JP2005537702A - 補聴器および音声の明瞭さを高める方法 - Google Patents

補聴器および音声の明瞭さを高める方法 Download PDF

Info

Publication number
JP2005537702A
JP2005537702A JP2004520324A JP2004520324A JP2005537702A JP 2005537702 A JP2005537702 A JP 2005537702A JP 2004520324 A JP2004520324 A JP 2004520324A JP 2004520324 A JP2004520324 A JP 2004520324A JP 2005537702 A JP2005537702 A JP 2005537702A
Authority
JP
Japan
Prior art keywords
speech
gain
hearing aid
volume
assessment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004520324A
Other languages
English (en)
Other versions
JP4694835B2 (ja
Inventor
ハンセン・マーチン
Original Assignee
ヴェーデクス・アクティーセルスカプ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴェーデクス・アクティーセルスカプ filed Critical ヴェーデクス・アクティーセルスカプ
Publication of JP2005537702A publication Critical patent/JP2005537702A/ja
Application granted granted Critical
Publication of JP4694835B2 publication Critical patent/JP4694835B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L2021/065Aids for the handicapped in understanding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Massaging Devices (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Abstract

マイクロホン(1),プロセッサ(53)および出力トランデューサ(12)を有する補聴器(22)は,音環境の評価を取得し,音環境評価に従う音声の明瞭さの評価を決定するように構成され,さらに,音声の明瞭さの評価を高めるために補聴器プロセッサの伝達関数に適合するように構成される。この発明による方法は,特定の音環境下において音声の明瞭さを最適化するのに適切なプロセッサ伝達関数の適合を行う。音環境の評価を取得するとともに音声の明瞭さの評価を決定する手段を,補聴器プロセッサに組み込むことができ,または外部処理手段(56)で全体的または部分的に実現して,適切なリンクを介してデータを補聴器プロセッサに送信するように構成することができる。

Description

この発明は,補聴器および音声の明瞭さ(speech intelligibility)を高める方法に関する。また,この発明は,特定の音環境に対する補聴器の適合(adaptation)に関する。さらに詳しくは,この発明は,騒々しい音環境下での音声の明瞭さをリアルタイムで高める手段を備えた補聴器に関する。さらにこの発明は,音声の明瞭さおよび音量のリアルタイムの決定にしたがって補聴器における周波数帯域利得を調整することによってリスニングの快適さを改善する方法に関する。
最近の補聴器は,1個以上のマイクロホンと,信号プロセッサと,信号プロセッサを制御する手段と,拡声器または電話器と,場合によってはテレコイル・システムを装備した場所で用いるためのテレコイルとを備える。信号プロセッサを制御する手段は,異なる聴取プログラム,たとえば,静寂な音環境下で用いる第1プログラム,騒々しい音環境下で用いる第2プログラム,テレコイルを使用するための第3プログラム等の間で切換えを行う手段を備える。
補聴器は,使用前に個別のユーザに合わせる(適合させる,フィットさせる)必要がある。このフィッティングの手順は,基本的には,ユーザの聴覚障害や選択された特定の補聴器のような特定の環境に従ってユーザの聴力損失を最も良く補償するためにレベル依存性伝達関数または周波数応答を適合させることを含む。伝達関数を支配する選択されたパラメータの設定が補聴器に格納される。例えば障害の変化を考慮するために,フィッティング手順の繰返しによって,設定をあとで変更することができる。マルチプログラム補聴器の場合,特定の音環境の考慮にのみ向けられた設定を選択しながら,適合手順を各プログラムごとに1回ずつ実行することができる。
従来技術によれば,補聴器は,複数の周波数帯域の音を,各帯域の予め規定された入力/利得曲線に従って利得レベルを指定する設備を用いて処理する。
入力処理は,補聴器の出力ダイナミック・レンジを制御するために信号を圧縮する手段をさらに含む。この圧縮は,補聴器のユーザのリスニングの快適さを改善する目的で利得レベルを自動的に調整することであると見ることができる。WO99 34642 A1に記載されたような方法で圧縮を実現することができる。
高度な補聴器はさらに,必要なときに,各帯域の利得設定の低減を通じて音響的フィードバック・ハウリングを連続的に制御する目的で,各周波数帯域の入力レベルおよび出力レベルを連続的に測定するアンチフィードバック・ルーチンを含む。
しかしながら,これら全ての「予め規定された」利得調整法において,利得レベルは,一般化された状況に対する要求を反映するために,補聴器のプログラミング/フィッティングの間に,規定された関数に従って変更される。
過去において,種々の研究者は,線形システムを通した伝達の後に,音声の明瞭さを予測するモデルを提案してきた。これらのモデルのうちの最も良く知られたものには,「発音の明瞭度指数(指標)(articulation index)」AIと,「音声の明瞭さの指数(指標)(speech intelligibility index)」SIIと,「音声伝達指数(指標)(speech transmission index)」STIとがあるが,他の指標(指数)も存在する。
音声の明瞭さの決定は,電話線の音声信号の品質を評価するために用いられてきた。ベル研究所にて(H. Fletcher and R. Galt「音声認知とその電話への関係(The perception of speech and its relation to telephony)」J. Acoust. Soc. Am. 22, 89-151 (1950))。音声の明瞭さは,コンサートホール,教会,講堂および拡声(PA)システムを計画し設計する際に重要な項目でもある。
ANSI S3.5-1969規格(1997年改定)は,音声の明瞭さの指数SIIの計算方法を提供する。SIIによって,伝達される音声情報の理解できる量(intelligible amount)すなわち線形伝達システムの音声の明瞭さを予測することができる。SIIは,システムの伝達関数の関数であり,すなわち,システムの出力におけるの音声スペクトルの間接的な関数である。さらに,マスキング・ノイズの影響と補聴器ユーザの聴力損失の影響の両方をSIIに考慮することができる。
ANSI規格によれば,音声スペクトルにおける異なる周波数はSIIに関して重要度が異なるので,SIIは,周波数重み付け依存帯域を有する。しかしながら,SIIは,複数の個別の周波数帯域についての値の和として計算される全音声スペクトルの明瞭さを考慮する。
SIIは,常に0(音声が全く理解できない)と1(音声が十分に理解できる)との間の数をとる。SIIは,実際,個々の音素を搬送するシステムの能力,したがって,願わくば,聞き手が言われた内容を理解できるようにする能力の客観的な目安である。それは,言語,方言,または話者の話す能力の欠如を考慮しない。
文献「室内において変調伝達関数から音声の明瞭さを予測すること(Predicting Speech Intelligibility in Rooms from the Modulation Transfer Function)」(Acoustica Vol 46, 1980)において,T. Houtgast, H. J. M. Steeneken and R. Plompは,室内において音声の明瞭さを予測する方式を提供する。この方式は,変調伝達関数(MTF)に基づくものであり,それは,特に,室内の反響,周辺雑音レベルおよび話者の発声出力の影響を考慮する。MTFを,単一の指標,すなわち音声伝達指数STIに変換することができる。
文献「NAL-NL1:非線形補聴器の新しいフィッティング手順(A new procedure for fitting non-linear hearing aids)」The Hearing Journal, April 199, Vol.52, No.4は,同じ音を聞く聴覚健常者によって知覚される音量より大きくないレベルにおいて,全体的な音量を保持しながら,音声の明瞭さを最大にするように選択されるフィッティング・ルール規則を記載する。複数のオーディオグラム(audiogram)および複数の音声レベルが考察されている。
補聴器の最近のフィッティングは,音声の明瞭さも考慮するが,特定の補聴器の結果的に得られるフィッティングは,常に,理論的または実験的に導き出される固定的な評価に基づいた解決を行ってきた。音声の明瞭さの好適な最新の目安は,音声の明瞭さの指数SIIである。なぜなら,この方法は良く規定されておりかつ標準化されており,非常に安定した結果を与えるからである。したがって,この方法は,ANSI S3.5-1997規格を参照して以下のように考えられる唯一のものである。
計算された音声の明瞭さの指数の多くの用途は,音声の明瞭さの指数が適用される状態とは異なる状態から導き出されることがある静的な指数値のみを利用する。これらの状態は,反響,消音,存在する雑音のレベルまたはスペクトル密度の変化,音声伝達路全体にわたる(話者,聴覚室,聞き手,およびある種の電子伝達手段を含む)伝達関数の変化,歪み,および部屋の減音を含む。
さらに,補聴器の利得が増大すると,常に,増幅された音の音量が増大し,場合によっては不愉快に高い音レベルとなり,したがって,補聴器ユーザに不快な音量(loudness)が生じる。
補聴器の出力の音量(ラウドネス:loudness)を,例えば,B. C. J. MooreとB. R. Glasbergの論文「Zwickerのラウドネス・モデルの修正(A revision of Zwicker's loudness model)」(Acta Acustica Vol.82 (1996) 335-345)に記載された方法によってラウドネス・モデルに従って計算することができ,それは,聴覚健常および聴覚障害対象における音量の計算モデルを提案している。このモデルは,定状状態の音に対して設計されているが,モデルを拡張することによって,より短い過渡的な音の音量の計算も可能となる。等しい音量の輪郭(equal loudness contours)に関するISO規格226(ISO1987)を参照されたい。
音声の明瞭さの程度を,これら既知の方法のうちの任意のものを利用することにより任意の特定の音環境および補聴器の設定に対して計算することができる。補聴器によって増幅された音声および雑音に対応する音声の明瞭さの異なる評価は,聴力損失の異なる周波数帯域における利得レベルに依存する。しかしながら,音声の明瞭さおよび/または音量の連続的な最適化は,音環境の連続的な分析を必要とし,したがって,補聴器のプロセッサで実行できると考えられたものを超える膨大な計算を伴う。
本発明者は,補聴器が使用されている間に音声の明瞭さを高めることができる利得設定(gain settings)の専用の自動的な調整(adjustment)を考案することができることが分かった。それは,補聴器のプロセッサのような低電力プロセッサで実現するのが適切である。
この調整には,現在の音の状況に依存して異なる帯域において独立して利得を増減する能力が要求される。例えば,SIIを高めるために,高い雑音レベルを有する帯域に対しては利得を減少させるのが有利であり,他方,低雑音レベルを有する帯域においては利得の増加が有利である。しかしながら,SIIは相互マスキング(mutual masking)のような帯域間の相互作用も考慮するので,上記のような簡単な方策は常に最適な解決であるとは限らない。したがって,SIIの正確な計算が必要である。
この発明の目的は,音環境が変化する際に補聴器の音声の明瞭さを高める方法および手段を提供することである。他の目的は,これを行うとともに,補聴器による音量(ラウドネス)の不快感の発生を防止することである。
この発明のさらに他の目的は,低電力消費で実現することができる,補聴器の音声の明瞭さを高める方法および手段を提供することである。
この発明によれば,これは,補聴器における信号を処理する方法によって得られる。前記補聴器は,マイクロホン,プロセッサおよび出力トランデューサを有する。この発明の方法は音環境の一つ以上の評価を取得し,音環境の評価および補聴器プロセッサの伝達関数に従って音声の明瞭さの評価を決定し,そして音環境における音声の明瞭さの評価を高めるために前記伝達関数を適合させるものである。
音声の明瞭さの評価の増大は,補聴器の音出力の音声の明瞭さが高められることを意味する。この発明による方法は,特定の音環境下での音声の明瞭さを最適化するのに適切なプロセッサ伝達関数の適合を実現する。
音環境の評価を,必要に応じて,しばしば,すなわち,断続的に,周期的にまたは連続的に,データ処理に対する要求や音環境の変化のような考察の観点で適切に,更新することができる。直接知覚された音響信号と補聴器によって処理された音響信号との間の遅延がいらだたしく,かつこの遅延は一貫した音の知覚を損なうことがあるので,ユーザがこのような遅延を知覚するのを防止するために,最先端のデジタル補聴器においては,プロセッサは,短い,好適には3ms未満の短い遅延をもって音響信号を処理する。伝達関数の更新は,一般に,更新に起因する変化が気付かれることはないので,著しく低いペースで,ユーザを不快にさせることなく,行うことができる。例えば50ms間隔の更新は,環境の速い変化に対してさえもしばしば十分である。定常的な環境の場合,更新は,例えば要求に応じて,さらに遅くなる。
音環境の評価を取得するとともに音声の明瞭さの評価を決定する手段を補聴器プロセッサに組み込むことができ,またはそれを,全体的にまたは部分的に外部処理手段で実現することができ,適切なリンクによって補聴器プロセッサからおよび補聴器プロセッサへのデータの通信に適合される。
音声の明瞭さの指数SIIのリアルタイムの計算が可能であると仮定すると,例えば,音伝達チェーン,好適には電子処理手段のある都合のよいポイントで伝達関数を繰り返し変更することによって,低下した音声の明瞭さを何らかのやり方で補償するために,これらの計算結果を用いてこれらの課題の多くを克服することができる。
線形システムにおいてより早く唯一考察されていたSIIを,非線形システムにおける許容しうる程度の精度で計算しおよび使用できるとさらに仮定すると,SIIの適用範囲を著しく拡大することができる。それを,例えば,音信号のある種の圧縮を用いる補聴器のようなある種の非線形伝達関数を有するシステムにおいて用いることができる。補聴器が,一般にシステムをさらに線形的にする長い圧縮時定数を有する場合,SIIのこのような適用は特に功を奏する。
リアルタイムSIIを計算するために,音声レベルおよび雑音レベルの評価が計算の時点で知られている必要がある。その理由は,これらの値が計算に必要となるからである。これらのレベルの評価を,種々の方法で,例えば,パーセンタイル・エスティメータ(percentile estimator)を用いることによって良好な精度で取得することができる。最大SIIが常に所与の信号レベルおよび所与の雑音レベルに対して存在すると仮定される。増幅利得が変化すると,SIIも変化する。
SIIと増幅利得の所与の変化との間の一般的な関係を分析的に計算するのが容易でないので,最大のSII値を与える特定の増幅利得を決定するために,この関係を決定するある種の数値最適化ルーチンが必要とされる。適切な最適化ルーチンの実施を,明細書の詳細部分で説明する。
この発明の一実施例によれば,この方法は,補聴器プロセッサの複数の個々の周波数帯域の利得値を表す利得ベクトルとして,伝達関数を決定し,利得ベクトルを,音声の明瞭さを高めるように選択する。このことは,データ処理を簡単にする。
この発明の一実施例によれば,この方法は,音声の明瞭さを高めるために適切な利得値を,周波数帯域の第1部分に対してそれぞれ決定し,かつ周波数帯域の第1部分に関する利得値間の補間を通じて,周波数帯域の第2部分に対する利得値をそれぞれ決定することによって,利得ベクトルを決定する。このことは,より複雑な最適化アルゴリズムを実行する必要がある周波数帯域の数を削減することを通して,データ処理を簡単にする。補間によって良好な結果を提供するために,周波数帯域の第1部分は,一般に周波数スペクトルをカバーするように選択され,これに対して,周波数帯域の第2部分は,第1部分の周波数帯域間に点在するように置かれる。
この発明の他の実施例によれば,この方法は,音声の明瞭さの評価を,補聴器に接続した外部フィッティング・システムに送信する。これは,例えば補聴器のパフォーマンスおよびフィッティングの評価,特定の音環境の状況,またはユーザの聴覚に特有の状況において,ユーザまたは聴覚学者に有用な情報の一部を提供することができる。プログラミング装置を備える補聴器と通信を行うのに適切な外部フィッティング・システムは,WO9008448およびWO9422276に記載されている。他の適切なフィッティング・システムは,補聴器製造業者ソフトウェア協会(Hearing Instrument Manufacture’s Software Association)(HIMSA)によって指定されたHiPROやHOAHのような工業規格システムである。
この発明の他の実施例によれば,利得ベクトルから出力信号の音量を計算するとともに,音量を,聴覚健常者の増幅されない音の音量に対する比を表わす音量限界と比較し,音量限界を超えないようにするために利得ベクトルを適切に調整する。これは,補聴器出力信号の音量が快適な範囲内に確実にあるようにすることによってユーザの快適性が向上する。
この発明の他の実施例による方法は,音量が対応する音量限界値以下となるように選択されたスカラー係数を乗算することによって利得ベクトルを調整するものである。これは,音量制御を簡単に実現する。
この発明の一実施例によれば,利得ベクトルの各利得値を,各利得値が音量ベクトルの対応する音量限界値以下となるように調整する。
この発明のさらに他の実施例による方法は,前記音環境の音声レベルの評価および雑音レベルの評価を決定するものである。これらの評価は,時間上の音信号の統計的な分析によって取得することができる。ある方法では,音声が存在する時間フレームを,レベル分析を通じて識別し,それらの時間フレーム内の音レベルを平均して音声レベルの評価を生成し,残りの時間フレーム内のレベルを平均して雑音レベルの評価を生成する。
この発明は,第2の態様において,複数の音声レベルのうちの少なくとも一つ,複数の雑音レベルのうちの少なくとも一つ,および複数の個々の周波数帯域の聴力損失ベクトルの関数として音声の明瞭さの評価を計算する手段を備えた補聴器を提供する。
聴力損失ベクトルは,種々の周波数帯域で取られる聴覚欠如測定を表す一群の値を備える。この態様のこの発明による補聴器は,音声の明瞭さを高めるために補聴器における適応信号処理に用いることができる情報の一部を提供し,それを,例えば,視覚的または音響的な手段によってユーザまたはフィッタに提示することができる。
この発明の一実施例によれば,補聴器は,補聴器の複数の個々の周波数帯域の複数の利得レベルに対して適切な調整を行うことによって音声の明瞭さを高める手段を備える。
他の実施例によれば,補聴器の個々の周波数帯域の調整された利得値に対応する音量と,増幅されない音の音量に対する比を表す音量限界値とを比較する手段と,音量限界値を超えないように各利得値を適切に調整する手段とを備える。
この発明は,第3の態様において,補聴器を音環境にフィッティングする方法であって,一般的なフィッティング規則に従って初期補聴器伝達関数を選択し,音環境の評価を取得し,音環境の評価および初期伝達関数に従って音声の明瞭さの評価を決定し,そして音声の明瞭さの評価を高めるのに適切な修正された伝達関数を提供するよう初期伝達関数を適合する方法を提供する。
この方法によって,補聴器は特定の環境に適合され,これによって,その環境において優れた音声の明瞭さを対象とした適合が可能になる。
次に,この発明を,添付図面を参照してより詳細に説明する。
図1の補聴器22は,ブロック分離手段(block splitting means)2に接続されたマイクロホン1を備え,ブロック分離手段2はさらにフィルタ・ブロック(filter block)3に接続されている。ブロック分離手段2は,任意に時間的な重み付けした通常の窓関数(windowing function)を適用し,フィルタ・ブロック3は,好適には,補聴器22における異なる周波数帯域を規定する予め定められた一群の低域通過フィルタ,帯域通過フィルタおよび高域通過フィルタを備える。
フィルタ・ブロック3からの全出力は,乗算点(multiplication point)10に供給され,フィルタ・ブロック3の個々の帯域1,2,...Mからの出力は,音声および雑音エスティメータ(speech and noise estimator)4の各入力部に供給される。個々のフィルタ帯域からの出力は,図1に単一の太い信号線で示されている。音声レベルおよび雑音レベルのエスティメータを,例えば,国際出願WO98 27787 A1に示された種類のパーセンタイル・エスティメータとして実現することができる。
乗算点10の出力は,ブロック重ね合わせ手段(block overlap means)11を介して拡声器(loudspeaker)12にも接続される。音声および雑音エスティメータ4は,二つの個別の(分離した)信号部分S(信号)およびN(雑音)を伝える二つのマルチバンド信号経路によってラウドネス・モデル(音量モデル)手段(loudness model means)7に接続され,これら二つの信号部分は,音声最適化ユニット(speech optimization unit)8にも供給される。ラウドネス・モデル(音量モデル)手段7の出力部は,音声最適化ユニット8の出力部にも接続される。
ラウドネス・モデル手段7は,既存のラウドネス・モデルのS信号部分およびN信号部分を使用して,音声最適化ユニット8からの次に計算される利得値が,聴覚健常対象に対して増幅されない音の音量である予め設定された音量L0を超える補聴器22の出力信号の音量を発生しないようにする。
聴力損失モデル手段(hearing loss model means)6を,音声の明瞭さを考慮する必要なく特定のユーザに適合した動作中の補聴器22に既に格納されている聴力損失補償プロファイルを表現するものとすると有利である。
音声および雑音エスティメータ4はAGC手段5にも接続され,AGC手段5は,加算点(summation point)9の一つの入力部に接続され,そこに初期利得値g0を供給する。好適には,AGC手段5を,例えばWO99 34642に記載された種類のマルチバンド・コンプレッサ(multiband compressor)として実現する。
音声最適化ユニット8は,図2のフローチャートに記載されたアルゴリズムを利用して,最適化された利得値変化の新たなセットを繰り返し計算する手段を備える。音声最適化ユニット8の出力ΔGは,加算点9の入力部の一つに供給される。加算点9の出力g’は,乗算点10の入力部および音声最適化ユニット8に供給される。加算点9,ラウドネス・モデル手段7および音声最適化ユニット8は,この発明による補聴器の最適化部分を形成する。音声最適化ユニット8は,ラウドネス・モデルも含む。
図1の補聴器22において,音声信号および雑音信号は,マイクロホン1によってピックアップされ,ブロック分離手段2によって複数の時間ブロックまたはフレームに分離される。好適には約50msの長さとする時間ブロックまたはフレームの各々は,個別に処理される。したがって,各ブロックは,フィルタ・ブロック3によって複数の個別の周波数帯域に分割される。
周波数分割された信号ブロックは,その後,二つの個別の信号経路に分割され,一方が音声および雑音エスティメータ4に進み,他方が乗算点10に進む。音声および雑音エスティメータ4は,二つの個別のベクトル,すなわち,「想定された雑音(assumed noize)」N,および「想定された音声(assumed speech)」Sを生成する。これらのベクトルは,「想定された雑音レベル」と「想定された音声レベル」とを区別するためにラウドネス・モデル手段6および音声最適化ユニット8によって用いられる。
音声および雑音エスティメータ4を,パーセンタイル・エスティメータとして実現することができる。パーセンタイルは,その定義によると,それについての累積分布がそのパーセンタイル以下である値である。パーセンタイル・エスティメータからの出力はそれぞれ,そのレベル値より下では,その信号レベルがそれが評価されている間の時間の所定のパーセンテージ以内に存在する,そのようなレベル値の評価に対応する。ベクトルは,それぞれ好適には10%のパーセンタイル(雑音N)および90%のパーセンタイル(音声S)に対応するが,他のパーセンタイル形態を用いることができる。
実際には,このことは,雑音レベル・ベクトルNが,それより下では周波数帯域信号レベルが時間の10%の間に存在する,そのような信号レベルを備え,音声レベル・ベクトルSが,それより下では周波数帯域信号レベルが時間の90%の間に存在する,そのような信号レベルであることを意味する。さらに,音声および雑音エスティメータ4は,異なる周波数帯域の利得を調整するために制御信号をAGC5に供給する。音声および雑音エスティメータ4は,各ブロックごとに,雑音の周波数帯域レベルおよび音声の周波数帯域レベルを評価する非常に有効なやり方を実現する。
AGC5からの利得値g0は,加算点9で利得変化ΔGを加算され,利得ベクトルg’として乗算点10および音声最適化手段8に供給される。音声および雑音エスティメータ4からの音声信号ベクトルSおよび雑音信号ベクトルNは,音声最適化ユニット8の音声入力部および雑音入力部と,ラウドネス・モデル手段7の対応する入力部とに供給される。
ラウドネス・モデル手段7は,聴覚健常者に対する入力信号の音量L0 を計算するラウドネス・モデルを含む。聴力損失モデル手段6からの聴力損失モデル・ベクトルHは,音声最適化ユニット8の入力部に供給される。
好適には図2に示す繰返しアルゴリズムによって音声の明瞭さを最適化した後,音声最適化ユニット8は,新たな利得変化ΔGを加算点9の入力部に供給するとともに,変化した利得値g’を乗算点10に供給する。加算点9は,出力ベクトルΔGを入力ベクトルg0に加算し,したがって,乗算点10の入力部に対する新たに変更されたベクトルg’を形成し,それを音声最適化ユニット8に供給する。乗算点10は,利得ベクトルg’を,フィルタ・ブロック3からの信号に乗算し,その結果得られる利得調整された信号をブロック重ね合わせ手段11の入力部に供給する。
ブロック重ね合わせ手段を,帯域インタリーブ機能および再生に適切な最適化された信号を再形成する再発生機能として実現することができる。ブロック重ね合わせ手段11は,最終的な音声が最適化された信号ブロックを形成し,これを,適切な出力手段(図示せず)を通して拡声器または補聴器電話器に供給する。
図2は,スタート・ポイント・ブロック100を備える好適な音声最適化アルゴリズムのフローチャートであり,ブロック100は,初期周波数帯域番号M=1がセットされる次のブロック101に接続される。次のステップ102において,初期利得値g0が設定される。ステップ103において,新たな利得値gが,g0に利得値増分ΔGを加算したものとして規定され,その後,ステップ104において,提案された音声の明瞭さの値SIを計算する。ステップ104の後,ステップ105において,音声の明瞭さの値SIが初期値SI0と比較される。
新たなSI値が初期値SI0より大きい場合,ルーチンはステップ109に続き,ここでは音量Lが計算される。ステップ110において,新たな音量Lが音量L0と比較される。音量Lが音量L0より大きい場合,ステップ111において,新たな利得値g0は,g0から利得値増分ΔGを減算したものに設定される。そうでない場合,ルーチンはステップ106に継続し,この場合には,新たな利得値gは,g0に増分利得値ΔGを加算したものに設定される。その後,ルーチンはステップ113に進み,周波数帯域の最も大きい番号Mmaxに到達したか否かを見るために帯域番号Mを調べる。
しかしながら,ステップ104で計算された新たなSIの値が初期値SI0より小さい場合,ステップ107において,新たな利得値g0は,g0から利得値増分ΔGを減算したものに設定される。その後,ステップ108において,提案された音声の明瞭さの値SIが再び,新たな利得値gのために計算される。
ステップ112において,提案された音声の明瞭さSIは再び,初期値SI0と比較される。新たな値SIが初期値SI0より大きい場合,ルーチンはステップ111に継続し,ここで,新たな利得値g0は,g0からΔGを減算したものとして規定される。
増大または減少した利得値ΔGによってSIが増大した場合,初期利得値g0は,周波数帯域Mに対して保存される。周波数帯域の最大番号Mmaxに到達したか否かを見るために帯域番号Mを調べることによって,ステップ113でルーチンが継続する。周波数帯域最大番号Mmaxに達していない場合,最適化を行う周波数帯域の番号に1を加えるステップ115を介してルーチンを継続する。そうでない場合,これらの間の差が許容値εより小さいか否かを決定するために,新たなSIベクトルと以前のベクトルSI0とを比較することによって,ステップ114でルーチンを継続する。
ステップ102またはステップ108のどちらかにおいて各帯域で計算したあるMのSIがSIoと大幅に異なる場合,すなわち,ベクトルが許容値ε以上に異なる場合,ルーチンはステップ117に進み,繰返しカウンタkが最大繰返し数kmaxと比較される。
kがkmaxより小さい場合,現在の利得増分に係数1/dを乗算して新たな利得増分ΔGを規定し(ここでdは,1より大きい正の数),かつ繰返しカウンタkをインクレメントすることによって,ステップ116でルーチンを継続する。その後,最初の周波数帯域M=1で開始するステップ101において,全てのMmax周波数帯域を再び繰返し計算することによって,ルーチンを継続する。kがkmaxより大きい場合,ステップ118において,新たな個別の利得値は,信号プロセッサの伝達関数に転送され,ステップ119で最適化ルーチンを終了する。これは,Siが任意の帯域においてε以上に増大しなかった(ステップ114)場合にも当てはまる。その後,さらなる最適化はもはや存在せず,結果的に得られる,音声が最適化された利得値ベクトルは,ステップ118で信号プロセッサの伝達関数に転送され,ステップ119で最適化ルーチンが終了する。
本質的には,アルゴリズムは,Mmax周波数帯域利得値のMmax次元ベクトル空間を繰り返し横切り,最も大きいSI値に関して周波数帯域ごとに利得値を最適化する。変数εおよびdに対する実際の値は,本例ではε=0.005およびd=2である。周波数帯域の個数Mmaxを,12または15周波数帯域に設定することができる。ΔGに都合のよい開始点は10dBである。シミュレーションされたテストが示すところによれば,アルゴリズムは,通常4〜6回の繰返しの後に収束する。すなわち,以前のSI0ベクトルと新たなSIベクトルとの間の差が無視しうるようになって終了し,したがって,次の繰返しステップの実行を終了することができるポイントに到達する。したがって,このアルゴリズムは,処理要求および収束の速度に関して非常に有効である。
図3のフローチャートは,図2のアルゴリズムによって必要とされるSIIの値をどのようにして取得できるかを示す。図3によるSIアルゴリズムは,図2のステップ104および108のそれぞれのステップを実現し,音声の明瞭さの指数SIIが音声の明瞭さSIに対する目安として選択されるものと仮定する。SIアルゴリズムはステップ301で初期化し,ステップ302および303において,SIアルゴリズムは,周波数帯域の個数Mmax,個別の帯域の周波数f0M,等価音声スペクトル・レベル(equivalent speech spectrum level)S,内部雑音レベルN,および各周波数帯域に対する聴力閾値(hearing threshold)Tを決定する。
関連する複数のパラメータを計算する方法が個々の周波数帯域の数および帯域幅に依存するので,SIIの計算を利用するために,任意の計算が行われる前に個々の周波数帯域の数を決定する必要がある。
等価音声スペクトルレベルSは,ステップ304において以下のように計算される。
Figure 2005537702
ここで,Ebは,中心周波数fを有する帯域通過フィルタの出力部における音声信号のSPL,Δ(f)は,帯域通過フィルタの帯域幅,Δ0(f)は,1Hzの基準帯域幅である。基準内部雑音スペクトルNiは,ステップ305で取得され,等価内部雑音スペクトルN’iおよび次のマスキング・スペクトル・レベルZiの計算に使用される。等価マスキング・スペクトル・レベルZiを,次のように表現することができる。
Figure 2005537702
ここで,N’iは,等価内部雑音スペクトル・レベル,Bkは,N’iより大きい値とし,自己音声マスキング・スペクトル・レベルViは,次式で表現される。
Figure 2005537702
ここで,Fiは,臨界帯域中心周波数,hkは,臨界帯域kの周波数帯域の上限である。マスキングの広がりのオクターブごとの勾配Ciは次のように表現される。
Figure 2005537702
ここで,Iiは,臨界帯域iについての周波数帯域の下限である。
等価内部雑音スペクトルレベルX’iは,ステップ306において以下のように計算される。
Figure 2005537702
ここで,Xiは,雑音レベルNに等しく,Tiは,当該周波数帯域の聴力閾値である。
ステップ307において,等価マスキング・スペクトル・レベル(equivalent masking spectrum level)Ziは,等価内部雑音スペクトル・レベル(equivalent internal noise spectrum level)N’iと比較され,等価マスキング・スペクトル・レベルZiが最大になると,ステップ308において,等価擾乱スペクトル・レベル(equivalent disturbance spectrum level)Diが,等価マスキング・スペクトル・レベルZiに等しくされ,そうでない場合には,ステップ309において,等価擾乱スペクトル・レベルDiは,等価内部雑音スペクトル・レベルN’iに等しくされる。
通常の発声努力の標準音声スペクトル・レベル(standard speech spectrum level)Uiはステップ310で取得され,レベル歪み係数(level distortion factor)Liは,この基準値を用いて以下のように計算される。
Figure 2005537702
ステップ312において,帯域可聴性Ai(band audibility)は,以下のように計算される。
Figure 2005537702
最後に,ステップ313において,トータルの音声の明瞭さの指数SIIは,以下のように計算される。
Figure 2005537702
ここで,Iiは,音声周波数に関する可聴性を重み付けするのに用いられる帯域重要性関数(band importance function)である。音声の明瞭さの指数は,各周波数帯域について合計される。ステップ314においてアルゴリズムは終了し,計算されたSIIの値は,呼出アルゴリズム(calling algorithm)(図示せず)に戻される。
SIIは,音声中の音素をコヒーレントに忠実に再生するシステムの性能の程度を表し,したがって,システムを通じて伝達される音声の情報を搬送する。
図4は,この発明によるSII最適化アルゴリズムにおける6回の繰返しを示す。各ステップは最終利得値43を示し,これらは15の帯域の最適SIIに対応する複数の丸として図4に示されている。SII最適化アルゴリズムは,利得が最適利得値43に一致するように,連続線として図4に示された,所与の伝達関数42に適合する。繰返しは,全ての帯域において0dBの追加の利得(extra gain)で開始し,繰返しステップIで全ての利得値に±ΔGのステップを行い,利得値42を最適なSIIの値43に適合させるためにステップII,III,IV,VおよびVIで利得値42を反復しながら続く。
最適利得値43は,計算前にはアルゴリズムに知られていないが,個々の繰返しステップI〜VIとして図4に示すように,本例の利得値は,たった6回のみの繰返しで収束する。
図5は,補聴器22を示す概略図であり,補聴器22は,マイクロホン1と,トランスデューザすなわち拡声器12と,補聴器フィッティング・ボックス56に接続した信号プロセッサ53とを備え,補聴器フィッティング・ボックス56は,適切な通信リンク・ケーブル55を介して表示手段57および操作パネル58を備える。
補聴器51とフィッティング・ボックス56との間の通信は,当業者に利用できる標準的な補聴器産業の通信プロトコルおよび信号レベルを利用することによって実現される。補聴器フィッティング・ボックスはプログラミング装置を備え,このプログラミング装置は,聴力損失のユーザに関するデータのようなオペレータ入力を受信し,補聴器からのデータを読み出し,種々の情報を表示し,そして補聴器のメモリに適切なプログラミング・パラメータを書き込むことによって補聴器をプログラミングするのに適合したものである。種々のタイプのプログラミング装置が,当業者によって提案され得る。例えば,あるプログラミング装置は,適切な装置を有する補聴器と無線リンクを通じて通信するように適合される。適切なプログラミング装置についてのさらなる詳細は,WO9008448およびWO9422276で見つけることができる。
補聴器22の信号プロセッサ53の伝達関数は,この発明による方法を利用することによって音声の明瞭さを高めるのに適合しており,表示手段57によって表示を行うために,結果的に得られるSIIの値をリンクケーブル55を介してフィッティング・ボックス56と通信する手段をさらに備える。
フィッティング・ボックス56は,適切な制御信号をリンクケーブル55を介して補聴器プロセッサ53に送信することによって,補聴器22からのSIIの値の読出しを表示手段57上で行うことができる。これらの制御信号は,計算されたSIIの値を同じリンク・ケーブル55を介してフィッティング・ボックス56に供給するように補聴器プロセッサ53に指示する。
SIIの値が補聴器ユーザによって感じられる音声の明瞭さの客観的な表示を与え,したがって,補聴器プロセッサの動作について適切な調節を行うことができるので,特定の音環境におけるそのようなSIIの値の読出しは,フィッティングする人および補聴器ユーザに対して大きな助けとなる。それは,音声の明瞭さの悪さが補聴器の良好でないフィッティングに起因するものか否か,または他の原因によるものか否かについての手がかりを与えることによって,フィッティングする人が利用することもできる。
大抵の環境下では,音の伝達システムの伝達関数の関数としてのSIIは,鋭い落込みまたはピークのない比較的良好で円滑な形状を有する。常にこのような場合には,最急勾配法(steepest qradient method)として知られている最適化ルーチンの変形を用いることができる。
例えば適切な一群の帯域通過フィルタを用いることにより,音声スペクトルを,異なる複数の周波数帯域に分割する場合,周波数帯域を互いに独立して取り扱うことができ,各周波数帯域の増幅利得を,その特定の周波数帯域に対してSIIが最大になるように調整することができる。これによって,ANSI規格に従う異なる音声スペクトル周波数帯域の重要度の変化を考慮することができる。
他の実施の形態において,フィッティング・ボックスは,補聴器からの音入力信号を受信し,音入力信号に基づく音環境の評価を提供し,音環境評価および補聴器プロセッサの伝達関数に従う音声の明瞭さの評価を決定し,音声の明瞭さの評価を高めるために伝達関数を適合し,そして,補聴器プログラムを変更(修正)するために変更(修正)した伝達関数についてのデータを補聴器に送信するデータ処理手段を組み込む。
最適SIIの繰返し計算の一般的な原理を,以下に記載する。既知の伝達関数を有する音響伝達システムの場合,kを繰返し最適化ステップとして,初期値gi(k)を,伝達関数の各周波数帯域iごとに設定することができる。
初期利得増分ΔGが選択され,利得値giが各周波数帯域ごとに量±Gi変化する。その後,結果的に得られるSIIの変化が決定され,周波数帯域iについての利得値giは,SIIが当該周波数帯域の処理によって増大する場合にはそれに従って変更される(変化する)。これは,全ての帯域において独立に行われる。その後,利得増分ΔGiが初期値に係数1/dを乗算することによって減少される(ここで,dは,1より大きい正の数である)。特定の周波数帯域の利得の変化によって,その周波数帯域のSIIにさらなる大幅な増大がない場合,またはk回の繰返しがSIIの増大なく実行された場合,その特定の周波数帯域の利得値giは,ルーチンによって変更しないまま維持される。
繰返し最適化ルーチンを,以下のように表現することができる。
Figure 2005537702
したがって,giの変化は,標準的な最急勾配最適化アルゴリズム(standard steepest-gradient optimization algorithm)とは逆に,勾配の符号のみによって決定される。利得増分ΔGiを,勾配によって決定するのではなく,次に表現されるように予め規定することができる。
Figure 2005537702
これによって,計算時間が減少する。
このステップ・サイズ・ルールならびに最適なパラメータSおよびDの選択は,低い計算負荷で,繰返し探索アルゴリズムを高速で収束する開発の結果である。
繰返しアルゴリズムの収束の考えられる基準は,以下の通りである。
Figure 2005537702
Figure 2005537702
Figure 2005537702
したがって,隣接する二つの利得ベクトル間で値SIImaxに交互に近づけることによって決定されたSIIは,固定された最小εよりもSIImaxに近づく必要があり,最適なSIIの値が見つからなかった場合でも,kmax回のステップ後に繰返しが止められる。
これは単なる例である。この発明は,音声の明瞭さがリアルタイムで高められる他の多くの実施をカバーする。
この発明による音声最適化手段を有する補聴器の概略ブロック図である。 「最急勾配」法の変形を利用する好ましい最適アルゴリズムを示すフローチャートである。 SII法を用いた音声の明瞭さの計算を示すフローチャートである。 図2の繰返しアルゴリズムの個々のステップにおける異なる利得値を示すグラフである。 この発明による補聴器と通信するプログラミング装置の概略図である。

Claims (31)

  1. 補聴器における信号を処理する方法であって,前記補聴器が,マイクロホン,プロセッサおよび出力トランスデューザを有し,音環境の評価を取得し,前記音環境の評価および前記補聴器プロセッサの伝達関数に従って音声の明瞭さの評価を決定し,そして前記音声の明瞭さの評価を高めるために前記伝達関数を適合させる方法。
  2. 前記補聴器プロセッサの複数の個々の周波数帯域の利得の値を表す利得ベクトルとして前記伝達関数を決定し,前記利得ベクトルを,前記音声の明瞭さを高めるように選択する請求項1に記載の方法。
  3. 前記音声の明瞭さを高めるために適切な利得値を,前記周波数帯域の第1部分に対してそれぞれ決定し,かつ前記周波数帯域の第1部分に関する利得値間の補間を通じて,前記周波数帯域の第2部分に対する利得値をそれぞれ決定することによって,前記利得ベクトルを決定する請求項2に記載の方法。
  4. 前記音声の明瞭さの評価を,前記補聴器に接続された外部フィッティング・システムに送信する請求項1または2に記載の方法。
  5. 前記利得ベクトルから出力信号の音量を計算するとともに,前記音量を,聴覚健常者の増幅されない音の音量に対する比を表わす音量限界と比較し,前記音量限界を超えないようにするために前記利得ベクトルを適切に調整する請求項2に記載の方法。
  6. 前記利得値の音量が対応する音量限界値以下となるように選択されたスカラー係数を乗算することによって前記利得ベクトルを調整する請求項2に記載の方法。
  7. 前記利得ベクトルの各利得値を,前記利得値の音量が対応する音量限界値以下となるように調整する請求項2に記載の方法。
  8. 前記音声の明瞭さの評価を,発音の明瞭度指数として決定する請求項1から7のいずれか一項に記載の方法。
  9. 前記音声の明瞭さの評価を,変調伝達指数として決定する請求項1から8のいずれか一項に記載の方法。
  10. 前記音声の明瞭さの評価を,音声の明瞭さの指数として決定する請求項1から9のいずれか一項に記載の方法。
  11. 前記音声の明瞭さの評価を,音声伝達指数として決定する請求項1から10のいずれか一項に記載の方法。
  12. 前記音環境の音声レベルの評価および雑音レベルの評価を決定する請求項2に記載の方法。
  13. 音声レベルの評価および雑音レベルの評価を,前記音環境のそれぞれのパーセンタイルの値として決定する請求項2に記載の方法。
  14. 前記音声信号をリアルタイムで処理するとともに,前記伝達関数を断続的に更新する請求項1から13のうちのいずれか一項に記載の方法。
  15. 前記音声信号をリアルタイムで処理するとともに,前記伝達関数をユーザの要求に応じて更新する請求項1から14のいずれか一項に記載の方法。
  16. SIIを,前記音声レベルの値,前記雑音レベルの値および聴力損失ベクトルの関数として決定する請求項13に記載の方法。
  17. 複数の音声レベルのうちの少なくとも一つ,複数の雑音レベルのうちの少なくとも一つ,および複数の個々の周波数帯域の聴力損失ベクトルの関数として音声の明瞭さの評価を計算する手段を備えた補聴器。
  18. 前記補聴器の複数の個々の周波数帯域の複数の利得レベルに対して適切な調整を行うことによって前記音声の明瞭さを高める手段を備えた請求項17に記載の補聴器。
  19. 前記補聴器の個々の周波数帯域の調整された利得レベルに対応する音量と,増幅されない音の音量に対する比を表す音量限界値とを比較する手段と,前記音量限界値を超えないように各利得値を適切に調整する手段とを備えた請求項17または18に記載の補聴器。
  20. 補聴器を音環境にフィッティングする方法であって,一般的なフィッティング規則に従って初期補聴器伝達関数についての設定を選択し,前記音環境の評価を取得し,前記音環境の評価および初期伝達関数に従って音声の明瞭さの評価を決定し,そして前記音声の明瞭さの評価を高めるのに適切な修正された伝達関数を提供するように初期設定を適合させる方法。
  21. 前記補聴器に接続された外部フィッティング・システムにおける初期伝達関数を適合させるステップを実行し,修正された設定を前記補聴器のプログラム・メモリに転送する請求項20に記載の方法。
  22. 前記伝達関数を,補聴器プロセッサにおける複数の個々の周波数帯域の利得の値を表わす利得ベクトルとして決定し,前記利得ベクトルを,前記音声の明瞭さを高めるように選択する請求項20に記載の方法。
  23. 前記音声の明瞭さを高めるために適切な音声の明瞭さの評価と利得値を,前記周波数帯域の第1部分に対してそれぞれ決定し,かつ前記周波数帯域の第1部分に関する利得値間の補間を通じて,前記周波数帯域の第2部分に対する利得値をそれぞれ決定することによって,前記利得ベクトルを決定する請求項22に記載の方法。
  24. 前記利得ベクトルから出力信号の音量を計算するとともに,前記音量を音量限界と比較し,前記音量限界ベクトルが,増幅されない音の音量を表し,前記音量限界を超えないようにするために前記利得ベクトルを適切に調整する請求項21に記載の方法。
  25. 前記最大利得値が対応する音量限界値以下となるように選択されたスカラー係数を乗算することによって前記利得ベクトルを調整する請求項24に記載の方法。
  26. 前記利得ベクトルの各利得値を,前記利得値の音量が音量限界値以下となるように調整する請求項24に記載の方法。
  27. 前記音声の明瞭さの評価を,発音の明瞭度指数として決定する請求項20に記載の方法。
  28. 前記音声の明瞭さの評価を,音声の明瞭さの指数として決定する請求項20に記載の方法。
  29. 前記音声の明瞭さの評価を,音声伝達指数として決定する請求項20に記載の方法。
  30. 前記音環境の音声レベルの評価および雑音レベルの評価を決定する請求項20に記載の方法。
  31. 前記音量を,前記音声レベルの値および前記雑音レベルの値の関数として決定する請求項24に記載の方法。
JP2004520324A 2002-07-12 2002-07-12 補聴器および音声の明瞭さを高める方法 Expired - Fee Related JP4694835B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DK2002/000492 WO2004008801A1 (en) 2002-07-12 2002-07-12 Hearing aid and a method for enhancing speech intelligibility

Publications (2)

Publication Number Publication Date
JP2005537702A true JP2005537702A (ja) 2005-12-08
JP4694835B2 JP4694835B2 (ja) 2011-06-08

Family

ID=30010999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004520324A Expired - Fee Related JP4694835B2 (ja) 2002-07-12 2002-07-12 補聴器および音声の明瞭さを高める方法

Country Status (10)

Country Link
US (2) US7599507B2 (ja)
EP (1) EP1522206B1 (ja)
JP (1) JP4694835B2 (ja)
CN (1) CN1640191B (ja)
AT (1) ATE375072T1 (ja)
AU (1) AU2002368073B2 (ja)
CA (1) CA2492091C (ja)
DE (1) DE60222813T2 (ja)
DK (1) DK1522206T3 (ja)
WO (1) WO2004008801A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512376A (ja) * 2005-10-18 2009-03-19 ヴェーデクス・アクティーセルスカプ データ・ロガーを備えた補聴器,および上記補聴器の操作方法
JP2009531883A (ja) * 2006-03-31 2009-09-03 ヴェーデクス・アクティーセルスカプ 補聴器のフィッティング方法,補聴器のフィッティング・システム,および補聴器
JP2010539539A (ja) * 2007-09-12 2010-12-16 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション 音声明瞭化を伴うスピーチ改善
JP2011512768A (ja) * 2008-02-20 2011-04-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーディオ装置及びその動作方法
JP2014500676A (ja) * 2010-12-08 2014-01-09 ヴェーデクス・アクティーセルスカプ 補聴器および音声再生増強方法
JP2015501114A (ja) * 2011-12-22 2015-01-08 ヴェーデクス・アクティーセルスカプ 補聴器の動作方法および補聴器
JP2015039208A (ja) * 2011-12-30 2015-02-26 ジーエヌ リザウンド エー/エスGn Resound A/S 信号強調機能を有する補聴器
JP2017175581A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 補聴器調整装置、補聴器調整方法及び補聴器調整プログラム
JP2019022213A (ja) * 2017-07-13 2019-02-07 ジーエヌ ヒアリング エー/エスGN Hearing A/S 聴覚機器および非侵入型の音声明瞭度による方法
KR102713521B1 (ko) * 2023-11-20 2024-10-07 주식회사 힐링사운드 인공 지능을 이용한 청각 보조 기기

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8645137B2 (en) 2000-03-16 2014-02-04 Apple Inc. Fast, language-independent method for user authentication by voice
DE10308483A1 (de) 2003-02-26 2004-09-09 Siemens Audiologische Technik Gmbh Verfahren zur automatischen Verstärkungseinstellung in einem Hörhilfegerät sowie Hörhilfegerät
AU2003281984B2 (en) * 2003-11-24 2009-05-14 Widex A/S Hearing aid and a method of noise reduction
EP1469703B1 (en) * 2004-04-30 2007-06-13 Phonak Ag Method of processing an acoustical signal and a hearing instrument
DE102006013235A1 (de) * 2005-03-23 2006-11-02 Rion Co. Ltd., Kokubunji Hörgeräte-Verarbeitungsverfahren und Hörgerätevorrichtung bei der das Verfahren verwendet wird
EP2986033B1 (en) 2005-03-29 2020-10-14 Oticon A/s A hearing aid for recording data and learning therefrom
US8964997B2 (en) * 2005-05-18 2015-02-24 Bose Corporation Adapted audio masking
US7856355B2 (en) * 2005-07-05 2010-12-21 Alcatel-Lucent Usa Inc. Speech quality assessment method and system
AU2005336068B2 (en) * 2005-09-01 2009-12-10 Widex A/S Method and apparatus for controlling band split compressors in a hearing aid
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
EP1994791B1 (en) 2006-03-03 2015-04-15 GN Resound A/S Automatic switching between omnidirectional and directional microphone modes in a hearing aid
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
DE102006051071B4 (de) 2006-10-30 2010-12-16 Siemens Audiologische Technik Gmbh Pegelabhängige Geräuschreduktion
JP5530720B2 (ja) * 2007-02-26 2014-06-25 ドルビー ラボラトリーズ ライセンシング コーポレイション エンターテイメントオーディオにおける音声強調方法、装置、およびコンピュータ読取り可能な記録媒体
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US8868418B2 (en) * 2007-06-15 2014-10-21 Alon Konchitsky Receiver intelligibility enhancement system
DE102007035172A1 (de) * 2007-07-27 2009-02-05 Siemens Medical Instruments Pte. Ltd. Hörsystem mit visualisierter psychoakustischer Größe und entsprechendes Verfahren
KR20100074170A (ko) * 2007-09-05 2010-07-01 센시어 피티와이 엘티디 음성 통신 장치, 신호 처리 장치 및 그를 도입한 청력 보호 장치
GB0725110D0 (en) * 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Gain control based on noise level
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
KR100888049B1 (ko) * 2008-01-25 2009-03-10 재단법인서울대학교산학협력재단 부분 마스킹 효과를 도입한 음성 강화 방법
US8996376B2 (en) 2008-04-05 2015-03-31 Apple Inc. Intelligent text-to-speech conversion
US10496753B2 (en) 2010-01-18 2019-12-03 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US8831936B2 (en) 2008-05-29 2014-09-09 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for speech signal processing using spectral contrast enhancement
US8538749B2 (en) 2008-07-18 2013-09-17 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for enhanced intelligibility
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
DE102008052176B4 (de) 2008-10-17 2013-11-14 Siemens Medical Instruments Pte. Ltd. Verfahren und Hörgerät zur Parameteradaption durch Ermittlung einer Sprachverständlichkeitsschwelle
WO2010067118A1 (en) 2008-12-11 2010-06-17 Novauris Technologies Limited Speech recognition involving a mobile device
US8126176B2 (en) 2009-02-09 2012-02-28 Panasonic Corporation Hearing aid
CA2753105A1 (en) 2009-02-20 2010-08-26 Widex A/S Sound message recording system for a hearing aid
US8433568B2 (en) * 2009-03-29 2013-04-30 Cochlear Limited Systems and methods for measuring speech intelligibility
US9202456B2 (en) 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
US10241752B2 (en) 2011-09-30 2019-03-26 Apple Inc. Interface for a virtual digital assistant
US9858925B2 (en) 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US10241644B2 (en) 2011-06-03 2019-03-26 Apple Inc. Actionable reminder entries
US10706373B2 (en) 2011-06-03 2020-07-07 Apple Inc. Performing actions associated with task items that represent tasks to perform
US9431006B2 (en) 2009-07-02 2016-08-30 Apple Inc. Methods and apparatuses for automatic speech recognition
EP2486567A1 (en) 2009-10-09 2012-08-15 Dolby Laboratories Licensing Corporation Automatic generation of metadata for audio dominance effects
CN102577114B (zh) * 2009-10-20 2014-12-10 日本电气株式会社 多带域压缩器
WO2011069504A1 (en) * 2009-12-09 2011-06-16 Widex A/S Method of processing a signal in a hearing aid, a method of fitting a hearing aid and a hearing aid
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US10679605B2 (en) 2010-01-18 2020-06-09 Apple Inc. Hands-free list-reading by intelligent automated assistant
US10553209B2 (en) 2010-01-18 2020-02-04 Apple Inc. Systems and methods for hands-free notification summaries
US10705794B2 (en) 2010-01-18 2020-07-07 Apple Inc. Automatically adapting user interfaces for hands-free interaction
DE202011111062U1 (de) 2010-01-25 2019-02-19 Newvaluexchange Ltd. Vorrichtung und System für eine Digitalkonversationsmanagementplattform
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US9053697B2 (en) 2010-06-01 2015-06-09 Qualcomm Incorporated Systems, methods, devices, apparatus, and computer program products for audio equalization
US8639516B2 (en) * 2010-06-04 2014-01-28 Apple Inc. User-specific noise suppression for voice quality improvements
CA2805491C (en) * 2010-07-15 2015-05-26 Widex A/S Method of signal processing in a hearing aid system and a hearing aid system
DK2596647T3 (en) 2010-07-23 2016-02-15 Sonova Ag Hearing system and method for operating a hearing system
US9131318B2 (en) 2010-09-15 2015-09-08 Phonak Ag Method and system for providing hearing assistance to a user
US8923538B2 (en) * 2010-09-29 2014-12-30 Siemens Medical Instruments Pte. Ltd. Method and device for frequency compression
US9113272B2 (en) 2010-10-14 2015-08-18 Phonak Ag Method for adjusting a hearing device and a hearing device that is operable according to said method
WO2011015673A2 (en) * 2010-11-08 2011-02-10 Advanced Bionics Ag Hearing instrument and method of operating the same
EP2521377A1 (en) * 2011-05-06 2012-11-07 Jacoti BVBA Personal communication device with hearing support and method for providing the same
US10762293B2 (en) 2010-12-22 2020-09-01 Apple Inc. Using parts-of-speech tagging and named entity recognition for spelling correction
US9364669B2 (en) * 2011-01-25 2016-06-14 The Board Of Regents Of The University Of Texas System Automated method of classifying and suppressing noise in hearing devices
US9589580B2 (en) * 2011-03-14 2017-03-07 Cochlear Limited Sound processing based on a confidence measure
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
DE102011006511B4 (de) * 2011-03-31 2016-07-14 Sivantos Pte. Ltd. Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegeräts
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
US8994660B2 (en) 2011-08-29 2015-03-31 Apple Inc. Text correction processing
DK2820863T3 (en) 2011-12-22 2016-08-01 Widex As Method of operating a hearing aid and a hearing aid
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US9483461B2 (en) 2012-03-06 2016-11-01 Apple Inc. Handling speech synthesis of content for multiple languages
EP2660814B1 (en) * 2012-05-04 2016-02-03 2236008 Ontario Inc. Adaptive equalization system
US8843367B2 (en) 2012-05-04 2014-09-23 8758271 Canada Inc. Adaptive equalization system
US9280610B2 (en) 2012-05-14 2016-03-08 Apple Inc. Crowd sourcing information to fulfill user requests
US9721563B2 (en) 2012-06-08 2017-08-01 Apple Inc. Name recognition system
ITTO20120530A1 (it) 2012-06-19 2013-12-20 Inst Rundfunktechnik Gmbh Dynamikkompressor
US9495129B2 (en) 2012-06-29 2016-11-15 Apple Inc. Device, method, and user interface for voice-activated navigation and browsing of a document
US9554218B2 (en) 2012-07-31 2017-01-24 Cochlear Limited Automatic sound optimizer
US9576574B2 (en) 2012-09-10 2017-02-21 Apple Inc. Context-sensitive handling of interruptions by intelligent digital assistant
US9547647B2 (en) 2012-09-19 2017-01-17 Apple Inc. Voice-based media searching
KR102051545B1 (ko) * 2012-12-13 2019-12-04 삼성전자주식회사 사용자의 외부 환경을 고려한 청각 장치 및 방법
EP2936835A1 (en) 2012-12-21 2015-10-28 Widex A/S Method of operating a hearing aid and a hearing aid
KR20240132105A (ko) 2013-02-07 2024-09-02 애플 인크. 디지털 어시스턴트를 위한 음성 트리거
US9368114B2 (en) 2013-03-14 2016-06-14 Apple Inc. Context-sensitive handling of interruptions
US10652394B2 (en) 2013-03-14 2020-05-12 Apple Inc. System and method for processing voicemail
AU2014233517B2 (en) 2013-03-15 2017-05-25 Apple Inc. Training an at least partial voice command system
WO2014144579A1 (en) 2013-03-15 2014-09-18 Apple Inc. System and method for updating an adaptive speech recognition model
CN104078050A (zh) 2013-03-26 2014-10-01 杜比实验室特许公司 用于音频分类和音频处理的设备和方法
WO2014197334A2 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
US9582608B2 (en) 2013-06-07 2017-02-28 Apple Inc. Unified ranking with entropy-weighted information for phrase-based semantic auto-completion
WO2014197336A1 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for detecting errors in interactions with a voice-based digital assistant
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
KR101772152B1 (ko) 2013-06-09 2017-08-28 애플 인크. 디지털 어시스턴트의 둘 이상의 인스턴스들에 걸친 대화 지속성을 가능하게 하기 위한 디바이스, 방법 및 그래픽 사용자 인터페이스
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
EP3008964B1 (en) 2013-06-13 2019-09-25 Apple Inc. System and method for emergency calls initiated by voice command
DE112014003653B4 (de) 2013-08-06 2024-04-18 Apple Inc. Automatisch aktivierende intelligente Antworten auf der Grundlage von Aktivitäten von entfernt angeordneten Vorrichtungen
US9832562B2 (en) * 2013-11-07 2017-11-28 Gn Hearing A/S Hearing aid with probabilistic hearing loss compensation
US9232322B2 (en) * 2014-02-03 2016-01-05 Zhimin FANG Hearing aid devices with reduced background and feedback noises
KR101518877B1 (ko) * 2014-02-14 2015-05-12 주식회사 닥터메드 셀프 피팅형 보청기
US9363614B2 (en) * 2014-02-27 2016-06-07 Widex A/S Method of fitting a hearing aid system and a hearing aid fitting system
CN103813252B (zh) * 2014-03-03 2017-05-31 深圳市微纳集成电路与系统应用研究院 用于助听器的放大倍数确定方法及系统
US9875754B2 (en) 2014-05-08 2018-01-23 Starkey Laboratories, Inc. Method and apparatus for pre-processing speech to maintain speech intelligibility
US9620105B2 (en) 2014-05-15 2017-04-11 Apple Inc. Analyzing audio input for efficient speech and music recognition
US10592095B2 (en) 2014-05-23 2020-03-17 Apple Inc. Instantaneous speaking of content on touch devices
CN105336341A (zh) * 2014-05-26 2016-02-17 杜比实验室特许公司 增强音频信号中的语音内容的可理解性
US9502031B2 (en) 2014-05-27 2016-11-22 Apple Inc. Method for supporting dynamic grammars in WFST-based ASR
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
CN110797019B (zh) 2014-05-30 2023-08-29 苹果公司 多命令单一话语输入方法
US9785630B2 (en) 2014-05-30 2017-10-10 Apple Inc. Text prediction using combined word N-gram and unigram language models
US9760559B2 (en) 2014-05-30 2017-09-12 Apple Inc. Predictive text input
US9842101B2 (en) 2014-05-30 2017-12-12 Apple Inc. Predictive conversion of language input
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US10289433B2 (en) 2014-05-30 2019-05-14 Apple Inc. Domain specific language for encoding assistant dialog
US10078631B2 (en) 2014-05-30 2018-09-18 Apple Inc. Entropy-guided text prediction using combined word and character n-gram language models
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
US9734193B2 (en) 2014-05-30 2017-08-15 Apple Inc. Determining domain salience ranking from ambiguous words in natural speech
US10659851B2 (en) 2014-06-30 2020-05-19 Apple Inc. Real-time digital assistant knowledge updates
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
US10446141B2 (en) 2014-08-28 2019-10-15 Apple Inc. Automatic speech recognition based on user feedback
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
US9886432B2 (en) 2014-09-30 2018-02-06 Apple Inc. Parsimonious handling of word inflection via categorical stem + suffix N-gram language models
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US9646609B2 (en) 2014-09-30 2017-05-09 Apple Inc. Caching apparatus for serving phonetic pronunciations
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
EP3016407B1 (en) * 2014-10-28 2019-12-11 Oticon A/s A hearing system for estimating a feedback path of a hearing device
US10552013B2 (en) 2014-12-02 2020-02-04 Apple Inc. Data detection
US9711141B2 (en) 2014-12-09 2017-07-18 Apple Inc. Disambiguating heteronyms in speech synthesis
US9865280B2 (en) 2015-03-06 2018-01-09 Apple Inc. Structured dictation using intelligent automated assistants
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US10567477B2 (en) 2015-03-08 2020-02-18 Apple Inc. Virtual assistant continuity
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US9899019B2 (en) 2015-03-18 2018-02-20 Apple Inc. Systems and methods for structured stem and suffix language models
US9842105B2 (en) 2015-04-16 2017-12-12 Apple Inc. Parsimonious continuous-space phrase representations for natural language processing
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US10127220B2 (en) 2015-06-04 2018-11-13 Apple Inc. Language identification from short strings
US9578173B2 (en) 2015-06-05 2017-02-21 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
US10101822B2 (en) 2015-06-05 2018-10-16 Apple Inc. Language input correction
US10186254B2 (en) 2015-06-07 2019-01-22 Apple Inc. Context-based endpoint detection
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
US10255907B2 (en) 2015-06-07 2019-04-09 Apple Inc. Automatic accent detection using acoustic models
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US9697820B2 (en) 2015-09-24 2017-07-04 Apple Inc. Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks
US11010550B2 (en) 2015-09-29 2021-05-18 Apple Inc. Unified language modeling framework for word prediction, auto-completion and auto-correction
US10366158B2 (en) 2015-09-29 2019-07-30 Apple Inc. Efficient word encoding for recurrent neural network language models
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
DK3391666T3 (da) * 2015-12-18 2019-07-22 Widex As Høreapparatsystem og en fremgangsmåde til at betjene et høreapparatsystem
WO2017108435A1 (en) * 2015-12-22 2017-06-29 Widex A/S Method of fitting a hearing aid system, a hearing aid fitting system and a computerized device
DK3395082T3 (da) * 2015-12-22 2020-08-24 Widex As Høreapparatsystem og en fremgangsmåde til drift af et høreapparatsystem
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
EP3203472A1 (en) * 2016-02-08 2017-08-09 Oticon A/s A monaural speech intelligibility predictor unit
US10446143B2 (en) 2016-03-14 2019-10-15 Apple Inc. Identification of voice inputs providing credentials
US10511919B2 (en) 2016-05-18 2019-12-17 Barry Epstein Methods for hearing-assist systems in various venues
US9934775B2 (en) 2016-05-26 2018-04-03 Apple Inc. Unit-selection text-to-speech synthesis based on predicted concatenation parameters
US9972304B2 (en) 2016-06-03 2018-05-15 Apple Inc. Privacy preserving distributed evaluation framework for embedded personalized systems
US10249300B2 (en) 2016-06-06 2019-04-02 Apple Inc. Intelligent list reading
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
DK179588B1 (en) 2016-06-09 2019-02-22 Apple Inc. INTELLIGENT AUTOMATED ASSISTANT IN A HOME ENVIRONMENT
US10192552B2 (en) 2016-06-10 2019-01-29 Apple Inc. Digital assistant providing whispered speech
US10509862B2 (en) 2016-06-10 2019-12-17 Apple Inc. Dynamic phrase expansion of language input
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
US10490187B2 (en) 2016-06-10 2019-11-26 Apple Inc. Digital assistant providing automated status report
US10067938B2 (en) 2016-06-10 2018-09-04 Apple Inc. Multilingual word prediction
DK179343B1 (en) 2016-06-11 2018-05-14 Apple Inc Intelligent task discovery
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
DK179049B1 (en) 2016-06-11 2017-09-18 Apple Inc Data driven natural language event detection and classification
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
CN109310525B (zh) 2016-06-14 2021-12-28 杜比实验室特许公司 媒体补偿通过和模式切换
US10257620B2 (en) * 2016-07-01 2019-04-09 Sonova Ag Method for detecting tonal signals, a method for operating a hearing device based on detecting tonal signals and a hearing device with a feedback canceller using a tonal signal detector
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
EP3340653B1 (en) 2016-12-22 2020-02-05 GN Hearing A/S Active occlusion cancellation
US10593346B2 (en) 2016-12-22 2020-03-17 Apple Inc. Rank-reduced token representation for automatic speech recognition
US11380347B2 (en) 2017-02-01 2022-07-05 Hewlett-Packard Development Company, L.P. Adaptive speech intelligibility control for speech privacy
EP3389183A1 (en) * 2017-04-13 2018-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for processing an input audio signal and corresponding method
US10463476B2 (en) * 2017-04-28 2019-11-05 Cochlear Limited Body noise reduction in auditory prostheses
DK201770439A1 (en) 2017-05-11 2018-12-13 Apple Inc. Offline personal assistant
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK179496B1 (en) 2017-05-12 2019-01-15 Apple Inc. USER-SPECIFIC Acoustic Models
DK201770432A1 (en) 2017-05-15 2018-12-21 Apple Inc. Hierarchical belief states for digital assistants
DK201770431A1 (en) 2017-05-15 2018-12-20 Apple Inc. Optimizing dialogue policy decisions for digital assistants using implicit feedback
DK179549B1 (en) 2017-05-16 2019-02-12 Apple Inc. FAR-FIELD EXTENSION FOR DIGITAL ASSISTANT SERVICES
US10431237B2 (en) 2017-09-13 2019-10-01 Motorola Solutions, Inc. Device and method for adjusting speech intelligibility at an audio device
EP3471440B1 (en) 2017-10-10 2024-08-14 Oticon A/s A hearing device comprising a speech intelligibilty estimator for influencing a processing algorithm
CN107948898A (zh) * 2017-10-16 2018-04-20 华南理工大学 一种助听器辅助验配系统及方法
CN108682430B (zh) * 2018-03-09 2020-06-19 华南理工大学 一种客观评价室内语言清晰度的方法
CN110351644A (zh) * 2018-04-08 2019-10-18 苏州至听听力科技有限公司 一种自适应声音处理方法及装置
CN110493695A (zh) * 2018-05-15 2019-11-22 群腾整合科技股份有限公司 一种音频补偿系统
CN109274345B (zh) * 2018-11-14 2023-11-03 上海艾为电子技术股份有限公司 一种信号处理方法、装置和系统
CN109643554B (zh) * 2018-11-28 2023-07-21 深圳市汇顶科技股份有限公司 自适应语音增强方法和电子设备
WO2020261148A1 (en) * 2019-06-24 2020-12-30 Cochlear Limited Prediction and identification techniques used with a hearing prosthesis
CN113823302A (zh) * 2020-06-19 2021-12-21 北京新能源汽车股份有限公司 一种语言清晰度的优化方法及装置
RU2748934C1 (ru) * 2020-10-16 2021-06-01 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ измерения разборчивости речи

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548082A (en) * 1984-08-28 1985-10-22 Central Institute For The Deaf Hearing aids, signal supplying apparatus, systems for compensating hearing deficiencies, and methods
DE4340817A1 (de) * 1993-12-01 1995-06-08 Toepholm & Westermann Schaltungsanordnung für die automatische Regelung von Hörhilfsgeräten
US5601617A (en) * 1995-04-26 1997-02-11 Advanced Bionics Corporation Multichannel cochlear prosthesis with flexible control of stimulus waveforms
PL185513B1 (pl) * 1995-09-14 2003-05-30 Ericsson Inc Sposób i urządzenie do selektywnej zmiany ramki sygnału cyfrowego ukształtowanego z wielu kolejnych ramek
US6097824A (en) * 1997-06-06 2000-08-01 Audiologic, Incorporated Continuous frequency dynamic range audio compressor
CA2212131A1 (en) 1996-08-07 1998-02-07 Beltone Electronics Corporation Digital hearing aid system
DE19721982C2 (de) * 1997-05-26 2001-08-02 Siemens Audiologische Technik Kommunikationssystem für Benutzer einer tragbaren Hörhilfe
US6289247B1 (en) * 1998-06-02 2001-09-11 Advanced Bionics Corporation Strategy selector for multichannel cochlear prosthesis
JP3216709B2 (ja) 1998-07-14 2001-10-09 日本電気株式会社 二次電子像調整方法
WO2000028784A1 (en) 1998-11-09 2000-05-18 Tøpholm & Westermann APS Method for in-situ measuring and in-situ correcting or adjusting a signal process in a hearing aid with a reference signal processor
US7676372B1 (en) * 1999-02-16 2010-03-09 Yugen Kaisha Gm&M Prosthetic hearing device that transforms a detected speech into a speech of a speech form assistive in understanding the semantic meaning in the detected speech
AU4278300A (en) 1999-04-26 2000-11-10 Dspfactory Ltd. Loudness normalization control for a digital hearing aid
EP1219138B1 (en) * 1999-10-07 2004-03-17 Widex A/S Method and signal processor for intensification of speech signal components in a hearing aid
AUPQ366799A0 (en) * 1999-10-26 1999-11-18 University Of Melbourne, The Emphasis of short-duration transient speech features
JP2001127732A (ja) 1999-10-28 2001-05-11 Matsushita Electric Ind Co Ltd 受信装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512376A (ja) * 2005-10-18 2009-03-19 ヴェーデクス・アクティーセルスカプ データ・ロガーを備えた補聴器,および上記補聴器の操作方法
JP2009531883A (ja) * 2006-03-31 2009-09-03 ヴェーデクス・アクティーセルスカプ 補聴器のフィッティング方法,補聴器のフィッティング・システム,および補聴器
JP4860748B2 (ja) * 2006-03-31 2012-01-25 ヴェーデクス・アクティーセルスカプ 補聴器のフィッティング方法,補聴器のフィッティング・システム,および補聴器
US10034108B2 (en) 2006-03-31 2018-07-24 Widex A/S Method for the fitting of a hearing aid, a system for fitting a hearing aid and a hearing aid
JP2010539539A (ja) * 2007-09-12 2010-12-16 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション 音声明瞭化を伴うスピーチ改善
JP2011512768A (ja) * 2008-02-20 2011-04-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーディオ装置及びその動作方法
JP2014500676A (ja) * 2010-12-08 2014-01-09 ヴェーデクス・アクティーセルスカプ 補聴器および音声再生増強方法
JP2015501114A (ja) * 2011-12-22 2015-01-08 ヴェーデクス・アクティーセルスカプ 補聴器の動作方法および補聴器
JP2015039208A (ja) * 2011-12-30 2015-02-26 ジーエヌ リザウンド エー/エスGn Resound A/S 信号強調機能を有する補聴器
JP2017175581A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 補聴器調整装置、補聴器調整方法及び補聴器調整プログラム
JP2019022213A (ja) * 2017-07-13 2019-02-07 ジーエヌ ヒアリング エー/エスGN Hearing A/S 聴覚機器および非侵入型の音声明瞭度による方法
KR102713521B1 (ko) * 2023-11-20 2024-10-07 주식회사 힐링사운드 인공 지능을 이용한 청각 보조 기기

Also Published As

Publication number Publication date
AU2002368073B2 (en) 2007-04-05
AU2002368073A1 (en) 2004-02-02
CN1640191A (zh) 2005-07-13
CN1640191B (zh) 2011-07-20
EP1522206A1 (en) 2005-04-13
US20050141737A1 (en) 2005-06-30
JP4694835B2 (ja) 2011-06-08
US7599507B2 (en) 2009-10-06
ATE375072T1 (de) 2007-10-15
CA2492091C (en) 2009-04-28
DE60222813D1 (de) 2007-11-15
DK1522206T3 (da) 2007-11-05
WO2004008801A1 (en) 2004-01-22
EP1522206B1 (en) 2007-10-03
DE60222813T2 (de) 2008-07-03
US8107657B2 (en) 2012-01-31
US20090304215A1 (en) 2009-12-10
CA2492091A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4694835B2 (ja) 補聴器および音声の明瞭さを高める方法
CN107615651B (zh) 用于改善的音频感知的系统和方法
JP5852266B2 (ja) 補聴器の動作方法および補聴器
EP2369859B1 (en) Method for adapting sound in a hearing aid device by frequency modification and such a device
US8290190B2 (en) Method for sound processing in a hearing aid and a hearing aid
EP2503794B1 (en) Audio processing device, system, use and method
US9532148B2 (en) Method of operating a hearing aid and a hearing aid
JP2002536930A (ja) 適応ダイナミックレンジ最適化サウンドプロセッサ
JP2011512768A (ja) オーディオ装置及びその動作方法
JP2004248298A (ja) 補聴器における動的圧縮
US20220345101A1 (en) A method of operating an ear level audio system and an ear level audio system
Sokolova Applications of Open Source Software for Hearing Aid Amplification and Hearing Loss Simulation
WO2010015027A1 (en) Sound processor for fluctuating hearing
CN118355676A (zh) 用于运行听力设备的方法以及听力设备
WeSTermann From Analog to Digital Hearing Aids
Cole Adaptive user specific learning for environment sensitive hearing aids
Schell-Majoor et al. Mapping aided speech recognition thresholds for model-based hearing aid fitting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090316

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090929

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees