JP2005536820A - 抵抗メモリー素子用の二重ループセンシング方法 - Google Patents

抵抗メモリー素子用の二重ループセンシング方法 Download PDF

Info

Publication number
JP2005536820A
JP2005536820A JP2004529210A JP2004529210A JP2005536820A JP 2005536820 A JP2005536820 A JP 2005536820A JP 2004529210 A JP2004529210 A JP 2004529210A JP 2004529210 A JP2004529210 A JP 2004529210A JP 2005536820 A JP2005536820 A JP 2005536820A
Authority
JP
Japan
Prior art keywords
current
voltage
output
memory cell
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004529210A
Other languages
English (en)
Other versions
JP2005536820A5 (ja
Inventor
ベイカー アール ヤコブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of JP2005536820A publication Critical patent/JP2005536820A/ja
Publication of JP2005536820A5 publication Critical patent/JP2005536820A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1693Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0057Read done in two steps, e.g. wherein the cell is read twice and one of the two read values serving as a reference value

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Static Random-Access Memory (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】抵抗メモリー素子の状態をセンスする信頼性のある方法を提供する。
【解決手段】抵抗メモリー素子の抵抗状態をセンスする方法及び装置が、メモリーセルの抵抗に関連する第1電流を生成するステップを具えている。この第1電流を、第1センシング時間中に第2電流に加算して、第2センシング時間中に第3電流から減算する。前記第1、第2及び第3電流を、キャパシタを用いて時間積分して、このキャパシタ上の結果的な電圧信号を、クロック付きカウンタを用いて時間測定する。そして前記クロック付きカウンタのディジタル出力の時間平均値を前記メモリーセルの抵抗に関連付け、従って前記抵抗メモリー素子の抵抗状態に関連付ける。

Description

(発明の分野)
本発明は、論理値を抵抗状態としてメモリーセルに記憶する磁気抵抗ランダムアクセス・メモリー(MRAM:Magneto-Resistive Random Access Memory)デバイスのような、抵抗ベースのメモリーデバイスの読出しに関するものである。
(関連技術の説明)
図1に、抵抗ベースのメモリーアレイ・アーキテクチャの一例を示し、これはクロスポイントアレイと称される。メモリーアレイ8は、複数の行ライン6、及びこれらに直交させて配置した複数の列ライン12を具えている。各行ラインは、それぞれの抵抗メモリーセル14によって各列ライン14に結合されている。各メモリーセルの抵抗値は、複数の抵抗値のいずれを示すべくプログラムされたかに応じて、2つ以上の論理値のうちの1つを記憶する。行ライン及び列ラインに接続した抵抗セル14を有するクロスポイントアレイの特徴は、メモリーセルのアクセス・トランジスタがアレイ内に存在しないことである。
MRAMデバイスは、抵抗ベースのメモリーを実現する1つの方法である。MRAMでは、各抵抗メモリーセルは一般に、ピン磁気層、センス磁気層、及びピン層とセンス層との感のトンネル障壁層を具えている。ピン層は固定の磁気アライメント(整列)を有し、センス層の磁気アライメントは異なる配向方向にプログラムすることができる。セルの抵抗は、センス層のアライメントに応じて変化する。1つの抵抗値、例えば高い値を用いて論理値”1”を表わし、他の抵抗値、例えば低い値を用いて論理値”0”を表わす。記憶しているデータは、セルのそれぞれの抵抗値をセンス(検出)することによって読み出すことができ、従って、記憶しているデータの論理状態として検出される。
二値(バイナリ)の論理状態のセンシング(検出)については、メモリーセル抵抗の絶対的な大きさを知る必要はなく、抵抗値が、論理値1の抵抗値と論理値0の抵抗値との中間のしきい値を上回るか下回るかだけを知ればよい。MRAMメモリー素子の論理状態のセンシングは困難である、というのは、MRAMデバイスの技術は多くの制約をもたらすからである。
MRAMセルの抵抗は、アドレス指定したセルの列ラインで検出する。セルをセンスするために、このセルに接続された行ラインは通常接地して、残りの行ライン及び列ラインは特定電圧に保持する。メモリーセルのトランジスタを減らすかなくすことは、セル領域の要求を減らすことにつながり、記録密度を増加させてコストを低減する。上述したように、クロスポイントアレイのセルはトランジスタを具えていない。このことは、各抵抗素子を常にそれぞれの行及び列ラインに電気的に結合したままにすることによって達成される。結果として、メモリーセルをセンスする際に、メモリーセルが、アドレス指定された行ラインの他のメモリーセルを通る無視できないスニーク(回り込み)電流経路によっても分流される。
従来のMRAMメモリーデバイスでは、論理値1と論理値0との間の差分抵抗は一般に、約50KΩ、あるいはスケール(絶対値)の約5%である。従って、センスしたMRAMデバイスの両端のセンシング電圧は、論理値1と論理値0の状態間で、スケールの約5%だけ変化する。
MRAMの抵抗をセンスする1つの方法は、センシング電圧に対応する電流を時間積分して、所定期間後の結果的な積分電圧をサンプリング(標本化)することである。このことは、トランスコンダクタンス増幅器の入力に電圧を印加して、この増幅器が出力する電流をキャパシタに蓄積することによって行うことができる。
図2に、こうしたキャパシタの電圧の理論的な時間変化を示す。キャパシタ電圧が初期電圧Vinitから基準電圧Vrefまで上昇するのに要する時間間隔tmは、トランスコンダクタンス増幅器の入力に印加した電圧に関係する。
しかし、このセンシング方法は確率論的な(ランダムな)ノイズ(雑音)に弱い。積分電圧上のノイズ成分は、測定する信号を容易に上回り得る。ノイズを伴う電圧信号が時刻terrに基準電圧(Vref)のしきい値を超えると、結果的な測定値は誤った結果となる。
従って、抵抗メモリー素子の状態をセンスする、強固で信頼性のある方法が必要である。
(発明の概要)
本発明の1つの態様によれば、セルの抵抗に関連するセンシング電圧がセルの両端に形成されるようにメモリーセルを構成することによって、MRAMセルの論理状態をセンスする。このセンシング電圧をトランスコンダクタンス増幅器の入力に印加して、このトランスコンダクタンス増幅器は、前記センシング電圧に関連するセンシング電流を出力する。このセンシング電流を付加的な電流と共に時間積分して、ディジタルカウンタを通してフィルタリングして、センシング電流の感度を改善する。
センシング中には、センシング回路がいくつかの段階を経て動作を進行させる。第1段階では、センシング電流に正の第1電流を加算して、キャパシタを充電する第1加算電流第1加算電流を求める。第2段階では、センシング電流に負の第2電流を加算して、キャパシタを放電させる第2加算電流を求める。キャパシタ上の結果的な電圧信号を基準電圧と比較する。この比較結果を用いて、クロック付きディジタルカウンタを制御する。このディジタルカウンタの出力カウント数は、時間平均のベースでは、センシング電圧に依存する。前記ディジタルカウンタを事前設定(プリセット)値に事前設定(プリセット)した後の、既知の時間間隔において、前記ディジタルカウンタのカウント値をディジタルしきい値と比較することによって、センスされるMRAMセルの論理状態を確定することができる。
本発明のこれら及び他の特徴及び利点は、以下の図面を参照した実施例の詳細な説明により一層明らかになる。
(発明の詳細な説明)
本発明は、信号を受信して、抵抗メモリーセルのプログラムされた抵抗状態をディジタルカウンタに表現することによって動作する。センシングの時間間隔を表わす結果的なディジタルカウント値は、メモリーセルの抵抗状態を表現する。このカウント値はディジタル化されて、長い時間にわたって取得したものであるので、システム内の高周波の確率論的な(ランダムな)ノイズはフィルタ除去される。
図4に、本発明の一態様によるメモリーデバイスの一部分を図式的に示す。抵抗メモリーセルのクロスポイントアレイは、特定メモリーセルの抵抗をセンシング電圧によって表わすことができるように構成する。デバイス5は、MRAMセル14のアレイ8、複数の離間した導電性の行ライン6、及び複数の離間した導電性の列ライン12を具えている。複数の行ライン6は、複数の列ライン12とほぼ直交させて配置して、それぞれの交点に複数のオーバーラップ(重複)領域を規定する。他の実施例では、行ラインと列ラインを互いに斜交する関係に配置することができる。各行ラインは、複数のMRAM抵抗セル14のそれぞれによって、複数の列ラインの各々に接続されている。一般にトランジスタで実現される複数のスイッチングデバイス51の各々は、それぞれの行ライン6、定電位(接地)の第1電源20、及び定電位(アレイ電圧Va)の第2電源24に結合されている。制御回路61は行デコーダを具えて、62で示すように、複数のスイッチングデバイスの各々に結合されている。スイッチングデバイス51は、制御回路61の制御下で、行ライン6を接地20と電圧Vaの電源24とに交互に接続すべく適応している。制御回路61は、複数のスイッチングデバイス51の各々を、行ラインを接地するデフォルト状態に維持する。スイッチングデバイス52は、読出しサイクル中に行54を選択する際の、スイッチングデバイス51の状態を示す。複数のセンシング回路50はそれぞれ、複数の列ライン12に接続されている。
電源は、回路を動作させる種々の電位を維持する電圧源を提供する。電源は、上述の用に接続された、接地電位20,回路素子用の動作電圧Vcc、及び電圧Va24を含む3つの電位を規定する。本発明の一態様では、電圧Va24は約5Vである。
図5に示すように、選択された行ライン54が、選択されたスイッチングデバイス52によって電圧Va24に結合されている。複数の列ライン12のうちのアドレス指定された特定の列ライン30も示す。図には、選択された行ライン54と特定の列ライン30とを接続する特定のメモリーセル38も示している。それぞれのセンシング回路130は列ライン30に動作的に結合され、列ライン30の接地20に対する電圧をセンスする。
図に示すように、スニーク(回り込み)経路のメモリーセル、例えば複数のメモリーセル14の部分集合を形成する34、40、42、44、46は、列ライン30と複数の行ライン6のそれぞれに接続されている。各行ライン6は、センスされるセル38に接続されたものを除いて、それぞれのスイッチングデバイス51によって接地される。従って、センスされる特定の抵抗セル38に直列接続されたスニーク経路のセル、例えば34、40、42、44、46の並列結合によって分圧器が形成される。列ライン30は、スニーク経路のセルとセンスされるセル38との間のセンシング・ノード(節点)を規定する。列ライン30のセンシング電圧はセンシング回路130に結合される。
一実施例では、選択したメモリーセル38が、約900KΩから約1.1MΩまでの範囲をとる。現在技術を用いて提供される種々の具体例では、メモリーセルの抵抗を、低抵抗状態で約900KΩから約1MΩまでの範囲、高抵抗状態で約950KΩから約1.1MΩまでの範囲に見出すことができる。特定のデバイスでは、低抵抗の範囲と高抵抗の範囲とがオーバーラップしない。抵抗セルの技術の利点が、本発明を有効に適用可能な異なる抵抗値を生み出すことができることは明らかである。
図6に、本発明の実施例を示し、ここではセンシング回路200が、抵抗メモリーデバイスの列ライン30に接続された入力ノード210を有する。センシング回路200は、トランスコンダクタンス増幅器212を具えている。トランスコンダクタンス増幅器212は、出力ノード216に出力される電流214が、増幅器の入力ノード218に印加される電圧に関連するような伝達関数を有する。増幅器の出力ノード216はキャパシタ222の第1極板(プレート)220、クロック付き比較器(コンパレータ)226の第1入力224、電流源回路230の入力228、及び(随意的に)アナログ・プリセット(事前設定)回路234の出力234に接続されている。なお、アナログ・プリセット回路234の機能は、適切に構成したトランスコンダクタンス増幅器212によって果たすことができ、独立したアナログ・プリセット回路が不要になる。電流源回路230は、電流源230の制御入力236に供給される制御信号の状態に従って、第1キャパシタ極板220に電流を供給するか、あるいは極板220から電流を吸引(シンク)するかを交互に行うべく適応している。クロック付き比較器226は、基準電圧源240によって基準電圧Vref312(図7A)に維持すべく構成した第2入力238、クロック信号を入力すべく構成したクロック入力242、及び出力244を具えている。比較器226の出力244は、クロック付きカウンタ248のアップ/ダウン入力246、及び電流源回路230の制御入力236に結合されている。クロック付きカウンタ248は、クロック入力250、プリセット入力252、及び複数のディジタル出力ライン256を具えたディジタルカウント出力254を具えている。
動作中には、アナログ・プリセット回路234によって、キャパシタ222の端子間にプリセット電圧311(図7A)が確立される。ディジタル・プリセット値は、ディジタル・プリセット入力252に供給される信号の遷移によって、カウンタ248の出力254に確立される。
キャパシタ222のプリセット電圧311が、比較器226の第2入力238に印加される基準電圧Vref312未満であるものとすれば、比較器226のクロック入力242がクロック信号の遷移を受け取り次第、比較器226の出力244は、「アップ」入力に対応する第1の値をディジタルカウンタ248の入力246に供給する。比較器226が出力する前記第1の値は、電流源回路230の制御入力236にも供給される。従って、電流源回路230の入力228から電流262が流れて、キャパシタ222の電圧を、キャパシタ222のプリセット電圧311より上に上昇させる。
図7Aに、増幅器212の入力218に電圧を印加しない際の、結果的なキャパシタ222の電圧信号302を示す。
キャパシタ222の電圧302は、比較器226の入力238に印加される基準電圧312によって規定される電圧しきい値より上に上昇する。その後に、キャパシタ222の電圧は、比較器226のクロック入力242においてクロック信号306のクロック遷移(図7C)を検出するまで上昇し続ける。クロック遷移を検出すると、比較器226の出力244の論理状態が(例えば「アップ」から「ダウン」に)反転する。これに応答して、電流源回路230は、キャパシタ222から電流260を抽出し始める状態に切り替わる。電流260がキャパシタ222から流出すると共に、キャパシタ222の電圧が、基準電圧Vrefのレベルまで降下し、そしてこのレベルを下回る。その後に、比較器226の入力242クロック信号306が遷移すると、比較器226の出力は再び反転する。
結果的なキャパシタ222の電圧302は、対称な三角波の波形で振動する。
図7Bに、カウンタ248のクロック入力250に供給されるカウンタ・クロック信号304を示す。
図7Cに、比較器226のクロック入力242に供給される比較器クロック信号306を示す。
図7Dに、カウンタ248の出力254に現われる出力カウント値308を示す。なお、出力カウント値308はディジタル・プリセット値310から始まる。
カウンタ248は、プリセット値310から遠ざかっては戻る周期的なカウントを行う。結果的に、カウンタ248はカウントアップ(増加カウント)とカウントダウン(減少カウント)とを交互に行い、ディジタルカウンタ248のカウント数の時間平均値はほぼ一定のまま(ディジタル・プリセット値310付近)である。比較器226の入力における確率論的なノイズは、カウンタを増加させるべきでない時にカウンタを増加させ得る。しかし、長い時間で見れば、ランダムノイズはカウンタに、見かけ上の減少と同数の見かけ上の増加を行わせがちである。こうしたノイズは自己相殺的である。従って、カウンタ248は、システム内の高周波ノイズをフィルタ除去すべく作用する。
増幅器212の入力218に供給される入力電圧信号が非0である際には、これに対応する非0の電流214がキャパシタ222の第1極板220に供給される。図8に、増幅器212の入力218に第1電圧を印加した際の、結果的なキャパシタ222の第1極板220の電圧波形を示す。
増幅器212からの電流214は、電流源回路230からの電流260、262と加算される。例えば、増幅器212から出る電流214の様子が、キャパシタ222を充電する傾向にある際には、キャパシタ222は、図7Aの信号302の場合よりも少し速く充電されて、少し遅く放電される。結果的に、比較器226のクロック信号306の遷移どうしの間の時間中に、キャパシタ222の電圧は、その直後の遷移どうしの間の時間中に下降する分よりも少し大きく上昇する。結果的に、長い時間でみれば、1回のクロック期間中に生じるキャパシタ222の放電が、キャパシタ222の電圧を基準電圧Vref312未満にもっていくのに十分な点を超える電荷をキャパシタ222が蓄積するまで、キャパシタ222の平均電圧は上昇傾向になる。結果的に、キャパシタ222の電圧320は、クロック付き比較器226のクロック入力242に供給されるクロック信号306の2つの連続する遷移t9、t10(図8Cに示す)の間だけ、基準電圧Vref312を上回る。このことは、カウンタ248の入力250に供給されるクロック信号の次に後続する遷移において、ディジタルカウント値に反映される。図に示すように、カウンタ出力の時間平均値は、第1の値324から第2の値326に変化する。
増幅器212からキャパシタ222への電流214の流れ込みによって、この状況は周期的に繰り返され、時間平均したディジタルカウンタ248のカウント値は、増幅器212の入力218に印加される電圧の振幅に対応する速さで減少する。
図8Bに、ディジタルカウンタ248が出力する、図8Aの電圧信号に対応する値をグラフで示す。縦軸に、クロック付きカウンタ248の出力254に現われるディジタル値を示す。水平軸は時間を示す。
従って図8Bのグラフは、時刻t0における、「ディジタル・プリセット値」に等しいカウント値310を示す。その後に、カウント値が一単位だけカウントアップされて(「ディジタル・プリセット値」+1)325になって、カウントダウンされて「ディジタル・プリセット値」310に戻る。このことは、時刻t10でカウント値がディジタル・プリセット値310から(「ディジタル・プリセット値」−1)327に、付加的な一単位だけ落ちる(329)まで、反復的に行われる。その後しばらくの間は、図に示すように、カウント出力は時間と共に、(「ディジタル・プリセット値」−1)327と「ディジタル・プリセット値」310との間で変化する。
図9Aに、異なる(例えばより大きい)電圧を増幅器212の入力218に印加した際の、結果的なキャパシタ222の電圧信号340を示す。図6Aの場合のように、キャパシタ222の平均電圧は時間と共に上昇する。しかし、増幅器212が供給する電流214は図8Aの場合よりも大きいので、平均キャパシタ電圧の上昇の速さは図8Aより速い。結果的に、図9Bに示すように、連続する2つのダウンカウント342、344が、図6Aの場合よりも頻繁に発生する。その結果は、増幅器212の入力218に印加する電圧が高いほど、ディジタルカウンタ248がディジタル・プリセット値310からより急速に減少する、ということである。
図9Bに、ディジタルカウンタ248が出力するカウント値を、図9Aの電圧信号に対応させてグラフで示す。
図10Aに、図8Aのグラフを再び示すが、ここではキャパシタ222上の電圧信号320にノイズ成分が加わっている。明らかなように、こうしたノイズは、ノイズのないシステム(図10B)の遷移時刻ttより少し前に(図10C)、あるいは少し後に(図10D)、ディジタルカウント値の遷移を生じさせ得る。しかし、こうした早い、あるいは遅い遷移は、比較的長いサンプリング期間後に検出される最終的なカウント値に重大な影響は与えない。
図11に、本発明の他の態様を示し、ここでは第2増幅段を用いて、信号感度を更に増加させている。図6に示すように、分圧器33は、センスされるメモリーセル38の第1端、及びスニーク経路抵抗39の第1端に共に結合した列ライン30を含む。センシング回路の入力ノード210は、列ライン30にも結合されている。スニーク抵抗経路39の第2端は接地電位20に結合され、センスされるメモリーセル38の第2端はアレイ電圧(Va)22の電源に結合されている。
図6の回路に示すように、図11の回路はトランスコンダクタンス増幅器212を具え、トランスコンダクタンス増幅器212は、ノード210で列ライン30に結合した入力218、及びキャパシタ222の第1極板220に結合した出力216を有する。しかし、キャパシタの極板220をクロック付き比較器226の入力に直接結合する代わりに、更なるトランスコンダクタンス増幅器512の入力518に結合する。
更なるトランスコンダクタンス増幅器512の出力516は、第2キャパシタ522の第2極板520に結合し、そしてクロック付き比較器226の入力224に結合する。クロック付き比較器226の出力244はカウンタ248の入力246に結合し、クロック付き比較器226の入力224は、第2電流源回路530の入力528にも結合する。クロック付き比較器226の出力244は、インバータ(論理反転回路)503を通して第2電流源回路530の入力536にも結合する。
従って電流源回路530は、電流源回路230とは逆位相で動作し、即ち、回路530がキャパシタの極板520から電流260を吸引すると同時に、電流源230が電流262をキャパシタの極板220に供給する(そしてその逆も行う)。
代案の実施例では、単一電流源回路を用いて、キャパシタ222及びキャパシタ522の両方に、それぞれの電流を供給する。また、更なるアナログ・プリセット回路534も示し、その出力534はキャパシタの極板520に結合されている。当業者は以上の開示から、単一のアナログ・プリセット回路を用いてプリセット電圧をキャパシタ222及び522の両方に確立する回路を、容易に導き出すことができる。あるいはまた、上述したように、増幅器回路212,512を用いて所望のアナログ・プリセットを発生することができ、これにより独立したアナログ・プリセット回路が不要になる。
本発明の一態様では、増幅器212が正のゲイン(利得)を示し、増幅器512が負のゲインを示す。従って、入力518に印加される電圧が増加すると共に、出力516から流出する電流が減少する(負の意味では増加する)。従って、動作中には、図11の回路はディジタル・プリセット値からのカウントダウンよりもカウントアップが生じやすい。この挙動の例を図12A及び図12Bに示す。
図12Aに、キャパシタ522の電圧の時間的変化を示す。実際の電圧のグラフは、線分よりもむしろ二次曲線で構成される。図に示すグラフは、表現の簡略化のために線分で近似してある。
図12Bに、ディジタルカウンタ248が、図11の回路の動作に関連して、時間と共にディジタル・プリセット値310から増加する様子を示す。
なお、図6の電流源によって供給される正味の電流の時間平均値は、同じ期間について算出した電流214の時間平均値に等しい。更に、カウンタ出力の時間平均値は、回路パラメータの慣例の選択次第で、上昇傾向にすることも下降傾向にすることもできる。なお、一態様では、センシング回路200の入力ノード210を直列のキャパシタを通して列ライン30に結合して、入力電圧のDC成分をフィルタ除去することも望ましい。
一般的な実施例では、単一の抵抗測定の動作中に、何百、あるいは何千サイクルものクロック信号306がクロック入力242に供給される。例えば、最小の500クロックサイクルは、電流214について0.2ナノ秒の分解能をもたらす。クロック周波数の選択、及びクロック周波数どうしの関係は慣例の設計事項であることは、当業者にとって明らかである。例えば、比較器のクロックとカウンタのクロックとは同じ周波数にしてもよいが、そのようにする要求はない。
図13に、好適な処理システム900を示し、このシステムは、本発明のセル抵抗センシング回路200を採用したメモリーデバイス17を利用する。処理システム900は、ローカルバス904に結合した1つ以上のプロセッサ901を具えている。メモリーコントローラ902,及び一次バスブリッジ903もローカルバス904に結合されている。処理システム900は、多数のメモリーコントローラ902及び/または多数の一次バスブリッジ903を具えることができる。メモリーコントローラ902及び一次バスブリッジ903は、単一デバイス906として集積することができる。
メモリーコントローラ902は、1つ以上のメモリーバス907にも結合されている。各メモリーバス907はメモリー構成要素908を受け入れ、メモリー構成要素908は少なくとも1つのメモリーデバイス17を含み、メモリーデバイス17のすべてが、本発明の抵抗センシングシステムを含む。メモリー構成要素908は、メモリーカードまたはメモリーモジュールとすることができる。メモリーモジュールの例は、シングルインライン・メモリーモジュール(SIMM:Single In-line Memory Module)及びデュアルインライン・メモリーモジュール(DIMM:Dual In-line Memory Module)を含む。メモリー構成要素908は、1つ以上の追加的なデバイス909を含むことができる。例えば、SIMMまたはDIMMでは、追加的なデバイス909は、シリアル・プレゼンス・ディテクト(SPD:Serial Presence Detect:メモリーのタイプやタイミング設定を自動的に行う規格)メモリーのような構成メモリーであり得る。メモリーコントローラ902は、キャッシュメモリー905にも結合することができる。キャッシュメモリー905は、処理システム900内の唯一のキャッシュメモリーとすることができる。あるいはまた、他のデバイス、例えばプロセッサ901がキャッシュメモリーも具えて、このキャッシュメモリーがキャッシュメモリー905と階層をなすことができる。処理システム900が周辺装置あるいはコントローラを具えて、これらがバスマスターであるか、あるいはダイレクト・メモリーアクセス(DMA:Direct Memory Access)をサポートする場合には、メモリーコントローラ902がキャッシュメモリーのプロトコルを実現することができる。メモリーコントローラ902を複数のメモリーバス907に結合する場合には、各メモリーバス907を並列的に動作させるか、あるいは、異なるメモリーバス907に異なるアドレス範囲をマッピングする(対応づける)ことができる。
一次バスブリッジ903は、少なくとも1つの周辺(ペリフェラル)バス910に結合する。種々のデバイス、例えば周辺装置あるいは追加的なバスブリッジを、周辺バス910に結合することができる。これらのデバイスは、ストレージ(記憶)コントローラ911、種々のI/Oデバイス914、二次バスブリッジ915、マルチメディア・プロセッサ918、及び前世代装置のインタフェース920を含むことができる。一次バスブリッジ903は、1つ以上の特定目的の高速ポート922にも結合することができる。パーソナルコンピュータでは、特定目的ポート922は例えば、高性能ビデオカードを処理所ステム900に結合するためのアクセレレーティッド(加速)グラフィックスポート(AGP:Accelerated Graphics Port)であり得る。
ストレージコントローラ911が、1つ以上の記憶装置(ストレージデバイス)913を、ストレージバス912経由で周辺バス910に結合する。例えば、ストレージコントローラ911をSCSIコントローラとして、記憶装置913をSCSIディスクとすることができる。I/Oデバイス914は、あらゆる種類の周辺装置とすることができる。例えば、I/Oデバイス914を、イーサネット(登録商標)カードのようなローカルエリア・ネットワーク。インタフェースとすることができる。二次バスブリッジ915は、追加的なデバイスを他のバス経由で処理システム900にインタフェース(整合)させるために用いることができる。例えば、二次バスブリッジ915は、USB装置917を処理システム900に結合するために用いるユニバーサル・シリアルバス(USB:Universal Serial Bus)コントローラとすることができる。マルチメディア・プロセッサ918は、サウンドカード、ビデオキャプチャ(捕捉)カード、あるいは他のあらゆる種類のメディアインタフェースとすることができ、これらもスピーカ919のような1つの付加的な装置に結合することができる。前世代装置のインタフェースは、例えば旧型のキーボード及びマウスを処理システム900に結合するために用いる。
図13に示す処理システム900は、本発明を利用する好適な処理システムに過ぎない。図13は、パーソナルコンピュータまたはワークステーションのような汎用コンピュータに特に適した処理アーキテクチャを示すが、周知の修正を行って、処理システム900を種々の用途に用いるのにより適したものに構成することができることは明らかである。例えば、処理を必要とする多くの電子装置を、メモリー構成要素908及び/またはメモリーデバイス100に結合されたCPU901に頼るより簡単なアーキテクチャを用いて実現することができる。これらの電子装置は、オーディオ/ビデオプロセッサ及びレコーダ、ゲームコンソール(操作卓)、ディジタルテレビ、有線または無線電話、ナビゲーション装置(グローバル・ポジショニングシステム(GPS:Global Positioning System:全地球測位システム)及び/または内部ナビゲーションを含む)、及びディジタルカメラ及び/またはレコーダを含むことができるが、これらに限定されない。これらの修正は、不要な構成要素の除去、特化したデバイスまたは回路の追加、及び/または複数のデバイスの統合を含むことができる。
以上では本発明の好適な実施例について説明してきたが、これらは発明の好適例であり、限定的なものではないことは明らかである。本発明の範囲から外れることなしに、追加、削除、代替、及び他の修正を行うことができる。従って、本発明は以上の説明によって限定されるものではなく、特許請求の範囲によって限定されるものである。
クロスポイント・アーキテクチャを用いた従来のMRAMの一部分を示す図である。 MRAMのセル抵抗をセンスする一方法による、積分電圧の理想的な時間対電圧のプロット図である。 付加的な電圧ノイズ成分を伴う、図2の時間対電圧のプロット図である。 本発明による磁気ランダムアクセス・メモリーデバイスの一部分を示す図である。 セルのセンシング中の、図4のデバイスの一部分を示す図である。 本発明のセンシング回路をブロック図形式で示す図である。 ゼロ入力の場合の図6の回路の電圧信号及び関係値についてのタイミング図である。 第1の非ゼロ入力の場合の、図6の回路の理想的な電圧信号及び関係値についてのタイミング図である。 第1とは異なる第2の非ゼロ入力の場合の、図6の回路の理想的な電圧信号及び関係値についてのタイミング図である。 付加的なノイズ成分を伴う、図8A〜8Bの電圧信号についてのタイミング図である。 本発明のセンシング回路の他の実施例を示す図である。 図11の回路による、図9A〜9Bのタイミング図である。 本発明の一態様によるセンシング回路を有するメモリーデバイスを具えた好適なディジタルシステムを示す図である。

Claims (50)

  1. 抵抗メモリーセルに電流を通して、前記抵抗メモリーセルの両端に電圧を発生させるステップと;
    前記電圧を、積分増幅器を通してディジタルカウンタに結合させるステップと;
    前記ディジタルカウンタのディジタルカウント値の移動平均値が、長い時間で見れば、前記抵抗メモリーセルの両端の前記電圧の振幅に関連する速度で変化するように、前記カウント値を反復的に増加及び減少させるステップと;
    特定時刻に取得した前記カウント値の瞬時値を、前記抵抗メモリーセルの抵抗状態に関連付けるステップと
    を具えていることを特徴とする抵抗メモリーセルの抵抗状態のセンシング方法。
  2. 更に、
    初期時刻に、前記ディジタルカウンタの前記カウント値を第1の値に初期化するステップと;
    前記初期時刻後の第2時刻に、前記カウント値を評価して、第2の値を確定するステップと;
    前記第2の値と前記第1の値との差を、前記抵抗メモリーセルの前記抵抗状態に関連付けるステップと
    を具えていることを特徴とする請求項1に記載の方法。
  3. 前記カウント値の前記移動平均値が時間と共に減少することを特徴とする請求項1に記載の方法。
  4. 前記反復的に増加及び減少させるステップにおける増加させるステップが、
    キャパシタの電圧が上昇している間に前記カウンタの値を増加させるステップから成り、前記キャパシタの電圧の少なくとも一部は、前記抵抗メモリーセルの両端の前記電圧を入力として受け取るトランスコンダクタンス増幅器によって生成することを特徴とする請求項1に記載の方法。
  5. 前記反復的に増加及び減少させるステップにおける増加させるステップが、周期的なクロック信号の第1サイクル数を上昇方向にカウントするステップを含み、
    前記反復的に増加及び減少させるステップにおける減少させるステップが、前記周期的なクロック信号の第2サイクル数を下降方向にカウントするステップを含み、
    前記第1サイクル数及び前記第2サイクル数が、前記抵抗メモリーセルを通る前記電流に依存することを特徴とする請求項1に記載の方法。
  6. カウンタのカウント値をプリセット・カウント値に事前設定するステップと;
    第1の複数時間間隔中に、キャパシタを充電電流で充電するステップであって、前記第1の複数時間間隔の各時間間隔は、前記キャパシタの周期的なテストによって前記キャパシタの第1電圧がしきい値電圧を超えたことが示された際に終了するステップと;
    第2の複数時間間隔中に、前記キャパシタから放電電流を放電させるステップであって、前記第2の複数時間間隔の各時間間隔は、前記キャパシタの周期的なテストによって前記キャパシタの第2電圧がしきい値電圧を下回ることが示された際に終了するステップと;
    前記充電電流及び前記放電電流に更なる電流を加算するステップであって、前記更なる電流が、前記第2の複数時間間隔のうちの1つ以上の時間間隔の期間を延長して、延長した第3の複数時間間隔を形成して、前記更なる電流がメモリーセルの抵抗素子の抵抗値に関連し、前記抵抗値が前記メモリーセルの論理状態に対応するステップと;
    前記第1の複数時間間隔中には前記カウンタを周期的に増加させて、前記第2の複数時間間隔中及び前記第3の複数時間間隔中には共に前記カウンタを周期的に減少させて、これにより、前記カウンタのカウント値に長い時間における正味の変化を生じさせるステップと;
    前記カウント値の前記長い時間にわたる正味の変化を、前記メモリーセルの前記論理状態に関連づけるステップと
    を具えていることを特徴とするメモリーセルの論理状態のセンシング方法。
  7. 前記更なる電流が充電電流から成ることを特徴とする請求項6に記載の方法。
  8. 前記カウンタを周期的に増加させるステップが、
    前記第1の複数時間間隔の各時間間隔中に、前記カウンタを1回増加させるステップから成ることを特徴とする請求項6に記載の方法。
  9. 前記カウンタを周期的に減少させるステップが、
    前記第2の複数時間間隔及び前記第3の複数時間間隔の各時間間隔中に、前記カウンタを1回以上減少させるステップから成る
    ことを特徴とする請求項6に記載の方法。
  10. 前記充電電流及び前記放電電流に更なる電流を加算するステップが、
    前記抵抗素子の前記抵抗値に関連する更なる電圧を、トランスコンダクタンス増幅器の入力で受け取るステップと;
    前記更なる電流を前記トランスコンダクタンス増幅器の出力から出力するステップであって、前記トランスコンダクタンス増幅器が、前記更なる電流を前記更なる電圧と関数関係にする伝達関数を有するステップと
    を具えていることを特徴とする請求項6に記載の方法。
  11. 更に、
    前記メモリーセルの前記抵抗素子を、共通ノードを有する分圧回路として構成するステップと;
    前記分圧回路の両端に標準電圧を印加して、これにより、前記メモリーセルの前記抵抗値に関連する前記更なる電圧が前記共通ノードに現われるステップと
    を具えていることを特徴とする請求項10に記載の方法。
  12. 前記メモリーセルがMRAMメモリーセルから成ることを特徴とする請求項6に記載の方法。
  13. 前記充電電流及び前記放電電流に更なる電流を加算するステップが、
    前記更なる電流を、前記充電電流または前記放電電流と共に、前記キャパシタの共通極板に流すステップから成ることを特徴とする請求項6に記載の方法。
  14. 前記第1の複数時間間隔中に前記カウンタを周期的に増加させるステップが、
    前記第1の複数時間間隔の各時間間隔中に、前記カウンタを1カウント増分だけ増加させるステップから成ることを特徴とする請求項6に記載の方法。
  15. 前記第2の複数時間間隔中及び前記第3の複数時間間隔中に前記カウンタを周期的に減少させるステップが、
    前記第2の複数時間間隔の各時間間隔中には前記カウンタを1カウント増分だけ減少させて、前記第3の複数時間間隔の各時間間隔中には前記カウンタを2カウント増分だけ減少させるステップから成ることを特徴とする請求項6に記載の方法。
  16. 更に、
    前記更なる電流からノイズ成分をフィルタ除去するステップを具えていることを特徴とする請求項6に記載の方法。
  17. 前記第1の複数時間間隔の各時間間隔の直後に、前記第2の複数時間間隔の1つの時間間隔が後続して、前記第2の複数時間間隔の各時間間隔の直後に、前記第1の複数時間間隔の1つの時間間隔が後続するように、前記第1の複数時間間隔と前記第2の複数時間間隔とを互いに交互させることを特徴とする請求項6に記載の方法。
  18. 抵抗メモリーセルの抵抗素子に電流を流して、前記抵抗素子の抵抗に関連する電圧を、前記抵抗素子とセンシング回路との間に結合した導体上に発生させるステップと;
    前記センシング回路によって振動信号を発生するステップであって、前記振動信号が複数の信号極小値、及び全体的に増加するトレンドを有し、前記複数の信号極小値の各信号極小値が、周期的なクロック信号の複数の遷移のそれぞれと同期して、前記全体的に増加するトレンドの大きさが、前記電圧の振幅に関連するステップと;
    前記周期的なクロック信号の前記複数の遷移のそれぞれの時点で、前記振動信号の瞬時値が基準値を超えた際に毎回、前記振動信号を下方向に調整するステップと;
    特定の時間間隔中に、前記調整の回数をカウントして、調整カウント数を生成するステップと;
    前記調整カウント数を前記電圧に関連付けて、これにより、前記調整カウント数を前記抵抗素子の前記抵抗に関連付けるステップと
    を具えていることを特徴とする抵抗メモリーセルの抵抗のセンシング方法。
  19. 測定期間中に抵抗メモリーセルに電圧を印加して、前記測定期間中に、結果的な増幅器の電流出力を発生させるステップと;
    前記結果的な電流を補助的な電流と組み合わせて用いて、前記測定期間中にキャパシタを反復的に充電及び放電するステップであって、前記補助的な電流は、前記キャパシタの瞬時電圧値に関連させて制御するステップと;
    前記測定期間中の複数のサンプリング時刻に、前記キャパシタの前記瞬時電圧がしきい値を上回るか下回るかに応答して、カウンタの値をそれぞれ増加または減少させるステップと;
    前記測定期間の終わりに、前記カウンタの値にもとづいて、前記メモリーセルの抵抗値を決定するステップと
    を具えていることを特徴とする抵抗メモリーセルの論理値のセンシング方法。
  20. ディジタルカウンタに結合されたカウンタ制御回路に結合した抵抗メモリーセルを用意するステップと;
    前記制御回路からの増加及び減少コマンドに従って、前記ディジタルカウンタのカウント値をそれぞれ増加及び減少させるステップであって、前記増加及び減少コマンドは、前記抵抗メモリーセルの抵抗に関連して発行するステップと;
    それぞれ第1時刻及び第2時刻に取得した、第1の値と第2の値との差を評価するステップと;
    前記差、及び前記第1時刻と前記第2時刻との間の期間を前記抵抗メモリーセルの論理状態に関連付けるステップと
    を具えていることを特徴とする抵抗メモリーセルの論理状態のセンシング方法。
  21. メモリーセルを通る電流によって発生する電圧に応答して、ディジタルカウンタのカウント値を反復的に増加及び減少させて、特定時点で取得した前記カウント値が、前記セルの第1導通状態を示すカウント値の第1範囲内であるか、前記セルの第2導通状態を示すカウント値の第2範囲であるかを見出すステップを具えていることを特徴とする抵抗メモリーセルの導通状態のセンシング方法。
  22. 前記セルの前記第1導通状態及び前記第2導通状態がそれぞれ、前記セルに記憶されるデータ値の第1論理状態及び第2論理状態を表わすことを特徴とする請求項21に記載の方法。
  23. 前記ディジタルカウンタのカウント値を反復的に増加及び減少させるステップが、周期的なクロック信号の遷移をカウントするステップから成ることを特徴とする請求項21に記載の方法。
  24. MRAMセルの両端に第1電圧を印加するステップと;
    前記第1電圧を表わす電流を生成するステップと;
    前記第1電圧が基準電圧を上回ったことを表わす前記電流を、第1期間にわたって増加方向に積分して、第1積分電圧信号を発生するステップと;
    前記第1電圧が前記基準電圧を下回ったことを表わす前記電流を、第2期間にわたって減少方向に積分して、第2積分電圧信号を発生するステップと;
    前記第1期間中にカウンタを増加させて、前記第2期間中に前記カウンタを減少させることによって、カウント値を累積させるステップと;
    前記積分及び累積の操作を、所定期間にわたって反復するステップと
    を具えていることを特徴とするMRAMセルの論理状態のセンシング方法。
  25. a)MRAMセルの両端に第1電圧を印加するステップと;
    b)前記第1電圧を増幅して、前記第1電圧に対応する第1電流を生成するステップと;
    c)第1期間中に、前記第1電流を第2電流と共に、キャパシタ上で増加方向に積分して、前記キャパシタ上に第2の上向きの電圧変化を発生させるステップと;
    d)第2期間中に、前記第1電流を第3電流と共に、前記キャパシタ上で減少方向に積分して、前記キャパシタ上に第3の下向きの電圧変化を発生させるステップと;
    e)長い時間にわたって、ステップa)〜d)を反復するステップと;
    f)前記第2の上向きの電圧変化と前記第3の下向きの電圧変化との差を記憶することによって、前記キャパシタ上に第4電圧を蓄積させるステップであって、前記第4電圧が第5の基準電圧を超えるまで前記蓄積を行うステップと;
    g)前記キャパシタを放電させて、ディジタルカウンタのカウント値を調整するステップと;
    h)長い時間にわたってステップa)〜g)を反復するステップと;
    i)測定時刻における前記カウント値を、前記MRAMセルの論理状態に関連付けるステップと
    を具えていることを特徴とする抵抗メモリーセルの論理状態のセンシング方法。
  26. 前記ディジタルカウンタのカウント値を初期値に事前設定するステップを具えていることを特徴とする請求項25に記載の方法。
  27. 前記第2電流が、前記第1期間中に電流源によって生成された正電流を含むことを特徴とする請求項25に記載の方法。
  28. 前記第3電流が、前記第2期間中に電流源によって生成された負電流を含むことを特徴とする請求項25に記載の方法。
  29. MRAMセルに電流を流して、前記MRAMセルの両端に電圧を発生させるステップと;
    前記電圧を時間的に変化するディジタルカウント値に変換するステップであって、前記時間的に変化するディジタルカウント値が、長い期間で見れば時間的に変化する時間平均値を有するステップと;
    前記長い期間の最終時点において、前記時間平均したカウント値の瞬時値を前記MRAMセルの端子間の電圧に関連づけて、これにより、前記MRAMセルの論理状態を検出するステップと
    を具えていることを特徴とするMRAMセルの論理状態のセンシング方法。
  30. 抵抗メモリーセルの抵抗を測定するために用いるべく適応させた電気信号であって、この電気信号が、
    第1の複数の電圧極大値と第2の複数の電圧極小値との間を振動する周期的な電気信号から成り、前記第1の複数の電圧極大値の各々と前記第2の複数の電圧極小値の各々とが、時間的に互いに交互し、前記第1の複数の電圧極大値の各々と前記第2の電圧極小値の各々が電圧振幅を有し;
    前記第2の複数の電圧極小値の各々が、その直後に隣接する電圧極大値から、第1の複数の時間間隔の各々だけ離れて、前記第1の複数の時間間隔の各時間間隔が、第1期間にほぼ等しく;
    前記第1の複数の電圧極大値の各々が、その直後に隣接する電圧極小値から、第2の複数の時間間隔の各々だけ離れて、前記第2の複数の時間間隔が、第3の複数の時間間隔及び第4の複数の時間間隔を含み、前記第3の複数の時間間隔の各々が第2期間にほぼ等しく、前記第4の複数の時間間隔の各々が、前記第2期間より長い第3期間にほぼ等しく、前記第4の複数の時間間隔の各時間間隔が、この時間間隔に先行する前記第1の複数の電圧極大値のそれぞれの極大値の時点よりおよそ前記第2期間だけ遅い時点で前記電気信号の振幅が基準値を超えた際の時点を含む
    ことを特徴とする抵抗メモリーセルの抵抗測定用に適応させた電気信号。
  31. MRAMメモリーセルの論理状態を検出するセンシング回路であって、このセンシング回路が、
    第1ノード及び第2ノードと;
    MRAMメモリーセルの抵抗素子の一端に結合した第1入力及び前記第1ノードに結合した第1出力を有するトランスコンダクタンス増幅器と;
    前記第1ノードに結合した第1極板及び定電位の第1電源に結合した第2極板を有するキャパシタと;
    前記第1ノードに結合した第2出力を有する電流源とを具えて、前記電流源が、前記第2出力を通して前記第1ノードへの電流供給または前記第1ノードからの電流シンクを交互に行うべく適応し、前記電流源が、前記第2ノードに結合された制御端子であって前記電流源が特定時点に電流を供給しているかシンクしているかを制御するための制御信号を受信すべく適応させた制御端子を有し;
    前記センシング回路が更に、前記第1ノードに結合した第2入力、基準電位の電源に結合した第3入力、第1クロック信号源に結合した第4入力、及び前記第2ノードに結合した第3出力を有する比較器回路と;
    前記第1ノードに結合した第5入力、第2クロック信号源に結合された第6入力、プリセット信号源に結合された第7入力、及びディジタルカウント値を出力すべく適応させた第4出力を有するカウンタ回路と
    を具えていることを特徴とするMRAMメモリーセルの抵抗状態のセンシング回路。
  32. 更に、前記第1ノードに結合した第5出力を有し、前記キャパシタの両端にプリセット電圧を確立するアナログ・プリセット回路を具えていることを特徴とする請求項31に記載のセンシング回路。
  33. 前記電流源が供給する電流と前記電流源がシンクする電流とが、ほぼ等しい振幅を有することを特徴とする請求項31に記載のセンシング回路。
  34. 前記第1クロック信号と前記第2クロック信号とが、互いに同期していないことを特徴とする請求項31に記載のセンシング回路。
  35. 前記第1クロック信号と前記第2クロック信号とが、異なる周波数を有することを特徴とする請求項31に記載のセンシング回路。
  36. 前記カウンタ回路の前記第7入力がプリセット信号の遷移を受け取るべく適応し、これにより、前記カウンタ回路の第4出力が特定のカウント値を有することを特徴とする請求項31に記載のセンシング回路。
  37. 前記トランスコンダクタンス増幅器が、前記第1出力に出力電流を生成すべく適応し、前記出力電流が、前記第1入力に印加される入力電圧と関数関係を有することを特徴とする請求項31に記載のセンシング回路。
  38. メモリーセル・センサが、
    第1期間中に第1電流源からの第1電流によって充電され、第2期間中に第2電流源への第2電流を放電すべく適応させたキャパシタを具えて、前記第1電流と前記第2電流とがほぼ等しい振幅を有し、かつ前記キャパシタに対して互いに逆の方向を有し;
    前記メモリーセルが更に、前記第1期間及び前記第2期間中に、前記キャパシタに対して第3電流を出力すべく適応させたトランスコンダクタンス増幅器を具えて、前記第3電流を前記第1電流に加算して、前記第3電流を前記第2電流から減算して、前記第3電流が、前記トランスコンダクタンス増幅器の第1入力で受信した第1電圧信号に関連し、前記第1期間及び前記第2期間のそれぞれが、前記第3電流の振幅に関連し;
    前記メモリーセル・センサが更に、
    前記第1電圧を抵抗メモリーセルの端子間に印加すべく適応させた抵抗網を具えて、前記第1電圧が前記抵抗メモリーセルの抵抗に関連し;
    前記メモリーセルが更に、前記第1期間と前記第2期間との時間差に関連して、カウンタのカウント出力を増加させるべく適応させたカウンタと
    を具えていることを特徴とするメモリーセル・センサ。
  39. 前記抵抗メモリーセルの前記抵抗が、前記抵抗メモリーセルの論理状態を表わすことを特徴とする請求項38に記載のメモリーセル・センサ。
  40. メモリーセル・センサが、
    第1入力と第1出力とを有する第1トランスコンダクタンス増幅器、及び第2入力と第2出力とを有するトランスコンダクタンス増幅器を具えて、前記前記第1出力が前記第2入力に接続され、前記第1入力が、抵抗メモリーセルの論理状態に応じた電圧信号源に結合すべく適応し;
    前記メモリーセル・センサが更に、第1信号端子と第1接地端子とを有する第1キャパシタ、及び第2信号端子と第2接地端子とを有する第2キャパシタを具えて、前記第1及び第2接地端子が共に接地ノードに接続され、前記第1信号端子が前記第1出力に結合され、前記第2信号端子が前記第2出力に結合され;
    前記メモリーセル・センサが更に、基準電圧源に結合した第3基準入力、前記第2出力に結合した第4信号入力、第1クロック信号源に結合すべく適応させた第5クロック入力、及び第3しきい値出力を有するしきい値検出器と;
    第2クロック信号源に結合すべく適応させた第6クロック入力、前記第3しきい値出力に結合した第7制御入力、及び累積させたディジタルカウント値を表現すべく適応させた複数のディジタルカウント出力を有するカウンタと;
    前記第3しきい値出力に接続した第8信号入力、第1電流を出力すべく適応させた第4電流出力、第2電流を出力すべく適応させた第5電流出力を有する電流源を具えて、前記第1電流と前記第2電流とが前記電流源に対して互いに逆の方向を有して、前記第4電流出力が前記第1信号端子に結合され、前記第5電流出力が前記第2信号端子に結合され、前記電流源が、前記第8信号入力で受信した信号に応答して、前記第1電流及び前記第2電流の方向を共に反転させるべく可制御的に適応している
    ことを特徴とするメモリーセル・センサ。
  41. 更に、タイマーの第9入力に結合された第6出力を具えて、前記第3出力を「アップ」出力と表現し、前記第6出力を「ダウン」出力と表現することを特徴とする請求項40に記載のメモリーセル・センサ。
  42. 前記しきい値検出器がアナログ比較器回路から成ることを特徴とする請求項40に記載のメモリーセル・センサ。
  43. MRAMセルの論理状態を検出するセンシング回路が、
    第1入力及び第1出力を有する第1トランスコンダクタンス増幅器を具えて、前記第1出力が第2トランスコンダクタンス増幅器の第2入力に結合されて;
    前記センシング回路が更に、第1期間中には、前記第1トランスコンダクタンス増幅器の前記第1出力からの出力電流に第1電流を加算して、前記第2トランスコンダクタンス増幅器の第2出力からの出力電流から第2電流を減算して、第2期間中には、前記第1トランスコンダクタンス増幅器の前記第1出力からの出力電流から第3電流を減算して、前記第2トランスコンダクタンス増幅器の前記第2出力からの出力電流に第4電流を加算すべく適応し;
    前記センシング回路が更に、前記第1出力に結合した第1キャパシタ及び前記第2出力に結合した第2キャパシタと;
    電流源に結合され、前記第1電流及び前記第2電流、及びこれらの電流の前記加算及び前記減算を制御して、前記第1期間及び前記第2期間を、前記第1トランスコンダクタンス増幅器の前記第1出力に関連付けて変化させる制御回路と;
    前記制御回路に結合され、プリセット・カウント数を、前記第1期間及び前記第2期間に関連付けて変化させて、前記MRAMセルの前記論理状態に関連するカウント数を生成すべく適応させたカウンタ回路と
    を具えていることを特徴とするMRAMセルの論理状態検出用のセンシング回路。
  44. 前記制御回路が、前記第2出力に結合した第3入力、基準電圧源に結合した第4入力、周期的なクロック信号源に結合したクロック入力、及び前記カウンタ回路の入力に結合した出力を有するクロック付き比較器を具えていることを特徴とする請求項43に記載のセンシング回路。
  45. 前記クロック付き比較器が、前記カウンタ回路の更なる入力に結合した更なる出力を具えて、前記カウンタ回路が、周期的なクロック信号源に結合したクロック入力を有するクロック付きカウンタから成ることを特徴とする請求項44に記載のセンシング回路。
  46. 更に、
    定電位の第1電源と測定ノードとの間に結合した前記MRAMセルの抵抗と、前記測定ノードと定電位の第2電源との間に結合した更なる抵抗とを有する分圧回路を具えていることを特徴とする請求項43に記載のセンシング回路。
  47. 前記定電位の第1電源がVcc電位を供給すべく適応し、前記定電位の第2電源が接地電位を規定することを特徴とする請求項46に記載のセンシング回路。
  48. 前記第1トランスコンダクタンス増幅器が正のゲインを有し、前記第2トランスコンダクタンス増幅器が負のゲインを有することを特徴とする請求項43に記載のセンシング回路。
  49. 前記電流源が、
    複数の電流源回路と;
    前記複数の電流源のそれぞれの電流を方向付けすべく適応させたスイッチングデバイスと
    を具えていることを特徴とする請求項43に記載のセンシング回路。
  50. センシング回路を有するMRAMメモリーセルを含むメモリーモジュールに結合した中央処理装置を具えたディジタル処理システムにおいて、前記センシング回路が、
    第1ノード及び第2ノードと;
    前記MRAMメモリーセルの抵抗素子の一端に結合した第1入力、及び前記第1ノードに結合した第1出力を有するトランスコンダクタンス増幅器と;
    前記第1ノードに結合した第1極板と、定電位の第1電源に結合した第2極板とを有するキャパシタと;
    前記第1ノードに結合した第2出力を有する電流源を具えて、前記電流源が、前記第2出力を通して前記第1ノードへの電流供給または前記第1ノードからの電流シンクを交互に行うべく適応し、前記電流源が、前記第2ノードに結合された制御端子であって前記電流源が特定時点に電流を供給しているかシンクしているかを制御するための制御信号を受信すべく適応させた制御端子を有し;
    前記センシング回路が更に、前記第1ノードに結合した第2入力、基準電位の電源に結合した第3入力、第1クロック信号源に結合した第4入力、及び前記第2ノードに結合した第3出力を有する比較器回路と;
    前記第1ノードに結合した第5入力、第2クロック信号源に結合した第6入力、プリセット信号源に結合した第7入力、及びディジタルカウント値を出力すべく適応させた第4出力を有するカウンタ回路と
    を具えていることを特徴とするディジタル処理システム。
JP2004529210A 2002-08-19 2003-07-30 抵抗メモリー素子用の二重ループセンシング方法 Pending JP2005536820A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/222,843 US6829188B2 (en) 2002-08-19 2002-08-19 Dual loop sensing scheme for resistive memory elements
PCT/US2003/023794 WO2004017326A2 (en) 2002-08-19 2003-07-30 Dual loop sensing scheme for resistive memory elements

Publications (2)

Publication Number Publication Date
JP2005536820A true JP2005536820A (ja) 2005-12-02
JP2005536820A5 JP2005536820A5 (ja) 2006-04-20

Family

ID=31715073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004529210A Pending JP2005536820A (ja) 2002-08-19 2003-07-30 抵抗メモリー素子用の二重ループセンシング方法

Country Status (10)

Country Link
US (2) US6829188B2 (ja)
EP (3) EP1532633B1 (ja)
JP (1) JP2005536820A (ja)
KR (1) KR100679458B1 (ja)
CN (3) CN101814312B (ja)
AT (3) ATE365965T1 (ja)
AU (1) AU2003254265A1 (ja)
DE (3) DE60314642T2 (ja)
TW (1) TWI313000B (ja)
WO (1) WO2004017326A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284527B1 (ko) 2010-09-23 2013-07-16 마이크론 테크놀로지, 인크. 역치 에지 검출을 이용한 상 변화 메모리 상태 판정

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504750B1 (en) * 2001-08-27 2003-01-07 Micron Technology, Inc. Resistive memory element sensing using averaging
US6826102B2 (en) * 2002-05-16 2004-11-30 Micron Technology, Inc. Noise resistant small signal sensing circuit for a memory device
US6882553B2 (en) * 2002-08-08 2005-04-19 Micron Technology Inc. Stacked columnar resistive memory structure and its method of formation and operation
FR2846776A1 (fr) * 2002-10-30 2004-05-07 St Microelectronics Sa Cellule memoire a trois etats
US6980477B2 (en) * 2002-12-07 2005-12-27 Hewlett-Packard Development Company, L.P. Chopper sensor for MRAM
US6826094B1 (en) * 2003-06-02 2004-11-30 Hewlett-Packard Development Company, L.P. Magnetic memory cell sensing with first and second currents
US7042783B2 (en) * 2003-06-18 2006-05-09 Hewlett-Packard Development Company, L.P. Magnetic memory
JP4697138B2 (ja) * 2003-07-08 2011-06-08 株式会社ニコン 液浸リソグラフィ装置、液浸リソグラフィ方法、デバイス製造方法
US6970387B2 (en) * 2003-09-15 2005-11-29 Hewlett-Packard Development Company, L.P. System and method for determining the value of a memory element
US7663442B2 (en) * 2005-03-28 2010-02-16 Intel Corporation Data receiver including a transconductance amplifier
US8088478B2 (en) * 2005-06-21 2012-01-03 Weyerhaeuser Nr Company Barrier material
US7397689B2 (en) * 2006-08-09 2008-07-08 Micron Technology, Inc. Resistive memory device
US7818638B2 (en) 2007-06-15 2010-10-19 Micron Technology, Inc. Systems and devices including memory with built-in self test and methods of making and using the same
US7839703B2 (en) 2007-06-15 2010-11-23 Micron Technology, Inc. Subtraction circuits and digital-to-analog converters for semiconductor devices
US7768868B2 (en) 2007-06-15 2010-08-03 Micron Technology, Inc. Digital filters for semiconductor devices
US7817073B2 (en) 2007-06-15 2010-10-19 Micron Technology, Inc. Integrators for delta-sigma modulators
US7969783B2 (en) * 2007-06-15 2011-06-28 Micron Technology, Inc. Memory with correlated resistance
US7733262B2 (en) * 2007-06-15 2010-06-08 Micron Technology, Inc. Quantizing circuits with variable reference signals
US7830729B2 (en) 2007-06-15 2010-11-09 Micron Technology, Inc. Digital filters with memory
US7538702B2 (en) 2007-06-15 2009-05-26 Micron Technology, Inc. Quantizing circuits with variable parameters
US8117520B2 (en) 2007-06-15 2012-02-14 Micron Technology, Inc. Error detection for multi-bit memory
US9135962B2 (en) 2007-06-15 2015-09-15 Micron Technology, Inc. Comparators for delta-sigma modulators
US8068367B2 (en) 2007-06-15 2011-11-29 Micron Technology, Inc. Reference current sources
US7667632B2 (en) 2007-06-15 2010-02-23 Micron Technology, Inc. Quantizing circuits for semiconductor devices
WO2009153838A1 (ja) * 2008-06-20 2009-12-23 富士通株式会社 受信装置
US7864609B2 (en) 2008-06-30 2011-01-04 Micron Technology, Inc. Methods for determining resistance of phase change memory elements
US20110140708A1 (en) * 2009-12-11 2011-06-16 William Henry Lueckenbach System, method, and apparatus for providing redundant power control using a digital output module
JP4928618B2 (ja) * 2010-02-03 2012-05-09 日清紡ホールディングス株式会社 蓄電モジュール制御装置
KR101298190B1 (ko) 2011-10-13 2013-08-20 에스케이하이닉스 주식회사 저항성 메모리 장치, 그 레이아웃 구조 및 센싱 회로
US8711646B2 (en) * 2012-05-08 2014-04-29 Samsung Electronics Co., Ltd. Architecture, system and method for testing resistive type memory
US9111622B2 (en) 2012-05-09 2015-08-18 Everspin Technologies, Inc. Self referencing sense amplifier for spin torque MRAM
KR20150022242A (ko) * 2013-08-22 2015-03-04 에스케이하이닉스 주식회사 반도체 메모리 장치
WO2015130304A1 (en) 2014-02-28 2015-09-03 Hewlett-Packard Development Company, L.P. Sensing circuit for resistive memory array
CN105448331B (zh) * 2014-08-22 2017-12-01 华邦电子股份有限公司 电阻式随机存取存储器电路以及读取方法
KR102431206B1 (ko) * 2015-12-23 2022-08-11 에스케이하이닉스 주식회사 전자 장치
US9721636B1 (en) * 2016-01-28 2017-08-01 Western Digital Technologies, Inc. Method for controlled switching of a MRAM device
KR102476770B1 (ko) * 2016-04-08 2022-12-13 에스케이하이닉스 주식회사 전자 장치
CN106027145A (zh) * 2016-06-27 2016-10-12 佛山市南海区联合广东新光源产业创新中心 一种可见光通信切换及控制方法
CN105978625A (zh) * 2016-06-27 2016-09-28 佛山市南海区联合广东新光源产业创新中心 一种具有电阻阵列的可见光通信装置
GB2555481B (en) * 2016-11-01 2019-07-17 Evonetix Ltd Resistance measurement
JP2018085155A (ja) * 2016-11-21 2018-05-31 東芝メモリ株式会社 磁気メモリ
US10714185B2 (en) 2018-10-24 2020-07-14 Micron Technology, Inc. Event counters for memory operations
CN113035255B (zh) * 2021-03-30 2022-01-07 长江存储科技有限责任公司 存储器及其操作方法、装置、存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140126A (ja) * 1995-05-30 1997-05-27 Linear Technol Corp 適応スイッチ回路、適応出力回路、制御回路およびスイッチング電圧レギュレータを動作させる方法
US6038166A (en) * 1998-04-01 2000-03-14 Invox Technology High resolution multi-bit-per-cell memory
DE19914488C1 (de) * 1999-03-30 2000-05-31 Siemens Ag Vorrichtung zur Bewertung der Zellenwiderstände in einem magnetoresistiven Speicher
US6188615B1 (en) * 1999-10-29 2001-02-13 Hewlett-Packard Company MRAM device including digital sense amplifiers
US6433525B2 (en) * 2000-05-03 2002-08-13 Intersil Americas Inc. Dc to DC converter method and circuitry
US6317375B1 (en) * 2000-08-31 2001-11-13 Hewlett-Packard Company Method and apparatus for reading memory cells of a resistive cross point array
DE10059182C2 (de) * 2000-11-29 2002-10-24 Infineon Technologies Ag Schaltungsanordnung zum zerstörungsfreien, selbstnormierenden Auslesen von MRAM-Speicherzellen
US6693826B1 (en) * 2001-07-30 2004-02-17 Iowa State University Research Foundation, Inc. Magnetic memory sensing method and apparatus
US6504750B1 (en) * 2001-08-27 2003-01-07 Micron Technology, Inc. Resistive memory element sensing using averaging
US6577525B2 (en) * 2001-08-28 2003-06-10 Micron Technology, Inc. Sensing method and apparatus for resistance memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284527B1 (ko) 2010-09-23 2013-07-16 마이크론 테크놀로지, 인크. 역치 에지 검출을 이용한 상 변화 메모리 상태 판정

Also Published As

Publication number Publication date
EP1532633B1 (en) 2007-06-27
CN103366807A (zh) 2013-10-23
CN1689109B (zh) 2011-10-26
ATE441929T1 (de) 2009-09-15
ATE365966T1 (de) 2007-07-15
EP1667161B1 (en) 2007-06-27
DE60314642D1 (de) 2007-08-09
US6914838B2 (en) 2005-07-05
EP1532633A1 (en) 2005-05-25
US20050013184A1 (en) 2005-01-20
CN101814312A (zh) 2010-08-25
CN101814312B (zh) 2013-08-07
TWI313000B (en) 2009-08-01
DE60329130D1 (de) 2009-10-15
DE60314672D1 (de) 2007-08-09
KR20050042482A (ko) 2005-05-09
CN103366807B (zh) 2016-12-28
EP1717813A2 (en) 2006-11-02
CN1689109A (zh) 2005-10-26
WO2004017326A2 (en) 2004-02-26
AU2003254265A1 (en) 2004-03-03
US6829188B2 (en) 2004-12-07
ATE365965T1 (de) 2007-07-15
KR100679458B1 (ko) 2007-02-06
EP1717813A3 (en) 2007-02-14
EP1717813B1 (en) 2009-09-02
DE60314672T2 (de) 2008-03-06
TW200414190A (en) 2004-08-01
DE60314642T2 (de) 2008-02-28
US20040032760A1 (en) 2004-02-19
EP1667161A1 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP2005536820A (ja) 抵抗メモリー素子用の二重ループセンシング方法
US6795359B1 (en) Methods and apparatus for measuring current as in sensing a memory cell
US6504750B1 (en) Resistive memory element sensing using averaging
US8068046B2 (en) Methods of quantizing signals using variable reference signals
US20060013040A1 (en) Adjusting the frequency of an oscillator for use in a resistive sense amp
US10088510B2 (en) Capacitance detection apparatus and input apparatus
US9641193B2 (en) Comparators for delta-sigma modulators
US8098180B2 (en) Devices including analog-to-digital converters for internal data storage locations
JPH09102113A (ja) 磁気記憶装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617