the fuel injection amount is reduced, so that the fuel injection amounts of all the cylinders become substantially equal. Even if combustion at a lean air-fuel ratio is started in all cylinders, the engine output can be sufficiently increased and acceleration can be started early.

また、本発明による請求項2に記載のディーゼルエンジンの制御装置によれば、一方の気筒群の機関排気系と他方の気筒群の機関排気系とが互いに独立しており、一方の気筒群の機関排気系に配置されてNOX吸蔵剤を担持する触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理に際し、一方の気筒群においては理論空燃比又はリッチ空燃比での前記燃焼を実施し、他方の気筒群においては燃焼を休止させている。それにより、請求項1に記載のディーゼルエンジンの制御装置と同様に、NOX再生又はS被毒回復の処理を早期に開始することができ、また、NOX再生又はS被毒回復の処理中及びその直後において、加速要求があっても、早期に加速を開始することができる。また、ディーゼルエンジンにおいて、一方の気筒群の機関排気系と他方の気筒群の機関排気系とが互いに独立しているために、NOX再生又はS被毒回復の処理中において、他方の気筒群での気筒休止に際して他方の気筒群から空気及び再循環排気ガスがそのまま排出されても、これが一方の気筒群の触媒装置又はパティキュレートフィルタへ供給されて一方の気筒群からの理論空燃比又はリッチ空燃比の排気ガスを希薄にすることはない。 According to the control device for a diesel engine according to claim 2 of the present invention, the engine exhaust system of one cylinder group and the engine exhaust system of the other cylinder group are independent from each other. upon catalytic converter or NO X regeneration or S processing poisoning recovery of the particulate filter is arranged in the engine exhaust system carrying the NO X storage agent, the combustion at the stoichiometric air-fuel ratio or a rich air-fuel ratio in one cylinder group The combustion is stopped in the other cylinder group. Thereby, similarly to the control device for the diesel engine according to claim 1, the NO X regeneration or S poison recovery process can be started early, and the NO X regeneration or S poison recovery process is in progress. And immediately after that, even if there is an acceleration request, the acceleration can be started at an early stage. Further, in the diesel engine, the engine exhaust system of one cylinder group and the engine exhaust system of the other cylinder group are independent from each other. Therefore, during the NO x regeneration or the S poison recovery process, the other cylinder group Even when air and recirculated exhaust gas are exhausted as they are from the other cylinder group during cylinder deactivation at the same time, they are supplied to the catalyst device or particulate filter of one cylinder group, and the stoichiometric air-fuel ratio or rich gas from one cylinder group The air-fuel ratio exhaust gas is not diluted.

図1は、本発明による制御装置を備えるディーゼルエンジンを示す概略図である。同図において、1は、例えば、V型8気筒のディーゼルエンジン本体であり、第一バンク1a及び第二バンク1bにはそれぞれ4気筒が配置されている。各気筒の吸気弁(図示せず)及び排気弁(図示せず)は、例えば、電磁又は油圧式アクチュエータによって開閉され、又は、電動カムシャフト等によって開閉され、吸気弁及び排気弁を閉弁したままの気筒休止が可能となっている。2は両バンク共通のエアクリーナであり、エアクリーナ2の下流側は、第一吸気通路3aと第二吸気通路3bとに分岐し、第一吸気通路3aは、第一ターボチャージャの第一コンプレッサ4a、両バンク共通のインタークーラ5、及び、第一インテークマニホルド6aを介して第一バンク1aへ接続され、一方、第二吸気通路3bは、第二ターボチャージャの第二コンプレッサ4b、両バンク共通のインタークーラ5、及び、第二インテークマニホルド6bを介して第二バンク1bへ接続されている。   FIG. 1 is a schematic diagram showing a diesel engine equipped with a control device according to the present invention. In the figure, reference numeral 1 denotes, for example, a V-type 8-cylinder diesel engine body, and four cylinders are arranged in each of the first bank 1a and the second bank 1b. An intake valve (not shown) and an exhaust valve (not shown) of each cylinder are opened and closed by, for example, an electromagnetic or hydraulic actuator, or opened and closed by an electric camshaft or the like, and the intake valve and the exhaust valve are closed. Cylinder deactivation is possible. 2 is an air cleaner common to both banks, and the downstream side of the air cleaner 2 is branched into a first intake passage 3a and a second intake passage 3b. The first intake passage 3a is a first compressor 4a of the first turbocharger, It is connected to the first bank 1a via the intercooler 5 common to both banks and the first intake manifold 6a, while the second intake passage 3b is connected to the second compressor 4b of the second turbocharger, It is connected to the second bank 1b via the cooler 5 and the second intake manifold 6b.

第一吸気通路3aにおいてインタークーラ5と第一インテークマニホルド6aとの間には、第一スロットル弁7aが配置され、一方、第二吸気通路3bにおいてインタークーラ5と第二インテークマニホルド6bとの間には、第二スロットル弁7bが配置されている。各気筒は、ストレートポート及びヘリカルポートを有する吸気二弁式であるために、第一インテークマニホルド6a及び第二インテークマニホルド6bは、それぞれ、一気筒に対して二又に分岐して、その一方にはスワールコントロール弁(図示せず)が配置され、それによりストレートポート側を閉鎖すれば、ヘリカルポートを介して供給される吸気によって気筒内にスワールを生成することができる。   In the first intake passage 3a, a first throttle valve 7a is disposed between the intercooler 5 and the first intake manifold 6a, while in the second intake passage 3b, between the intercooler 5 and the second intake manifold 6b. Is provided with a second throttle valve 7b. Since each cylinder is an intake two-valve type having a straight port and a helical port, the first intake manifold 6a and the second intake manifold 6b are bifurcated with respect to one cylinder, respectively. If a swirl control valve (not shown) is arranged so that the straight port side is closed, swirl can be generated in the cylinder by intake air supplied through the helical port.

第一バンク1aには、第一エキゾーストマニホルド8aを介して第一排気通路9aが接続され、第一排気通路9aは、第一ターボチャージャの第一タービン10a、第一パティキュレートフィルタ11a、及び、第一NOX吸蔵還元触媒装置12aを介して大気へ通じている。また、第二バンク1bには、第二エキゾーストマニホルド8bを介して第二排気通路9bが接続され、第二排気通路9bは、第二ターボチャージャの第二タービン10b、第二パティキュレートフィルタ11b、及び、第二NOX吸蔵還元触媒装置12bを介して大気へ通じている。 A first exhaust passage 9a is connected to the first bank 1a via a first exhaust manifold 8a. The first exhaust passage 9a includes a first turbine 10a of a first turbocharger, a first particulate filter 11a, and leads to the atmosphere via the first the NO X storage reduction catalyst device 12a. A second exhaust passage 9b is connected to the second bank 1b via a second exhaust manifold 8b. The second exhaust passage 9b includes a second turbine 10b of a second turbocharger, a second particulate filter 11b, and leads to the atmosphere via the second the NO X storage reduction catalyst device 12b.

13aは第一排気ガス再循環通路であり、第一排気通路9aの第一NOX吸蔵還元触媒装置12aの下流側と、第一吸気通路3aの第一コンプレッサ4aの上流側とを連通している。また、13bは第二排気ガス再循環通路であり、第二排気通路9bの第二NOX吸蔵還元触媒装置12bの下流側と、第二吸気通路3bの第二コンプレッサ4bの上流側とを連通している。第一排気ガス再循環通路13aの第一排気通路9a側には第一排気冷却装置(EGRクーラ)14aが配置され、第一吸気通路3a側には再循環排気ガス量を制御するための第一制御弁(EGR弁)15aが配置されている。また、第二排気ガス再循環通路13bの第二排気通路9b側には第二排気冷却装置(EGRクーラ)14bが配置され、第二吸気通路3b側には再循環排気ガス量を制御するための第二制御弁(EGR弁)15bが配置されている。 13a is a first exhaust gas recirculation passage, in communication with the downstream side of the first the NO X storage reduction catalyst device 12a of the first exhaust passage 9a, the upstream side of the first compressor 4a of the first intake passage 3a Yes. Moreover, 13b is a second exhaust gas recirculation passage, communicating with the downstream side of the second the NO X storage reduction catalyst device 12b of the second exhaust passage 9b, the upstream side of the second compressor 4b of the second intake passage 3b is doing. A first exhaust cooling device (EGR cooler) 14a is disposed on the first exhaust passage 9a side of the first exhaust gas recirculation passage 13a, and a first exhaust passage for controlling the amount of recirculated exhaust gas on the first intake passage 3a side. One control valve (EGR valve) 15a is arranged. A second exhaust cooling device (EGR cooler) 14b is disposed on the second exhaust passage 9b side of the second exhaust gas recirculation passage 13b, and the recirculation exhaust gas amount is controlled on the second intake passage 3b side. The second control valve (EGR valve) 15b is arranged.

こうして、第一排気ガス再循環通路13aは、第一パティキュレートフィルタ11a及び第一NOX吸蔵還元触媒装置12aにより浄化された排気ガスを、第一コンプレッサ4aの上流側へ再循環させ、第二排気ガス再循環通路13bは、第二パティキュレートフィルタ11b及び第二NOX吸蔵還元触媒装置12bにより浄化された排気ガスを、第二コンプレッサ4bの上流側へ再循環させるようになっており、さらに、排気ガスは各排気冷却装置14a及び14bにより冷却されるために、非常に多量の排気ガス再循環が可能となる。それにより、各バンク1a,1bの気筒において、特許第3116876号に開示されている低温燃焼を実施することができる。もちろん、第一及び第二コンプレッサ4a,4bは、スーパーチャージャ等の過給機としても良い。 Thus, the first exhaust gas recirculation passage 13a is the purified exhaust gas by the first particulate filter 11a and the first the NO X storage reduction catalyst device 12a, is recycled to the upstream side of the first compressor 4a, the second exhaust gas recirculation passage 13b is the purified exhaust gas through the second particulate filter 11b and the second the NO X storage reduction catalyst device 12b, are adapted to recirculate to the upstream side of the second compressor 4b, further Since the exhaust gas is cooled by the exhaust cooling devices 14a and 14b, a very large amount of exhaust gas can be recirculated. Thereby, the low temperature combustion disclosed in Japanese Patent No. 3116876 can be performed in the cylinders of the banks 1a and 1b. Of course, the first and second compressors 4a and 4b may be superchargers such as a supercharger.

16aは第一蓄圧室であり、第一バンク1aの各気筒に配置された燃料噴射弁(図示せず)へ加圧燃料を供給する。また、16bは第二蓄圧室であり、第二バンク1bの各気筒に配置された燃料噴射弁(図示せず)へ加圧燃料を供給する。第一蓄圧室16aと第二蓄圧室16bとを互いに連通して、それぞれに等圧の燃料が蓄圧されるようにしても良い。   Reference numeral 16a denotes a first pressure accumulation chamber that supplies pressurized fuel to a fuel injection valve (not shown) disposed in each cylinder of the first bank 1a. Reference numeral 16b denotes a second pressure accumulation chamber that supplies pressurized fuel to a fuel injection valve (not shown) disposed in each cylinder of the second bank 1b. The first pressure accumulation chamber 16a and the second pressure accumulation chamber 16b may be communicated with each other so that fuel of equal pressure is accumulated in each.

EGR率、すなわち、気筒内ガス量(新気量+再循環排気ガス量)に対する再循環排気ガス量の割合を増加させていくと、スモークの発生量が増大してピークに達する。次いで更にEGR率を増加させると、今度はスモークの発生量が低下し、遂には、煤がほとんど発生しなくなる。このように、煤の発生を最大とする再循環排気ガス量より多くの排気ガスを再循環させて煤を殆ど発生させない燃焼方式が低温燃焼である。燃料噴射量が多い高負荷ほど低温燃焼を実現するために必要な再循環排気ガス量は多くなり、それにより、前述の第一及び第二排気ガス再循環通路13a,13bにより各バンクの気筒において非常に多量の排気ガス再循環が可能となれば、機関負荷が比較的高い時まで低温燃焼が実施可能となる。   When the ratio of the recirculated exhaust gas amount to the EGR rate, that is, the in-cylinder gas amount (fresh air amount + recirculated exhaust gas amount) is increased, the amount of smoke generated increases and reaches a peak. Next, when the EGR rate is further increased, the amount of smoke generated decreases, and finally no soot is generated. Thus, low temperature combustion is a combustion method in which a larger amount of exhaust gas is recirculated than the amount of recirculated exhaust gas that maximizes the generation of soot so as to hardly generate soot. The higher the fuel injection amount and the higher the load, the greater the amount of recirculated exhaust gas required to realize low temperature combustion, whereby the first and second exhaust gas recirculation passages 13a and 13b described above are used in the cylinders of each bank. If a very large amount of exhaust gas recirculation is possible, low temperature combustion can be carried out until the engine load is relatively high.

低温燃焼時にはNOX生成量も少なくなるが、全ての機関運転状態において低温燃焼を実施することはできず、依然として煤の発生を最大とする再循環排気ガス量より少なく排気ガスを再循環させる一般的なリーン燃焼空燃比の普通燃焼(拡散燃焼)も実施され、この時には比較的多量のNOXが生成される。それにより、NOXの浄化が必要とされる。 Becomes less NO X generation amount at the time of low temperature combustion, can not be carried out low-temperature combustion at all engine operating conditions, it is still recirculated exhaust gas recirculation amount from less exhaust gas to maximize the generation of soot general Normal combustion (diffusion combustion) at a lean combustion air-fuel ratio is also performed, and at this time, a relatively large amount of NO x is generated. Thereby, NO x purification is required.

第一及び第二排気通路9a,9bにおける第一及び第二NOX吸蔵還元触媒装置12a,12bは、雰囲気中の空燃比がリーンのときにはNOXを吸蔵し、空燃比が理論空燃比又はリッチになると吸蔵したNOXを放出するNOX吸蔵剤を担持し、低温燃焼及び普通燃焼(拡散燃焼)に係らずに、リーン空燃比の排気ガスからNOXを良好に吸蔵する。 The first and second the NO X storage reduction catalyst device 12a in the first and second exhaust gas passage 9a, 9b, 12b occludes the air-fuel ratio is the NO X when the lean atmosphere, the air-fuel ratio is stoichiometric or rich When will the the NO X storage agent releases the occluded NO X supported, in regardless of the low-temperature combustion and ordinary combustion (diffusion combustion), to better absorb NO X from the exhaust gas of a lean air-fuel ratio.

ところで、NOX吸蔵剤のNOX吸蔵能力には限度があり、NOX吸蔵剤のNOX吸蔵能力が飽和する前にNOX吸蔵剤からNOXを放出させる必要がある。すなわち、第一及び第二NOX吸蔵還元触媒装置12a,12bに吸蔵されているNOX量がNOX貯蔵可能量に達する以前に、NOXを放出させ還元浄化する再生の必要があり、そのためには、このNOX量を推定する必要がある。例えば、低温燃焼及び普通燃焼(拡散燃焼)が行われる時の単位時間当りのNOX吸蔵量を要求負荷及び機関回転数の関数としてそれぞれ予めマップ化しておき、これら燃焼毎の単位時間当りのNOX吸蔵量を積算することによって第一及び第二NOX吸蔵還元触媒装置12a,12bのそれぞれに吸蔵されているNOX量を推定することができる。 Meanwhile, there is a limit to the NO X storage ability of the NO X absorbent, the NO X storage ability of the NO X occluding agent is necessary to release the NO X from the NO X storage agent prior to saturation. That is, the first and second the NO X storage reduction catalyst device 12a, before the amount of NO X occluded in the 12b reaches the NO X storable amount, it is necessary for reproduction to be reduced and purified to release the NO X, therefore Therefore, it is necessary to estimate this amount of NO x . For example, the NO x storage amount per unit time when low-temperature combustion and normal combustion (diffusion combustion) are performed is previously mapped as a function of the required load and the engine speed, and the NO per unit time for each combustion. By accumulating the X storage amount, the NO X amount stored in each of the first and second NO X storage reduction catalyst devices 12a and 12b can be estimated.

本実施形態では、このNOX吸蔵量が予め定められた許容値を越えた時に第一及び第二NOX吸蔵還元触媒装置12a,12bを再生するようになっている。前述した低温燃焼は、理論空燃比又はリッチ空燃比での燃焼が可能であるために、このNOX再生処理には、排気ガスの空燃比を所望の理論空燃比又はリッチ空燃比とする低温燃焼が実施される。 In the present embodiment, the first and second NO X storage reduction catalyst devices 12a and 12b are regenerated when the NO X storage amount exceeds a predetermined allowable value. Since the low-temperature combustion described above can be performed at a stoichiometric air-fuel ratio or a rich air-fuel ratio, this NO x regeneration process includes low-temperature combustion in which the air-fuel ratio of the exhaust gas is set to a desired stoichiometric air-fuel ratio or rich air-fuel ratio. Is implemented.

しかしながら、全気筒で所望の理論空燃比又はリッチ空燃比の低温燃焼を実施しようとすると、機関出力の増大を抑制するために各気筒の燃料噴射量は僅しか増大させることはできず、それにより、これまでのリーン空燃比の燃焼に比較して再循環排気ガス量をかなり増大させなければならないために、排気ガス再循環の応答遅れによって直ぐに低温燃焼を開始することはできない。   However, if low temperature combustion at a desired stoichiometric or rich air / fuel ratio is performed in all cylinders, the fuel injection amount of each cylinder can be increased only slightly in order to suppress an increase in engine output. Since the amount of recirculated exhaust gas has to be considerably increased as compared with conventional lean air-fuel ratio combustion, low temperature combustion cannot be started immediately due to a response delay in exhaust gas recirculation.

これに対して、本実施形態では、一方のバンク1a又は1bの気筒において所望の理論空燃比又はリッチ空燃比での低温燃焼を実施し、他方のバンク1a又は1bの気筒においては、吸気弁及び排気弁を閉弁したまま燃料噴射を中止して燃焼を休止させるようになっている。   In contrast, in the present embodiment, low-temperature combustion at a desired stoichiometric or rich air-fuel ratio is performed in the cylinder of one bank 1a or 1b, and an intake valve and a cylinder in the other bank 1a or 1b are performed. The fuel injection is stopped with the exhaust valve closed to stop the combustion.

図2のタイムチャートにおいて、時刻T1においてNOX再生処理を開始するために、両方のスロットル弁7a,7bを開度減少させると共に両方の制御弁15a,15bを開度増加させる。それにより、吸気量が減少すると共に再循環排気ガス量(EGR量)が増加する。全気筒で所望の理論空燃比又はリッチ空燃比での低温燃焼を実施させる場合には、僅かに増量する噴射燃料に対して、この所望空燃比の実現のために、それぞれ点線で示すように、吸気量をかなり減少させ、EGR量をかなり増加させる必要があり、時刻T3となって初めて所望の理論空燃比又はリッチ空燃比の低温燃焼が開始される。 In the time chart of FIG. 2, in order to initiate the NO X regeneration process at time T1, both the throttle valves 7a, 7b both of the control valve 15a while decreasing the opening degree, 15b to increase the opening degree. As a result, the intake air amount decreases and the recirculated exhaust gas amount (EGR amount) increases. When performing low temperature combustion at a desired theoretical air-fuel ratio or rich air-fuel ratio in all cylinders, as shown by the dotted lines for realizing the desired air-fuel ratio for the slightly increased amount of injected fuel, It is necessary to considerably reduce the intake air amount and increase the EGR amount considerably, and low-temperature combustion at a desired theoretical air-fuel ratio or rich air-fuel ratio is started only at time T3.

一方、本実施形態では、他方のバンクの気筒は休止させるために、機関出力を維持するためには、一方のバンクの気筒において、噴射燃料のかなりの増量が必要である。それにより、一方のバンクの気筒において、かなり増量させる噴射燃料に対して、この所望空燃比の実現のために、それぞれ実線で示すように、吸気量を少量だけ減少させ、EGR量を少量だけ増加させれば良い。それにより、時刻T3となる以前の時刻T2において所望の低温燃焼を開始することができる。こうして、早期にNOX再生処理を開始することができる。 On the other hand, in the present embodiment, the cylinders in the other bank are deactivated, and in order to maintain the engine output, the cylinders in one bank require a considerable increase in injected fuel. As a result, in order to achieve this desired air-fuel ratio, the intake air amount is decreased by a small amount and the EGR amount is increased by a small amount, as indicated by the solid line, in order to achieve this desired air-fuel ratio in the cylinder fuel of one bank. You can do it. Thereby, desired low-temperature combustion can be started at time T2 before time T3. In this way, the NO x regeneration process can be started at an early stage.

また、全気筒で所望の理論空燃比又はリッチ空燃比での低温燃焼を実施する場合には、NOX生成処理中及びその直後において、第一及び第二吸気通路3a,3bの各コンプレッサ4a,4bの下流側の比較的長い部分には、多量の再循環排気ガスが存在している。それにより、NOX再生処理中及びその直後において、加速要求があっても、この多量の排気ガスが気筒内へ供給された後でなければ、各気筒の新気量を十分に増量することはできず、こうして、加速要求から直に噴射燃料を増量して機関出力を高めることはできない。 When performing low temperature combustion at a desired theoretical air-fuel ratio or rich air-fuel ratio in all cylinders, the compressors 4a, 3a, 3b in the first and second intake passages 3a, 3b during and immediately after the NO x generation process. A large amount of recirculated exhaust gas exists in a relatively long portion downstream of 4b. As a result, even if there is an acceleration request during and immediately after the NO x regeneration process, the amount of fresh air in each cylinder can be increased sufficiently unless this large amount of exhaust gas is supplied into the cylinder. In this way, it is not possible to increase the engine output by increasing the amount of injected fuel directly from the acceleration request.

これに対して、本実施形態では、一方のバンクの気筒だけで所望の理論空燃比又はリッチ空燃比での低温燃焼を実施するために、NOX再生処理中及びその直後において、加速要求があった時には、他方のバンクの気筒で燃焼を開始すれば、機関出力を高めて直に加速を開始することができる。また、NOX再生処理中及びその直後において、第一及び第二吸気通路3a,3bの各コンプレッサ4a,4bの下流側の比較的長い部分には、それほど多量の再循環排気ガスが存在しておらず、一方の気筒にも比較的多くの新気が供給されており、他方の気筒でも吸気弁を開弁すれば、比較的多くの新気が供給される。それにより、加速要求があった時には、他方の気筒で燃料噴射を開始すると共に一方の気筒では噴射燃料を減量し、各気筒で同じリーン空燃比の運転を実施しても直に機関出力を高めて加速を開始することができる。 In contrast, in the present embodiment, in order to implement a low-temperature combustion at the desired stoichiometric or rich air-fuel ratio only in the cylinders of one bank in NO X regeneration process and immediately after that, there is an acceleration request If combustion is started in the cylinder of the other bank, the engine output can be increased and acceleration can be started immediately. Further, during and immediately after NO X regeneration process, the first and second intake passages 3a, each compressor 4a of 3b, the relatively long portions of 4b downstream of, if there is much quantity of recirculated exhaust gas However, a relatively large amount of fresh air is supplied to one of the cylinders, and a relatively large amount of fresh air is supplied to the other cylinder if the intake valve is opened. As a result, when acceleration is requested, fuel injection is started in the other cylinder and the injected fuel is reduced in one cylinder, and the engine output is directly increased even if each cylinder is operated at the same lean air-fuel ratio. You can start accelerating.

ところで、燃料中にはイオウSが含まれており、このイオウSは気筒室内で酸素と反応してSOXとなる。従って排気ガス中にはNOXだけでなくSOXも含まれており、このSOXもNOXと同様なメカニズムによって第一及び第二NOX吸蔵還元触媒装置12a,12bに吸蔵される。NOXは硝酸塩として吸蔵されるのに対して、SOXは硝酸塩より安定な硫酸塩として吸蔵されるために、排気ガスの空燃比を単に理論空燃比又はリッチ空燃比としても放出させることはできず、徐々に吸蔵量が増加する。 By the way, sulfur S is contained in the fuel, and this sulfur S reacts with oxygen in the cylinder chamber and becomes SO x . Therefore, the exhaust gas also contains SO X not only NO X, the first and second the NO X storage reduction catalyst device 12a by the SO X also NO X similar mechanisms, and are inserted into 12b. NO X is stored as nitrate, whereas SO X is stored as sulfate, which is more stable than nitrate, so the air-fuel ratio of the exhaust gas can be released simply as the stoichiometric or rich air-fuel ratio. However, the amount of occlusion increases gradually.

それにより、例えば、積算された燃料噴射量に基づき第一及び第二NOX吸蔵還元触媒装置12a,12bのSOX吸蔵量を推定し、この推定量が設定量に達した時には、第一及び第二NOX吸蔵還元触媒装置12a,12bを所定温度へ昇温させ、その後に排気ガスの空燃比を理論空燃比又はリッチ空燃比としてSOXを放出させるS被毒回復処理を実施する。このS被毒回復処理においても、前述のNOX再生処理と同様に一方のバンクの気筒でだけ理論空燃比又はリッチ空燃比の低温燃焼を実施し、他方のバンクの気筒では燃焼を休止する。 Thereby, for example, the SO X storage amounts of the first and second NO X storage reduction catalyst devices 12a and 12b are estimated based on the integrated fuel injection amounts, and when this estimated amount reaches the set amount, second the NO X storage reduction catalyst device 12a, 12b causes the heated to a predetermined temperature, performing the S-poisoning recovery process to be subsequently releasing SO X fuel ratio of the exhaust gas as the stoichiometric air-fuel ratio or a rich air-fuel ratio. In this S poisoning recovery process, carried out low temperature combustion of only the stoichiometric air-fuel ratio or a rich air-fuel ratio in the cylinders of the foregoing of the NO X regeneration process as well as one bank, to pause the combustion in the cylinders of the other bank.

こうして、一方のバンク1a又1bに対応するNOX吸蔵還元触媒装置12a又は12bのNOX再生処理又はS被毒回復処理が完了すれば、次に、他方のバンク1a又は1bにおいて所望の理論空燃比又はリッチ空燃比での低温燃焼を実施すると共に、一方のバンクにおいては燃焼を休止し、他方のバンク1a又は1bに対応するNOX吸蔵還元触媒装置12a又は12bにおいてNOX再生処理又はS被毒回復処理を実施する。このように、第一及び第二NOX吸蔵還元触媒装置において連続的にNOX再生処理又はS被毒回復処理を実施しても良いが、例えば、一方のNOX吸蔵還元触媒装置において、一回はNOX再生時期及びS被毒回復時期となる以前にNOX再生処理及びS被毒回復処理を実施して、第一及び第二NOX吸蔵還元触媒装置12a,12bが同時にNOX再生時期及びS被毒回復時期とならないようにすれば、その後は、NOX再生時期及びS被毒回復時期となったNOX吸蔵還元触媒装置12a又は12bに対して、対応するバンクにおいてだけ所望の理論空燃比又はリッチ空燃比での低温燃焼を実施するようにしても良い。 Thus, if NO X regeneration process or the S-poisoning recovery process of the NO X occluding and reducing catalyst device 12a or 12b corresponding to one bank 1a also 1b is completed, then the desired stoichiometric air in the other bank 1a or 1b ratio or with out the low-temperature combustion of a rich air-fuel ratio, suspended combustion in one bank, NO X regeneration process or S to be in the NO X storage reduction catalyst device 12a or 12b corresponding to the other bank 1a or 1b Carry out poison recovery treatment. Thus, it may be continuously NO X regeneration process or the S-poisoning recovery process in the first and second the NO X storage reduction catalyst device implemented. For example, in one of the NO X occluding and reducing catalyst device, one times is performed NO X regeneration processing and the S-poisoning recovery process before the timing NO X regeneration timing and S-poisoning recovery, the first and second the NO X storage reduction catalyst device 12a, 12b at the same time NO X regeneration If the timing and the S poison recovery time are not reached, then the NO X storage reduction catalyst device 12a or 12b that has reached the NO X regeneration timing and S poison recovery time is desired only in the corresponding bank. You may make it implement low temperature combustion by a theoretical air fuel ratio or a rich air fuel ratio.

本実施形態において、燃焼を休止させるバンクの気筒では吸気弁及び排気弁を閉弁したままとし、対応するNOX吸蔵還元触媒装置12a又は12bへは比較的酸素濃度の高い再循環排気ガスと空燃比との混合ガスが流入しないようにしている。これはNOX吸蔵還元触媒に担持されている白金等の酸化触媒のシンタリングを抑制するためである。しかしながら、本実施形態のように、各バンクの排気系が互いに独立している場合において、シンタリングの問題がなければ、休止させるバンクの気筒において吸気弁及び排気弁を開閉させるようにしても良い。 In the present embodiment, the intake valve and the exhaust valve are kept closed in the cylinder of the bank that stops combustion, and the recirculated exhaust gas and the air having a relatively high oxygen concentration are supplied to the corresponding NO x storage reduction catalyst device 12a or 12b. The mixed gas with the fuel ratio is prevented from flowing in. This is to suppress sintering of an oxidation catalyst such as platinum supported on the NO x storage reduction catalyst. However, when the exhaust systems of the banks are independent from each other as in this embodiment, if there is no problem of sintering, the intake valve and the exhaust valve may be opened and closed in the cylinder of the bank to be deactivated. .

もし、V型エンジン又は直列エンジン等において、機関排気系が単一である場合には、NOX吸蔵還元触媒装置のNOX再生処理又はS被毒回復処理において、一部の気筒で所望の理論空燃比又はリッチ空燃比の燃焼を実施し、残りの気筒を休止させれば良い。この場合においては、休止させた気筒において吸気弁及び排気弁を閉弁させたままとしないと、休止気筒からは吸入された再循環排気ガス及び空気がそのまま排出されてNOX吸蔵還元触媒装置へ供給されてしまうために、NOX吸蔵還元触媒装置内を所望の理論空燃比又はリッチ空燃比とすることができなくなる。それにより、この場合には、休止気筒においては、吸気弁及び排気弁を閉弁させたままとしなければならない。 If the engine exhaust system is single in a V-type engine or an in-line engine, etc., the desired theory is obtained for some cylinders in the NO X regeneration process or S poison recovery process of the NO X storage reduction catalyst device. It is only necessary to perform combustion at an air-fuel ratio or a rich air-fuel ratio and deactivate the remaining cylinders. In this case, unless the intake valve and the exhaust valve are kept closed in the deactivated cylinder, the recirculated exhaust gas and air sucked from the deactivated cylinder are discharged as they are to the NO X storage reduction catalyst device. Therefore, the inside of the NO x storage reduction catalyst device cannot be set to a desired theoretical air-fuel ratio or rich air-fuel ratio. Accordingly, in this case, the intake valve and the exhaust valve must be kept closed in the idle cylinder.

第一排気通路9aの第一パティキュレートフィルタ11a及び第二排気通路9bの第二パティキュレートフィルタ11bにNOX吸蔵剤を担持させた場合には、第一パティキュレートフィルタ11a及び第二パティキュレートフィルタ11bにおいて同様なNOX再生処理及びS被毒回復処理が必要となる。しなしながら、パティキュレートフィルタにNOX吸蔵剤を担持させると、NOX吸蔵剤から放出される活性酸素によって捕集パティキュレートを自動的に酸化除去することができる。 In case of carrying the NO X storage agent to the second particulate filter 11b of the first particulate filter 11a and the second exhaust passage 9b of the first exhaust passage 9a, a first particulate filter 11a and a second particulate filter In 11b, the same NO x regeneration process and S poison recovery process are required. Shinashi while, when supporting the the NO X storage agent into the particulate filter, it is possible to automatically oxidized and removed trapped particulates by active oxygen released from the NO X storage agent.

本発明による制御装置を備えたディーゼルエンジンの概略図である。It is the schematic of the diesel engine provided with the control apparatus by this invention. 吸気量、噴射量、EGR量、及び、A/Fのタイムチャートである。It is a time chart of intake air amount, injection amount, EGR amount, and A / F.

符号の説明Explanation of symbols

1 ディーゼルエンジン本体
2 エアクリーナ
3a 第一吸気通路
3b 第二吸気通路
4a 第一コンプレッサ
4b 第二コンプレッサ
9a 第一排気通路
9b 第二排気通路
12a 第一NOX吸蔵還元触媒装置
12b 第二NOX吸蔵還元触媒装置
13a 第一排気ガス再循環通路
13b 第二排気ガス再循環通路
1 diesel engine body 2 an air cleaner 3a first intake passage 3b second intake passage 4a first compressor 4b first exhaust passage 9b second compressor 9a second exhaust passage 12a first the NO X storage reduction catalyst device 12b Second the NO X storage reduction Catalyst device 13a First exhaust gas recirculation passage 13b Second exhaust gas recirculation passage

Claims (2)

多量の排気ガスを気筒内へ再循環して理論空燃比又はリッチ空燃比での燃焼を可能とするディーゼルエンジンの制御装置において、機関排気系に配置されてNOX吸蔵剤を担持する触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理に際し、一部気筒においては理論空燃比又はリッチ空燃比での前記燃焼を実施し、残りの気筒においては吸気弁及び排気弁を閉弁させたまま燃焼を休止させることを特徴とするディーゼルエンジンの制御装置。 In a control device for a diesel engine that enables combustion at a stoichiometric air-fuel ratio or a rich air-fuel ratio by recirculating a large amount of exhaust gas into a cylinder, a catalyst device that is disposed in the engine exhaust system and carries a NO x storage agent or upon processing of the NO X regeneration or S-poisoning recovery of the particulate filter, in the partial-cylinder carried the combustion at the stoichiometric air-fuel ratio or a rich air-fuel ratio, to close the intake and exhaust valves in the remaining cylinders A control device for a diesel engine, characterized in that the combustion is stopped while standing. 多量の排気ガスを気筒内へ再循環して理論空燃比又はリッチ空燃比での燃焼を可能とするディーゼルエンジンの制御装置において、前記ディーゼルエンジンは、一方の気筒群の機関排気系と他方の気筒群の機関排気系とが互いに独立しており、一方の気筒群の機関排気系に配置されてNOX吸蔵剤を担持する触媒装置又はパティキュレートフィルタのNOX再生又はS被毒回復の処理に際し、一方の気筒群においては理論空燃比又はリッチ空燃比での前記燃焼を実施し、他方の気筒群においては燃焼を休止させることを特徴とするディーゼルエンジンの制御装置。 In a control apparatus for a diesel engine that enables combustion at a stoichiometric air-fuel ratio or a rich air-fuel ratio by recirculating a large amount of exhaust gas into the cylinder, the diesel engine includes an engine exhaust system of one cylinder group and the other cylinder are independent and the group of engine exhaust system with each other, upon the processing of the NO X regeneration or S-poisoning recovery of the catalytic converter or particulate filter to be arranged in the exhaust system of one cylinder group carrying the NO X storage agent The diesel engine control apparatus, wherein the combustion is performed at a stoichiometric air-fuel ratio or a rich air-fuel ratio in one cylinder group, and the combustion is stopped in the other cylinder group.
JP2004182573A 2004-06-21 2004-06-21 Diesel engine control device Expired - Fee Related JP4305295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182573A JP4305295B2 (en) 2004-06-21 2004-06-21 Diesel engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182573A JP4305295B2 (en) 2004-06-21 2004-06-21 Diesel engine control device

Publications (2)

Publication Number Publication Date
JP2006002728A true JP2006002728A (en) 2006-01-05
JP4305295B2 JP4305295B2 (en) 2009-07-29

Family

ID=35771321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182573A Expired - Fee Related JP4305295B2 (en) 2004-06-21 2004-06-21 Diesel engine control device

Country Status (1)

Country Link
JP (1) JP4305295B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101530A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Exhaust gas recirculation device in internal combustion engine
JP2008106657A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Exhaust system for internal combustion engine
JP2010065601A (en) * 2008-09-10 2010-03-25 Fuji Heavy Ind Ltd Exhaust gas recirculating device of diesel engine
KR101009105B1 (en) 2006-11-16 2011-01-18 로베르트 보쉬 게엠베하 Method and device for operating an internal combustion engine with multiple cylinder banks
US20110232279A1 (en) * 2007-06-26 2011-09-29 International Engine Intellectual Property Company, Llc Internal Combustion Engine Having Compressor With First And Second Tributary Inlets
CN102889154A (en) * 2011-07-22 2013-01-23 福特环球技术公司 Method and system for exhaust gas recirculation
JP2016211486A (en) * 2015-05-12 2016-12-15 いすゞ自動車株式会社 Exhaust emission control system
KR20170055116A (en) * 2015-11-11 2017-05-19 현대중공업 주식회사 Selective catalytic reduction system corresponding to multiple turbo chargers
CN112627998A (en) * 2019-10-09 2021-04-09 丰田自动车株式会社 Vehicle and control method thereof
CN112627999A (en) * 2019-10-09 2021-04-09 丰田自动车株式会社 Vehicle and control method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101530A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Exhaust gas recirculation device in internal combustion engine
JP2008106657A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Exhaust system for internal combustion engine
KR101009105B1 (en) 2006-11-16 2011-01-18 로베르트 보쉬 게엠베하 Method and device for operating an internal combustion engine with multiple cylinder banks
US20110232279A1 (en) * 2007-06-26 2011-09-29 International Engine Intellectual Property Company, Llc Internal Combustion Engine Having Compressor With First And Second Tributary Inlets
JP2010065601A (en) * 2008-09-10 2010-03-25 Fuji Heavy Ind Ltd Exhaust gas recirculating device of diesel engine
CN102889154A (en) * 2011-07-22 2013-01-23 福特环球技术公司 Method and system for exhaust gas recirculation
JP2016211486A (en) * 2015-05-12 2016-12-15 いすゞ自動車株式会社 Exhaust emission control system
KR20170055116A (en) * 2015-11-11 2017-05-19 현대중공업 주식회사 Selective catalytic reduction system corresponding to multiple turbo chargers
KR102197385B1 (en) * 2015-11-11 2020-12-31 한국조선해양 주식회사 Selective catalytic reduction system corresponding to multiple turbo chargers
CN112627998A (en) * 2019-10-09 2021-04-09 丰田自动车株式会社 Vehicle and control method thereof
CN112627999A (en) * 2019-10-09 2021-04-09 丰田自动车株式会社 Vehicle and control method thereof

Also Published As

Publication number Publication date
JP4305295B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4337809B2 (en) Exhaust gas purification system for internal combustion engine
JP4977993B2 (en) Diesel engine exhaust purification system
JP3508691B2 (en) Exhaust gas purification device for internal combustion engine
JP4305295B2 (en) Diesel engine control device
US20040237509A1 (en) System and method for supplying clean pressurized air to diesel oxidation catalyst
JP2004076595A (en) Exhaust emission control device of internal combustion engine
US10690029B2 (en) System and method for exhaust gas aftertreatment with lean NOx trap and exhaust gas recirculation
US20180266344A1 (en) Internal combustion engine
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP5716687B2 (en) Exhaust gas purification device for internal combustion engine
JP2009185767A (en) Supercharger of engine
JP2005155500A (en) Exhaust gas control apparatus for internal combustion engine
JP6108078B2 (en) Engine exhaust purification system
JP4311169B2 (en) Exhaust gas purification device for internal combustion engine
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP5379733B2 (en) Engine exhaust purification system
JP3840815B2 (en) Exhaust gas purification device for internal combustion engine
JP4727472B2 (en) Exhaust purification device
JP2006274985A (en) Exhaust gas aftertreatment device
JP2002317670A (en) Control device of internal combustion engine
JP2009174340A (en) Exhaust emission control device for internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP2010038011A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method using the same
JP2004324457A (en) Compression ignition type internal combustion engine
JP2007255368A (en) Postprocessor of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees